1
|
Mascari CA, Djorić D, Kristich CJ. PASTA kinase signaling regulates peptidoglycan synthesis in Enterococcus faecalis by direct inhibition of UDP-N-acetylglucosamine 1-carboxyvinyl transferase activity. mBio 2025; 16:e0059325. [PMID: 40272164 PMCID: PMC12077105 DOI: 10.1128/mbio.00593-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Proper control of bacterial peptidoglycan (PG) synthesis is critical to balance growth, cell division, and stress responses with other energetic needs of the cell. The first committed step of the PG biosynthetic pathway is catalyzed by UDP-N-acetylglucosamine 1-carboxyvinyl transferases (UNAG-CTases). The genomes of most Firmicutes encode two UNAG-CTase homologs: MurAA (or MurA/MurA1) and MurAB (or MurZ/MurA2). The primary UNAG-CTase in many Firmicutes (MurAA) is regulated by proteolysis in response to signals sensed by transmembrane kinases containing PASTA domains through the action of the kinase substrate IreB, impacting the amount and/or rate of PG synthesis. However, the secondary UNAG-CTases in Firmicutes do not appear to be controlled by proteolysis, and their regulation remains unknown. We sought to determine if signaling via IreK, the PASTA kinase in the opportunistic pathogen Enterococcus faecalis, might also regulate PG synthesis by the secondary UNAG-CTase (MurAB). Using genetic and biochemical approaches, we found that IreK-mediated phosphorylation of IreB was essential in the absence of MurAA, confirming that IreB regulates additional targets beyond MurAA. We demonstrated that the secondary UNAG-CTase, MurAB, is one such target and that IreB directly regulates the catalytic activity of MurAB via phosphorylation-modulated direct physical interaction to impact PG synthesis in E. faecalis. Hence, our work establishes not only a new regulatory target for the IreK-IreB signaling axis and a new mechanism of action for IreB but also the first described regulatory mechanism for a MurAB homolog in any organism, a mechanism that is distinct from the established paradigm for the primary UNAG-CTases.IMPORTANCEPeptidoglycan (PG) is a critical mesh-like polymer that provides osmotic support and structure to the bacterial cell wall, and regulation of its synthesis is essential for proper cell growth, division, and stress responses. In Firmicutes, control of PG synthesis is known to occur through the regulation of the primary UNAG-CTase by proteolysis in response to signals mediated by the transmembrane PASTA kinase. Firmicutes also encode a secondary UNAG-CTase homolog whose regulation has remained unknown. Our results demonstrate a new mechanism for the regulation of PG synthesis in Firmicutes-direct inhibition of the enzymatic activity of the secondary UNAG-CTase by the PASTA kinase-IreB signaling axis via phosphorylation-modulated direct physical interaction between IreB and the secondary UNAG-CTase in Enterococcus faecalis.
Collapse
Affiliation(s)
- Carly A. Mascari
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Dušanka Djorić
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Davis JL, Norwood JS, Smith RE, O'Dea F, Chellappa K, Rowe ML, Williamson MP, Stafford GP, Vinogradov E, Maes E, Guérardel Y, Mesnage S. Dissecting the Enterococcal Polysaccharide Antigen (EPA) structure to explore innate immune evasion and phage specificity. Carbohydr Polym 2025; 347:122686. [PMID: 39486929 DOI: 10.1016/j.carbpol.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 11/04/2024]
Abstract
Streptococci, Lactococci and Enterococci all produce L-rhamnose-containing cell wall polysaccharides which define Lancefield serotypes and represent promising candidates for the design of glycoconjugate vaccines. The L-rhamnose containing Enterococcal Polysaccharide Antigen (EPA), produced by the opportunistic pathogen Enterococcus faecalis, plays a critical role in normal growth, division, biofilm formation, antimicrobial resistance, phage susceptibility, and innate immune evasion. Despite the critical role of this polymer in E. faecalis physiology and host-pathogen interactions, little information is available on its structure and biosynthesis. Here, using an NMR approach, we elucidate the structure of EPA and propose a model for biosynthesis. We report the structure of the EPA-peptidoglycan linkage unit and reveal an unprecedented complexity of the EPA rhamnose backbone and decoration subunits. Finally, we explore the impact of several EPA structural modifications on innate immune evasion and recognition by bacteriophages. This work represents a first step towards the functional characterisation of EPA and the rational design of therapeutic strategies against a group of important pathogens.
Collapse
Affiliation(s)
- Jessica L Davis
- School of Biosciences, University of Sheffield, Sheffield, UK.
| | | | - Robert E Smith
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Finn O'Dea
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Michelle L Rowe
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Graham P Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Evguenii Vinogradov
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Canada
| | - Emmanuel Maes
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41, UAR 2014, PLBS, Lille, France
| | - Yann Guérardel
- UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France; Institute for GlycO-Core Research (iGCORE), Gifu University, Gifu, Japan
| | | |
Collapse
|
3
|
Ugalde Silva P, Desbonnet C, Rice LB, García-Solache M. Evolutionary trajectories of β-lactam resistance in Enterococcus faecalis strains. mBio 2024; 15:e0289724. [PMID: 39540731 PMCID: PMC11633384 DOI: 10.1128/mbio.02897-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Resistance to ampicillin and imipenem in Enterococcus faecalis is infrequent. However, the evolution of resistance can occur through prolonged antibiotic exposure during the treatment of chronic infections. In this study, we conducted a long-term evolution experiment using four genetically diverse strains of E. faecalis with varying susceptibilities to ampicillin and imipenem. Each strain was subjected to increasing concentrations of either ampicillin or imipenem over 200 days, with three independent replicates for each strain. Selective pressure from imipenem led to the rapid selection of highly resistant lineages across all genetic backgrounds, compared to ampicillin. In addition to high resistance, we describe, for the first time, the evolution of a β-lactam-dependent phenotype observed in lineages from all backgrounds. Whole-genome sequencing and bioinformatic analysis revealed mutations in three main functional classes: genes involved in cell wall synthesis and degradation, genes in the walK/R two-component system, and genes in the c-di-AMP pathway. Our analysis identified new mutations in genes known to be involved in resistance as well as novel genes potentially associated with resistance. Furthermore, the newly described β-lactam-dependent phenotype was correlated with the inactivation of c-di-AMP degradation, resulting in high levels of this second messenger. Together, these data highlight the diverse genetic mechanisms underlying resistance to ampicillin and imipenem in E. faecalis. The emergence of high resistance levels and β-lactam dependency underscores the importance of understanding evolutionary dynamics in the development of antibiotic resistance. IMPORTANCE Enterococcus faecalis is a major human pathogen, and treatment is frequently compromised by poor response to first-line antibiotics such as ampicillin. Understanding the factors that play a role in susceptibility/resistance to these drugs will help guide the development of much-needed treatments.
Collapse
Affiliation(s)
- Paul Ugalde Silva
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Charlene Desbonnet
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Louis B. Rice
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Mónica García-Solache
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Norwood JS, Davis JL, Salamaga B, Moss CE, Johnston SA, Elks PM, Kiss-Toth E, Mesnage S. Exploring the role of E. faecalis enterococcal polysaccharide antigen (EPA) and lipoproteins in evasion of phagocytosis. Mol Microbiol 2024; 122:230-242. [PMID: 38994873 DOI: 10.1111/mmi.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Enterococcus faecalis is an opportunistic pathogen frequently causing nosocomial infections. The virulence of this organism is underpinned by its capacity to evade phagocytosis, allowing dissemination in the host. Immune evasion requires a surface polysaccharide produced by all enterococci, known as the enterococcal polysaccharide antigen (EPA). EPA consists of a cell wall-anchored rhamnose backbone substituted by strain-specific polysaccharides called 'decorations', essential for the biological activity of this polymer. However, the structural determinants required for innate immune evasion remain unknown, partly due to a lack of suitable validated assays. Here, we describe a quantitative, in vitro assay to investigate how EPA decorations alter phagocytosis. Using the E. faecalis model strain OG1RF, we demonstrate that a mutant with a deletion of the locus encoding EPA decorations can be used as a platform strain to express heterologous decorations, thereby providing an experimental system to investigate the inhibition of phagocytosis by strain-specific decorations. We show that the aggregation of cells lacking decorations is increasing phagocytosis and that this process does not involve the recognition of lipoproteins by macrophages. Collectively, our work provides novel insights into innate immune evasion by enterococci and paves the way for further studies to explore the structure/function relationship of EPA decorations.
Collapse
Affiliation(s)
| | - Jessica L Davis
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Charlotte E Moss
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Simon A Johnston
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Philip M Elks
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Endre Kiss-Toth
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
5
|
Mascari CA, Little JL, Kristich CJ. PASTA-kinase-mediated signaling drives accumulation of the peptidoglycan synthesis protein MurAA to promote cephalosporin resistance in Enterococcus faecalis. Mol Microbiol 2023; 120:811-829. [PMID: 37688380 PMCID: PMC10872757 DOI: 10.1111/mmi.15150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The bacterial PASTA kinase, IreK, is required for intrinsic cephalosporin resistance in the Gram-positive opportunistic pathogen, Enterococcus faecalis. IreK activity is enhanced in response to cell wall stress, such as cephalosporin exposure. The downstream consequences of IreK activation are not well understood in E. faecalis, but recent work in other low-GC Gram-positive bacteria demonstrated PASTA kinase-dependent regulation of MurAA, an enzyme that performs the first committed step in the peptidoglycan synthesis pathway. Here, we used genetic suppressor selections to identify MurAA as a downstream target of IreK signaling in E. faecalis. Using complementary genetic and biochemical approaches, we demonstrated that MurAA abundance is regulated by IreK signaling in response to physiologically relevant cell wall stress to modulate substrate flux through the peptidoglycan synthesis pathway. Specifically, the IreK substrate, IreB, promotes proteolysis of MurAA through a direct physical interaction in a manner responsive to phosphorylation by IreK. MurAB, a homolog of MurAA, also promotes MurAA proteolysis and interacts directly with IreB. Our results therefore establish a connection between the cell wall stress sensor IreK and one critical physiological output to modulate peptidoglycan synthesis and drive cephalosporin resistance.
Collapse
Affiliation(s)
- Carly A. Mascari
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Jaime L. Little
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| |
Collapse
|
6
|
Salamaga B, Turner RD, Elsarmane F, Galley NF, Kulakauskas S, Mesnage S. A moonlighting role for LysM peptidoglycan binding domains underpins Enterococcus faecalis daughter cell separation. Commun Biol 2023; 6:428. [PMID: 37072531 PMCID: PMC10113225 DOI: 10.1038/s42003-023-04808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
Control of cell size and morphology is of paramount importance for bacterial fitness. In the opportunistic pathogen Enterococcus faecalis, the formation of diplococci and short cell chains facilitates innate immune evasion and dissemination in the host. Minimisation of cell chain size relies on the activity of a peptidoglycan hydrolase called AtlA, dedicated to septum cleavage. To prevent autolysis, AtlA activity is tightly controlled, both temporally and spatially. Here, we show that the restricted localization of AtlA at the septum occurs via an unexpected mechanism. We demonstrate that the C-terminal LysM domain that allows the enzyme to bind peptidoglycan is essential to target this enzyme to the septum inside the cell before its translocation across the membrane. We identify a membrane-bound cytoplasmic protein partner (called AdmA) involved in the recruitment of AtlA via its LysM domains. This work reveals a moonlighting role for LysM domains, and a mechanism evolved to restrict the subcellular localization of a potentially lethal autolysin to its site of action.
Collapse
Affiliation(s)
| | - Robert D Turner
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Fathe Elsarmane
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Nicola F Galley
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
7
|
Kwan JMC, Qiao Y. Mechanistic Insights into the Activities of Major Families of Enzymes in Bacterial Peptidoglycan Assembly and Breakdown. Chembiochem 2023; 24:e202200693. [PMID: 36715567 DOI: 10.1002/cbic.202200693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Serving as an exoskeletal scaffold, peptidoglycan is a polymeric macromolecule that is essential and conserved across all bacteria, yet is absent in mammalian cells; this has made bacterial peptidoglycan a well-established excellent antibiotic target. In addition, soluble peptidoglycan fragments derived from bacteria are increasingly recognised as key signalling molecules in mediating diverse intra- and inter-species communication in nature, including in gut microbiota-host crosstalk. Each bacterial species encodes multiple redundant enzymes for key enzymatic activities involved in peptidoglycan assembly and breakdown. In this review, we discuss recent findings on the biochemical activities of major peptidoglycan enzymes, including peptidoglycan glycosyltransferases (PGT) and transpeptidases (TPs) in the final stage of peptidoglycan assembly, as well as peptidoglycan glycosidases, lytic transglycosylase (LTs), amidases, endopeptidases (EPs) and carboxypeptidases (CPs) in peptidoglycan turnover and metabolism. Biochemical characterisation of these enzymes provides valuable insights into their substrate specificity, regulation mechanisms and potential modes of inhibition.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), 21 Nanyang Link, Singapore, 637371, Singapore.,LKC School of Medicine, Nanyang Technological University (NTU) Singapore, 11 Mandalay Road, Singapore, Singapore, 208232, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
8
|
The Regulations of Essential WalRK Two-Component System on Enterococcus faecalis. J Clin Med 2023; 12:jcm12030767. [PMID: 36769415 PMCID: PMC9917794 DOI: 10.3390/jcm12030767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Enterococcus faecalis (E. faecalis) is a Gram-positive, facultative anaerobic bacterium that is highly adaptable to its environment. In humans, it can cause serious infections with biofilm formation. With increasing attention on its health threat, prevention and control of biofilm formation in E. faecalis have been observed. Many factors including polysaccharides as well as autolysis, proteases, and eDNA regulate biofilm formation. Those contributors are regulated by several important regulatory systems involving the two-component signal transduction system (TCS) for its adaptation to the environment. Highly conserved WalRK as one of 17 TCSs is the only essential TCS in E. faecalis. In addition to biofilm formation, various metabolisms, including cell wall construction, drug resistance, as well as interactions among regulatory systems and resistance to the host immune system, can be modulated by the WalRK system. Therefore, WalRK has been identified as a key target for E. faecalis infection control. In the present review, the regulation of WalRK on E. faecalis pathogenesis and associated therapeutic strategies are demonstrated.
Collapse
|
9
|
Choo PY, Wang CY, VanNieuwenhze MS, Kline KA. Spatial and temporal localization of cell wall associated pili in Enterococcus faecalis. Mol Microbiol 2023; 119:1-18. [PMID: 36420961 PMCID: PMC10107303 DOI: 10.1111/mmi.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Enterococcus faecalis virulence requires cell wall-associated proteins, including the sortase-assembled endocarditis and biofilm associated pilus (Ebp), important for biofilm formation in vitro and in vivo. The current paradigm for sortase-assembled pilus biogenesis in Gram-positive bacteria is that sortases attach substrates to lipid II peptidoglycan (PG) precursors, prior to their incorporation into the growing cell wall. Contrary to prevailing dogma, by following the distribution of Ebp and PG throughout the E. faecalis cell cycle, we found that cell surface Ebp do not co-localize with newly synthesized PG. Instead, surface-exposed Ebp are localized to the older cell hemisphere and excluded from sites of new PG synthesis at the septum. Moreover, Ebp deposition on the younger hemisphere of the E. faecalis diplococcus appear as foci adjacent to the nascent septum. We propose a new model whereby sortase substrate deposition can occur on older PG rather than at sites of new cell wall synthesis. Consistent with this model, we demonstrate that sequestering lipid II to block PG synthesis via ramoplanin, does not impact new Ebp deposition at the cell surface. These data support an alternative paradigm for sortase substrate deposition in E. faecalis, in which Ebp are anchored directly onto uncrosslinked cell wall, independent of new PG synthesis.
Collapse
Affiliation(s)
- Pei Yi Choo
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Charles Y. Wang
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
| | | | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology and Molecular MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
10
|
Nye TM, Tükenmez H, Singh P, Flores-Mireles AL, Obernuefemann CLP, Pinkner JS, Sarkar S, Bonde M, Lindgren AEG, Dodson KW, Johansson J, Almqvist F, Caparon MG, Hultgren SJ. Ring-fused 2-pyridones effective against multidrug-resistant Gram-positive pathogens and synergistic with standard-of-care antibiotics. Proc Natl Acad Sci U S A 2022; 119:e2210912119. [PMID: 36252016 PMCID: PMC9618150 DOI: 10.1073/pnas.2210912119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023] Open
Abstract
The alarming rise of multidrug-resistant Gram-positive bacteria has precipitated a healthcare crisis, necessitating the development of new antimicrobial therapies. Here we describe a new class of antibiotics based on a ring-fused 2-pyridone backbone, which are active against vancomycin-resistant enterococci (VRE), a serious threat as classified by the Centers for Disease Control and Prevention, and other multidrug-resistant Gram-positive bacteria. Ring-fused 2-pyridone antibiotics have bacteriostatic activity against actively dividing exponential phase enterococcal cells and bactericidal activity against nondividing stationary phase enterococcal cells. The molecular mechanism of drug-induced killing of stationary phase cells mimics aspects of fratricide observed in enterococcal biofilms, where both are mediated by the Atn autolysin and the GelE protease. In addition, combinations of sublethal concentrations of ring-fused 2-pyridones and standard-of-care antibiotics, such as vancomycin, were found to synergize to kill clinical strains of VRE. Furthermore, a broad range of antibiotic resistant Gram-positive pathogens, including those responsible for the increasing incidence of antibiotic resistant healthcare-associated infections, are susceptible to this new class of 2-pyridone antibiotics. Given the broad antibacterial activities of ring-fused 2-pyridone compounds against Gram-positive (GmP) bacteria we term these compounds GmPcides, which hold promise in combating the rising tide of antibiotic resistant Gram-positive pathogens.
Collapse
Affiliation(s)
- Taylor M. Nye
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Hasan Tükenmez
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Pardeep Singh
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | | | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Jerome S. Pinkner
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Souvik Sarkar
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Mari Bonde
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- QureTech Bio, Umeå, Sweden
| | - Anders E. G. Lindgren
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Karen W. Dodson
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Jörgen Johansson
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Michael G. Caparon
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Scott J. Hultgren
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| |
Collapse
|
11
|
Davis JL, Hounslow AM, Baxter NJ, Mesnage S, Williamson MP. 1H, 13C, and 15N resonance assignments of a conserved putative cell wall binding domain from Enterococcus faecalis. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:247-251. [PMID: 35665899 PMCID: PMC9510096 DOI: 10.1007/s12104-022-10087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Enterococcus faecalis is a major causative agent of hospital acquired infections. The ability of E. faecalis to evade the host immune system is essential during pathogenesis, which has been shown to be dependent on the complete separation of daughter cells by peptidoglycan hydrolases. AtlE is a peptidoglycan hydrolase which is predicted to bind to the cell wall of E. faecalis, via six C-terminal repeat sequences. Here, we report the near complete assignment of one of these six repeats, as well as the predicted backbone structure and dynamics. This data will provide a platform for future NMR studies to explore the ligand recognition motif of AtlE and help to uncover its potential role in E. faecalis virulence.
Collapse
Affiliation(s)
- Jessica L Davis
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, S10 2TN, Sheffield, UK
| | - Andrea M Hounslow
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, S10 2TN, Sheffield, UK
| | - Nicola J Baxter
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, S10 2TN, Sheffield, UK
| | - Stéphane Mesnage
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, S10 2TN, Sheffield, UK
| | - Mike P Williamson
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, S10 2TN, Sheffield, UK.
| |
Collapse
|
12
|
Żebrowska J, Żołnierkiewicz O, Ponikowska M, Puchalski M, Krawczun N, Makowska J, Skowron P. Cloning and Characterization of a Thermostable Endolysin of Bacteriophage TP-84 as a Potential Disinfectant and Biofilm-Removing Biological Agent. Int J Mol Sci 2022; 23:7612. [PMID: 35886960 PMCID: PMC9325043 DOI: 10.3390/ijms23147612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The obligatory step in the life cycle of a lytic bacteriophage is the release of its progeny particles from infected bacterial cells. The main barrier to overcome is the cell wall, composed of crosslinked peptidoglycan, which counteracts the pressure prevailing in the cytoplasm and protects the cell against osmotic lysis and mechanical damage. Bacteriophages have developed two strategies leading to the release of progeny particles: the inhibition of peptidoglycan synthesis and enzymatic cleavage by a bacteriophage-coded endolysin. In this study, we cloned and investigated the TP84_28 endolysin of the bacteriophage TP-84, which infects thermophilic Geobacillus stearothermophilus, determined the enzymatic characteristics, and initially evaluated the endolysin application as a non-invasive agent for disinfecting surfaces, including those exposed to high temperatures. Both the native and recombinant TP84_28 endolysins, obtained through the Escherichia coli T7-lac expression system, are highly thermostable and retain trace activity after incubation at 100 °C for 30 min. The proteins exhibit strong bacterial wall digestion activity up to 77.6 °C, decreasing to marginal activity at ambient temperatures. We assayed the lysis of various types of bacteria using TP84_28 endolysins: Gram-positive, Gram-negative, encapsulated, and pathogenic. Significant lytic activity was observed on the thermophilic and mesophilic Gram-positive bacteria and, to a lesser extent, on the thermophilic and mesophilic Gram-negative bacteria. The thermostable TP84_28 endolysin seems to be a promising mild agent for disinfecting surfaces exposed to high temperatures.
Collapse
Affiliation(s)
- Joanna Żebrowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland; (O.Ż.); (M.P.); (N.K.); (P.S.)
| | - Olga Żołnierkiewicz
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland; (O.Ż.); (M.P.); (N.K.); (P.S.)
| | - Małgorzata Ponikowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland; (O.Ż.); (M.P.); (N.K.); (P.S.)
| | - Michał Puchalski
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, 80-309 Gdansk, Poland;
| | - Natalia Krawczun
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland; (O.Ż.); (M.P.); (N.K.); (P.S.)
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland;
| | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland; (O.Ż.); (M.P.); (N.K.); (P.S.)
| |
Collapse
|
13
|
Roig-Zamboni V, Barelier S, Dixon R, Galley NF, Ghanem A, Nguyen QP, Cahuzac H, Salamaga B, Davis PJ, Bourne Y, Mesnage S, Vincent F. Molecular basis for substrate recognition and septum cleavage by AtlA, the major N-acetylglucosaminidase of Enterococcus faecalis. J Biol Chem 2022; 298:101915. [PMID: 35398351 PMCID: PMC9108991 DOI: 10.1016/j.jbc.2022.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022] Open
Abstract
The cleavage of septal peptidoglycan at the end of cell division facilitates the separation of the two daughter cells. The hydrolases involved in this process (called autolysins) are potentially lethal enzymes that can cause cell death; their activity, therefore, must be tightly controlled during cell growth. In Enterococcus faecalis, the N-acetylglucosaminidase AtlA plays a predominant role in cell separation. atlA mutants form long cell chains and are significantly less virulent in the zebrafish model of infection. The attenuated virulence of atlA mutants is underpinned by a limited dissemination of bacterial chains in the host organism and a more efficient uptake by phagocytes that clear the infection. AtlA has structural homologs in other important pathogens, such as Listeria monocytogenes and Salmonella typhimurium, and therefore represents an attractive model to design new inhibitors of bacterial pathogenesis. Here, we provide a 1.45 Å crystal structure of the E. faecalis AtlA catalytic domain that reveals a closed conformation of a conserved β-hairpin and a complex network of hydrogen bonds that bring two catalytic residues to the ideal distance for an inverting mechanism. Based on the model of the AtlA-substrate complex, we identify key residues critical for substrate recognition and septum cleavage during bacterial growth. We propose that this work will provide useful information for the rational design of specific inhibitors targeting this enterococcal virulence factor and its orthologs in other pathogens.
Collapse
Affiliation(s)
| | | | - Robert Dixon
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Nicola F Galley
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Amani Ghanem
- CNRS, Aix Marseille University, AFMB, Marseille, France
| | | | - Héloize Cahuzac
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | | | - Peter J Davis
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Yves Bourne
- CNRS, Aix Marseille University, AFMB, Marseille, France
| | - Stéphane Mesnage
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|
14
|
Use of an Interspecies Chimeric Receptor for Inducible Gene Expression Reveals that Metabolic Flux through the Peptidoglycan Biosynthesis Pathway is an Important Driver of Cephalosporin Resistance in Enterococcus faecalis. J Bacteriol 2022; 204:e0060221. [PMID: 35258319 DOI: 10.1128/jb.00602-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cephalosporins are commonly prescribed antibiotics that impair cross-linking of the bacterial cell wall. The Gram-positive opportunistic pathogen, Enterococcus faecalis, is intrinsically resistant to these antibiotics and proliferates substantially during cephalosporin therapy. As a result, the usage of cephalosporins has the potential to lead to life-threatening enterococcal infections. Yet, the molecular mechanisms that drive cephalosporin resistance (CR) are incompletely understood. Previously, we demonstrated that MurAA, an enzyme that catalyzes the first committed step in peptidoglycan (PG) synthesis, is required for CR. However, the mechanism by which MurAA contributes to CR remained unknown. Here, we tested the hypothesis that MurAA drives CR by controlling metabolic flux through the PG synthesis pathway. To do so, we developed and exploited an inducible gene expression system for E. faecalis based on an interspecies chimeric receptor that responds to exogenous nitrate for control of expression from a NisR-regulated promoter (PnisA). We used this tool to demonstrate synthetic lethality of MurAA with its homolog MurAB, to titrate expression of MurAA, and to conditionally deplete multiple PG synthesis enzymes downstream of MurAA that are predicted to be essential. These genetic manipulations, in addition to pharmacological inhibition of the PG synthesis pathway, all led to reductions in PG synthesis that correlated with reductions in CR. Our findings are consistent with a model in which control of metabolic flux through the PG synthesis pathway is a major driver of CR. IMPORTANCE Enterococci are dangerous opportunistic pathogens with the potential to cause life-threatening infections due in part to their intrinsic resistance to cephalosporin antibiotics. Elucidating the molecular mechanisms that provide this resistance is critical for the development of strategies to both prevent and treat enterococcal infections. Here, we report that the cell wall synthesis enzyme, MurAA, drives cephalosporin resistance at least in part by controlling metabolic flux through the peptidoglycan synthesis pathway. To demonstrate this, we designed and validated an inducible gene expression system based on a chimeric receptor that is functional in multiple lineages of E. faecalis. In doing so, we provided a new tool for inducible gene expression with broad applications beyond our studies, including studies of essential genes.
Collapse
|
15
|
Johnston RD, Woodall BM, Harrison J, Campagna SR, Fozo EM. Removal of peptidoglycan and inhibition of active cellular processes leads to daptomycin tolerance in Enterococcus faecalis. PLoS One 2021; 16:e0254796. [PMID: 34297729 PMCID: PMC8301656 DOI: 10.1371/journal.pone.0254796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/04/2021] [Indexed: 11/19/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic used in the clinic for treatment of severe enterococcal infections. Recent reports indicate that daptomycin targets active cellular processes, specifically, peptidoglycan biosynthesis. Within, we examined the efficacy of daptomycin against Enterococcus faecalis under a range of environmental growth conditions including inhibitors that target active cellular processes. Daptomycin was far less effective against cells in late stationary phase compared to cells in exponential phase, and this was independent of cellular ATP levels. Further, the addition of either the de novo protein synthesis inhibitor chloramphenicol or the fatty acid biosynthesis inhibitor cerulenin induced survival against daptomycin far better than controls. Alterations in metabolites associated with peptidoglycan synthesis correlated with protection against daptomycin. This was further supported as removal of peptidoglycan induced physiological daptomycin tolerance, a synergistic relation between daptomycin and fosfomycin, an inhibitor of the fist committed step peptidoglycan synthesis, was observed, as well as an additive effect when daptomycin was combined with ampicillin, which targets crosslinking of peptidoglycan strands. Removal of the peptidoglycan of Enterococcus faecium, Staphylococcus aureus, and Bacillus subtilis also resulted in significant protection against daptomycin in comparison to whole cells with intact cell walls. Based on these observations, we conclude that bacterial growth phase and metabolic activity, as well as the presence/absence of peptidoglycan are major contributors to the efficacy of daptomycin.
Collapse
Affiliation(s)
- Rachel D. Johnston
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, United States of America
| | - Brittni M. Woodall
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States of America
| | - Johnathan Harrison
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States of America
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, United States of America
| | - Elizabeth M. Fozo
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- * E-mail:
| |
Collapse
|
16
|
Gandhi D, Chanalia P, Bansal P, Dhanda S. Peptidoglycan Hydrolases of Probiotic Pediococcus acidilactici NCDC 252: Isolation, Physicochemical and In Silico Characterization. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Structural Characterization of the Essential Cell Division Protein FtsE and Its Interaction with FtsX in Streptococcus pneumoniae. mBio 2020; 11:mBio.01488-20. [PMID: 32873757 PMCID: PMC7468199 DOI: 10.1128/mbio.01488-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial cell division is a central process that requires exquisite orchestration of both the cell wall biosynthetic and lytic machineries. The essential membrane complex FtsEX, widely conserved across bacteria, plays a central role by recruiting proteins to the divisome apparatus and by regulating periplasmic muralytic activity from the cytosol. FtsEX is a member of the type VII family of the ABC-superfamily, but instead of being a transporter, it couples the ATP hydrolysis catalyzed by FtsE to mechanically transduce a conformational signal that provokes the activation of peptidoglycan (PG) hydrolases. So far, no structural information is available for FtsE. Here, we provide the structural characterization of FtsE, confirming its ATPase nature and revealing regions with high structural plasticity which are key for FtsE binding to FtsX. The complementary binding region in FtsX has also been identified and validated in vivo. Our results provide evidence on how the difference between the ATP/ADP-bound states in FtsE would dramatically alter the interaction of FtsEX with the PG hydrolase PcsB in pneumococcal division. FtsEX is a membrane complex widely conserved across diverse bacterial genera and involved in critical processes such as recruitment of division proteins and in spatial and temporal regulation of muralytic activity during cell division or sporulation. FtsEX is a member of the ABC transporter superfamily. The component FtsX is an integral membrane protein, whereas FtsE is an ATPase and is required for the transmission of a conformational signal from the cytosol through the membrane to regulate the activity of cell wall hydrolases in the periplasm. Both proteins are essential in the major human respiratory pathogenic bacterium Streptococcus pneumoniae, and FtsX interacts with the modular peptidoglycan hydrolase PcsB at the septum. Here, we report high-resolution structures of pneumococcal FtsE bound to different nucleotides. Structural analysis revealed that FtsE contains all the conserved structural motifs associated with ATPase activity and afforded interpretation of the in vivo dimeric arrangement in both the ADP and ATP states. Interestingly, three specific FtsE regions with high structural plasticity were identified that shape the cavity in which the cytosolic region of FtsX would be inserted. The residues corresponding to the FtsX coupling helix, responsible for contacting FtsE, were identified and validated by in vivo mutagenesis studies showing that this interaction is essential for cell growth and proper morphology.
Collapse
|
18
|
A Family of T6SS Antibacterial Effectors Related to l,d-Transpeptidases Targets the Peptidoglycan. Cell Rep 2020; 31:107813. [DOI: 10.1016/j.celrep.2020.107813] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
|
19
|
Is Acrylamide as Harmful as We Think? A New Look at the Impact of Acrylamide on the Viability of Beneficial Intestinal Bacteria of the Genus Lactobacillus. Nutrients 2020; 12:nu12041157. [PMID: 32326187 PMCID: PMC7230431 DOI: 10.3390/nu12041157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
The impact of acrylamide (AA) on microorganisms is still not clearly understood as AA has not induced mutations in bacteria, but its epoxide analog has been reported to be mutagenic in Salmonella strains. The aim of the study was to evaluate whether AA could influence the growth and viability of beneficial intestinal bacteria. The impact of AA at concentrations of 0–100 µg/mL on lactic acid bacteria (LAB) was examined. Bacterial growth was evaluated by the culture method, while the percentage of alive, injured, and dead bacteria was assessed by flow cytometry after 24 h and 48 h of incubation. We demonstrated that acrylamide could influence the viability of the LAB, but its impact depended on both the AA concentration and the bacterial species. The viability of probiotic strain Lactobacillus acidophilus LA-5 increased while that of Lactobacillus plantarum decreased; Lactobacillus brevis was less sensitive. Moreover, AA influenced the morphology of L. plantarum, probably by blocking cell separation during division. We concluded that acrylamide present in food could modulate the viability of LAB and, therefore, could influence their activity in food products or, after colonization, in the human intestine.
Collapse
|
20
|
Multiple Low-Reactivity Class B Penicillin-Binding Proteins Are Required for Cephalosporin Resistance in Enterococci. Antimicrob Agents Chemother 2020; 64:AAC.02273-19. [PMID: 32041714 DOI: 10.1128/aac.02273-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/02/2020] [Indexed: 01/16/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are commensals of the gastrointestinal tract of most terrestrial organisms, including humans, and are major causes of health care-associated infections. Such infections are difficult or impossible to treat, as the enterococcal strains responsible are often resistant to multiple antibiotics. One intrinsic resistance trait that is conserved among E. faecalis and E. faecium is cephalosporin resistance, and prior exposure to cephalosporins is one of the most well-known risk factors for acquisition of an enterococcal infection. Cephalosporins inhibit peptidoglycan biosynthesis by acylating the active-site serine of penicillin-binding proteins (PBPs) to prevent the PBPs from catalyzing cross-linking during peptidoglycan synthesis. For decades, a specific PBP (known as Pbp4 or Pbp5) that exhibits low reactivity toward cephalosporins has been thought to be the primary PBP required for cephalosporin resistance. We analyzed other PBPs and report that in both E. faecalis and E. faecium, a second PBP, PbpA(2b), is also required for resistance; notably, the cephalosporin ceftriaxone exhibits a lethal effect on the ΔpbpA mutant. Strikingly, PbpA(2b) exhibits low intrinsic reactivity with cephalosporins in vivo and in vitro Unlike the Δpbp5 mutant, the ΔpbpA mutant exhibits a variety of phenotypic defects in growth kinetics, cell wall integrity, and cellular morphology, indicating that PbpA(2b) and Pbp5(4) are not functionally redundant and that PbpA(2b) plays a more central role in peptidoglycan synthesis. Collectively, our results shift the current understanding of enterococcal cephalosporin resistance and suggest a model in which PbpA(2b) and Pbp5(4) cooperate to coordinately mediate peptidoglycan cross-linking in the presence of cephalosporins.
Collapse
|
21
|
Gonzalez-Delgado LS, Walters-Morgan H, Salamaga B, Robertson AJ, Hounslow AM, Jagielska E, Sabała I, Williamson MP, Lovering AL, Mesnage S. Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b. Nat Chem Biol 2019; 16:24-30. [PMID: 31686030 PMCID: PMC6920042 DOI: 10.1038/s41589-019-0393-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/21/2019] [Indexed: 11/09/2022]
Abstract
Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme.
Collapse
Affiliation(s)
- Luz S Gonzalez-Delgado
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.,Krebs Institute, University of Sheffield, Sheffield, UK
| | - Hannah Walters-Morgan
- Institute of Microbiology and Infection, and School of Biosciences, University of Birmingham, Birmingham, UK
| | - Bartłomiej Salamaga
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.,Krebs Institute, University of Sheffield, Sheffield, UK
| | - Angus J Robertson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.,Krebs Institute, University of Sheffield, Sheffield, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.,Krebs Institute, University of Sheffield, Sheffield, UK
| | | | - Izabela Sabała
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK. .,Krebs Institute, University of Sheffield, Sheffield, UK.
| | - Andrew L Lovering
- Institute of Microbiology and Infection, and School of Biosciences, University of Birmingham, Birmingham, UK.
| | - Stéphane Mesnage
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK. .,Krebs Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
22
|
Smith RE, Salamaga B, Szkuta P, Hajdamowicz N, Prajsnar TK, Bulmer GS, Fontaine T, Kołodziejczyk J, Herry JM, Hounslow AM, Williamson MP, Serror P, Mesnage S. Decoration of the enterococcal polysaccharide antigen EPA is essential for virulence, cell surface charge and interaction with effectors of the innate immune system. PLoS Pathog 2019; 15:e1007730. [PMID: 31048927 PMCID: PMC6497286 DOI: 10.1371/journal.ppat.1007730] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen with an intrinsically high resistance to lysozyme, a key effector of the innate immune system. This high level of resistance requires a complex network of transcriptional regulators and several genes (oatA, pgdA, dltA and sigV) acting synergistically to inhibit both the enzymatic and cationic antimicrobial peptide activities of lysozyme. We sought to identify novel genes modulating E. faecalis resistance to lysozyme. Random transposon mutagenesis carried out in the quadruple oatA/pgdA/dltA/sigV mutant led to the identification of several independent insertions clustered on the chromosome. These mutations were located in a locus referred to as the enterococcal polysaccharide antigen (EPA) variable region located downstream of the highly conserved epaA-epaR genes proposed to encode a core synthetic machinery. The epa variable region was previously proposed to be responsible for EPA decorations, but the role of this locus remains largely unknown. Here, we show that EPA decoration contributes to resistance towards charged antimicrobials and underpins virulence in the zebrafish model of infection by conferring resistance to phagocytosis. Collectively, our results indicate that the production of the EPA rhamnopolysaccharide backbone is not sufficient to promote E. faecalis infections and reveal an essential role of the modification of this surface polymer for enterococcal pathogenesis. Enterococcus faecalis is a commensal bacterium colonizing the gastro-intestinal tract of humans. This organism can cause life-threatening opportunistic infections and represents a reservoir for the transmission of antibiotic resistance genes such as resistance to vancomycin. E. faecalis strains responsible for nosocomial infections are also found in healthy individuals and the virulence factors identified so far are not strictly associated with clinical isolates. The molecular basis underpinning E. faecalis infections therefore remains unclear. In this work, we identify several mutations clustered on the chromosome, which play a role in the resistance of E. faecalis to effectors of the innate immune system such as lysozyme and bile salts. We show that the corresponding genes contribute to the decoration of a conserved polysaccharide called the enterococcal polysaccharide antigen and that this decoration is essential for E. faecalis virulence. This mechanism critical for pathogenesis represents an attractive therapeutic target to control enterococcal infections.
Collapse
Affiliation(s)
- Robert E. Smith
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Bartłomiej Salamaga
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Piotr Szkuta
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Natalia Hajdamowicz
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Tomasz K. Prajsnar
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Gregory S. Bulmer
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | | | - Justyna Kołodziejczyk
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Jean-Marie Herry
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Andrea M. Hounslow
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Mike P. Williamson
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
- * E-mail: (PS); (SM)
| | - Stéphane Mesnage
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- * E-mail: (PS); (SM)
| |
Collapse
|
23
|
Serrano-Maldonado CE, García-Cano I, González-Canto A, Ruiz-May E, Elizalde-Contreras JM, Quirasco M. Cloning and Characterization of a Novel N-acetylglucosaminidase (AtlD) from Enterococcus faecalis. J Mol Microbiol Biotechnol 2018; 28:14-27. [PMID: 29510391 DOI: 10.1159/000486757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 01/10/2018] [Indexed: 12/28/2022] Open
Abstract
The atlD gene from an Enterococcus faecalis strain isolated from a Mexican artisanal cheese was cloned, sequenced and expressed in Escherichia coli in order to perform a biochemical characterization. A partial amino acid sequence of the heterologous protein was obtained by LC-MS/MS, and it corresponded to a novel peptidoglycan hydrolase designated AtlD. Its molecular mass was 62-75 kDa, as determined by SDS-PAGE, zymography, Western blot, and exclusion chromatography. Electrofocusing rendered an isoelectric point (pI) of 4.8. It exhibited N-acetylglucosaminidase activity, with an optimal pH and temperature between 6-7 and 50°C, respectively. It retained 85% activity with NaCl at 1,000 mM, but it was susceptible to divalent ions, particularly Zn2+. It showed antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, and enterococcal strains of clinical origin. Due to the fact that it showed activity versus pathogenic bacteria, and because of its capabilities under ionic strength, temperature, and pH values present in food matrices, it could be applied as an additive in the food industry. This study will aid in the design of new antibacterial agents of natural origin to combat food-borne diseases, and it could be used as an industrial or hospital hygiene agent as well.
Collapse
Affiliation(s)
- Carlos Eduardo Serrano-Maldonado
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Israel García-Cano
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Augusto González-Canto
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México y Hospital General de México, Mexico City, Mexico
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Cluster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Jose Miguel Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Cluster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Maricarmen Quirasco
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
24
|
Olvera-García M, Sanchez-Flores A, Quirasco Baruch M. Genomic and functional characterisation of two Enterococcus strains isolated from Cotija cheese and their potential role in ripening. Appl Microbiol Biotechnol 2018; 102:2251-2267. [PMID: 29372297 DOI: 10.1007/s00253-018-8765-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
Enterococcus spp. are present in the native microbiota of many traditional fermented foods. Their ability to produce antibacterial compounds, mainly against Listeria monocytogenes, has raised interest recently. However, there is scarce information about their proteolytic and lipolytic potential, and their biotechnological application is currently limited because enterococcal strains have been related to nosocomial infections. In this work, next-generation sequencing and optimised bioinformatic pipelines were used to annotate the genomes of two Enterococcus strains-one E. faecium and one E. faecalis-isolated from the Mexican artisanal ripened Cotija cheese. A battery of genes involved in their proteolytic system was annotated. Genes coding for lipases, esterases and other enzymes whose final products contribute to cheese aroma and flavour were identified as well. As for the production of antibacterial compounds, several peptidoglycan hydrolase- and bacteriocin-coding genes were identified in both genomes experimentally and by bioinformatic analyses. E. faecalis showed resistance to aminoglycosides and E. faecium to aminoglycosides and macrolides, as predicted by the genome functional annotation. No pathogenicity islands were found in any of the strains, although traits such as the ability of biofilm formation and cell aggregation were observed. Finally, a comparative genomic analysis was able to discriminate between the food strains isolated and nosocomial strains. In summary, pathogenic strains are resistant to a wide range of antibiotics and contain virulence factors that cause host damage; in contrast, food strains display less antibiotic resistance, include genes that encode class II bacteriocins and express virulence factors associated with host colonisation rather than invasion.
Collapse
Affiliation(s)
- Myrna Olvera-García
- Fac. de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U, 04510, Ciudad de México, Mexico
| | - Alejandro Sanchez-Flores
- Instituto de Biotecnología, Unidad de Secuenciación Masiva y Bioinformática, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Maricarmen Quirasco Baruch
- Fac. de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U, 04510, Ciudad de México, Mexico.
| |
Collapse
|
25
|
Squeglia F, Ruggiero A, Berisio R. Chemistry of Peptidoglycan in Mycobacterium tuberculosis
Life Cycle: An off-the-wall Balance of Synthesis and Degradation. Chemistry 2017; 24:2533-2546. [DOI: 10.1002/chem.201702973] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| |
Collapse
|
26
|
Stinemetz EK, Gao P, Pinkston KL, Montealegre MC, Murray BE, Harvey BR. Processing of the major autolysin of E. faecalis, AtlA, by the zinc-metalloprotease, GelE, impacts AtlA septal localization and cell separation. PLoS One 2017; 12:e0186706. [PMID: 29049345 PMCID: PMC5648223 DOI: 10.1371/journal.pone.0186706] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/05/2017] [Indexed: 01/23/2023] Open
Abstract
AtlA is the major peptidoglycan hydrolase of Enterococcus faecalis involved in cell division and cellular autolysis. The secreted zinc metalloprotease, gelatinase (GelE), has been identified as an important regulator of cellular function through post-translational modification of protein substrates. AtlA is a known target of GelE, and their interplay has been proposed to regulate AtlA function. To study the protease-mediated post-translational modification of AtlA, monoclonal antibodies were developed as research tools. Flow cytometry and Western blot analysis suggests that in the presence of GelE, surface-bound AtlA exists primarily as a N-terminally truncated form whereas in the absence of GelE, the N-terminal domain of AtlA is retained. We identified the primary GelE cleavage site occurring near the transition between the T/E rich Domain I and catalytic region, Domain II via N-terminal sequencing. Truncation of AtlA had no effect on the peptidoglycan hydrolysis activity of AtlA. However, we observed that N-terminal cleavage was required for efficient AtlA-mediated cell division while unprocessed AtlA was unable to resolve dividing cells into individual units. Furthermore, we observed that the processed AtlA has the propensity to localize to the cell septum on wild-type cells whereas unprocessed AtlA in the ΔgelE strain were dispersed over the cell surface. Combined, these results suggest that AtlA septum localization and subsequent cell separation can be modulated by a single GelE-mediated N-terminal cleavage event, providing new insights into the post-translation modification of AtlA and the mechanisms governing chaining and cell separation.
Collapse
Affiliation(s)
- Emily K. Stinemetz
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Peng Gao
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Kenneth L. Pinkston
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Maria Camila Montealegre
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Barbara E. Murray
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, United States of America
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Barrett R. Harvey
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, United States of America
- Division of Infectious Disease, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Bacterial size matters: Multiple mechanisms controlling septum cleavage and diplococcus formation are critical for the virulence of the opportunistic pathogen Enterococcus faecalis. PLoS Pathog 2017; 13:e1006526. [PMID: 28742152 PMCID: PMC5542707 DOI: 10.1371/journal.ppat.1006526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/03/2017] [Accepted: 07/12/2017] [Indexed: 12/02/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen frequently isolated in clinical settings. This organism is intrinsically resistant to several clinically relevant antibiotics and can transfer resistance to other pathogens. Although E. faecalis has emerged as a major nosocomial pathogen, the mechanisms underlying the virulence of this organism remain elusive. We studied the regulation of daughter cell separation during growth and explored the impact of this process on pathogenesis. We demonstrate that the activity of the AtlA peptidoglycan hydrolase, an enzyme dedicated to septum cleavage, is controlled by several mechanisms, including glycosylation and recognition of the peptidoglycan substrate. We show that the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and are no longer able to cause lethality in the zebrafish model of infection. Altogether, this work indicates that control of cell separation during division underpins the pathogenesis of E. faecalis infections and represents a novel enterococcal virulence factor. We propose that inhibition of septum cleavage during division represents an attractive therapeutic strategy to control infections. Enterococcus faecalis is a commensal bacterium that colonizes the gastrointestinal tract of humans. This organism is an opportunistic pathogen that can cause a wide range of life-threatening infections in hospital settings. Despite the identification of several virulence factors, the mechanisms by which E. faecalis evades host immunity and causes infections remains poorly understood. Here, we explore how the formation of diplococci and short cell chains, a distinctive property of E. faecalis, contributes to pathogenesis. We describe several mechanisms that control the activity of AtlA, the enzyme dedicated to septum cleavage during division. Using a combination of in vitro assays and flow cytometry analyses of E. faecalis mutants, we show that AtlA activity is regulated by several mechanisms. We reveal that during pathogenesis, AtlA activity is critical for overcoming the host immune response. In the absence of AtlA, the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and can no longer cause lethality in the zebrafish model of infection, thus indicating that control of cell chain length is a novel virulence factor in E. faecalis. This work highlights a link between cell division and pathogenesis and suggests that cell separation represents a step that can be targeted to control bacterial infections.
Collapse
|
28
|
Wang N, Hasegawa H, Huang CY, Fukase K, Fujimoto Y. Synthesis of Peptidoglycan Fragments from Enterococcus faecalis with Fmoc-Strategy for Glycan Elongation. Chem Asian J 2016; 12:27-30. [PMID: 27868361 DOI: 10.1002/asia.201601357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/03/2016] [Indexed: 12/21/2022]
Abstract
Peptidoglycan (PGN) is an essential structural component of the bacterial cell wall conferring cell shape, which can be recognized by host-recognition proteins and receptors as well as bacterial surface proteins. In this work, the PGN partial structures from Enterococcus faecalis that contain a tetrasaccharide and an octasaccharide with a unique heptapeptide were synthesized via an Fmoc-strategy for elongation of the glycan chains. Namely, a 4'-O-Fmoc-protected disaccharide was utilized as the key intermediate in this efficient synthetic pathway for preparing various PGN fragments. Both the tetrasaccharide and octasaccharide with the unique heptapeptide were successfully synthesized for the first time.
Collapse
Affiliation(s)
- Ning Wang
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroki Hasegawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Cheng-Yuan Huang
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
29
|
Wang N, Hirata A, Nokihara K, Fukase K, Fujimoto Y. Peptidoglycan microarray as a novel tool to explore protein-ligand recognition. Biopolymers 2016; 106:422-9. [DOI: 10.1002/bip.22807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Ning Wang
- Department of Chemistry, Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Akiyoshi Hirata
- HiPep Laboratories; 486-46 Nakatsukasa-Cho Kamigyo-Ku, Kyoto 602-8158 Japan
| | - Kiyoshi Nokihara
- HiPep Laboratories; 486-46 Nakatsukasa-Cho Kamigyo-Ku, Kyoto 602-8158 Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Yukari Fujimoto
- Department of Chemistry, Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Department of Chemistry, Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi Kohoku-Ku, Yokohama Kanagawa 223-8522 Japan
| |
Collapse
|
30
|
Bajaj R, Bruce KE, Davidson AL, Rued BE, Stauffacher CV, Winkler ME. Biochemical characterization of essential cell division proteins FtsX and FtsE that mediate peptidoglycan hydrolysis by PcsB in Streptococcus pneumoniae. Microbiologyopen 2016; 5:738-752. [PMID: 27167971 PMCID: PMC5061712 DOI: 10.1002/mbo3.366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 01/02/2023] Open
Abstract
The FtsEX:PcsB complex forms a molecular machine that carries out peptidoglycan (PG) hydrolysis during normal cell division of the major respiratory pathogenic bacterium, Streptococcus pneumoniae (pneumococcus). FtsX is an integral membrane protein and FtsE is a cytoplasmic ATPase that together structurally resemble ABC transporters. Instead of transport, FtsEX transduces signals from the cell division apparatus to stimulate PG hydrolysis by PcsB, which interacts with extracellular domains of FtsX. Structural studies of PcsB and one extracellular domain of FtsX have recently appeared, but little is known about the biochemical properties of the FtsE ATPase or the intact FtsX transducer protein. We report here purifications and characterizations of tagged FtsX and FtsE proteins. Pneumococcal FtsX‐GFP‐His and FtsX‐His could be overexpressed in Escherichia coli without toxicity, and FtsE‐His remained soluble during purification. FtsX‐His dimerizes in detergent micelles and when reconstituted in phospholipid nanodiscs. FtsE‐His binds an ATP analog with an affinity comparable to that of ATPase subunits of ABC transporters, and FtsE‐His preparations have a low, detectable ATPase activity. However, attempts to detect complexes of purified FtsX‐His, FtsE‐His, and PcsB‐His or coexpressed tagged FtsX and FtsE were not successful with the constructs and conditions tested so far. In working with nanodiscs, we found that PcsB‐His has an affinity for charged phospholipids, mediated partly by interactions with its coiled‐coil domain. Together, these findings represent first steps toward reconstituting the FtsEX:PcsB complex biochemically and provide information that may be relevant to the assembly of the complex on the surface of pneumococcal cells.
Collapse
Affiliation(s)
- Ruchika Bajaj
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405
| | - Amy L Davidson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Britta E Rued
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405.
| |
Collapse
|
31
|
Steward KF, Robinson C, Waller AS. Transcriptional changes are involved in phenotype switching in Streptococcus equi subspecies equi. MOLECULAR BIOSYSTEMS 2016; 12:1194-200. [PMID: 26854112 DOI: 10.1039/c5mb00780a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phenotypic heterogeneity within a population of bacteria, through genetic or transcriptional variation, enables survival and persistence in challenging and changing environments. We report here that a recent clinical isolate of S. equi, strain 1691 (Se1691), yielded a mixture of reduced capsule and mucoid colonies on primary isolation when grown on colistin-oxolinic acid blood agar (COBA) streptococcal selective plates. Passaging colonies of Se1691, with a reduced capsule phenotype maintained this mixed phenotype. In contrast, passaging mucoid colonies fixed the mucoid phenotype, suggesting adaptive genetic or transcriptional changes in response to growth on artificial media. However, despite obvious phenotypic and transcriptional differences, there were no apparent differences in the genome sequences of Se1691 recovered from colonies with a mucoid or reduced capsule phenotype. We identified 105 differentially transcribed genes in the transcriptomes of reduced capsule and mucoid colonies. The reduced capsule phenotype was associated with a significant reduction in transcription of the has locus (SEQ_0269 Q = 0.0015, SEQ_0270 Q = 0.0015, SEQ_0271 Q = 0.0285) and the amount of hyaluronic acid on the surface of S. equi recovered from non-mucoid colonies (P = 0.017). Significant differences in the transcription of 21 surface and secreted proteins were also observed. Our data show that changes in the bacterial transcriptome are linked to the mixed colony phenotype of Se1691.
Collapse
Affiliation(s)
- Karen F Steward
- Animal Health Trust, Kentford, NewmarketSuffolk, CB8 7UU, UK.
| | | | | |
Collapse
|
32
|
Najjari A, Amairi H, Chaillou S, Mora D, Boudabous A, Zagorec M, Ouzari H. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei. J Adv Res 2016; 7:155-63. [PMID: 26843981 PMCID: PMC4703478 DOI: 10.1016/j.jare.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/26/2022] Open
Abstract
Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species.
Collapse
Affiliation(s)
- Afef Najjari
- Université Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| | - Houda Amairi
- Université Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| | - Stéphane Chaillou
- Unité Flore Lactique et Environnement Carné, UR309, INRA, Domaine de Vilvert, F-78350 Jouy en Josas, France
| | - Diego Mora
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Milan, Italy
| | - Abdellatif Boudabous
- Université Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| | - Monique Zagorec
- Unité Flore Lactique et Environnement Carné, UR309, INRA, Domaine de Vilvert, F-78350 Jouy en Josas, France
| | - Hadda Ouzari
- Université Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| |
Collapse
|
33
|
Liu Z, Qiao K, Tian L, Zhang Q, Liu ZY, Li FL. Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores. Front Microbiol 2015; 6:950. [PMID: 26441884 PMCID: PMC4563875 DOI: 10.3389/fmicb.2015.00950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/27/2015] [Indexed: 12/15/2022] Open
Abstract
Autolysis is a widespread phenomenon in bacteria. In batch fermentation of Clostridium acetobutylicum ATCC 824, there is a spontaneous large-scale autolysis phenomenon with significant decrease of cell density immediately after exponential phase. To unravel the role of autolysis, an autolysin-coding gene, CA_C0554, was disrupted by using ClosTron system to obtain the mutant C. acetobutylicum lyc::int(72). The lower final cell density and faster cell density decrease rate of C. acetobutylicum ATCC 824 than those of C. acetobutylicum lyc::int(72) indicates that CA_C0554 was an important but not the sole autolysin-coding gene responding for the large-scale autolysis. Similar glucose utilization and solvents production but obvious lower cell density of C. acetobutylicum ATCC 824 comparing to C. acetobutylicum lyc::int(72) suggests that lysed C. acetobutylicum ATCC 824 cells were metabolic inactive. On the contrary, the spore density of C. acetobutylicum ATCC 824 is 26.1% higher than that of C. acetobutylicum lyc::int(72) in the final culture broth of batch fermentation. We speculated that spontaneous autolysis of metabolic-inactive cells provided nutrients for the sporulating cells. The present study suggests that one important biological role of spontaneous large-scale autolysis in C. acetobutylicum ATCC 824 batch fermentation is contributing to generation of more spores during sporulation.
Collapse
Affiliation(s)
- Zhen Liu
- Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology - Chinese Academy of Sciences Qingdao, China
| | - Kai Qiao
- Sinopec Fushun Research Institute of Petroleum and Petrochemicals Fushun, China
| | - Lei Tian
- Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology - Chinese Academy of Sciences Qingdao, China
| | - Quan Zhang
- Sinopec Fushun Research Institute of Petroleum and Petrochemicals Fushun, China
| | - Zi-Yong Liu
- Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology - Chinese Academy of Sciences Qingdao, China
| | - Fu-Li Li
- Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology - Chinese Academy of Sciences Qingdao, China ; Sinopec Fushun Research Institute of Petroleum and Petrochemicals Fushun, China
| |
Collapse
|
34
|
Minimal Peptidoglycan (PG) Turnover in Wild-Type and PG Hydrolase and Cell Division Mutants of Streptococcus pneumoniae D39 Growing Planktonically and in Host-Relevant Biofilms. J Bacteriol 2015; 197:3472-85. [PMID: 26303829 DOI: 10.1128/jb.00541-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/15/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED We determined whether there is turnover of the peptidoglycan (PG) cell wall of the ovococcus bacterial pathogen Streptococcus pneumoniae (pneumococcus). Pulse-chase experiments on serotype 2 strain D39 radiolabeled with N-acetylglucosamine revealed little turnover and release of PG breakdown products during growth compared to published reports of PG turnover in Bacillus subtilis. PG dynamics were visualized directly by long-pulse-chase-new-labeling experiments using two colors of fluorescent d-amino acid (FDAA) probes to microscopically detect regions of new PG synthesis. Consistent with minimal PG turnover, hemispherical regions of stable "old" PG persisted in D39 and TIGR4 (serotype 4) cells grown in rich brain heart infusion broth, in D39 cells grown in chemically defined medium containing glucose or galactose as the carbon source, and in D39 cells grown as biofilms on a layer of fixed human epithelial cells. In contrast, B. subtilis exhibited rapid sidewall PG turnover in similar FDAA-labeling experiments. High-performance liquid chromatography (HPLC) analysis of biochemically released peptides from S. pneumoniae PG validated that FDAAs incorporated at low levels into pentamer PG peptides and did not change the overall composition of PG peptides. PG dynamics were also visualized in mutants lacking PG hydrolases that mediate PG remodeling, cell separation, or autolysis and in cells lacking the MapZ and DivIVA division regulators. In all cases, hemispheres of stable old PG were maintained. In PG hydrolase mutants exhibiting aberrant division plane placement, FDAA labeling revealed patches of inert PG at turns and bulge points. We conclude that growing S. pneumoniae cells exhibit minimal PG turnover compared to the PG turnover in rod-shaped cells. IMPORTANCE PG cell walls are unique to eubacteria, and many bacterial species turn over and recycle their PG during growth, stress, colonization, and virulence. Consequently, PG breakdown products serve as signals for bacteria to induce antibiotic resistance and as activators of innate immune responses. S. pneumoniae is a commensal bacterium that colonizes the human nasopharynx and opportunistically causes serious respiratory and invasive diseases. The results presented here demonstrate a distinct demarcation between regions of old PG and regions of new PG synthesis and minimal turnover of PG in S. pneumoniae cells growing in culture or in host-relevant biofilms. These findings suggest that S. pneumoniae minimizes the release of PG breakdown products by turnover, which may contribute to evasion of the innate immune system.
Collapse
|
35
|
Arntzen MØ, Karlskås IL, Skaugen M, Eijsink VGH, Mathiesen G. Proteomic Investigation of the Response of Enterococcus faecalis V583 when Cultivated in Urine. PLoS One 2015; 10:e0126694. [PMID: 25915650 PMCID: PMC4411035 DOI: 10.1371/journal.pone.0126694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/07/2015] [Indexed: 11/19/2022] Open
Abstract
Enterococcus faecalis is a robust bacterium, which is able to survive in and adapt to hostile environments such as the urinary tract and bladder. In this label-free quantitative proteomic study based on MaxQuant LFQ algorithms, we identified 127 proteins present in the secretome of the clinical vancomycin-resistant isolate E. faecalis V583 and we compared proteins secreted in the initial phase of cultivation in urine with the secretome during cultivation in standard laboratory medium, 2xYT. Of the 54 identified proteins predicted to be secreted, six were exclusively found after cultivation in urine including the virulence factor EfaA ("endocarditis specific antigen") and its homologue EF0577 ("adhesion lipoprotein"). These two proteins are both involved in manganese transport, known to be an important determinant of colonization and infection, and may additionally function as adhesins. Other detected urine-specific proteins are involved in peptide transport (EF0063 and EF3106) and protease inhibition (EF3054). In addition, we found an uncharacterized protein (EF0764), which had not previously been linked to the adaptation of V583 to a urine environment, and which is unique to E. faecalis. Proteins found in both environments included a histone-like protein, EF1550, that was up-regulated during cultivation in urine and that has a homologue in streptococci (HlpA) known to be involved in bacterial adhesion to host cells. Up-regulated secreted proteins included autolysins. These results from secretome analyses are largely compatible with previously published data from transcriptomics studies. All in all, the present data indicate that transport, in particular metal transport, adhesion, cell wall remodelling and the unknown function carried out by the unique EF0764 are important for enterococcal adaptation to the urine environment. These results provide a basis for a more targeted exploration of novel proteins involved in the adaptability and pathogenicity of E. faecalis.
Collapse
Affiliation(s)
- Magnus Øverlie Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
- * E-mail:
| | - Ingrid Lea Karlskås
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Morten Skaugen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Vincent G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Geir Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| |
Collapse
|
36
|
García-Cano I, Serrano-Maldonado CE, Olvera-García M, Delgado-Arciniega E, Peña-Montes C, Mendoza-Hernández G, Quirasco M. Antibacterial activity produced by Enterococcus spp. isolated from an artisanal Mexican dairy product, Cotija cheese. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.04.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Mesnage S, Dellarole M, Baxter NJ, Rouget JB, Dimitrov JD, Wang N, Fujimoto Y, Hounslow AM, Lacroix-Desmazes S, Fukase K, Foster SJ, Williamson MP. Molecular basis for bacterial peptidoglycan recognition by LysM domains. Nat Commun 2014; 5:4269. [PMID: 24978025 PMCID: PMC4083421 DOI: 10.1038/ncomms5269] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023] Open
Abstract
Carbohydrate recognition is essential for growth, cell adhesion and signalling in all living organisms. A highly conserved carbohydrate binding module, LysM, is found in proteins from viruses, bacteria, fungi, plants and mammals. LysM modules recognize polysaccharides containing N-acetylglucosamine (GlcNAc) residues including peptidoglycan, an essential component of the bacterial cell wall. However, the molecular mechanism underpinning LysM-peptidoglycan interactions remains unclear. Here we describe the molecular basis for peptidoglycan recognition by a multimodular LysM domain from AtlA, an autolysin involved in cell division in the opportunistic bacterial pathogen Enterococcus faecalis. We explore the contribution of individual modules to the binding, identify the peptidoglycan motif recognized, determine the structures of free and bound modules and reveal the residues involved in binding. Our results suggest that peptide stems modulate LysM binding to peptidoglycan. Using these results, we reveal how the LysM module recognizes the GlcNAc-X-GlcNAc motif present in polysaccharides across kingdoms.
Collapse
Affiliation(s)
- Stéphane Mesnage
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Mariano Dellarole
- Centre de Biochimie Structurale, CNRS UMR 5048—UM 1—INSERM UMR 1054, F-34090 Montpellier, France
- These authors contributed equally to this work
- Present address: Institut Pasteur, Unité de Virologie Structurale, 28 Rue du Docteur Roux, F-75015 Paris, France
| | - Nicola J. Baxter
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- These authors contributed equally to this work
| | - Jean-Baptiste Rouget
- Centre de Biochimie Structurale, CNRS UMR 5048—UM 1—INSERM UMR 1054, F-34090 Montpellier, France
| | - Jordan D. Dimitrov
- INSERM, U872, Centre de Recherche des Cordeliers, Equipe 16, F-75006 Paris, France
- Université Pierre et Marie Curie, UMR-S 872, F-75006 Paris, France
- Université Paris Descartes, UMR-S 872, F-75006 Paris, France
| | - Ning Wang
- Department of Chemistry, Laboratory for Natural Products Chemistry, Osaka University, Osaka 560-0043, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Laboratory for Natural Products Chemistry, Osaka University, Osaka 560-0043, Japan
| | - Andrea M. Hounslow
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Sébastien Lacroix-Desmazes
- INSERM, U872, Centre de Recherche des Cordeliers, Equipe 16, F-75006 Paris, France
- Université Pierre et Marie Curie, UMR-S 872, F-75006 Paris, France
- Université Paris Descartes, UMR-S 872, F-75006 Paris, France
| | - Koichi Fukase
- Department of Chemistry, Laboratory for Natural Products Chemistry, Osaka University, Osaka 560-0043, Japan
| | - Simon J. Foster
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Michael P. Williamson
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
38
|
Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release. mBio 2013; 4:e00154. [PMID: 23592262 PMCID: PMC3634606 DOI: 10.1128/mbio.00154-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study, we identified and characterized the major autolysin in E. faecium, which we designated AtlAEfm. atlAEfm disruption resulted in resistance to lysis, reduced extracellular DNA (eDNA), deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and chaining. Furthermore, AtlAEfm is associated with Acm cell surface localization, resulting in less binding to collagen types I and IV in the atlAEfm mutant. We also identified AtlAEfm-independent eDNA release that contributes to cell-cell interactions in the atlAEfm mutant. These findings indicate that AtlAEfm is important in biofilm and collagen binding in E. faecium, making AtlAEfm a promising target for treatment of E. faecium infections.
Collapse
|
39
|
Shaaly A, Kalamorz F, Gebhard S, Cook GM. Undecaprenyl pyrophosphate phosphatase confers low-level resistance to bacitracin in Enterococcus faecalis. J Antimicrob Chemother 2013; 68:1583-93. [PMID: 23460607 DOI: 10.1093/jac/dkt048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Undecaprenyl pyrophosphate phosphatases (UppPs) have been implicated in bacitracin resistance in some bacterial genera and the aim of this study was to determine the role of UppPs in mediating low-level bacitracin resistance in Enterococcus faecalis. METHODS The uppP gene was identified in the genomes of laboratory (JH2-2) and clinical (V583) strains of E. faecalis. Gene fusions (uppP-lacZ) and 5'-RACE were used to study uppP expression. The uppP gene in both strains was inactivated and mutants were studied for antimicrobial susceptibility and their susceptibilities to various stress agents. RESULTS The UppP protein from E. faecalis showed high sequence identity to the Escherichia coli BacA-type UppP and was predicted to be a hydrophobic protein with eight transmembrane helices. The expression of uppP-lacZ was constitutive and not affected by bacitracin or cell wall-active antimicrobials. E. faecalis uppP mutants showed no significant changes in growth rate, colony morphology and biofilm formation. The uppP mutants exhibited increased susceptibility to bacitracin (MICs=3-6 mg/L) relative to the isogenic wild-type (MICs=32-48 mg/L). When uppP was expressed in a wild-type background, the MIC of bacitracin increased to 128-≥256 mg/L. The MICs of cefoxitin, teicoplanin, vancomycin, gentamicin, enrofloxacin and d-cycloserine were unaltered in the uppP mutant relative to the wild-type, as were susceptibilities to other stress agents (glycine, lysozyme, NaCl, SDS, low and high pH, oxidative stress and ethanol). CONCLUSIONS The results demonstrate that low-level bacitracin resistance in E. faecalis is mediated by a BacA-type UppP.
Collapse
Affiliation(s)
- Aishath Shaaly
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
40
|
Abstract
Peptidoglycan (PG) is the major structural component of the bacterial cell wall. Bacteria have autolytic PG hydrolases that allow the cell to grow and divide. A well-studied group of PG hydrolase enzymes are the bacteriophage endolysins. Endolysins are PG-degrading proteins that allow the phage to escape from the bacterial cell during the phage lytic cycle. The endolysins, when purified and exposed to PG externally, can cause "lysis from without." Numerous publications have described how this phenomenon can be used therapeutically as an effective antimicrobial against certain pathogens. Endolysins have a characteristic modular structure, often with multiple lytic and/or cell wall-binding domains (CBDs). They degrade the PG with glycosidase, amidase, endopeptidase, or lytic transglycosylase activities and have been shown to be synergistic with fellow PG hydrolases or a range of other antimicrobials. Due to the coevolution of phage and host, it is thought they are much less likely to invoke resistance. Endolysin engineering has opened a range of new applications for these proteins from food safety to environmental decontamination to more effective antimicrobials that are believed refractory to resistance development. To put phage endolysin work in a broader context, this chapter includes relevant studies of other well-characterized PG hydrolase antimicrobials.
Collapse
|
41
|
SalB inactivation modulates culture supernatant exoproteins and affects autolysis and viability in Enterococcus faecalis OG1RF. J Bacteriol 2012; 194:3569-78. [PMID: 22563054 DOI: 10.1128/jb.00376-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The culture supernatant fraction of an Enterococcus faecalis gelE mutant of strain OG1RF contained elevated levels of the secreted antigen SalB. Using differential fluorescence gel electrophoresis (DIGE) the salB mutant was shown to possess a unique complement of exoproteins. Differentially abundant exoproteins were identified using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Stress-related proteins including DnaK, Dps family protein, SOD, and NADH peroxidase were present in greater quantity in the OG1RF salB mutant culture supernatant. Moreover, several proteins involved in cell wall synthesis and cell division, including d-Ala-d-Lac ligase and EzrA, were present in reduced quantity in OG1RF salB relative to the parent strain. The salB mutant displayed reduced viability and anomalous cell division, and these phenotypes were exacerbated in a gelE salB double mutant. An epistatic relationship between gelE and salB was not identified with respect to increased autolysis and cell morphological changes observed in the salB mutant. SalB was purified as a six-histidine-tagged protein to investigate peptidoglycan hydrolytic activity; however, activity was not evident. High-pressure liquid chromatography (HPLC) analysis of reduced muropeptides from peptidoglycan digested with mutanolysin revealed that the salB mutant and OG1RF were indistinguishable.
Collapse
|
42
|
Frankel MB, Schneewind O. Determinants of murein hydrolase targeting to cross-wall of Staphylococcus aureus peptidoglycan. J Biol Chem 2012; 287:10460-10471. [PMID: 22303016 DOI: 10.1074/jbc.m111.336404] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cells of eukaryotic or prokaryotic origin express proteins with LysM domains that associate with the cell wall envelope of bacteria. The molecular properties that enable LysM domains to interact with microbial cell walls are not yet established. Staphylococcus aureus, a spherical microbe, secretes two murein hydrolases with LysM domains, Sle1 and LytN. We show here that the LysM domains of Sle1 and LytN direct murein hydrolases to the staphylococcal envelope in the vicinity of the cross-wall, the mid-cell compartment for peptidoglycan synthesis. LysM domains associate with the repeating disaccharide β-N-acetylmuramic acid, (1→4)-β-N-acetylglucosamine of staphylococcal peptidoglycan. Modification of N-acetylmuramic acid with wall teichoic acid, a ribitol-phosphate polymer tethered to murein linkage units, prevents the LysM domain from binding to peptidoglycan. The localization of LytN and Sle1 to the cross-wall is abolished in staphylococcal tagO mutants, which are defective for wall teichoic acid synthesis. We propose a model whereby the LysM domain ensures septal localization of LytN and Sle1 followed by processive cleavage of peptidoglycan, thereby exposing new LysM binding sites in the cross-wall and separating bacterial cells.
Collapse
Affiliation(s)
- Matthew B Frankel
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
43
|
Wheeler R, Mesnage S, Boneca IG, Hobbs JK, Foster SJ. Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria. Mol Microbiol 2011; 82:1096-109. [PMID: 22059678 DOI: 10.1111/j.1365-2958.2011.07871.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms.
Collapse
Affiliation(s)
- Richard Wheeler
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
44
|
Murein and pseudomurein cell wall binding domains of bacteria and archaea--a comparative view. Appl Microbiol Biotechnol 2011; 92:921-8. [PMID: 22012341 PMCID: PMC3210951 DOI: 10.1007/s00253-011-3637-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 09/29/2011] [Accepted: 10/07/2011] [Indexed: 02/02/2023]
Abstract
The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and acts as an adhesion platform for bacteriophages. The walls of bacteria and archaea are mostly composed of murein and pseudomurein, respectively. Cell wall binding domains play a crucial role in the non-covalent attachment of proteins to cell walls. Here, we give an overview of the similarities and differences in the biochemical and functional properties of the two major murein and pseudomurein cell wall binding domains, i.e., the Lysin Motif (LysM) domain (Pfam PF01476) and the pseudomurein binding (PMB) domain (Pfam PF09373) of bacteria and archaea, respectively.
Collapse
|
45
|
Gröbner S, Beck J, Schaller M, Autenrieth IB, Schulte B. Characterization of an Enterococcus faecium small-colony variant isolated from blood culture. Int J Med Microbiol 2011; 302:40-4. [PMID: 21968291 DOI: 10.1016/j.ijmm.2011.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/19/2011] [Accepted: 07/10/2011] [Indexed: 11/25/2022] Open
Abstract
Small-colony variants (SCVs) of bacteria are slow-growing subpopulations which can cause latent or recurrent infections due to better intracellular survival compared to their wild-type counterparts. Atypical colony morphology and altered biochemical profile may lead to failure in identification of SCV strains. We here report for the first time the isolation of an Enterococcus faecium SCV phenotype. The case of a 65-year-old woman with acute myeloid leukaemia who developed symptoms of sepsis during induction chemotherapy is presented. E. faecium with normal and SCV phenotype was isolated from blood cultures. At the same time urine culture was positive with E. faecium suggesting that bacteraemia originated from the urinary tract. The SCV phenotype was characterized by atypical growth behaviour. Electron microscopic analyses revealed perturbation of the separation of daughter cells and the accumulation of cell wall material. Accordingly, the SCV variant showed a dysfunction or lack of spontaneous autolysis whereas the normal phenotype did not. In contrast to conventional identification systems based on biochemical characteristics, the E. faecium SCV was precisely identified by MALDI-TOF MS analysis implemented in our laboratory. Hence, the increasing use of MALDI-TOF MS analysis for the identification of bacteria might be an appropriate tool for the detection of SCV variants, the diagnosis of which is of importance for the clinical outcome and the antibiotic treatment.
Collapse
Affiliation(s)
- Sabine Gröbner
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany.
| | | | | | | | | |
Collapse
|
46
|
Frankel MB, Hendrickx APA, Missiakas DM, Schneewind O. LytN, a murein hydrolase in the cross-wall compartment of Staphylococcus aureus, is involved in proper bacterial growth and envelope assembly. J Biol Chem 2011; 286:32593-605. [PMID: 21784864 PMCID: PMC3173183 DOI: 10.1074/jbc.m111.258863] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/20/2011] [Indexed: 02/02/2023] Open
Abstract
Cell cycle progression for the spherical microbe Staphylococcus aureus requires the coordinated synthesis and remodeling of peptidoglycan. The majority of these rearrangements takes place at the mid-cell, in a compartment designated the cross-wall. Secreted polypeptides endowed with a YSIRK-G/S signal peptide are directly delivered to the cross-wall compartment. One such YSIRK-containing protein is the murein hydrolase LytN. lytN mutations precipitate structural damage to the cross-wall and interfere with staphylococcal growth. Overexpression of lytN also affects growth and triggers rupture of the cross-wall. The lytN phenotype can be reversed by the controlled expression of lytN but not by adding purified LytN to staphylococcal cultures. LytN harbors LysM and CHAP domains, the latter of which functions as both an N-acetylmuramoyl-L-alanine amidase and D-alanyl-glycine endopeptidase. Thus, LytN secretion into the cross-wall promotes peptidoglycan separation and completion of the staphylococcal cell cycle.
Collapse
Affiliation(s)
- Matthew B. Frankel
- From the Department of Microbiology, University of Chicago, Chicago, Illinois 60637
| | | | | | - Olaf Schneewind
- From the Department of Microbiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
47
|
Reith J, Mayer C. Peptidoglycan turnover and recycling in Gram-positive bacteria. Appl Microbiol Biotechnol 2011; 92:1-11. [PMID: 21796380 DOI: 10.1007/s00253-011-3486-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/02/2011] [Accepted: 07/13/2011] [Indexed: 11/24/2022]
Abstract
Bacterial cells are protected by an exoskeleton, the stabilizing and shape-maintaining cell wall, consisting of the complex macromolecule peptidoglycan. In view of its function, it could be assumed that the cell wall is a static structure. In truth, however, it is steadily broken down by peptidoglycan-cleaving enzymes during cell growth. In this process, named cell wall turnover, in one generation up to half of the preexisting peptidoglycan of a bacterial cell is released from the wall. This would result in a massive loss of cell material, if turnover products were not be taken up and recovered. Indeed, in the Gram-negative model organism Escherichia coli, peptidoglycan recovery has been recognized as a complex pathway, named cell wall recycling. It involves about a dozen dedicated recycling enzymes that convey cell wall turnover products to peptidoglycan synthesis or energy pathways. Whether Gram-positive bacteria also recover their cell wall is currently questioned. Given the much larger portion of peptidoglycan in the cell wall of Gram-positive bacteria, however, recovery of the wall material would provide an even greater benefit in these organisms compared to Gram-negatives. Consistently, in many Gram-positives, orthologs of recycling enzymes were identified, indicating that the cell wall may also be recycled in these organisms. This mini-review provides a compilation of information about cell wall turnover and recycling in Gram-positive bacteria during cell growth and division, including recent findings relating to muropeptide recovery in Bacillus subtilis and Clostridium acetobutylicum from our group. Furthermore, the impact of cell wall turnover and recycling on biotechnological processes is discussed.
Collapse
Affiliation(s)
- Jan Reith
- Fachbereich Biologie, Molekulare Mikrobiologie, University of Konstanz, Germany
| | | |
Collapse
|
48
|
Identification of Rgg binding sites in the Streptococcus pyogenes chromosome. J Bacteriol 2011; 193:4933-42. [PMID: 21764942 DOI: 10.1128/jb.00429-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Streptococcus pyogenes Rgg is a regulatory protein that controls the transcription of 588 genes in strain NZ131 during the post-exponential phase of growth, including the virulence-associated genes encoding the extracellular SpeB protease, pullulanase A (PulA), and two extracellular nucleases (SdaB and Spd-3). Rgg binds to DNA proximally to the speB promoter (PspeB) to activate transcription; however, it is not known if Rgg binds to the promoters of other genes to influence expression, or if the perturbation of other global regulons accounts for the genome-wide changes in expression associated with the mutant. To address this issue, chromatin immunoprecipitation followed by DNA microarray analysis (ChIP-chip) was used to identify the DNA binding sites of Rgg. Rgg bound to 65 sites in the chromosome. Thirty-five were within noncoding DNA, and 43% of these were adjacent to genes previously identified as regulated by Rgg. Electrophoretic mobility shift assays were used to assess the binding of Rgg to a subset of sites bound in vivo, including the noncoding DNA upstream of speB, the genes encoding PulA, Spd-3, and a transcriptional regulator (SPY49_1113), and prophage-associated genes encoding a putative integrase (SPY49_0746) and a surface antigen (SPY49_0396). Rgg bound to all target DNAs in vitro, consistent with the in vivo results. Finally, analyses with a transcriptional reporter system showed that the DNA bound by Rgg contained an active promoter that was regulated by Rgg. Overall, the results indicate that Rgg binds specifically to multiple sites in the chromosome, including prophage DNA, to influence gene expression.
Collapse
|
49
|
Anderson VJ, Kern JW, McCool JW, Schneewind O, Missiakas D. The SLH-domain protein BslO is a determinant of Bacillus anthracis chain length. Mol Microbiol 2011; 81:192-205. [PMID: 21585566 PMCID: PMC3124567 DOI: 10.1111/j.1365-2958.2011.07688.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Gram-positive pathogen Bacillus anthracis grows in characteristic chains of individual, rod-shaped cells. Here, we report the cell-separating activity of BslO, a putative N-acetylglucosaminidase bearing three N-terminal S-layer homology (SLH) domains for association with the secondary cell wall polysaccharide (SCWP). Mutants with an insertional lesion in the bslO gene exhibit exaggerated chain lengths, although individual cell dimensions are unchanged. Purified BslO complements this phenotype in trans, effectively dispersing chains of bslO-deficient bacilli without lysis and localizing to the septa of vegetative cells. Compared with the extremely long chain lengths of csaB bacilli, which are incapable of binding proteins with SLH-domains to SCWP, bslO mutants demonstrate a chaining phenotype that is intermediate between wild-type and csaB. Computational simulation suggests that BslO effects a non-random distribution of B. anthracis chain lengths, implying that all septa are not equal candidates for separation.
Collapse
Affiliation(s)
| | - Justin W. Kern
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Justin W. McCool
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
50
|
The in vitro contribution of autolysins to bacterial killing elicited by amoxicillin increases with inoculum size in Enterococcus faecalis. Antimicrob Agents Chemother 2010; 55:910-2. [PMID: 21098238 DOI: 10.1128/aac.01230-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The mechanisms of antibiotic-induced cell death are poorly understood despite the critical role of the bactericidal activities of antibiotics for successful treatment of severe infections. These mechanisms include irreversible damaging of macromolecules by reactive oxygen species and bacteriolysis mediated by peptidoglycan hydrolases (autolysins). We have assessed the contribution of the second mechanism by using an autolysin-deficient mutant of Enterococcus faecalis and shown that it contributes to amoxicillin-induced cell lysis only at a high bacterial density.
Collapse
|