1
|
Khanppnavar B, Leka O, Pal SK, Korkhov VM, Kammerer RA. Cryo-EM structure of the botulinum neurotoxin A/SV2B complex and its implications for translocation. Nat Commun 2025; 16:1224. [PMID: 39934119 PMCID: PMC11814414 DOI: 10.1038/s41467-025-56304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Botulinum neurotoxin A1 (BoNT/A1) belongs to the most potent toxins and is used as a major therapeutic agent. Neurotoxin conformation is crucial for its translocation to the neuronal cytosol, a key process for intoxication that is only poorly understood. To gain molecular insights into the steps preceding toxin translocation, we determine cryo-EM structures of BoNT/A1 alone and in complex with its receptor synaptic vesicle glycoprotein 2B (SV2B). In solution, BoNT/A1 adopts a unique, semi-closed conformation. The toxin changes its structure into an open state upon receptor binding with the translocation domain (HN) and the catalytic domain (LC) remote from the membrane, suggesting translocation incompatibility. Under acidic pH conditions, where translocation is initiated, receptor-bound BoNT/A1 switches back into a semi-closed conformation. This conformation brings the LC and HN close to the membrane, suggesting that a translocation-competent state of the toxin is required for successful LC transport into the neuronal cytosol.
Collapse
Affiliation(s)
| | - Oneda Leka
- PSI Center for Life Sciences, Villigen, Switzerland
| | | | - Volodymyr M Korkhov
- PSI Center for Life Sciences, Villigen, Switzerland.
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
2
|
Yeo JC, Tay FP, Bennion R, Loss O, Maignel J, Pons L, Foster K, Beard M, Bard F. Botulinum toxin intoxication requires retrograde transport and membrane translocation at the ER in RenVM neurons. eLife 2024; 12:RP92806. [PMID: 39196607 DOI: 10.7554/elife.92806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is a highly potent proteolytic toxin specific for neurons with numerous clinical and cosmetic uses. After uptake at the synapse, the protein is proposed to translocate from synaptic vesicles to the cytosol through a self-formed channel. Surprisingly, we found that after intoxication proteolysis of a fluorescent reporter occurs in the neuron soma first and then centrifugally in neurites. To investigate the molecular mechanisms at play, we use a genome-wide siRNA screen in genetically engineered neurons and identify over three hundred genes. An organelle-specific split-mNG complementation indicates BoNT/A traffic from the synapse to the soma-localized Golgi in a retromer-dependent fashion. The toxin then moves to the ER and appears to require the Sec61 complex for retro-translocation to the cytosol. Our study identifies genes and trafficking processes hijacked by the toxin, revealing a new pathway mediating BoNT/A cellular toxicity.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia P Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Rebecca Bennion
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| | - Omar Loss
- Ipsen Bioinnovation, London, United Kingdom
| | | | | | | | | | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| |
Collapse
|
3
|
Rawson AM, Dempster AW, Humphreys CM, Minton NP. Pathogenicity and virulence of Clostridium botulinum. Virulence 2023; 14:2205251. [PMID: 37157163 PMCID: PMC10171130 DOI: 10.1080/21505594.2023.2205251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Clostridium botulinum, a polyphyletic Gram-positive taxon of bacteria, is classified purely by their ability to produce botulinum neurotoxin (BoNT). BoNT is the primary virulence factor and the causative agent of botulism. A potentially fatal disease, botulism is classically characterized by a symmetrical descending flaccid paralysis, which is left untreated can lead to respiratory failure and death. Botulism cases are classified into three main forms dependent on the nature of intoxication; foodborne, wound and infant. The BoNT, regarded as the most potent biological substance known, is a zinc metalloprotease that specifically cleaves SNARE proteins at neuromuscular junctions, preventing exocytosis of neurotransmitters, leading to muscle paralysis. The BoNT is now used to treat numerous medical conditions caused by overactive or spastic muscles and is extensively used in the cosmetic industry due to its high specificity and the exceedingly small doses needed to exert long-lasting pharmacological effects. Additionally, the ability to form endospores is critical to the pathogenicity of the bacteria. Disease transmission is often facilitated via the metabolically dormant spores that are highly resistant to environment stresses, allowing persistence in the environment in unfavourable conditions. Infant and wound botulism infections are initiated upon germination of the spores into neurotoxin producing vegetative cells, whereas foodborne botulism is attributed to ingestion of preformed BoNT. C. botulinum is a saprophytic bacterium, thought to have evolved its potent neurotoxin to establish a source of nutrients by killing its host.
Collapse
Affiliation(s)
- Alexander M Rawson
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Andrew W Dempster
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Christopher M Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | | |
Collapse
|
4
|
Zuverink M, Barbieri JT. Resolving the Molecular Steps in Clostridial Neurotoxin Light Chain Translocation. JOURNAL OF EXPERIMENTAL NEUROLOGY 2021; 1:123-134. [PMID: 33615314 PMCID: PMC7894615 DOI: 10.33696/neurol.1.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The clostridial neurotoxins (CNTs), botulinum toxin and tetanus toxin, are the most toxic proteins for humans. Neurotoxicity is based upon the specificity of the CNTs for neural host receptors and substrates. CNTs are organized into three domains, a Light Chain (LC) that is a metalloprotease and a Heavy Chain (HC) that has two domains, an N-terminal LC translocation domain (HCN) and a C-terminal receptor binding domain (HCC). While catalysis and receptor binding functions of the CNTs have been developed, our understanding of LC translocation is limited. This is due to the intrinsic complexity of the translocation process and limited tools to assess the step-by-step events in LC translocation. Recently, we developed a novel, cell-based TT-reporter to measure LC translocation as the translocation of a β-lactamase reporter across a vesicle membrane in neurons. Using this approach, we identified a role for a cis-Loop, located within the HCN, in LC translocation. In this commentary, we describe our current understanding of how CNTs mediate LC translocation and place the role of the cis-Loop in the LC translocation process relative to other independent functions that have been implicated in LC translocation. Understanding the basis for LC translocation will enhance the use of CNTs in vaccine development and as human therapies.
Collapse
Affiliation(s)
- Madison Zuverink
- Dalhousie University, Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada
| | - Joseph T Barbieri
- Medical College of Wisconsin, 8701 Watertown Plank Road, BSB2 Rm. 2830, Microbiology and Immunology, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Zhang CM, Imoto Y, Hikima T, Inoue T. Structural flexibility of the tetanus neurotoxin revealed by crystallographic and solution scattering analyses. JOURNAL OF STRUCTURAL BIOLOGY-X 2021; 5:100045. [PMID: 33598655 PMCID: PMC7868712 DOI: 10.1016/j.yjsbx.2021.100045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although the tetanus neurotoxin (TeNT) delivers its protease domain (LC) across the synaptic vesicle lumen into the cytosol via its receptor binding domain (HC) and translocation domain (HN), the molecular mechanism coordinating this membrane translocation remains unresolved. Here, we report the high-resolution crystal structures of full-length reduced TeNT (rTeNT, 2.3 Å), TeNT isolated HN (TeNT/iHN, 2.3 Å), TeNT isolated HC (TeNT/iHC, 1.5 Å), together with the solution structures of TeNT/iHN and beltless TeNT/iHN (TeNT/blHN). TeNT undergoes significant domains rotation of the HN and LC were demonstrated by structural comparison of rTeNT and non-reduced-TeNT (nrTeNT). A linker loop connects the HN and HC is essential for the self-domain rotation of TeNT. The TeNT-specific C869-C1093 disulfide bond is sensitive to the redox environment and its disruption provides linker loop flexibility, which enables domain arrangement of rTeNT distinct from that of nrTeNT. Furthermore, the mobility of C869 in the linker loop and the sensitivity to redox condition of C1093 were confirmed by crystal structure analysis of TeNT/iHC. On the other hand, the structural flexibility of HN was investigated by crystallographic and solution scattering analyses. It was found that the region (residues 698-769), which follows the translocation region had remarkable change in TeNT/iHN. Besides, the so-called belt region has a high propensity to swing around the upper half of TeNT/iHN at acidic pH. It provides the first overview of the dynamics of the Belt in solution. These newly obtained structural information that shed light on the transmembrane mechanism of TeNT.
Collapse
Affiliation(s)
- Chun-Ming Zhang
- Graduate School of Pharmaceutical Science, Osaka University, Suita, 565-0871 Osaka, Japan
| | - Yoshihiro Imoto
- Graduate School of Pharmaceutical Science, Osaka University, Suita, 565-0871 Osaka, Japan
| | - Takaaki Hikima
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, 679-6148, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Science, Osaka University, Suita, 565-0871 Osaka, Japan
| |
Collapse
|
6
|
Vitrac H, Mallampalli VKPS, Azinas S, Dowhan W. Structural and Functional Adaptability of Sucrose and Lactose Permeases from Escherichia coli to the Membrane Lipid Composition. Biochemistry 2020; 59:1854-1868. [PMID: 32363862 DOI: 10.1021/acs.biochem.0c00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lipid environment in which membrane proteins are embedded can influence their structure and function. Lipid-protein interactions and lipid-induced conformational changes necessary for protein function remain intractable in vivo using high-resolution techniques. Using Escherichia coli strains in which the normal phospholipid composition can be altered or foreign lipids can be introduced, we established the importance of membrane lipid composition for the proper folding, assembly, and function of E. coli lactose (LacY) and sucrose (CscB) permeases. However, the molecular mechanism underlying the lipid dependence for active transport remains unknown. Herein, we demonstrate that the structure and function of CscB and LacY can be modulated by the composition of the lipid environment. Using a combination of assays (transport activity of the substrate, protein topology, folding, and assembly into the membrane), we found that alterations in the membrane lipid composition lead to lipid-dependent structural changes in CscB and LacY. These changes affect the orientation of residues involved in LacY proton translocation and impact the rates of protonation and deprotonation of E325 by affecting the arrangement of transmembrane domains in the vicinity of the R302-E325 charge pair. Furthermore, the structural changes caused by changes in membrane lipid composition can be altered by a single-point mutation, highlighting the adaptability of these transporters to their environment. Altogether, our results demonstrate that direct interactions between a protein and its lipid environment uniquely contribute to membrane protein organization and function. Because members of the major facilitator superfamily present with well-conserved functional architecture, we anticipate that our findings can be extrapolated to other membrane protein transporters.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, Texas 77030, United States
| | - Venkata K P S Mallampalli
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, Texas 77030, United States
| | - Stavros Azinas
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, Texas 77030, United States
| | - William Dowhan
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, Texas 77030, United States
| |
Collapse
|
7
|
Abstract
Tetanus is a neurologic disease of humans and animals characterized by spastic paralysis. Tetanus is caused by tetanus toxin (TeNT) produced by Clostridium tetani, an environmental soilborne, gram-positive, sporulating bacterium. The disease most often results from wound contamination by soil containing C. tetani spores. Horses, sheep, and humans are highly sensitive to TeNT, whereas cattle, dogs, and cats are more resistant. The diagnosis of tetanus is mainly based on the characteristic clinical signs. Identification of C. tetani at the wound site is often difficult.
Collapse
|
8
|
Vitrac H, Mallampalli VKPS, Bogdanov M, Dowhan W. The lipid-dependent structure and function of LacY can be recapitulated and analyzed in phospholipid-containing detergent micelles. Sci Rep 2019; 9:11338. [PMID: 31383935 PMCID: PMC6683142 DOI: 10.1038/s41598-019-47824-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
Membrane proteins play key roles in cellular functions, their activity mainly depending on their topological arrangement in membranes. Structural studies of membrane proteins have long adopted a protein-centric view regarding the determinants of membrane protein topology and function. Several studies have shown that the orientation of transmembrane domains of polytopic membrane proteins with respect to the plane of the lipid bilayer can be largely determined by membrane lipid composition. However, the mechanism by which membrane proteins exhibit structural and functional duality in the same membrane or different membranes is still unknown. Here we show that lipid-dependent structural and functional assessment of a membrane protein can be conducted in detergent micelles, opening the possibility for the determination of lipid-dependent high-resolution crystal structures. We found that the lactose permease purified from Escherichia coli cells exhibiting varied phospholipid compositions exhibits the same topology and similar function as in its membrane of origin. Furthermore, we found several conditions, including protein mutations and micelle lipid composition, that lead to increased protein stability, correlating with a higher yield of two-dimensional crystal formation. Altogether, our results demonstrate how the membrane lipid environment influences membrane protein topology and arrangement, both in native membranes and in mixed detergent micelles.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA.
| | - Venkata K P S Mallampalli
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
A viral-fusion-peptide-like molecular switch drives membrane insertion of botulinum neurotoxin A1. Nat Commun 2018; 9:5367. [PMID: 30560862 PMCID: PMC6299077 DOI: 10.1038/s41467-018-07789-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/22/2018] [Indexed: 11/09/2022] Open
Abstract
Botulinum neurotoxin (BoNT) delivers its protease domain across the vesicle membrane to enter the neuronal cytosol upon vesicle acidification. This process is mediated by its translocation domain (HN), but the molecular mechanism underlying membrane insertion of HN remains poorly understood. Here, we report two crystal structures of BoNT/A1 HN that reveal a novel molecular switch (termed BoNT-switch) in HN, where buried α-helices transform into surface-exposed hydrophobic β-hairpins triggered by acidic pH. Locking the BoNT-switch by disulfide trapping inhibited the association of HN with anionic liposomes, blocked channel formation by HN, and reduced the neurotoxicity of BoNT/A1 by up to ~180-fold. Single particle counting studies showed that an acidic environment tends to promote BoNT/A1 self-association on liposomes, which is partly regulated by the BoNT-switch. These findings suggest that the BoNT-switch flips out upon exposure to the acidic endosomal pH, which enables membrane insertion of HN that subsequently leads to LC delivery. The translocation domain (HN) of Botulinum neurotoxins (BoNTs) mediates the delivery of the BoNT light chain (LC) into neuronal cytosol. Here the authors provide insights into HN membrane insertion by determining the crystal structure of BoNT/A1 HN at acidic pH, which reveals a molecular switch in HN, where buried α-helices are transformed into surface-exposed hydrophobic β-hairpins.
Collapse
|
10
|
Fonfria E, Elliott M, Beard M, Chaddock JA, Krupp J. Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. Toxins (Basel) 2018; 10:toxins10070278. [PMID: 29973505 PMCID: PMC6071219 DOI: 10.3390/toxins10070278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly successful protein therapeutics. Over 40 naturally occurring BoNTs have been described thus far and, of those, only 2 are commercially available for clinical use. Different members of the BoNT family present different biological properties but share a similar multi-domain structure at the molecular level. In nature, BoNTs are encoded by DNA in producing clostridial bacteria and, as such, are amenable to recombinant production through insertion of the coding DNA into other bacterial species. This, in turn, creates possibilities for protein engineering. Here, we review the production of BoNTs by the natural host and also recombinant production approaches utilised in the field. Applications of recombinant BoNT-production include the generation of BoNT-derived domain fragments, the creation of novel BoNTs with improved performance and enhanced therapeutic potential, as well as the advancement of BoNT vaccines. In this article, we discuss site directed mutagenesis, used to affect the biological properties of BoNTs, including approaches to alter their binding to neurons and to alter the specificity and kinetics of substrate cleavage. We also discuss the target secretion inhibitor (TSI) platform, in which the neuronal binding domain of BoNTs is substituted with an alternative cellular ligand to re-target the toxins to non-neuronal systems. Understanding and harnessing the potential of the biological diversity of natural BoNTs, together with the ability to engineer novel mutations and further changes to the protein structure, will provide the basis for increasing the scope of future BoNT-based therapeutics.
Collapse
Affiliation(s)
- Elena Fonfria
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Mark Elliott
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - John A Chaddock
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Johannes Krupp
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| |
Collapse
|
11
|
Membrane-Active Properties of an Amphitropic Peptide from the CyaA Toxin Translocation Region. Toxins (Basel) 2017; 9:toxins9110369. [PMID: 29135925 PMCID: PMC5705984 DOI: 10.3390/toxins9110369] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/28/2022] Open
Abstract
The adenylate cyclase toxin CyaA is involved in the early stages of infection by Bordetella pertussis, the causative agent of whooping cough. CyaA intoxicates target cells by a direct translocation of its catalytic domain (AC) across the plasma membrane and produces supraphysiological levels of cAMP, leading to cell death. The molecular process of AC translocation remains largely unknown, however. We have previously shown that deletion of residues 375–485 of CyaA selectively abrogates AC translocation into eukaryotic cells. We further identified within this “translocation region” (TR), P454 (residues 454–484), a peptide that exhibits membrane-active properties, i.e., is able to bind and permeabilize lipid vesicles. Here, we analyze various sequences from CyaA predicted to be amphipatic and show that although several of these peptides can bind membranes and adopt a helical conformation, only the P454 peptide is able to permeabilize membranes. We further characterize the contributions of the two arginine residues of P454 to membrane partitioning and permeabilization by analyzing the peptide variants in which these residues are substituted by different amino acids (e.g., A, K, Q, and E). Our data shows that both arginine residues significantly contribute, although diversely, to the membrane-active properties of P454, i.e., interactions with both neutral and anionic lipids, helix formation in membranes, and disruption of lipid bilayer integrity. These results are discussed in the context of the translocation process of the full-length CyaA toxin.
Collapse
|
12
|
Pirazzini M, Azarnia Tehran D, Zanetti G, Rossetto O, Montecucco C. Hsp90 and Thioredoxin-Thioredoxin Reductase enable the catalytic activity of Clostridial neurotoxins inside nerve terminals. Toxicon 2017; 147:32-37. [PMID: 29111118 DOI: 10.1016/j.toxicon.2017.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
Abstract
Botulinum (BoNTs) and tetanus (TeNT) neurotoxins are the most toxic substances known and form the growing family of Clostridial neurotoxins (CNT), the etiologic agents of botulism and tetanus. CNT are composed of a metalloprotease light chain (L), linked via a disulfide bond to a heavy chain (H). H mediates the binding to nerve terminals and the membrane translocation of L into the cytosol, where its substrates, the three SNARE proteins, are localized. L translocation is accompanied by unfolding and, once delivered on the cytosolic side of the endosome membrane, it has to be reduced and reacquire the native fold to be active. The Thioredoxin-Thioredoxin Reductase system (Trx-TrxR) specifically reduces the interchain disulfide bond while the cytosolic chaperone protein Hsp90 mediates L refolding. Both steps are essential for CNT activity and their inhibition efficiently blocks the neurotoxicity in cultured neurons and mice. Trx and its reductase physically interact with Hsp90 and are loosely bound to the cytosolic side of synaptic vesicles, the organelle exploited by CNT to enter nerve terminals and wherefrom L is translocated into the cytosol. Therefore, Trx, TrxR and Hsp90 orchestrate a chaperone-redox molecular machinery that enables the catalytic activity of the L inside nerve terminals. Given the fundamental role of L reduction and refolding, this machinery represents a rational target for the development of mechanism-based antitoxins.
Collapse
Affiliation(s)
- Marco Pirazzini
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy.
| | - Domenico Azarnia Tehran
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Giulia Zanetti
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Ornella Rossetto
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Cesare Montecucco
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy; Istituto CNR di Neuroscienze, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| |
Collapse
|
13
|
Masuyer G, Conrad J, Stenmark P. The structure of the tetanus toxin reveals pH-mediated domain dynamics. EMBO Rep 2017; 18:1306-1317. [PMID: 28645943 PMCID: PMC5538627 DOI: 10.15252/embr.201744198] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 11/09/2022] Open
Abstract
The tetanus neurotoxin (TeNT) is a highly potent toxin produced by Clostridium tetani that inhibits neurotransmission of inhibitory interneurons, causing spastic paralysis in the tetanus disease. TeNT differs from the other clostridial neurotoxins by its unique ability to target the central nervous system by retrograde axonal transport. The crystal structure of the tetanus toxin reveals a "closed" domain arrangement stabilised by two disulphide bridges, and the molecular details of the toxin's interaction with its polysaccharide receptor. An integrative analysis combining X-ray crystallography, solution scattering and single particle electron cryo-microscopy reveals pH-mediated domain rearrangements that may give TeNT the ability to adapt to the multiple environments encountered during intoxication, and facilitate binding to distinct receptors.
Collapse
Affiliation(s)
- Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Julian Conrad
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
14
|
Connan C, Popoff MR. Uptake of Clostridial Neurotoxins into Cells and Dissemination. Curr Top Microbiol Immunol 2017; 406:39-78. [PMID: 28879524 DOI: 10.1007/82_2017_50] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clostridial neurotoxins, botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT), are potent toxins, which are responsible for severe neurological diseases in man and animals. BoNTs induce a flaccid paralysis (botulism) by inhibiting acetylcholine release at the neuromuscular junctions, whereas TeNT causes a spastic paralysis (tetanus) by blocking the neurotransmitter release (glycine, GABA) in inhibitory interneurons within the central nervous system. Clostridial neurotoxins recognize specific receptor(s) on the target neuronal cells and enter via a receptor-mediated endocytosis. They transit through an acidic compartment which allows the translocation of the catalytic chain into the cytosol, a prerequisite step for the intracellular activity of the neurotoxins. TeNT migrates to the central nervous system by using a motor neuron as transport cell. TeNT enters a neutral pH compartment and undergoes a retrograde axonal transport to the spinal cord or brain, where the whole undissociated toxin is delivered and interacts with target neurons. Botulism most often results from ingestion of food contaminated with BoNT. Thus, BoNT passes through the intestinal epithelial barrier mainly via a transcytotic mechanism and then diffuses or is transported to the neuromuscular junctions by the lymph or blood circulation. Indeed, clostridial neurotoxins are specific neurotoxins which transit through a transport cell to gain access to the target neuron, and use distinct trafficking pathways in both cell types.
Collapse
Affiliation(s)
- Chloé Connan
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France
| | - Michel R Popoff
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
15
|
Bomba-Warczak E, Vevea JD, Brittain JM, Figueroa-Bernier A, Tepp WH, Johnson EA, Yeh FL, Chapman ER. Interneuronal Transfer and Distal Action of Tetanus Toxin and Botulinum Neurotoxins A and D in Central Neurons. Cell Rep 2016; 16:1974-87. [PMID: 27498860 DOI: 10.1016/j.celrep.2016.06.104] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/07/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022] Open
Abstract
Recent reports suggest that botulinum neurotoxin (BoNT) A, which is widely used clinically to inhibit neurotransmission, can spread within networks of neurons to have distal effects, but this remains controversial. Moreover, it is not known whether other members of this toxin family are transferred between neurons. Here, we investigate the potential distal effects of BoNT/A, BoNT/D, and tetanus toxin (TeNT), using central neurons grown in microfluidic devices. Toxins acted upon the neurons that mediated initial entry, but all three toxins were also taken up, via an alternative pathway, into non-acidified organelles that mediated retrograde transport to the somato-dendritic compartment. Toxins were then released into the media, where they entered and exerted their effects upon upstream neurons. These findings directly demonstrate that these agents undergo transcytosis and interneuronal transfer in an active form, resulting in long-distance effects.
Collapse
Affiliation(s)
- Ewa Bomba-Warczak
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53705, USA
| | - Jason D Vevea
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53705, USA
| | - Joel M Brittain
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53705, USA
| | - Annette Figueroa-Bernier
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53705, USA
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Felix L Yeh
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
16
|
Araye A, Goudet A, Barbier J, Pichard S, Baron B, England P, Pérez J, Zinn-Justin S, Chenal A, Gillet D. The Translocation Domain of Botulinum Neurotoxin A Moderates the Propensity of the Catalytic Domain to Interact with Membranes at Acidic pH. PLoS One 2016; 11:e0153401. [PMID: 27070312 PMCID: PMC4829238 DOI: 10.1371/journal.pone.0153401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/29/2016] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is composed of three domains: a catalytic domain (LC), a translocation domain (HN) and a receptor-binding domain (HC). Like most bacterial toxins BoNT/A is an amphitropic protein, produced in a soluble form that is able to interact, penetrate and/or cross a membrane to achieve its toxic function. During intoxication BoNT/A is internalized by the cell by receptor-mediated endocytosis. Then, LC crosses the membrane of the endocytic compartment and reaches the cytosol. This translocation is initiated by the low pH found in this compartment. It has been suggested that LC passes in an unfolded state through a transmembrane passage formed by HN. We report here that acidification induces no major conformational change in either secondary or tertiary structures of LC and HN of BoNT/A in solution. GdnHCl-induced denaturation experiments showed that the stability of LC and HN increases as pH drops, and that HN further stabilizes LC. Unexpectedly we found that LC has a high propensity to interact with and permeabilize anionic lipid bilayers upon acidification without the help of HN. This property is downplayed when LC is linked to HN. HN thus acts as a chaperone for LC by enhancing its stability but also as a moderator of the membrane interaction of LC.
Collapse
Affiliation(s)
- Anne Araye
- CEA, iBiTec-S/SIMOPRO, CEA-Saclay, Paris Saclay University, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
| | - Amélie Goudet
- CEA, iBiTec-S/SIMOPRO, CEA-Saclay, Paris Saclay University, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
| | - Julien Barbier
- CEA, iBiTec-S/SIMOPRO, CEA-Saclay, Paris Saclay University, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
| | - Sylvain Pichard
- CEA, iBiTec-S/SIMOPRO, CEA-Saclay, Paris Saclay University, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
| | - Bruno Baron
- Institut Pasteur, Proteopole, Plateforme de Biophysique des Macromolécules et de leurs Interactions (PFBMI), 25–28 rue du Dr Roux, F-75724 Paris cedex 15, France
| | - Patrick England
- Institut Pasteur, Proteopole, Plateforme de Biophysique des Macromolécules et de leurs Interactions (PFBMI), 25–28 rue du Dr Roux, F-75724 Paris cedex 15, France
| | - Javier Pérez
- Synchrotron Soleil, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | | | - Alexandre Chenal
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, UMR 3528, 25–28 rue du Dr Roux, F-75724 Paris cedex 15, France
| | - Daniel Gillet
- CEA, iBiTec-S/SIMOPRO, CEA-Saclay, Paris Saclay University, LabEx LERMIT, F-91191 Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
17
|
Rummel A. The long journey of botulinum neurotoxins into the synapse. Toxicon 2015; 107:9-24. [PMID: 26363288 DOI: 10.1016/j.toxicon.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023]
Abstract
Botulinum neurotoxins (BoNT) cause the disease botulism, a flaccid paralysis of the muscle. They are also very effective, widely used medicines applied locally in sub-nanogram quantities. BoNTs are released together with several non-toxic, associated proteins as progenitor toxin complexes (PCT) by Clostridium botulinum to become highly potent oral poisons ingested via contaminated food. They block the neurotransmission in susceptible animals and humans already in nanogram quantities due to their specific ability to enter motoneurons and to cleave only selected neuronal proteins involved in neuroexocytosis. BoNTs have developed a sophisticated strategy to passage the gastrointestinal tract and to be absorbed in the intestine of the host to finally attack neurons. A non-toxic non-hemagglutinin (NTNHA) forms a binary complex with BoNT to protect it from gastrointestinal degradation. This binary M-PTC is one component of the bi-modular 14-subunit ∼760 kDa large progenitor toxin complex. The other component is the structurally and functionally independent dodecameric hemagglutinin (HA) complex which facilitates the absorption on the intestinal epithelium by glycan binding. Subsequent to its transcytosis the HA complex disrupts the tight junction of the intestinal barrier from the basolateral side by binding to E-cadherin. Now, the L-PTC can also enter the circulation by paracellular routes in much larger quantities. From here, the dissociated BoNTs reach the neuromuscular junction and accumulate via interaction with polysialo gangliosides, complex glycolipids, on motoneurons at the neuromuscular junction. Subsequently, additional specific binding to luminal segments of synaptic vesicles proteins like SV2 and synaptotagmin leads to their uptake. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had exploited before to enter their target cells, via specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, which constitute the core components of the cellular membrane fusion machinery.
Collapse
Affiliation(s)
- Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany.
| |
Collapse
|
18
|
Structural analysis of Clostridium botulinum neurotoxin type D as a platform for the development of targeted secretion inhibitors. Sci Rep 2015; 5:13397. [PMID: 26324071 PMCID: PMC4555039 DOI: 10.1038/srep13397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/27/2015] [Indexed: 12/02/2022] Open
Abstract
The botulinum neurotoxin type D is one of seven highly potent toxins produced by Clostridium botulinum which inhibit neurotransmission at cholinergic nerve terminals. A functional fragment derived from the toxin, LHn, consisting of the catalytic and translocation domains, has been heralded as a platform for the development of targeted secretion inhibitors. These secretion inhibitors are aimed at retargeting the toxin towards a specific cell type to inhibit vesicular secretion. Here we report crystal structures of LHn from serotype D at 2.3 Å, and that of SXN101959 at 3.1 Å resolution. SXN101959, a derivative that combines LHn from serotype D with a fragment of the growth hormone releasing hormone, has previously revealed promising results in inhibiting growth hormone release in pituitary somatotrophs. These structures offer for the first time insights into the translocation domain interaction with the catalytic domain in serotype D. Furthermore, structural information from small-angle X-ray scattering of LHn/D is compared among serotypes A, B, and D. Taken together, these results demonstrate the robustness of the ‘LHn fold’ across serotypes and its use in engineering additional polypeptide components with added functionality. Our study demonstrates the suitability of botulinum neurotoxin, and serotype D in particular, as a basis for engineering novel secretion inhibitors.
Collapse
|
19
|
On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:467-74. [PMID: 26307528 DOI: 10.1016/j.bbamem.2015.08.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 01/25/2023]
Abstract
Tetanus and botulinum neurotoxins are produced by anaerobic bacteria of the genus Clostridium and are the most poisonous toxins known, with 50% mouse lethal dose comprised within the range of 0.1-few nanograms per Kg, depending on the individual toxin. Botulinum neurotoxins are similarly toxic to humans and can therefore be considered for potential use in bioterrorism. At the same time, their neurospecificity and reversibility of action make them excellent therapeutics for a growing and heterogeneous number of human diseases that are characterized by a hyperactivity of peripheral nerve terminals. The complete crystallographic structure is available for some botulinum toxins, and reveals that they consist of four domains functionally related to the four steps of their mechanism of neuron intoxication: 1) binding to specific receptors of the presynaptic membrane; 2) internalization via endocytic vesicles; 3) translocation across the membrane of endocytic vesicles into the neuronal cytosol; 4) catalytic activity of the enzymatic moiety directed towards the SNARE proteins. Despite the many advances in understanding the structure-mechanism relationship of tetanus and botulinum neurotoxins, the molecular events involved in the translocation step have been only partially elucidated. Here we will review recent advances that have provided relevant insights on the process and discuss possible models that can be experimentally tested. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
|
20
|
Kim DW, Lee SK, Ahnn J. Botulinum Toxin as a Pain Killer: Players and Actions in Antinociception. Toxins (Basel) 2015; 7:2435-53. [PMID: 26134255 PMCID: PMC4516922 DOI: 10.3390/toxins7072435] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 11/17/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) have been widely used to treat a variety of clinical ailments associated with pain. The inhibitory action of BoNTs on synaptic vesicle fusion blocks the releases of various pain-modulating neurotransmitters, including glutamate, substance P (SP), and calcitonin gene-related peptide (CGRP), as well as the addition of pain-sensing transmembrane receptors such as transient receptor potential (TRP) to neuronal plasma membrane. In addition, growing evidence suggests that the analgesic and anti-inflammatory effects of BoNTs are mediated through various molecular pathways. Recent studies have revealed that the detailed structural bases of BoNTs interact with their cellular receptors and SNAREs. In this review, we discuss the molecular and cellular mechanisms related to the efficacy of BoNTs in alleviating human pain and insights on engineering the toxins to extend therapeutic interventions related to nociception.
Collapse
Affiliation(s)
- Dong-Wan Kim
- Department of Life Science, School of Natural Science, Hanyang University, Seoul 133-791, Korea.
- BK21 PLUS Life Science for BioDefense Research (BDR) Team, Hanyang University, Seoul 133-791, Korea.
| | - Sun-Kyung Lee
- Department of Life Science, School of Natural Science, Hanyang University, Seoul 133-791, Korea.
- BK21 PLUS Life Science for BioDefense Research (BDR) Team, Hanyang University, Seoul 133-791, Korea.
- The Research Institute for Natural Science, Hanyang University, Seoul 133-791, Korea.
| | - Joohong Ahnn
- Department of Life Science, School of Natural Science, Hanyang University, Seoul 133-791, Korea.
- BK21 PLUS Life Science for BioDefense Research (BDR) Team, Hanyang University, Seoul 133-791, Korea.
- The Research Institute for Natural Science, Hanyang University, Seoul 133-791, Korea.
| |
Collapse
|
21
|
The C-terminal heavy-chain domain of botulinum neurotoxin a is not the only site that binds neurons, as the N-terminal heavy-chain domain also plays a very active role in toxin-cell binding and interactions. Infect Immun 2015; 83:1465-76. [PMID: 25624352 DOI: 10.1128/iai.00063-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) possess unique specificity for nerve terminals. They bind to the presynaptic membrane and then translocate intracellularly, where the light-chain endopeptidase cleaves the SNARE complex proteins, subverting the synaptic exocytosis responsible for acetylcholine release to the synaptic cleft. This inhibits acetylcholine binding to its receptor, causing paralysis. Binding, an obligate event for cell intoxication, is believed to occur through the heavy-chain C-terminal (HC) domain. It is followed by toxin translocation and entry into the cell cytoplasm, which is thought to be mediated by the heavy-chain N-terminal (HN) domain. Submolecular mapping analysis by using synthetic peptides spanning BoNT serotype A (BoNT/A) and mouse brain synaptosomes (SNPs) and protective antibodies against toxin from mice and cervical dystonia patients undergoing BoNT/A treatment revealed that not only regions of the HC domain but also regions of the HN domain are involved in the toxin binding process. Based on these findings, we expressed a peptide corresponding to the BoNT/A region comprising HN domain residues 729 to 845 (HN729-845). HN729-845 bound directly to mouse brain SNPs and substantially inhibited BoNT/A binding to SNPs. The binding involved gangliosides GT1b and GD1a and a few membrane lipids. The peptide bound to human or mouse neuroblastoma cells within 1 min. Peptide HN729-845 protected mice completely against a lethal BoNT/A dose (1.05 times the 100% lethal dose). This protective activity was obtained at a dose comparable to that of the peptide from positions 967 to 1296 in the HC domain. These findings strongly indicate that HN729-845 and, by extension, the HN domain are fully programmed and equipped to bind to neuronal cells and in the free state can even inhibit the binding of the toxin.
Collapse
|
22
|
Clostridial pore-forming toxins: Powerful virulence factors. Anaerobe 2014; 30:220-38. [DOI: 10.1016/j.anaerobe.2014.05.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 05/25/2014] [Indexed: 01/05/2023]
|
23
|
Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 2014; 12:535-49. [PMID: 24975322 DOI: 10.1038/nrmicro3295] [Citation(s) in RCA: 428] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Botulinum neurotoxins (BoNTs) are produced by anaerobic bacteria of the genus Clostridium and cause a persistent paralysis of peripheral nerve terminals, which is known as botulism. Neurotoxigenic clostridia belong to six phylogenetically distinct groups and produce more than 40 different BoNT types, which inactivate neurotransmitter release owing to their metalloprotease activity. In this Review, we discuss recent studies that have improved our understanding of the genetics and structure of BoNT complexes. We also describe recent insights into the mechanisms of BoNT entry into the general circulation, neuronal binding, membrane translocation and neuroparalysis.
Collapse
Affiliation(s)
- Ornella Rossetto
- 1] Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy. [2] National Research Council Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy. [3]
| | - Marco Pirazzini
- 1] Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy. [2] National Research Council Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy. [3]
| | - Cesare Montecucco
- 1] Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy. [2] National Research Council Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
24
|
Fischer A, Montal M. Molecular dissection of botulinum neurotoxin reveals interdomain chaperone function. Toxicon 2013; 75:101-7. [PMID: 23396042 PMCID: PMC3797153 DOI: 10.1016/j.toxicon.2013.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 11/23/2022]
Abstract
Clostridium botulinum neurotoxin (BoNT) is a multi-domain protein made up of the approximately 100 kDa heavy chain (HC) and the approximately 50 kDa light chain (LC). The HC can be further subdivided into two halves: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). We have investigated the minimal requirements for channel activity and LC translocation. We utilize a cellular protection assay and a single channel/single molecule LC translocation assay to characterize in real time the channel and chaperone activities of BoNT/A truncation constructs in Neuro 2A cells. The unstructured, elongated belt region of the TD is demonstrated to be dispensable for channel activity, although may be required for productive LC translocation. We show that the RBD is not necessary for channel activity or LC translocation, however it dictates the pH threshold of channel insertion into the membrane. These findings indicate that each domain functions as a chaperone for the others in addition to their individual functions, working in concert to achieve productive intoxication.
Collapse
Affiliation(s)
| | - Mauricio Montal
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0366, USA
| |
Collapse
|
25
|
Subrini O, Sotomayor-Pérez AC, Hessel A, Spiaczka-Karst J, Selwa E, Sapay N, Veneziano R, Pansieri J, Chopineau J, Ladant D, Chenal A. Characterization of a membrane-active peptide from the Bordetella pertussis CyaA toxin. J Biol Chem 2013; 288:32585-32598. [PMID: 24064217 PMCID: PMC3820891 DOI: 10.1074/jbc.m113.508838] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/09/2013] [Indexed: 12/27/2022] Open
Abstract
Bordetella pertussis, the pathogenic bacteria responsible for whooping cough, secretes several virulence factors, among which is the adenylate cyclase toxin (CyaA) that plays a crucial role in the early stages of human respiratory tract colonization. CyaA invades target cells by translocating its catalytic domain directly across the plasma membrane and overproduces cAMP, leading to cell death. The molecular process leading to the translocation of the catalytic domain remains largely unknown. We have previously shown that the catalytic domain per se, AC384, encompassing residues 1-384 of CyaA, did not interact with lipid bilayer, whereas a longer polypeptide, AC489, spanning residues 1-489, binds to membranes and permeabilizes vesicles. Moreover, deletion of residues 375-485 within CyaA abrogated the translocation of the catalytic domain into target cells. Here, we further identified within this region a peptidic segment that exhibits membrane interaction properties. A synthetic peptide, P454, corresponding to this sequence (residues 454-485 of CyaA) was characterized by various biophysical approaches. We found that P454 (i) binds to membranes containing anionic lipids, (ii) adopts an α-helical structure oriented in plane with respect to the lipid bilayer, and (iii) permeabilizes vesicles. We propose that the region encompassing the helix 454-485 of CyaA may insert into target cell membrane and induce a local destabilization of the lipid bilayer, thus favoring the translocation of the catalytic domain across the plasma membrane.
Collapse
Affiliation(s)
- Orso Subrini
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Ana-Cristina Sotomayor-Pérez
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Audrey Hessel
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Johanna Spiaczka-Karst
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Edithe Selwa
- the Institut Pasteur, CNRS UMR 3528, Unité de Bio-Informatique Structurale, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Nicolas Sapay
- the Commissariat à l'Energie Atomique, Direction des Sciences de la Vie, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Chimie et Biologie des Métaux, CEA Grenoble, 17 Rue des Martyrs, 38054 Grenoble, France
| | - Rémi Veneziano
- the Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM2/UM1, Equipe "Matériaux Avancés pour la Catalyse et la Santé", UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault-BP 14 491, 34093 Montpellier Cedex 05, France
| | - Jonathan Pansieri
- the Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM2/UM1, Equipe "Matériaux Avancés pour la Catalyse et la Santé", UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault-BP 14 491, 34093 Montpellier Cedex 05, France
| | - Joel Chopineau
- the Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM2/UM1, Equipe "Matériaux Avancés pour la Catalyse et la Santé", UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault-BP 14 491, 34093 Montpellier Cedex 05, France; the Université de Nîmes, Rue Docteur Georges Salan, 30021 Nîmes, France
| | - Daniel Ladant
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France,.
| | - Alexandre Chenal
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France,.
| |
Collapse
|
26
|
Abstract
Botulism is a severe neuroparalytic disease caused by the toxins produced from several Clostridium species. Botulinum neurotoxins (BoNTs) cause flaccid paralysis by inducing a blockade at voluntary motor and autonomic cholinergic junctions that, if not treated, can be fatal. Vaccination to elicit protective circulating antibodies that bind, neutralize and clear toxins before they can be internalized and affect cholinergic neurons remains the most effective form of protection against BoNT. A pentavalent BoNT toxoid vaccine administered in the USA under an Investigational New Drug protocol to at-risk workers was discontinued by the CDC in 2011 due to diminished potency and reactogenic effects. Subsequent research efforts have primarily focused on recombinant protein antigens. This review focuses on the development of a recombinant bivalent vaccine (rBV A/B) composed of purified recombinant BoNT/A and BoNT/B receptor-binding domain proteins, as well as presenting a summary of progress and issues associated with alternative vaccines currently being developed against botulism.
Collapse
Affiliation(s)
- Robert P Webb
- US Army Medical Research Institute for Infectious Diseases, Frederick, MD 21702, USA
| | | |
Collapse
|
27
|
Pirazzini M, Henke T, Rossetto O, Mahrhold S, Krez N, Rummel A, Montecucco C, Binz T. Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain. FEBS Lett 2013; 587:3831-6. [PMID: 24157364 DOI: 10.1016/j.febslet.2013.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
Botulinum neurotoxins translocate their enzymatic domain across vesicular membranes. The molecular triggers of this process are unknown. Here, we tested the possibility that this is elicited by protonation of conserved surface carboxylates. Glutamate-48, glutamate-653 and aspartate-877 were identified as possible candidates and changed into amide. This triple mutant showed increased neurotoxicity due to faster cytosolic delivery of the enzymatic domain; membrane translocation could take place at less acidic pH. Thus, neutralisation of specific negative surface charges facilitates membrane contact permitting a faster initiation of the toxin membrane insertion.
Collapse
Affiliation(s)
- Marco Pirazzini
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Viale Ugo Bassi 58/B, 35131 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Masuyer G, Chaddock JA, Foster KA, Acharya KR. Engineered botulinum neurotoxins as new therapeutics. Annu Rev Pharmacol Toxicol 2013; 54:27-51. [PMID: 24016211 DOI: 10.1146/annurev-pharmtox-011613-135935] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Botulinum neurotoxins (BoNTs) cause flaccid paralysis by inhibiting neurotransmission at cholinergic nerve terminals. Each BoNT consists of three domains that are essential for toxicity: the binding domain, the translocation domain, and the catalytic light-chain domain. BoNT modular architecture is associated with a multistep mechanism that culminates in the intracellular proteolysis of SNARE (soluble N-ethylmaleimide-sensitive-fusion-protein attachment protein receptor) proteins, which prevents synaptic vesicle exocytosis. As the most toxic proteins known, BoNTs have been extensively studied and are used as pharmaceutical agents to treat an increasing variety of disorders. This review summarizes the level of sophistication reached in BoNT engineering and highlights the diversity of approaches taken to utilize the modularity of the toxin. Improved efficiency and applicability have been achieved by direct mutagenesis and interserotype domain rearrangement. The scope of BoNT activity has been extended to nonneuronal cells and offers the basis for novel biomolecules in the treatment of secretion disorders.
Collapse
Affiliation(s)
- Geoffrey Masuyer
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom;
| | | | | | | |
Collapse
|
29
|
Faudry E, Perdu C, Attrée I. Pore formation by T3SS translocators: liposome leakage assay. Methods Mol Biol 2013; 966:173-85. [PMID: 23299735 DOI: 10.1007/978-1-62703-245-2_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gram-negative bacteria utilize a dedicated membrane-embedded apparatus, the type III secretion system (T3SS), to inject proteins into host cells. The passage of the proteins across the target membrane is accomplished by a proteinaceous pore-the translocon-formed within the host-cell cytoplasmic membrane. Translocators bound to their chaperones can be expressed in Escherichia coli and subsequently dissociated from the chaperone by guanidine treatment. The pore formation properties of the translocators can then be studied by an in-vitro liposome leakage assay. Sulforhodamine-B is encapsulated within lipid vesicles during liposome preparation. At high concentration, this fluorochrome exhibits self-quenching limiting fluorescence emission. Upon pore formation, liposome leakage leads to the dilution of Sulforhodamine-B in the medium and fluorescence emission increases. Alternatively, fluorochromes coupled to large dextran molecules can be encapsulated in order to estimate pore dimensions. Here we describe protein expression and purification, dye-liposome preparation, and leakage assay conditions.
Collapse
Affiliation(s)
- Eric Faudry
- Bacterial Pathogenesis and Cellular Responses Group, Centre National de la Recherche Scientifique, Université Grenoble I, Commissariat à l'Energie Atomique, iRTSV, Grenoble, France.
| | | | | |
Collapse
|
30
|
Structure-Based Drug Discovery for Botulinum Neurotoxins. Curr Top Microbiol Immunol 2012; 364:197-218. [DOI: 10.1007/978-3-642-33570-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Fischer A. Synchronized Chaperone Function of Botulinum Neurotoxin Domains Mediates Light Chain Translocation into Neurons. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Fischer A, Sambashivan S, Brunger AT, Montal M. Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel. J Biol Chem 2011; 287:1657-61. [PMID: 22158863 PMCID: PMC3265847 DOI: 10.1074/jbc.c111.319400] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformational changes in the toxin upon acidification are important but less well understood aspects of botulinum neurotoxin intoxication. Here, we have identified a minimum channel-forming truncation of the TD, the "beltless" TD, that forms transmembrane channels with ion conduction properties similar to those of the full-length TD. At variance with the holotoxin and the HC, channel formation for both the TD and the beltless TD occurs independent of a transmembrane pH gradient. Furthermore, acidification in solution induces moderate secondary structure changes. The subtle nature of the conformational changes evoked by acidification on the TD suggests that, in the context of the holotoxin, larger structural rearrangements and LC unfolding occur preceding or concurrent to channel formation. This notion is consistent with the hypothesis that although each domain of the holotoxin functions individually, each domain serves as a chaperone for the others.
Collapse
Affiliation(s)
- Audrey Fischer
- Section of Neurobiology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0366, USA
| | | | | | | |
Collapse
|
33
|
Abstract
The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here.
Collapse
|
34
|
Mushrush DJ, Koteiche HA, Sammons MA, Link AJ, McHaourab HS, Lacy DB. Studies of the mechanistic details of the pH-dependent association of botulinum neurotoxin with membranes. J Biol Chem 2011; 286:27011-8. [PMID: 21652698 DOI: 10.1074/jbc.m111.256982] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Botulinum neurotoxin (BoNT) belongs to a large class of toxic proteins that act by enzymatically modifying cytosolic substrates within eukaryotic cells. The process by which a catalytic moiety is transferred across a membrane to enter the cytosol is not understood for any such toxin. BoNT is known to form pH-dependent pores important for the translocation of the catalytic domain into the cytosol. As a first step toward understanding this process, we investigated the mechanism by which the translocation domain of BoNT associates with a model liposome membrane. We report conditions that allow pH-dependent proteoliposome formation and identify a sequence at the translocation domain C terminus that is protected from proteolytic degradation in the context of the proteoliposome. Fluorescence quenching experiments suggest that residues within this sequence move to a hydrophobic environment upon association with liposomes. EPR analyses of spin-labeled mutants reveal major conformational changes in a distinct region of the structure upon association and indicate the formation of an oligomeric membrane-associated intermediate. Together, these data support a model of how BoNT orients with membranes in response to low pH.
Collapse
Affiliation(s)
- Darren J Mushrush
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
35
|
Masuyer G, Beard M, Cadd VA, Chaddock JA, Acharya KR. Structure and activity of a functional derivative of Clostridium botulinum neurotoxin B. J Struct Biol 2011; 174:52-7. [DOI: 10.1016/j.jsb.2010.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/20/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
|
36
|
|
37
|
Charrua A, Avelino A, Cruz F. Modulation of urinary bladder innervation: TRPV1 and botulinum toxin A. Handb Exp Pharmacol 2011:345-374. [PMID: 21290235 DOI: 10.1007/978-3-642-16499-6_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The persisting interest around neurotoxins such as vanilloids and botulinum toxin (BoNT) derives from their marked effect on detrusor overactivity refractory to conventional antimuscarinic treatments. In addition, both are administered by intravesical route. This offers three potential advantages. First, intravesical therapy is an easy way to provide high concentrations of pharmacological agents in the bladder tissue without causing unsuitable levels in other organs. Second, drugs effective on the bladder, but inappropriate for systemic administration, can be safely used as it is the case of vanilloids and BoNT. Third, the effects of one single treatment might be extremely longlasting, contributing to render these therapies highly attractive to patients despite the fact that the reasons to the prolonged effect are still incompletely understood. Attractive as it may be, intravesical pharmacological therapy should still be considered as a second-line treatment in patients refractory to conventional oral antimuscarinic therapy or who do not tolerate its systemic side effects. However, the increasing off-label use of these neurotoxins justifies a reappraisal of their pharmacological properties.
Collapse
Affiliation(s)
- Ana Charrua
- Institute of Histology and Embryology, Porto, Portugal
| | | | | |
Collapse
|
38
|
Targeted secretion inhibitors-innovative protein therapeutics. Toxins (Basel) 2010; 2:2795-815. [PMID: 22069575 PMCID: PMC3153183 DOI: 10.3390/toxins2122795] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/16/2010] [Accepted: 12/02/2010] [Indexed: 01/14/2023] Open
Abstract
Botulinum neurotoxins are highly effective therapeutic products. Their therapeutic success results from highly specific and potent inhibition of neurotransmitter release with a duration of action measured in months. These same properties, however, make the botulinum neurotoxins the most potent acute lethal toxins known. Their toxicity and restricted target cell activity severely limits their clinical utility. Understanding the structure-function relationship of the neurotoxins has enabled the development of recombinant proteins selectively incorporating specific aspects of their pharmacology. The resulting proteins are not neurotoxins, but a new class of biopharmaceuticals, Targeted Secretion Inhibitors (TSI), suitable for the treatment of a wide range of diseases where secretion plays a major role. TSI proteins inhibit secretion for a prolonged period following a single application, making them particularly suited to the treatment of chronic diseases. A TSI for the treatment of chronic pain is in clinical development.
Collapse
|
39
|
Low pH-induced pore formation by the T domain of botulinum toxin type A is dependent upon NaCl concentration. J Membr Biol 2010; 236:191-201. [PMID: 20711775 DOI: 10.1007/s00232-010-9292-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
Botulinum neurotoxins (BoNTs) undergo low pH-triggered membrane insertion, resulting in the translocation of their light (catalytic) chains into the cytoplasm. The T (translocation) domain of the BoNT heavy chain is believed to carry out translocation. Here, the behavior of isolated T domain from BoNT type A has been characterized, both in solution and when associated with model membranes. When BoNT T domain prepared in the detergent dodecylmaltoside was diluted into aqueous solution, it exhibited a low pH-dependent conformational change below pH 6. At low pH the T domain associated with, and formed pores within, model membrane vesicles composed of 30 mol% dioleoylphosphatidylglycerol/70 mol% dioleoylphosphatidylcholine. Although T domain interacted with vesicles at low (50 mM) and high (400 mM) NaCl concentrations, the interaction required much less lipid at low salt. However, even at high lipid concentrations pore formation was much more pronounced at low NaCl concentrations than at high NaCl concentration. Increasing salt concentration after insertion in the presence of 50 mM NaCl did not decrease pore formation. A similar effect of NaCl concentration upon pore formation was observed in vesicles composed solely of dioleoylphosphatidylcholine, showing that the effect of NaCl did not solely involve modulation of electrostatic interactions between protein and anionic lipids. These results indicate that some feature of membrane-bound T domain tertiary structure critical for pore formation is highly dependent upon salt concentration.
Collapse
|
40
|
Affiliation(s)
- Mauricio Montal
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0366;
| |
Collapse
|
41
|
Popoff MR, Poulain B. Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins (Basel) 2010; 2:683-737. [PMID: 22069606 PMCID: PMC3153206 DOI: 10.3390/toxins2040683] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/18/2010] [Accepted: 04/07/2010] [Indexed: 12/13/2022] Open
Abstract
Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons.
Collapse
Affiliation(s)
- Michel R. Popoff
- Neurotransmission et Sécrétion Neuroendocrine, CNRS UPR 2356 IFR 37 - Neurosciences, Centre de Neurochimie, 5, rue Blaise Pascal, F-67084 STRASBOURG cedex, France;
- Author to whom correspondence should be addressed;
| | | |
Collapse
|
42
|
Abstract
Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens epsilon-toxin and Clostridium septicum alpha-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France.
| | | |
Collapse
|
43
|
Brunger AT, Rummel A. Receptor and substrate interactions of clostridial neurotoxins. Toxicon 2009; 54:550-60. [PMID: 19268493 PMCID: PMC2756235 DOI: 10.1016/j.toxicon.2008.12.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 01/27/2023]
Abstract
The high potency of clostridial neurotoxins relies predominantly on their neurospecific binding and specific hydrolysis of SNARE proteins. Their multi-step mode of mechanism can be ascribed to their multi-domain three-dimensional structure. The C-terminal H(CC)-domain interacts subsequently with complex polysialo-gangliosides such as GT1b and a synaptic vesicle protein receptor via two neighbouring binding sites, resulting in highly specific uptake of the neurotoxins at synapses of cholinergic motoneurons. After its translocation the enzymatically active light chain specifically hydrolyses specific SNARE proteins, preventing SNARE complex assembly and thereby blocking exocytosis of neurotransmitter.
Collapse
Affiliation(s)
- Axel T Brunger
- The Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science, Stanford University, J.H. Clark Center, E300C, 318 Campus Drive, Stanford, CA 94305, USA.
| | | |
Collapse
|
44
|
Masuyer G, Thiyagarajan N, James PL, Marks PMH, Chaddock JA, Acharya KR. Crystal structure of a catalytically active, non-toxic endopeptidase derivative of Clostridium botulinum toxin A. Biochem Biophys Res Commun 2009; 381:50-3. [PMID: 19351593 DOI: 10.1016/j.bbrc.2009.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 11/15/2022]
Abstract
Botulinum neurotoxins (BoNTs) modulate cholinergic nerve terminals to result in neurotransmitter blockade. BoNTs consists of catalytic (LC), translocation (Hn) and cell-binding domains (Hc). The binding function of the Hc domain is essential for BoNTs to bind the neuronal cell membrane, therefore, removal of the Hc domain results in a product that retains the endopeptidase activity of the LC but is non-toxic. Thus, a molecule consisting of LC and Hn domains of BoNTs, termed LHn, is a suitable molecule for engineering novel therapeutics. The structure of LHA at 2.6 A reported here provides an understanding of the structural implications and challenges of engineering therapeutic molecules that combine functional properties of LHn of BoNTs with specific ligand partners to target different cell types.
Collapse
Affiliation(s)
- Geoffrey Masuyer
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | | | |
Collapse
|