1
|
Pacurari M, Cox I, Farah I. MiR-1 Is Regulated by Hydrogen Peroxide via MAPK and Limits Cell Migration and Invasion. ENVIRONMENTAL TOXICOLOGY 2025. [PMID: 40377376 DOI: 10.1002/tox.24538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/28/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
MicroRNA-1 (miR-1) is a conserved microRNA that is highly expressed in skeletal and cardiac muscle tissues. Moreover, miR-1 regulates genes and has critical roles in cell migration and invasion. Downregulation of miR-1 has been found in many pathologies of numerous organs, including the lungs. What exactly contributes to the downregulation of miR-1 is not fully understood, and in the present study, we investigated whether ROS regulate miR-1 and its role in cell migration and invasion. A549 cells were grown and maintained in DMEM:F12 (1:1) and supplemented with 10% FBS and 1000 U of Penicillin/Streptomycin and maintained as recommended by the manufacturer (ATCC). Cell migration and invasion, IHC, Western blot, qPCR, ROS, miR-1 transfection, and qPCR were used to determine miR-1 regulation and its role in cell migration. Exogenous miR-1 decreased the formation of ROS and inhibited cell migration and invasion, whereas inhibition of miR-1 increased ROS formation and stimulated cell migration and invasion. Inhibition of miR-1 induced the formation of actin filaments contractile structures, whereas exogenous miR-1 limited the formation of these structures. Hydrogen peroxide significantly decreased miR-1 level, whereas inhibition of Nox4 had no effect on miR-1 level. Alpha amanitin did not decrease miR-1 level, whereas inhibition of NF-кB temporally decreased miR-1 level. This study demonstrates that ROS suppress miR-1 and that miR-1 is posttranscriptionally regulated via MAPK. Endogenous Nox4-dependent ROS are not involved in miR-1 regulation, whereas exogenous ROS regulates miR-1. NF-κB plays a key role in miR-1 regulation in both redox and nonredox environments. Moreover, Mir-1 limits cell migration and invasion even in the presence of ROS. TSP-1 is a major regulator of TGFβ and its expression is upregulated by ROS. Our work indicates ROS is a major regulator of miR-1 and TSP-1 and could be a potential therapeutic target to limit ROS- and non-ROS-mediated processes in lung cells.
Collapse
Affiliation(s)
- Maricica Pacurari
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, Mississippi, USA
- RCMI Center for Environmental Health, College of Science, Engineering, and Technology, Jackson State University, Jackson, Mississippi, USA
| | - Irmanecia Cox
- Environmental Science PhD Program, College of Science, Engineering and Technology, Jackson State University, Jackson, Mississippi, USA
| | - Ibrahim Farah
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, Mississippi, USA
- RCMI Center for Environmental Health, College of Science, Engineering, and Technology, Jackson State University, Jackson, Mississippi, USA
| |
Collapse
|
2
|
Lu J, Li N, Zhang W. MLC2: Physiological Functions and Potential Roles in Tumorigenesis. Cell Biochem Biophys 2025:10.1007/s12013-025-01721-6. [PMID: 40089610 DOI: 10.1007/s12013-025-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
The myosin regulatory light chain 2 (MLC2) is a crucial regulator of myosin activity. Its phosphorylation, mediated by various kinases, plays a vital role in maintaining normal physiological functions in skeletal muscle, myocardium, smooth muscle, and nonmuscle cells. Moreover, MLC2 has been implicated in the development of many cancers through its phosphorylation. An increasing number of studies have shown that MLC2 may influence tumor progression by modulating cancer cell growth, migration, invasion, apoptosis, and autophagy. In this paper, we provide a concise overview of the phosphorylation regulatory mechanisms of MLC2 and its roles in both physiology and tumorigenesis. Furthermore, this study proposes potential directions for future research.
Collapse
Affiliation(s)
- Jiaxue Lu
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Nan Li
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Leng G, Duan B, Liu J, Li S, Zhao W, Wang S, Hou G, Qu J. The advancements and prospective developments in anti-tumor targeted therapy. Neoplasia 2024; 56:101024. [PMID: 39047659 PMCID: PMC11318541 DOI: 10.1016/j.neo.2024.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Cancer poses a major threat to human health worldwide. The development of anti-tumor materials provides new modalities for cancer diagnosis and treatment. In this review, we comprehensively summarize the research progress and clinical applications of anti-tumor materials. First, we introduce the etiology and pathogenesis of cancer, and the significance and challenges of anti-tumor materials research. Then, we classify anti-tumor materials and discuss their mechanisms of action. After that, we elaborate the research advances and clinical applications of anti-tumor materials, including those targeting tumor cells and therapeutic instruments. Finally, we discuss the future perspectives and challenges in the field of anti-tumor materials. This review aims to provide an overview of the current status of anti-tumor materials research and application, and to offer insights into future directions in this rapidly evolving field, which holds promise for more precise, efficient and customized treatment of cancer.
Collapse
Affiliation(s)
- Guorui Leng
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Baorong Duan
- Research Center for Leather and Protein of College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Junjie Liu
- Department of Physics, Binzhou Medical University, Yantai 264003, China
| | - Song Li
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Wenwen Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Shanshan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Jiale Qu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China.
| |
Collapse
|
4
|
Zhao W, Li Y, Cheng H, Wang M, Zhang Z, Cai M, Zhao C, Xi X, Zhao X, Zhao W, Yang Y, Shao R. Myofibrillogenesis Regulator-1 Regulates the Ubiquitin Lysosomal Pathway of Notch3 Intracellular Domain Through E3 Ubiquitin-Protein Ligase Itchy Homolog in the Metastasis of Non-Small Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306472. [PMID: 38342606 PMCID: PMC11022719 DOI: 10.1002/advs.202306472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
Myofibrillogenesis regulator-1 (MR-1) is a multifunctional protein involved in the development of various human tumors. The study is the first to report the promoting effect of MR-1 on the development and metastasis of non-small cell lung cancer (NSCLC). MR-1 is upregulated in NSCLC and positively associated with poor prognosis. The overexpression of MR-1 promotes the metastasis of NSCLC cells by stabilizing the expression of Notch3-ICD (NICD3) in the cytoplasm through enrichment analysis, in vitro and in vivo experimental researches. And Notch3 signaling can upregulate many genes related to metastasis. The stabilizing effect of MR-1 on NICD3 is achieved through the mono-ubiquitin lysosomal pathway and the specific E3 ubiquitin ligase is Itchy homolog (ITCH). There is a certain interaction between MR-1 and NICD3. Elevated MR-1 can affect the level of ITCH phosphorylation, reduce its E3 enzyme activity, and thus lead to reduce the ubiquitination and degradation of NICD3. Interference with the interaction between MR-1 and NICD3 can increase the degradation of NICD3 and impair the metastatic ability of NSCLC cells, which is a previously overlooked treatment option in NSCLC. In summary, interference with the interaction between MR-1 and NICD3 in the progression of lung cancer may be a promising therapeutic target.
Collapse
Affiliation(s)
- Wenxia Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Yang Li
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Hanzeng Cheng
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia MedicaPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Mengyan Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
- Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R. China
| | - Zhishuo Zhang
- Department of EmergencyXinhua HospitalShanghai Jiaotong University School of MedicineShanghai200092P. R. China
- Department of Organ Transplantation and Hepatobiliary SurgeryThe First Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Meilian Cai
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Cong Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Xiaoming Xi
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Xiaojun Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Wuli Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia MedicaPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Rongguang Shao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| |
Collapse
|
5
|
Chen J, Li W, Li G, Liu X, Huang C, Nie H, Liang L, Wang Y, Liu Y. Targeted liposomes encapsulated iridium(III) compound greatly enhance anticancer efficacy and induce cell death via ferroptosis on HepG2 cells. Eur J Med Chem 2024; 265:116078. [PMID: 38141286 DOI: 10.1016/j.ejmech.2023.116078] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In this study, ligands 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (PIP), 2-(2-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (NPIP), 2-(2-nitronaphthalen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (NNIP) and their iridium(III) metal compounds [Ir(ppy)2(PIP)](PF6) (ppy = 2-phenylpyridine, 1a), [Ir(ppy)2(NPIP)](PF6) (1b), [Ir(ppy)2(NNIP)](PF6) (1c) were designed and synthesized. The anti-cancer activities of 1a, 1b and 1c on BEL-7402, HepG2, SK-Hep1 and non-cancer LO2 were detected using MTT method. 1a shows moderate, 1b and 1c display low or no anti-cancer activities. To elevate the anti-cancer effectiveness, encapsulating the compounds 1a, 1b and 1c into the ordinary or targeted liposomes to produce 1alip, 1blip, 1clip, or targeted 1aTlip, 1bTlip and 1cTlip. The IC50 values of 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip against HepG2 cells are 7.9 ± 0.1, 8.6 ± 0.2, 16.9 ± 0.5, 5.9 ± 0.2, 7.3 ± 0.1 and 9.7 ± 0.7 μM, respectively. Specifically, the anti-tumor activity assays in vivo found that the inhibitory rates are 23.24 % for 1a, 61.27 % for 1alip, 76.06 % for 1aTlip. It is obvious that the targeted liposomes entrapped iridium(III) compound greatly enhance anti-cancer efficacy. Additionally, 1alip, 1blip and 1clip or targeted 1aTlip, 1bTlip and 1cTlip can effectively restrain the cell colony and proliferation in the G0/G1 period. 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip can increase reactive oxygen species (ROS) concentration, arouse a decline in the mitochondrial membrane potential and promote Ca2+ release. RNA-sequence was applied to examine the signaling pathways. Taken together, the liposomes or targeted liposomes encapsulated compounds trigger cell death by way of apoptosis, autophagy, ferroptosis, disruption of mitochondrial function and PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Gechang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | | | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Hua Nie
- Jiaying University, Meizhou, 514031, PR China.
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Tsai WE, Liu YT, Kuo FH, Cheng WY, Shen CC, Chiao MT, Huang YF, Liang YJ, Yang YC, Hsieh WY, Chen JP, Liu SY, Chiu CD. Crocetin Enhances Temozolomide Efficacy in Glioblastoma Therapy Through Multiple Pathway Suppression. Curr Neurovasc Res 2024; 21:320-336. [PMID: 39092730 DOI: 10.2174/0115672026332275240731054001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is an aggressive type of brain tumor that is difficult to remove surgically. Research suggests that substances from saffron, namely crocetin and crocin, could be effective natural treatments, showing abilities to kill cancer cells. METHODS Our study focused on evaluating the effects of crocetin on glioma using the U87 cell line. We specifically investigated how crocetin affects the survival, growth, and spread of glioma cells, exploring its impact at concentrations ranging from 75-150 μM. The study also included experiments combining crocetin with the chemotherapy drug Temozolomide (TMZ) to assess potential synergistic effects. RESULTS Crocetin significantly reduced the viability, proliferation, and migration of glioma cells. It achieved these effects by decreasing the levels of Matrix Metallopeptidase 9 (MMP-9) and Ras homolog family member A (RhoA), proteins that are critical for cancer progression. Additionally, crocetin inhibited the formation of cellular structures necessary for tumor growth. It blocked multiple points of the Ak Strain Transforming (AKT) signaling pathway, which is vital for cancer cell survival. This treatment led to increased cell death and disrupted the cell cycle in the glioma cells. When used in combination with TMZ, crocetin not only enhanced the reduction of cancer cell growth but also promoted cell death and reduced cell replication. This combination therapy further decreased levels of high mobility group box 1 (HMGB1) and Receptor for Advanced Glycation End-products (RAGE), proteins linked to inflammation and tumor progression. It selectively inhibited certain pathways involved in the cellular stress response without affecting others. CONCLUSION Our results underscore the potential of crocetin as a treatment for glioma. It targets various mechanisms involved in tumor growth and spread, offering multiple avenues for therapy. Further studies are essential to fully understand and utilize crocetin's benefits in treating glioma.
Collapse
Affiliation(s)
- Wei-En Tsai
- Taichung Municipal Taichung First Senior High School, Taichung, Taiwan
| | - Yen-Tsen Liu
- Taichung Municipal Taichung First Senior High School, Taichung, Taiwan
| | - Fu-Hsuan Kuo
- Center for Geriatrics and Gerontology, Taichung Veterans Hospital, Taichung, 40705, Taiwan
| | - Wen-Yu Cheng
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Physical Therapy, Hung Kuang University, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chiung-Chyi Shen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Physical Therapy, Hung Kuang University, Taichung, Taiwan
- Basic Medical Education, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Ming-Tsang Chiao
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Fen Huang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yea-Jiuen Liang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Chin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wan-Yu Hsieh
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Szu-Yuan Liu
- Department of Neurosurgery, Oncology Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Science, College of Life Science, Graduate Institute of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Di Chiu
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Pauletto E, Eickhoff N, Padrão NA, Blattner C, Zwart W. TRIMming Down Hormone-Driven Cancers: The Biological Impact of TRIM Proteins on Tumor Development, Progression and Prognostication. Cells 2021; 10:1517. [PMID: 34208621 PMCID: PMC8234875 DOI: 10.3390/cells10061517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
The tripartite motif (TRIM) protein family is attracting increasing interest in oncology. As a protein family based on structure rather than function, a plethora of biological activities are described for TRIM proteins, which are implicated in multiple diseases including cancer. With hormone-driven cancers being among the leading causes of cancer-related death, TRIM proteins have been described to portrait tumor suppressive or oncogenic activities in these tumor types. This review describes the biological impact of TRIM proteins in relation to hormone receptor biology, as well as hormone-independent mechanisms that contribute to tumor cell biology in prostate, breast, ovarian and endometrial cancer. Furthermore, we point out common functions of TRIM proteins throughout the group of hormone-driven cancers. An improved understanding of the biological impact of TRIM proteins in cancer may pave the way for improved prognostication and novel therapeutics, ultimately improving cancer care for patients with hormone-driven cancers.
Collapse
Affiliation(s)
- Eleonora Pauletto
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Nuno A. Padrão
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Christine Blattner
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| |
Collapse
|
8
|
Durrant TN, Moore SF, Bayliss AL, Jiang Y, Aitken EW, Wilson MC, Heesom KJ, Hers I. Identification of PtdIns(3,4)P2 effectors in human platelets using quantitative proteomics. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158575. [DOI: 10.1016/j.bbalip.2019.158575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/20/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022]
|
9
|
Sun J, Zhou Y, Ye Z, Tan WS. Transforming growth factor-β1 stimulates mesenchymal stem cell proliferation by altering cell cycle through FAK-Akt-mTOR pathway. Connect Tissue Res 2019; 60:406-417. [PMID: 30642198 DOI: 10.1080/03008207.2019.1570171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background: Mesenchymal stem cells (MSCs) are promising for cell therapy and regenerative medicine. An increased need for expanding of MSCs under serum-free condition to achieve a sufficient quantity for therapeutic applications is inevitable. Transforming growth factor-β1 (TGF-β1) is widely used for expanding clinical-grade MSCs in vitro. This work focuses on the influence of TGF-β1 on proliferation in rat bone marrow-derived MSCs (BMSCs) and the underlying mechanism. Materials and Methods: BMSCs were isolated and cultured with or without TGF-β1 in a serum-free medium and Cell Counting Kit-8 assay was used to detect BMSCs proliferation. Cell cycle transition was also analyzed. Further, the expression levels of cyclin D1, phosphorylated focal adhesion kinase, and downstream effectors in Akt-mTOR-S6K1 signaling pathway were examined by western blotting. Results and Conclusion: TGF-β1 triggered proliferation via accelerating G1/S cell cycle transition in BMSCs. The addition of TGF-β1 can activate Akt-mTOR-S6K1 pathway. Additionally, FAK was found to be involved in the process. Upon adding the FAK inhibitor, both the activation of Akt-mTOR-S6K1 and TGF-β1-induced cell proliferation were abrogated. Together, an insight understanding of how TGF-β1 influences BMSCs proliferation is achieved. This study provides a possible strategy of supplementing TGF-β1 in serum-free medium for in vitro expansion, which eventually would advance the production of clinical-grade MSCs for regenerative medicine.
Collapse
Affiliation(s)
- Jie Sun
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P. R. China
| | - Yan Zhou
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P. R. China
| | - Zhaoyang Ye
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P. R. China
| | - Wen-Song Tan
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P. R. China
| |
Collapse
|
10
|
Zhang P, Zhang H, Wang Y, Zhang P, Qi Y. Tripartite Motif-Containing Protein 59 (TRIM59) Promotes Epithelial Ovarian Cancer Progression via the Focal Adhesion Kinase(FAK)/AKT/Matrix Metalloproteinase (MMP) Pathway. Med Sci Monit 2019; 25:3366-3373. [PMID: 31062766 PMCID: PMC6519306 DOI: 10.12659/msm.916299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background The tripartite motif-containing protein 59 (TRIM59) is an important member of the TRIM family, which regulates biological processes. However, the relationship between TRIM59 and epithelial ovarian cancer (EOC) is not clear. Material/Methods The TRIM59 expression level was detected in EOC tissues and cell lines. CCK-8 assay, Transwell assay, and wound healing assay were performed to determine the effects of TRIM59 on EOC cell proliferation, invasion, and migration. Silencing of the expression of TRIM59 in EOC cells and expression of FAK/AKT/MMP pathway-related protein were detected by Western blot analysis. Results Through bioinformatics analysis, TRIM59 was found to be highly expressed in EOC and was correlated with prognosis of patients. TRIM59 was upregulated in EOC tissues and cells. Silencing TRIM59 significantly suppressed EOC cell proliferation, migration, and invasion. In terms of molecular mechanism, silencing TRIM59 inhibited the FAK/AKT/MMP pathway. Conclusions TRIM59 is a biomarker for the prognosis of EOC. It is also oncogenic and a potential target for EOC therapy.
Collapse
Affiliation(s)
- Pei Zhang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| | - Hengliang Zhang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| | - Yan Wang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| | - Pan Zhang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| | - Yan Qi
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China (mainland)
| |
Collapse
|
11
|
Chen Y, Cao J, Zhao Q, Luo H, Wang Y, Dai W. Silencing MR-1 attenuates atherosclerosis in ApoE -/- mice induced by angiotensin II through FAK-Akt-mTOR-NF-kappaB signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018. [PMID: 29520165 PMCID: PMC5840071 DOI: 10.4196/kjpp.2018.22.2.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Myofibrillogenesis regulator-1 (MR-1) is a novel protein involved in cellular proliferation, migration, inflammatory reaction and signal transduction. However, little information is available on the relationship between MR-1 expression and the progression of atherosclerosis. Here we report atheroprotective effects of silencing MR-1 in a model of Ang II-accelerated atherosclerosis, characterized by suppression focal adhesion kinase (FAK) and nuclear factor kappaB (NF-κB) signaling pathway, and atherosclerotic lesion macrophage content. In this model, administration of the siRNA-MR-1 substantially attenuated Ang II-accelerated atherosclerosis with stabilization of atherosclerotic plaques and inhibited FAK, Akt, mammalian target of rapamycin (mTOR) and NF-kB activation, which was associated with suppression of inflammatory factor and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in Ang II-treated vascular smooth muscle cells (VSMCs) and macrophages: siRNA-MR-1 inhibited the expression levels of proinflammatory factor. These studies uncover crucial proinflammatory mechanisms of Ang II and highlight actions of silencing MR-1 to inhibit Ang II signaling, which is atheroprotective.
Collapse
Affiliation(s)
- Yixi Chen
- Hunan Environment-Biological Polytechnic College, Hengyang Hunan 421005, China
| | - Jianping Cao
- Hunan Environment-Biological Polytechnic College, Hengyang Hunan 421005, China
| | - Qihui Zhao
- Hunan Environment-Biological Polytechnic College, Hengyang Hunan 421005, China
| | - Haiyong Luo
- Hunan Environment-Biological Polytechnic College, Hengyang Hunan 421005, China
| | - Yiguang Wang
- Key Lab of Antibiotic Biotechnology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wenjian Dai
- Hunan Environment-Biological Polytechnic College, Hengyang Hunan 421005, China
| |
Collapse
|
12
|
Myofibrillogenesis Regulator 1 Rescues Renal Ischemia/Reperfusion Injury by Recruitment of PI3K-Dependent P-AKT to Mitochondria. Shock 2018; 46:531-540. [PMID: 27219857 DOI: 10.1097/shk.0000000000000658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate whether myofibrillogenesis regulator 1 (MR-1) attenuates renal ischemia/reperfusion (I/R) injury via inhibiting phosphorylated Akt (p-Akt) mitochondrial translocation-mediated opening of the mitochondrial permeability transition pore (mPTP), we injected adenovirus containing MR-1 gene or its siRNAs to the left kidney subcapsular areas of Sprague-Dawley rats, which subsequently underwent experimental renal I/R injury. Renal functions and the severity of the tubular injury were evaluated by the serum creatinine and blood urea nitrogen levels and the pathological scores. We also examined the mitochondrial morphology and functions. Total/p-Akt were assessed by western blot using the mitochondrial and the cytosolic fractions of cortex of renal tissue, respectively. We found that mitochondrial and cytosolic MR-1 levels and mitochondrial p-Akt decreased, and cytosolic p-Akt increased after reperfusion. Subcapsular injection of adenovirus led to higher MR-1 expression in the mitochondria/cytosol, inhibited mPTP opening, and alleviated renal I/R injury; adenovirus injection also upregulated mitochondrial total and p-Akt levels more prominently compared with the normal saline (NS) group. Subcapsular injection of MR-1 siRNAs significantly lowered MR-1 expression and induced renal injury, with increased mPTP opening and mitochondrial damage, similar to I/R injury. MR-1 interacted with Akt in renal cortex homogenate. Wortmannin, a phosphatidylinositol 3 kinase (PI3K) inhibitor, abolished both mitochondrial p-Akt recruitment and the protective effect of MR-1 overexpression on I/R injury. To conclude, MR-1 protects kidney against I/R injury through inhibiting mPTP opening and maintaining mitochondrial integrity, through the recruitment of PI3K-dependent p-Akt to the mitochondria. MR-1 could be a new therapeutic strategy for renal I/R injury.
Collapse
|
13
|
Wang J, Zhao W, Liu H, He H, Shao R. Myofibrillogenesis regulator 1 (MR-1): a potential therapeutic target for cancer and PNKD. J Drug Target 2017; 26:643-648. [PMID: 29103325 DOI: 10.1080/1061186x.2017.1401077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human myofibrillogenesis regulator 1 (MR-1) is a functional gene also known as paroxysmal nonkinesigenic dyskinesia (PNKD). It is localised on human chromosome 2q35 and three different isomers, MR-1L, MR-1M and MR-1S, are formed by alternative splicing. MR-1S promotes cardiac hypertrophy and is closely related to cancer. MR-1S is overexpressed in haematologic and solid malignancies, such as hepatoma, breast cancer and chronic myelogenous leukaemia. MR-1S causes disordered cell differentiation, initiates malignant transformation and accelerates metastasis. MR-1S directly phosphorylates and activates the MEK-ERK-RSK pathway to accelerate cancer growth and facilitates metastasis by activating the MLC2-FAK-AKT pathway. Silencing MR-1 inhibits cancer cell proliferation and metastasis. MR-1S causes disordered cell differentiation, initiates malignant transformation and accelerates metastasis. MR-1 interacts with eukaryotic translation initiation factors and MRIP-1, which contains Ras GTPase, PH and zinc-containing ArfGap domains, as well as three ankyrin repeats. Mutations in the N-terminal region of MR-1L and MR-1S are the main causes of PNKD (a hereditary disease characterised by paroxysmal dystonic choreoathetosis) and targeting the mutated protein could provide symptomatic relief. These findings provide compelling evidence that MR-1 might be a diagnostic marker and therapeutic target for solid tumours, myelogenous leukaemia and PNKD.
Collapse
Affiliation(s)
- Junxia Wang
- a Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , PR China
| | - Wuli Zhao
- a Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , PR China
| | - Hong Liu
- a Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , PR China
| | - Hongwei He
- a Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , PR China
| | - Rongguang Shao
- a Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology , Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , PR China
| |
Collapse
|
14
|
Nguyen CH, Brenner S, Huttary N, Li Y, Atanasov AG, Dirsch VM, Holzner S, Stadler S, Riha J, Krieger S, Milovanovic D, Fristiohardy A, Simonitsch-Klupp I, Dolznig H, Saiko P, Szekeres T, Giessrigl B, Jäger W, Krupitza G. 12(S)-HETE increases intracellular Ca2+ in lymph-endothelial cells disrupting their barrier function in vitro; stabilization by clinical drugs impairing calcium supply. Cancer Lett 2016; 380:174-83. [DOI: 10.1016/j.canlet.2016.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
|
15
|
The Chemical Biology of Human Metallo-β-Lactamase Fold Proteins. Trends Biochem Sci 2016; 41:338-355. [PMID: 26805042 PMCID: PMC4819959 DOI: 10.1016/j.tibs.2015.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 01/30/2023]
Abstract
The αββα metallo β-lactamase (MBL) fold (MBLf) was first observed in bacterial enzymes that catalyze the hydrolysis of almost all β-lactam antibiotics, but is now known to be widely distributed. The MBL core protein fold is present in human enzymes with diverse biological roles, including cell detoxification pathways and enabling resistance to clinically important anticancer medicines. Human (h)MBLf enzymes can bind metals, including zinc and iron ions, and catalyze a range of chemically interesting reactions, including both redox (e.g., ETHE1) and hydrolytic processes (e.g., Glyoxalase II, SNM1 nucleases, and CPSF73). With a view to promoting basic research on MBLf enzymes and their medicinal targeting, here we summarize current knowledge of the mechanisms and roles of these important molecules. MBLs are mono- or di-zinc ion-dependent hydrolases that enable bacterial resistance to almost all β-lactam antibiotics. The αββα MBL core fold is widely distributed and supports a range of catalytic activities, including redox reactions. hMBL proteins are a small family of approximately 18 zinc- and iron-dependent proteins with roles in metabolism and/or detoxification and nucleic acid modification. In a notable parallel with the role of bacterial MBLs in antibiotic resistance, some hMBLf enzymes enable resistance to chemotherapy drugs, such as cisplatin and mitomycin C.
Collapse
|
16
|
Kipkeew F, Kirsch M, Klein D, Wuelling M, Winterhager E, Gellhaus A. CCN1 (CYR61) and CCN3 (NOV) signaling drives human trophoblast cells into senescence and stimulates migration properties. Cell Adh Migr 2016; 10:163-78. [PMID: 26744771 DOI: 10.1080/19336918.2016.1139265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During placental development, continuous invasion of trophoblasts into the maternal compartment depends on the support of proliferating extravillous trophoblasts (EVTs). Unlike tumor cells, EVTs escape from the cell cycle before invasion into the decidua and spiral arteries. This study focused on the regulation properties of glycosylated and non-glycosylated matricellular CCN1 and CCN3, primarily for proliferation control in the benign SGHPL-5 trophoblast cell line, which originates from the first-trimester placenta. Treating SGHPL-5 trophoblast cells with the glycosylated forms of recombinant CCN1 and CCN3 decreased cell proliferation by bringing about G0/G1 cell cycle arrest, which was accompanied by the upregulation of activated Notch-1 and its target gene p21. Interestingly, both CCN proteins increased senescence-associated β-galactosidase activity and the expression of the senescence marker p16. The migration capability of SGHPL-5 cells was mostly enhanced in response to CCN1 and CCN3, by the activation of FAK and Akt kinase but not by the activation of ERK1/2. In summary, both CCN proteins play a key role in regulating trophoblast cell differentiation by inducing senescence and enhancing migration properties. Reduced levels of CCN1 and CCN3, as found in early-onset preeclampsia, could contribute to a shift from invasive to proliferative EVTs and may explain their shallow invasion properties in this disease.
Collapse
Affiliation(s)
- Friederike Kipkeew
- a Department of Molecular Biology , University of Duisburg-Essen , Essen , Germany
| | - Manuela Kirsch
- b Department of Gynecology and Obstetrics , University of Duisburg-Essen , Essen , Germany
| | - Diana Klein
- c Institute of Cell Biology, University of Duisburg-Essen , Essen , Germany
| | - Manuela Wuelling
- d Department of Developmental Biology , University of Duisburg-Essen , Essen , Germany
| | - Elke Winterhager
- a Department of Molecular Biology , University of Duisburg-Essen , Essen , Germany
| | - Alexandra Gellhaus
- a Department of Molecular Biology , University of Duisburg-Essen , Essen , Germany.,b Department of Gynecology and Obstetrics , University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
17
|
High expression of Talin-1 is associated with poor prognosis in patients with nasopharyngeal carcinoma. BMC Cancer 2015; 15:332. [PMID: 25925041 PMCID: PMC4424526 DOI: 10.1186/s12885-015-1351-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Background Talin-1 is a cytoskeletal protein that plays an important role in tumourgenesis, migration and metastasis in several malignant tumors. The aim of this study was to evaluate the expression and prognostic value of Talin-1 in nasopharyngeal carcinoma (NPC). Methods Talin-1 mRNA and protein expression were examined in NPC cell lines and clinical nasopharyngeal tissues by quantitative RT-PCR, agarose gel electrophoresis and western blotting. The expression of Talin-1 was analyzed by immunohistochemical staining in 233 paraffin-embedded NPC specimens with clinical follow-up data and cox regression analysis was used to identify independent prognostic factors. The functional role of Talin-1 in NPC cell lines was evaluated by small interfering RNA-mediated depletion of the protein followed by the wound healing and transwell invasion assays. Results The expression of Talin-1 was significantly upregulated in most NPC cell lines and clinical tissues at both the mRNA and protein levels. High expression of Talin-1 was significantly associated with distant metastasis (P = 0.001) and patient death (P = 0.001). In addition, high expression of Talin-1 was associated with significantly poorer overall survival (OS: HR, 2.15; 95% CI, 1.28-3.63; P = 0.003) and poorer distant metastasis-free survival (DMFS: HR, 2.39; 95% CI, 1.38-4.15; P = 0.001). Cox regression analysis indicated that high expression of Talin-1 and TNM stage were independent prognostic indicators (both P < 0.05). Stratified analysis demonstrated that high expression of Talin-1 was associated with significantly poorer survival in patients with advanced stage disease (stage III-IV, HR, 1.91; 95% CI, 1.09-3.35; P = 0.02 for OS and HR, 2.22; 95% CI, 1.24-3.99; P = 0.006 for DMFS). Furthermore, the depletion of Talin-1 suppressed the migratory and invasive ability of NPC cells in vitro. Conclusions Our data demonstrate that high expression of Talin-1 is associated with significantly poorer OS and poorer DMFS in NPC and depletion of Talin-1 expression inhibited NPC cell migration and invasion. Talin-1 may serve as novel prognostic biomarker in NPC.
Collapse
|
18
|
Tan X, Chen M. MYLK and MYL9 expression in non-small cell lung cancer identified by bioinformatics analysis of public expression data. Tumour Biol 2014; 35:12189-12200. [PMID: 25179839 DOI: 10.1007/s13277-014-2527-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/20/2014] [Indexed: 11/28/2022] Open
Abstract
Gene expression microarrays are widely used to investigate molecular targets in cancers, including lung cancer. In this study, we analyzed online non-small cell lung cancer (NSCLC) microarray databases, to screen the key genes and pathways related to NSCLC by bioinformatics analyses. And then, the expression levels of two selected genes in the down-regulated co-pathways, myosin light chain kinase (MYLK) and myosin regulatory light chain 9 (MYL9), were determined in tumor, paired paraneoplastic, and normal lung tissues. First, gene set enrichment analysis and meta-analysis were conducted to identify key genes and pathways that contribute to NSCLC carcinogenesis. Second, using the total RNA and protein extracted from lung cancer tissues (n = 240), adjacent non-cancer tissues (n = 240), and normal lung tissues (n = 300), we examined the MYLK and MYL9 expression levels by quantitative real-time PCR and Western blot. Finally, we explored the correlations between mRNA and protein expressions of these two genes and the clinicopathological parameters of NSCLC. Fifteen up-regulated and nine down-regulated co-pathways were observed. A number of differentially expressed genes (CALM1, THBS1, CSF3, BMP2, IL6ST, MYLK, ROCK2, IL3RA, MYL9, PPP2CA, CSF2RB, CNAQ, GRIA2, IL10RA, IL10RB, IL11RA, LIFR, PLCB4, and RAC3) were identified (P < 0.01) in the down-regulated co-pathways. The expression levels of MYLK and MYL9, which act downstream of the vascular smooth muscle contraction signal pathway and focal adhesion pathway, were significantly lower in cancer tissue than those in the paraneoplastic and normal tissues (P < 0.05). Moreover, the expression levels of these two genes in stages III and IV NSCLC were significantly increased, when compared to stages I and II, and expressions levels in NSCLC with lymphatic metastasis were higher than that without lymphatic metastasis (P < 0.05). Additionally, significant lower expression levels of the two genes were found in smokers than in nonsmokers (P < 0.05). In contrast, gender, differentiated degrees, and pathohistological type appeared to have no impact on these gene expressions (P > 0.05). These findings suggested that low MYLK and MYL9 expressions might be associated with the development of NSCLC. These genes may be also relevant to NSCLC metastasis. Future investigations with large sample sizes needed to verify these findings.
Collapse
Affiliation(s)
- Xiang Tan
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | | |
Collapse
|
19
|
Su GQ, Zhang FX, Mao HH, Liu XW, Zheng YS, Zhang SY, Su JJ. Research of shRNAmir inhibitory effects towards focal adhesion kinase expression in the treatment of gastric cancer. Oncol Lett 2014; 9:595-603. [PMID: 25621028 PMCID: PMC4301487 DOI: 10.3892/ol.2014.2725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/16/2014] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer is the fourth most common type of malignant tumor, with a poor prognosis. Focal adhesion kinase (FAK) mediates the crosslink of intracellular signaling networks, playing a key role in cell migration and invasion. The aim of the present study was to investigate the effects of FAK interference on the proliferation ability, invasion and metastasis of gastric cancer cells. The FAK-RNAi lentiviral vector was infected into SGC7901 gastric cancer cells in order to observe the in vivo situations of tumor growth and metastasis before and after the FAK interference. The growth of SGC7901 gastric cancer cells in the interference group was significantly inhibited compared with that of the negative control (P<0.05) and the blank control groups (P<0.05), and the FAK expression significantly decreased (P<0.05). The in vitro invasion and metastasis experiments showed that the cell invasion and metastasis abilities of the interference group significantly decreased when compared with those of the negative control (P<0.05) and blank control groups (P<0.05). In the nude mouse subcutaneous tumor transplantation model, the mean ± standard deviation tumor weight of the interference group (1.474±0.9840 g) was lower than that of the negative control (3.134±0.3299 g) and blank control (2.68±0.12 g) groups (P<0.05). In the nude mice, the liver and peritoneal metastasis rates of the interference group were significantly lower than those of the negative control (P<0.05) and the blank control groups (P<0.05), and the FAK mRNA of the interference group significantly reduced (P<0.05). In conclusion, FAK interference could effectively suppress the proliferation, invasion and metastasis of transfected SGC7901 gastric cancer cells, and could inhibit the growth and distant metastasis of gastric cancer in nude mice.
Collapse
Affiliation(s)
- Guo-Qiang Su
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Fu-Xing Zhang
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - He-Hui Mao
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xian-Wei Liu
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yong-Sheng Zheng
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Si-Yu Zhang
- Department of General Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Jing-Jun Su
- Department of Ultrasound Diagnosis, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
20
|
Liang S, Yu X, Zhang S, Tai J. A case of familial paroxysmal nonkinesigenic dyskinesia due to mutation of the PNKD gene in Chinese Mainland. Brain Res 2014; 1595:120-6. [PMID: 25107857 DOI: 10.1016/j.brainres.2014.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Paroxysmal dyskinesia is a rare neurological disorder characterized by paroxysmal movement disorders. Paroxysmal movement disorders include kinesigenic choreoathetosis, nonkinesigenic choreoathetosis or dyskinesia (PNKD), exercise-induced choreoathetosis, and hypnogenic paroxysmal dystonia. There have been some sporadic reports of PNKD occurrences in Chinese Mainland, but none has been reported on familial PNKD. Proband and methods A 32 years old male admitted to the First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China in 2009 with recurrent limb involuntary movements spanning over 30 years was diagnosed with PNKD. Family history was collected to identify if it was a case of familial or sporadic PNKD. Mutation and linkage analysis were performed to identify the pathogenic gene and the localization of the same. RESULTS There were five generations of 26 patients, out of which 3 of these patients died. Follow-up was conducted on 17 out of the 23 patients alive and 9 normal family members. The pedigree showed autosomal dominant inheritance, whom could be divided into light, moderate, and severe group according to clinical signs, spontaneous attack and response to drugs. All patients harbored c.20C>T (p.A7V) mutation in exon 1 of the PNKD/MR-1 gene. Preliminary linkage analyses using phenocopy rates of 0.0001 and 0.1 suggested that linkage signal localizes between D2S126 and D2S377. The functional consequence of the mutation in the disease pathogenesis is pending investigation. Conclusions We report the first case of familial paroxysmal non-kinesigenic dyskinesia (PNKD) in Chinese Mainland, which coincidentally is also the largest case of familial PNKD ever reported. This article is part of a Special Issue entitled Brain and Memory.
Collapse
Affiliation(s)
- Shuli Liang
- Department of Neurosurgery, Capital Epilepsy Therapy Center, First Affiliated Hospital of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.
| | - Xiaoman Yu
- Department of Neurosurgery, Capital Epilepsy Therapy Center, First Affiliated Hospital of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shaohui Zhang
- Department of Neurosurgery, Capital Epilepsy Therapy Center, First Affiliated Hospital of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Junli Tai
- Department of Neurosurgery, Capital Epilepsy Therapy Center, First Affiliated Hospital of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
21
|
Gong Y, He H, Liu H, Zhang C, Zhao W, Shao RG. Phosphorylation of myofibrillogenesis regulator-1 activates the MAPK signaling pathway and induces proliferation and migration in human breast cancer MCF7 cells. FEBS Lett 2014; 588:2903-10. [PMID: 25066297 DOI: 10.1016/j.febslet.2014.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/05/2014] [Accepted: 07/15/2014] [Indexed: 12/24/2022]
Abstract
Myofibrillogenesis regulator-1 (MR-1) has been characterized as a tumor promoter in many cancers. However, its mechanism of action has not been fully elucidated. Here, we report that MR-1 is overexpressed in human breast cancer cells and participates in tumor promotion in human breast cancer MCF7 cells by activating the ERK1/2 signaling pathway. MR-1 interacts with MEK1/2 and ERK1, and its N-terminal sequence plays a major role in promoting the MEK/ERK cascade. Furthermore, six phosphorylation sites of MR-1 were identified, and phosphorylation at S46 was shown to be critical for the activation of MEK/ERK. Therefore, our findings suggest that MR-1 functions as a tumor promoter in MCF7 cells by activating the MEK/ERK signaling.
Collapse
Affiliation(s)
- Yuyan Gong
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing 100050, China
| | - Hongwei He
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing 100050, China
| | - Hong Liu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing 100050, China
| | - Caixia Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing 100050, China
| | - Wuli Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing 100050, China
| | - Rong-Guang Shao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing 100050, China.
| |
Collapse
|
22
|
RasGAP-derived peptide GAP159 enhances cisplatin-induced cytotoxicity and apoptosis in HCT116 cells. Acta Pharm Sin B 2014; 4:128-34. [PMID: 26579374 PMCID: PMC4590723 DOI: 10.1016/j.apsb.2014.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/16/2014] [Accepted: 02/22/2014] [Indexed: 01/16/2023] Open
Abstract
To increase the efficacy of currently used anti-cancer genotoxins, one of the current efforts is to find agents that can sensitize cancer cells to genotoxins so that the efficacious doses of genotoxins can be lowered to reduce deleterious side-effects. In this study, we reported that a synthetic RasGAP-derived peptide GAP159 could enhance the effect of chemotherapeutic agent cisplatin (CDDP) in human colon carcinoma HCT116 cells. Our results showed that GAP159 significantly increased the CDDP-induced cytotoxicity and apoptosis in HCT116 cells. This synergistic effect was associated with the inhibitions of phospho-AKT, phospho-ERK and NF-κB. In mouse colon tumor CT26 animal models, GAP159 combined with CDDP significantly suppressed CT26 tumor growth, and GAP159 alone showed slight inhibitory effect. Our data suggests that co-treatment of GAP159 and chemotherapeutics will become a potential therapeutic strategy for colon cancers.
Collapse
|
23
|
Wang X, Tao T, Ding R, Song D, Liu M, Xie Y, Liu X. Kidney protection against ischemia/reperfusion injury by myofibrillogenesis regulator-1. Am J Nephrol 2014; 39:279-87. [PMID: 24714450 DOI: 10.1159/000360141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/23/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Ischemia/reperfusion (I/R) injury is characterized by cytoskeletal reorganization and loss of polarity in proximal tubule epithelial cells. Previously, we showed that myofibrillogenesis regulator (MR)-1 promoted actin organization in cardiomyocytes. MR-1 is also expressed in the kidney. METHODS In this study, we investigated MR-1 expression in acute renal failure induced by I/R in Sprague-Dawley rats. We determined the MR-1 expression and the ratio of fibrous actin (F-actin) to globular actin (G-actin). HK-2 cells were treated with or without hypoxia/reoxygenation (H/R), and MR-1 levels were increased by adenoviral overexpression or silenced by RNA interference. RESULTS I/R and H/R resulted in cellular injury and decreases of MR-1, the F-/G-actin ratio, and myosin light chain (MLC)-2. MR-1 overexpression attenuated H/R-induced cell injury and loss of surface membrane polarity of actin. MR-1 overexpression also increased the expression and phosphorylation of MLC-2 and MLC kinase, which were decreased in MR-1-silenced and H/R-treated cells. CONCLUSION Together, these data show that MR-1 promoted actin polarity on the membrane surface and protected HK-2 cells from H/R injury. The mechanism might involve the rapid organization of F-actin through the upregulation and phosphorylation of MLC-2.
Collapse
Affiliation(s)
- Xiaoreng Wang
- Department of Pathophysiology, PLA General Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang SH, Zhang H, He HW, Li L, Li XQ, Zhang YP, Shao RG. Lidamycin up-regulates the expression of thymidine phosphorylase and enhances the effects of capecitabine on the growth and pulmonary metastases of murine breast carcinoma. Cancer Chemother Pharmacol 2013; 72:777-88. [DOI: 10.1007/s00280-013-2253-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/26/2013] [Indexed: 12/27/2022]
|
25
|
Myofibrillogenesis regulator-1 promotes cell adhesion and migration in human hepatoma cells. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-5933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
miR-9 functions as a tumor suppressor in ovarian serous carcinoma by targeting TLN1. Int J Mol Med 2013; 32:381-8. [PMID: 23722670 DOI: 10.3892/ijmm.2013.1400] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/20/2013] [Indexed: 11/05/2022] Open
Abstract
microRNAs (miRNAs) are important regulators of gene expression during tumorigenesis. The downregulation of microRNA-9 (miR-9) has been reported in ovarian serous carcinoma (OSC), indicating a role for miR-9 in this type of cancer. In this study, we investigated the biological significance of miR-9 in OSC in vitro. Using 3 OSC cell lines, SKOV3, CAOV3 and OVCAR3, which underexpresss miR-9, we demonstrate that the exogenous miR-9 transfection inhibits OSC cell proliferation, migration and invasion. In addition, we demonstrate that the focal adhesion protein, talin 1 (TLN1), whose expression has been associated with OSC development and progression to metastasis, is a direct target of miR-9. TLN1 knockdown mimicked the effects of miR-9 overexpression. Moreover, the activation of the TLN1-modulated FAK/AKT pathway was inhibited by the increased miR-9 levels. These results suggest that miR-9 plays a role as a tumor suppressor in OSC by suppressing TLN1 expression.
Collapse
|
27
|
Zhao CY, Guo ZJ, Dai SM, Zhang Y, Zhou JJ. Clinicopathological and prognostic significance of myofibrillogenesis regulator-1 protein expression in pancreatic ductal adenocarcinoma. Tumour Biol 2013; 34:2983-7. [PMID: 23696030 DOI: 10.1007/s13277-013-0862-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/10/2013] [Indexed: 01/16/2023] Open
Abstract
Myofibrillogenesis regulator-1 (MR-1) expression was detected in different malignancies and is associated with poor prognosis. However, its role in pancreatic ductal adenocarcinoma (PDAC) has not been fully elucidated. Thus, the aim of this study was to investigate the association of MR-1 expression with clinicopathologic features and prognosis in patients with PDAC. Immunohistochemistry was performed to investigate the protein expression of MR-1 and epithelial (E)-cadherin in 87 patients with PDAC. Results showed that MR-1 expression was correlated with histologic grade, tumor stage, and lymph node metastasis (all P <0.05). In addition, MR-1 expression showed a significant inverse correlation with E-cadherin expression (P = 0.002). Furthermore, the variables associated with prognosis were analyzed by Cox's proportional hazards model. Kaplan-Meier analysis was used to plot survival curves according to different expression levels of MR-1. Kaplan-Meier analysis revealed that MR-1 expression was significantly associated with worse disease-free survival (DFS) and overall survival (OS) rates in patients with PDAC (both P <0.001). Finally, multivariate analysis demonstrated that MR-1 expression, together with histologic grade, tumor stage, lymph node metastasis, was an independent prognostic factor for both DFS and OS rates in patients with PDAC. MR-1 overexpression was tightly associated with more aggressive tumor behavior and a poor prognosis, indicating that MR-1 is a valuable molecular biomarker for PDAC progression.
Collapse
Affiliation(s)
- Chang-Yong Zhao
- Department of General Surgery, Wuxi No. 4 People's Hospital, Wuxi Hospital of Oncology, No. 200, Huihe Road, Wuxi, 214062, China,
| | | | | | | | | |
Collapse
|
28
|
Cheng WY, Chiao MT, Liang YJ, Yang YC, Shen CC, Yang CY. Luteolin inhibits migration of human glioblastoma U-87 MG and T98G cells through downregulation of Cdc42 expression and PI3K/AKT activity. Mol Biol Rep 2013; 40:5315-26. [PMID: 23677714 PMCID: PMC3751389 DOI: 10.1007/s11033-013-2632-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 04/30/2013] [Indexed: 11/29/2022]
Abstract
Luteolin (3′,4′,5,7-tetrahydroxyflavone) is a common flavonoid in many types of plants and has several beneficial biological effects, including anti-inflammation, anti-oxidant, and anti-cancer properties. However, the detail mechanisms of luteolin in suppressing tumor invasion and metastasis are poorly understood. Here, we investigated the effects of luteolin on suppressing glioblastoma tumor cell invasion and migration activity. Under the non-cytotoxic doses (15 and 30 μM), luteolin exhibited an inhibitory effect on migration and invasion in U-87 MG and T98G glioblastoma cells. Additionally, filopodia assembly in U-87 MG cells was markedly suppressed after luteolin treatment. The treatment of luteolin also showed a decrease of Cdc42 (cell division cycle 42) protein levels and reduced PI3K/AKT activation, whereas there was no association between this decrease and phosphorylated ERK or altered transcription levels of Cdc42. Over expression of constitutive Cdc42 (Q61L) using transient transfection in U-87 MG cells induced a partial cell migration, but did not affected the degradation of the protein levels of Cdc42 after luteolin treatment. Moreover, inhibition of the proteaosome pathway by MG132 caused a significant recovery in the migration ability of U-87 MG cells and augmented the Cdc42 protein levels after luteolin treatment, suggesting that pharmacological inhibition of migration via luteolin treatment is likely to preferentially facilitate the protein degradation of Cdc42. Taken together, the study demonstrated that flavonoids of luteolin prevent the migration of glioblastoma cells by affecting PI3K/AKT activation, modulating the protein expression of Cdc42 and facilitating their degradation via the proteaosome pathway.
Collapse
Affiliation(s)
- Wen-Yu Cheng
- Institute of Molecular Biology, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 402, Taiwan.
| | | | | | | | | | | |
Collapse
|
29
|
MR-1 blocks the megakaryocytic differentiation and transition of CML from chronic phase to blast crisis through MEK dephosphorylation. Blood Cancer J 2013; 3:e107. [PMID: 23542180 PMCID: PMC3615218 DOI: 10.1038/bcj.2013.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic myelogenous leukemia (CML) evolves from a chronic phase characterized by the Philadelphia chromosome as the sole genetic abnormality and the accumulation of mature cells in peripheral blood into blast crisis, which is characterized by the rapid expansion of myeloid- or lymphoid-differentiation-arrested blast cells. Although ample studies have been conducted on the disease progress mechanisms, the underlying molecular mechanisms of the malignant phenotype transition are still unclear. In this study, we have shown that myofibrillogenesis regulator-1 (MR-1) was overexpressed in blast crisis patients and leukemic cells, but there was little trace expressed in healthy individuals and in most patients in CML chronic phase. MR-1 could inhibit the differentiation of myeloid cells into megakaryocytic lineages and accelerate cell proliferation. The molecular mechanism responsible for these effects was the interaction of MR-1 with MEK, which blocked the MEK/ERK signaling pathway by dephosphorylating MEK. Our results provide compelling and important evidence that MR-1 might act as a diagnostic marker and potential target of CML progression from chronic phase to blast crisis.
Collapse
|
30
|
Guo J, Dong B, Ji JF, Wu AW. Myofibrillogenesis regulator-1 overexpression is associated with poor prognosis of gastric cancer patients. World J Gastroenterol 2012; 18:5434-41. [PMID: 23082061 PMCID: PMC3471113 DOI: 10.3748/wjg.v18.i38.5434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of myofibrillogenesis regulator-1 (MR-1) in relation to clinicopathological parameters and postoperative survival in a group of Chinese patients with gastric cancer.
METHODS: In our previous study of human whole-genome gene expression profiling, the differentially expressed genes were detected in the gastric cancer and its adjacent noncancerous mucosa. We found that MR-1 was associated with the location and differentiation of tumors. In this study, MR-1 protein expression was determined by immunohistochemistry in specimens of primary cancer and the adjacent noncancerous tissues from gastric cancer patients. A set of real-time quantitative polymerase chain reaction assays based on the Universal ProbeLibrary-a collection of 165 presynthesized, fluorescence-labeled locked nucleic acid hydrolysis probes-was designed specifically to detect the expression of MR-1 mRNA. The correlation was analyzed between the expression of MR-1 and other tumor characteristics which may influence the prognosis of gastric cancer patients. A retrospective cohort study on the prognosis was carried out and clinical data were collected from medical records.
RESULTS: MR-1 mRNA and protein could be detected in gastric cancer tissues as well as in matched noncancerous tissues. MR-1 was up-regulated at both mRNA (5.459 ± 0.639 vs 1.233 ± 0.238, P < 0.001) and protein levels (34.2% vs 13.2%, P = 0.003) in gastric cancer tissues. Correlation analysis demonstrated that high expression of MR-1 in gastric cancer was significantly correlated with clinical stage (P = 0.034). Kaplan-Meier analysis showed that the postoperative survival of the MR-1 positive group tended to be poorer than that of the MR-1 negative group, and the difference was statistically significant (P = 0.002). Among all the patients with stage I-IV carcinoma, the 5-year survival rates of MR-1 positive and negative groups were 50.40% and 12.70%, respectively, with respective median survival times of 64.27 mo (95%CI: 13.41-115.13) and 16.77 mo (95%CI: 8.80-24.74). Univariate and multivariate analyses were performed to compare the impact of MR-1 expression and other clinicopathological parameters on prognosis. In a univariate analysis on all 70 specimens, 6 factors were found to be significantly associated with the overall survival statistically: including MR-1 expression, depth of invasion, distant metastasis, lymph node metastasis, vascular invasion and the tumor node metastasis (TNM) stage based on the 7th edition of the International Union against Cancer TNM classification. To avoid the influence caused by univariate analysis, the expressions of MR-1 as well as other parameters were examined in multivariate Cox analysis. Clinicopathological variables that might affect the prognosis of gastric cancer patients were analyzed by Cox regression analysis, which showed that MR-1 expression and TNM stage were independent predictors of postoperative survival. The best mathematical multivariate Cox regression model consisted of two factors: MR-1 expression and TNM stage. Our results indicated that MR-1 protein could act as an independent marker for patient overall survival [Hazard ratio (HR): 2.215, P = 0.043].
CONCLUSION: MR-1 is an important variable that can be used to evaluate the outcome, prognosis and targeted therapy of gastric cancer patients.
Collapse
|
31
|
Chen Y, Yu D, Zhang H, He H, Zhang C, Zhao W, Shao RG. CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int J Biol Sci 2012; 8:992-1004. [PMID: 22904667 PMCID: PMC3421230 DOI: 10.7150/ijbs.4454] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/24/2012] [Indexed: 12/26/2022] Open
Abstract
Background: EpCAM or CD133 has been used as the tumor initiating cells (TICs) marker in hepatocellular carcinoma (HCC). We investigated whether cells expressing with both EpCAM and CD133 surface marker were more representative for TICs in hepatocellular carcinoma Huh7 cells. Methods: Four different phenotypes of CD133+EpCAM+, CD133+EpCAM-, CD133-EpCAM+ and CD133-EpCAM- in Huh7 cells were sorted by flow cytometry. Then cell differentiation, self-renewal, drug-resistance, spheroid formation and the levels of stem cell-related genes were detected to compare the characteristics of TICs. The ability of tumorigenicity was measured in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice to verify TICs. Results: CD133+EpCAM+ cells have many characteristics of TICs in Huh7 cells compared with CD133+EpCAM-, CD133-EpCAM+, CD133-EpCAM- cells, including enrichment in side population cells, higher differentiation capacity, increased colony-formation ability, preferential expression of stem cell-related genes, appearance of drug-resistant to some chemotherapeutics, more spheroid formation of culture cells and stronger tumorigenicity in NOD/SCID mice. Conclusion: CD133+EpCAM+ phenotype is precisely represented TICs in Huh7 cells. It might be useful for studying biology mechanism of TICs in hepatocellular carcinoma and screening new targets for cancer therapy.
Collapse
Affiliation(s)
- Yi Chen
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Chen Y, Yu D, Zhang H, He H, Zhang C, Zhao W, Shao RG. CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int J Biol Sci 2012. [PMID: 22904667 DOI: 10.7150/ijbs.4454ijbsv08p0992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND EpCAM or CD133 has been used as the tumor initiating cells (TICs) marker in hepatocellular carcinoma (HCC). We investigated whether cells expressing with both EpCAM and CD133 surface marker were more representative for TICs in hepatocellular carcinoma Huh7 cells. METHODS Four different phenotypes of CD133(+)EpCAM(+), CD133(+)EpCAM(-), CD133(-)EpCAM(+) and CD133(-)EpCAM(-) in Huh7 cells were sorted by flow cytometry. Then cell differentiation, self-renewal, drug-resistance, spheroid formation and the levels of stem cell-related genes were detected to compare the characteristics of TICs. The ability of tumorigenicity was measured in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice to verify TICs. RESULTS CD133(+)EpCAM(+) cells have many characteristics of TICs in Huh7 cells compared with CD133(+)EpCAM(-), CD133(-)EpCAM(+), CD133(-)EpCAM(-) cells, including enrichment in side population cells, higher differentiation capacity, increased colony-formation ability, preferential expression of stem cell-related genes, appearance of drug-resistant to some chemotherapeutics, more spheroid formation of culture cells and stronger tumorigenicity in NOD/SCID mice. CONCLUSION CD133(+)EpCAM(+) phenotype is precisely represented TICs in Huh7 cells. It might be useful for studying biology mechanism of TICs in hepatocellular carcinoma and screening new targets for cancer therapy.
Collapse
Affiliation(s)
- Yi Chen
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhang H, Zhang S, He H, Zhao W, Chen J, Shao RG. GAP161 targets and downregulates G3BP to suppress cell growth and potentiate cisplaitin-mediated cytotoxicity to colon carcinoma HCT116 cells. Cancer Sci 2012; 103:1848-56. [PMID: 22703643 DOI: 10.1111/j.1349-7006.2012.02361.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 01/04/2023] Open
Abstract
Ras-GTPase-activating protein SH3 domain-binding proteins (G3BP) are overexpressed in various human tumors and participate in several signaling pathways involved in growth, differentiation and apoptosis. G3BP interact with RasGAP (Ras-GTPase activating protein) only in growing cells and depend on Ras activation, and participate in the Ras signal pathway. Therefore, the blockage and downregulation of G3BP may be a new strategy for cancer therapy. In this report, we demonstrate that a novel peptide GAP161 blocked the functions of G3BP and markedly suppressed HCT116 cell growth through the induction of apoptosis. The peptide bound with G3BP, which interfered with the interaction of G3BP1 with RasGAP and further suppressed Ras signaling pathways. GAP161 downregulated G3BP1 and G3BP2 proteins. Similarly, the knockdown of G3BP substantially decreased the proliferation of HCT116 cells and inhibited Ras signal pathways. Furthermore, the downregulation of G3BP could enhance cisplatin-induced apoptosis and growth inhibition of HCT116 cells. We also found that GAP161 suppressed the growth of BALB/c mice bearing colon CT26 tumors and nude mice bearing HCT116 xenografts. These results suggest that downregulation of G3BP might be useful in cancer therapy and that GAP161 is a promising new therapeutic agent for cancers.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
34
|
Lu R, Sun M, Feng J, Gao X, Guo L. Myofibrillogenesis regulator 1 (MR-1) is a novel biomarker and potential therapeutic target for human ovarian cancer. BMC Cancer 2011; 11:270. [PMID: 21702971 PMCID: PMC3132198 DOI: 10.1186/1471-2407-11-270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/25/2011] [Indexed: 01/16/2023] Open
Abstract
Background Myofibrillogenesis regulator 1 (MR-1) is overexpressed in human cancer cells and plays an essential role in cancer cell growth. However, the significance of MR-1 in human ovarian cancer has not yet been explored. The aim of this study was to examine whether MR-1 is a predictor of ovarian cancer and its value as a therapeutic target in ovarian cancer patients. Methods Reverse-transcription polymerase chain reaction (PCR) and quantitative real-time PCR were used to detect MR-1 mRNA levels in tissue samples from 26 ovarian cancer patients and 25 controls with benign ovarian disease. Anti-MR-1 polyclonal antibodies were prepared, tested by ELISA and western blotting, and then used for immunohistochemical analysis of the tissue samples. Adhesion and invasion of 292T cells was also examined after transfection of a pMX-MR-1 plasmid. Knockdown of MR-1 expression was achieved after stable transfection of SKOV3 cells with a short hairpin DNA pGPU6/GFP/Neo plasmid against the MR-1 gene. In addition, SKOV3 cells were treated with paclitaxel and carboplatin, and a potential role for MR-1 as a therapeutic target was evaluated. Results MR-1 was overexpressed in ovarian cancer tissues and SKOV3 cells. 293T cells overexpressed MR-1, and cellular spread and invasion were enhanced after transfection of the pMX-MR-1 plasmid, suggesting that MR-1 is critical for ovarian cancer cell growth. Knockdown of MR-1 expression inhibited cell adhesion and invasion, and treatment with anti-cancer drugs decreased its expression in cancer cells. Taken together, these results provide the first evidence of the cellular and molecular mechanisms by which MR-1 might serve as a novel biological marker and potential therapeutic target for ovarian cancer. Conclusions MR-1 may be a biomarker for diagnosis of ovarian cancer. It may also be useful for monitoring of the effects of anti-cancer therapies. Further studies are needed to clarify whether MR-1 is an early diagnostic marker for ovarian cancer and a possible therapeutic target.
Collapse
Affiliation(s)
- Renquan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
35
|
RasGAP-derived peptide 38GAP potentiates the cytotoxicity of cisplatin through inhibitions of Akt, ERK and NF-κB in colon carcinoma HCT116 cells. Cancer Lett 2011; 308:62-70. [PMID: 21570766 DOI: 10.1016/j.canlet.2011.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/17/2011] [Accepted: 04/18/2011] [Indexed: 01/05/2023]
Abstract
To increase the efficacy of currently used anti-cancer genotoxins, a combination use of different drugs is a potential new therapeutical tool. Here, we reported that a synthetic RasGAP-derived peptide 38GAP with RasGAP(301-326) and TAT penetration sequences could enhance the effect of chemotherapeutic agent CDDP in human colon carcinoma HCT116 cells. Our results showed that 38GAP significantly increased the CDDP-induced apoptosis in HCT116 cells. This synergistic effect was associated with abrogation of CDDP-induced G2/M arrest by down-regulations of phospho-Cdc2 and p21, and inhibitions of phospho-AKT, phospho-ERK and NF-κB. In animal models, 38GAP combined with CDDP significantly suppressed CT26 tumor growth, while 38GAP alone showed slight inhibitory effect. Our data suggest that 38GAP in combination with chemotherapeutics will become a potential therapeutic strategy for colon cancers.
Collapse
|
36
|
Gao J, Gao G, Zhang Y, Wang F. Proteomic analysis of human epithelial ovarian cancer xenografts in immunodeficient mice exposed to chronic psychological stress. SCIENCE CHINA-LIFE SCIENCES 2011; 54:112-20. [DOI: 10.1007/s11427-010-4126-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 10/13/2010] [Indexed: 01/23/2023]
|
37
|
A pathogenic relationship between a regulator of the actin cytoskeleton and serum response factor. Genetics 2010; 186:147-57. [PMID: 20610412 DOI: 10.1534/genetics.110.117309] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell hyperproliferation, inflammation, and angiogenesis are biological processes central to the pathogenesis of corneal disease, as well as other conditions including tumorigenesis and chronic inflammatory disorders. Due to the number of disease conditions that arise as a result of these abnormalities, identifying the molecular mechanisms underlying these processes is critical. The avascular and transparent cornea serves as a good in vivo model to study the pathogenesis of cell hyperproliferation, inflammation, and angiogenesis. Corneal disease 1 (Dstn(corn1)) mice are homozygous for a spontaneous null allele of the destrin (Dstn) gene, which is also known as actin depolymerizing factor (ADF). These mice exhibit abnormalities in the cornea including epithelial cell hyperproliferation, stromal inflammation, and neovascularization. We previously identified that the transcription factor, serum response factor (SRF) and a number of its target genes are upregulated in the cornea of these mice. In this study, we show that conditional ablation of Srf in the corneal epithelium of a diseased Dstn(corn1) cornea results in the rescue of the epithelial cell hyperproliferation, inflammation, and neovascularization phenotypes, delineating an epithelial cell-specific role for SRF in the development of all of these abnormalities. Our study also demonstrates that Dstn is genetically upstream of Srf and defines a new functional role for SRF as the master regulator of a hyperproliferative, inflammatory phenotype accompanied by neovascularization.
Collapse
|
38
|
Zhao Y, Yang G, Ren D, Zhang X, Yin Q, Sun X. Luteolin suppresses growth and migration of human lung cancer cells. Mol Biol Rep 2010; 38:1115-9. [PMID: 20589534 DOI: 10.1007/s11033-010-0208-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/11/2010] [Indexed: 12/24/2022]
Abstract
Luteolin, 3',4',5,7-tetrahydroxyflavone, has been shown to possess antioxidant, anti-inflammation and anti-cancer properties. However, its role in lung cancer remains poorly understood. Here we examined the anti-tumorigenic role of luteolin in a commonly used lung cancer cell line. Luteolin inhibited the growth of A549 cells by inducing G1 phase cell cycle arrest and apoptosis. Furthermore, stress fiber assembly and cell migration in A549 cells was markedly suppressed by luteolin.
Collapse
Affiliation(s)
- Yunxue Zhao
- Department of Pharmacology, School of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
[Monogenetic dystonia: revisiting the dopaminergic hypothesis]. Rev Neurol (Paris) 2010; 166:389-99. [PMID: 19836812 DOI: 10.1016/j.neurol.2009.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/10/2009] [Accepted: 09/16/2009] [Indexed: 11/20/2022]
Abstract
Dystonias are clinically and genetically heterogeneous neurological disorders that affect movement, and are the focus of much investigative work. The recent identification of mutations in the gene THAP1 in DYT6 dystonia reopens the very interesting question of the in fine involvement of dopamine in the different types of dystonia. In this review, we will go through the recent literature in order to evaluate the many contributions to this theory as well as to highlight the difficulties in identifying a global regulatory pathway for the different forms of this disease that we are just starting to decipher.
Collapse
|
40
|
The benzoylurea derivative F13 inhibits cell growth, migration and invasion through inducing expression of ERK1/2-mediated RECK in fibrosarcoma HT-1080 cells. Anticancer Drugs 2010; 21:372-80. [DOI: 10.1097/cad.0b013e3283357c44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
FAK is involved in invasion and metastasis of hepatocellular carcinoma. Clin Exp Metastasis 2010; 27:71-82. [PMID: 20180147 DOI: 10.1007/s10585-010-9306-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
Studies have shown that focal adhesion kinase (FAK) is overexpressed in several human tumors and plays an important role in tumor progression. However, the role and underlying mechanisms of FAK in hepatocellular carcinoma (HCC) progression remains to be elucidated. In this study, we examined FAK and phosphorylated FAK Tyr397 expression in a large series of HCCs. We found that both FAK and phosphorylated FAK Tyr397 were overexpressed in HCC samples and HCC cell lines. Increased FAK and phosphorylated FAK Tyr397 expressions were correlated with tumor stage, vascular invasion and intrahepatic metastasis in HCC. Furthermore, HCC cell adhesion, migration and invasion were substantially impaired by siRNA-mediated knockdown of FAK expression, whereas cell growth, apoptosis and cell cycle distribution were not affected. In addition, depletion of FAK induced a significant reduction in expressions and activities of both MMP-2 and MMP-9. Taken together, FAK contributes to invasion and metastasis of HCC partly through regulating expressions and activations of both MMP-2 and MMP-9, suggesting FAK could be a promising therapeutic target for HCC.
Collapse
|
42
|
Dai W, chen H, Jiang J, Kong W, Wang Y. Silencing MR-1 attenuates inflammatory damage in mice heart induced by AngII. Biochem Biophys Res Commun 2010; 391:1573-8. [DOI: 10.1016/j.bbrc.2009.12.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
|
43
|
Feng Z, Chen B, Tang SC, Liao K, Chen WN, Chan V. Effect of cytoskeleton inhibitors on deadhesion kinetics of HepG2 cells on biomimetic surface. Colloids Surf B Biointerfaces 2009; 75:67-74. [PMID: 19720507 DOI: 10.1016/j.colsurfb.2009.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/03/2009] [Accepted: 08/06/2009] [Indexed: 01/09/2023]
Abstract
Cytochalasin-D (Cyto-D) and latrunculin-A (Lat-A) are known inhibitors of actin microfilaments and adversely affect the physiological functions of anchorage-dependent cells. Alternatively, doxorubicin (Dox), a chemotherapeutic drug is known to induce apoptosis and cell detachment of tumor cells. However, the intricate interplay between drug administration, cytoskeletal rearrangement and biophysical responses of live cells on immobilized layer of extracellular matrix (ECM) protein remains unknown. In this study, the deadhesion kinetics and actin remodeling of live HepG2 cells following the addition of the three drugs are probed with confocal reflectance interference contrast microscopy (C-RICM) and fluorescence confocal microscopy. First, it is shown that the reduction in two-dimensional spread area of HepG2 cells is 10.5%, 15.4% and 21.9% under the influence of 5 microM of Lat-A, Cyto-D and Dox, respectively. Secondly, C-RICM demonstrates the recession of strong adhesion contact against time of cell seeding upon the addition of the three drugs. Thirdly, the initial cell detachment rate and extent of reduction in the degree of cell deformation (a/R) are dependent on both the drug types and concentration. Lastly, oscillation-like responses of a/R and adhesion energy are uniquely found in Lat-A induced cell detachment. Overall, our biophysical approaches have been proven as a highly quantitative platform for elucidating the interfacial properties of adherent cells on biomimetic surfaces under cytoskeleton disruption.
Collapse
Affiliation(s)
- Zhiqin Feng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | | | | | | | | |
Collapse
|