1
|
Klinkhammer K, Warren R, Knopp J, Nguyen T, De Langhe SP. Epithelial-mesenchymal cell competition coordinates fate transitions across tissue compartments during lung development and fibrosis. RESEARCH SQUARE 2025:rs.3.rs-6189965. [PMID: 40343336 PMCID: PMC12060972 DOI: 10.21203/rs.3.rs-6189965/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Morphogenesis and cell state transitions must be coordinated in time and space to produce a functional tissue. In this study, we reveal that lung mesenchymal Yap levels and fitness antagonize epithelial Yap levels and stemness during lung development and repair following bleomycin injury. Elevated mesenchymal Yap signaling and fitness antagonize epithelial Yap levels and stemness, accelerating alveolar epithelial differentiation while impairing branching during lung development or bronchiolization after bleomycin injury. Conversely, mesenchymal Snail/Slug sequesters Yap/Taz to direct an adipogenic differentiation program towards alveolar fibroblast 1 (AF1) during both lung development and the resolution of pulmonary fibrosis. On the other hand, Yap/Myc-Tead binding instructs a myogenic differentiation program. Through our experiments and modeling, we identify tissue-scale mechanical cooperation as a pivotal factor in orchestrating organ formation and regeneration.
Collapse
Affiliation(s)
- Kylie Klinkhammer
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel Warren
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph Knopp
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Toan Nguyen
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stijn P. De Langhe
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Caputo L, Stamenkovic C, Tierney MT, Falzarano MS, Bassel-Duby R, Ferlini A, Olson EN, Puri PL, Sacco A. Modulation of the JAK2-STAT3 pathway promotes expansion and maturation of human iPSCs-derived myogenic progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.624203. [PMID: 39713478 PMCID: PMC11661153 DOI: 10.1101/2024.12.09.624203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Generation of in vitro induced pluripotent cells (hiPSCs)-derived skeletal muscle progenitor cells (SMPCs) holds great promise for regenerative medicine for skeletal muscle wasting diseases, as for example Duchenne Muscular Dystrophy (DMD). Multiple approaches, involving ectopic expression of key regulatory myogenic genes or small molecules cocktails, have been described by different groups to obtain SMPC towards cell-transplantation in vivo as a therapeutic approach to skeletal muscle diseases. However, hiPSCs-derived SMPC generated using transgene-free protocols are usually obtained in a low amount and resemble a more embryonal/fetal stage of differentiation. Here we demonstrate that modulation of the JAK2/STAT3 signaling pathway during an in vitro skeletal muscle differentiation protocol, increases the yield of PAX7+ and CD54+ SMPCs and drive them to a postnatal maturation stage, in both human ES and patient-derived iPSCs. Importantly, upon removal of the inhibition from the cultures, the obtained SMPCs are able to differentiate into multinucleated myotubes in vitro. These findings reveal that modulation of the JAK2/STAT3 signaling pathway is a potential therapeutic avenue to generate SMPCs in vitro with increase potential for cell-therapy approaches.
Collapse
Affiliation(s)
- Luca Caputo
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| | - Cedomir Stamenkovic
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Matthew T. Tierney
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | - Eric N. Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Johnson SJ, Johnson HL, Powell RT, Stephan C, Stossi F, Cooper TA. Small Molecule Screening Identifies HSP90 as a Modifier of RNA Foci in Myotonic Dystrophy Type 1. Mol Cell Biol 2024:1-13. [PMID: 39415708 DOI: 10.1080/10985549.2024.2408025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder caused by a CTG triplet repeat expansion within the 3' untranslated region of the DMPK gene. Expression of the expanded allele generates RNA containing long tracts of CUG repeats (CUGexp RNA) that form hairpin structures and accumulate in nuclear RNA foci; however, the factors that control DMPK expression and the formation of CUGexp RNA foci remain largely unknown. We performed an unbiased small molecule screen in an immortalized human DM1 skeletal muscle myoblast cell line and identified HSP90 as a modifier of endogenous RNA foci. Small molecule inhibition of HSP90 leads to enhancement of RNA foci and upregulation of DMPK mRNA levels. Knockdown and overexpression of HSP90 in undifferentiated DM1 myoblasts validated the impact of HSP90 with upregulation and downregulation of DMPK mRNA, respectively. Furthermore, we identified p-STAT3 as a downstream mediator of HSP90 impacting levels of DMPK mRNA and RNA foci. Interestingly, differentiated cells exhibited an opposite effect of HSP90 inhibition displaying downregulation of DMPK mRNA through a mechanism independent of p-STAT3 involvement. This study has revealed a novel mediator for DMPK mRNA and foci regulation in DM1 cells with the potential to identify targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Sara J Johnson
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah L Johnson
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Reid T Powell
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA
| | - Clifford Stephan
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA
| | - Fabio Stossi
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Morishima N, Ito Y. Calpain-5 regulates muscle-specific protein expression and nuclear positioning during myoblast differentiation. J Biol Chem 2024; 300:107842. [PMID: 39357823 PMCID: PMC11549977 DOI: 10.1016/j.jbc.2024.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Intracellular calcium dynamics is key to regulating various physiological events. Myotube formation by myoblast fusion is controlled by the release of Ca2+ from the endoplasmic reticulum (ER), and the calpain (CAPN) family is postulated to be an executioner of the process. However, the activation of a specific member of the family or its physiological substrates is unclear. In this study, we explore the involvement of a CAPN in myoblast differentiation. Time-course experiments showed that the reduction in potential substrates of calpains, c-Myc and STAT3 (signal transducer and activator of transcription 3) and generation of STAT3 fragments occurred multiple times at an early stage of myoblast differentiation. Inhibition of the ER Ca2+ release suppressed these phenomena, suggesting that the reduction was dependent on the cleavage by a CAPN. CAPN5 knockdown suppressed the reduction. In vitro reconstitution assay showed Ca2+- and CAPN5-dependent degradation of c-Myc and STAT3. These results suggest the activation of CAPN5 in differentiating myoblasts. Fusion of the Capn5 knockdown myoblast efficiently occurred; however, the upregulation of muscle-specific proteins (myosin and actinin) was suppressed. Myofibrils were poorly formed in the fused cells with a bulge where nuclei formed a cluster, suggesting that the myonuclear positioning was abnormal. STAT3 was hyperactivated in those fused cells, possibly inhibiting the upregulation of muscle-specific proteins necessary for the maturation of myotubes. These results suggest that the CAPN5 activity is essential in myoblast differentiation.
Collapse
Affiliation(s)
- Nobuhiro Morishima
- Nano Medical Engineering Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan.
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan; Emergent Bioengineering Materials Research Team, Center for Emergent Matter Science, RIKEN, Wako, Japan
| |
Collapse
|
5
|
Blackburn DM, Sahinyan K, Hernández-Corchado A, Lazure F, Richard V, Raco L, Perron G, Zahedi RP, Borchers CH, Lepper C, Kawabe H, Jahani-Asl A, Najafabadi HS, Soleimani VD. The E3 ubiquitin ligase Nedd4L preserves skeletal muscle stem cell quiescence by inhibiting their activation. iScience 2024; 27:110241. [PMID: 39015146 PMCID: PMC11250905 DOI: 10.1016/j.isci.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
Adult stem cells play a critical role in tissue repair and maintenance. In tissues with slow turnover, including skeletal muscle, these cells are maintained in a mitotically quiescent state yet remain poised to re-enter the cell cycle to replenish themselves and regenerate the tissue. Using a panomics approach we show that the PAX7/NEDD4L axis acts against muscle stem cell activation in homeostatic skeletal muscle. Our findings suggest that PAX7 transcriptionally activates the E3 ubiquitin ligase Nedd4L and that the conditional genetic deletion of Nedd4L impairs muscle stem cell quiescence, with an upregulation of cell cycle and myogenic differentiation genes. Loss of Nedd4L in muscle stem cells results in the expression of doublecortin (DCX), which is exclusively expressed during their in vivo activation. Together, these data establish that the ubiquitin proteasome system, mediated by Nedd4L, is a key contributor to the muscle stem cell quiescent state in adult mice.
Collapse
Affiliation(s)
- Darren M. Blackburn
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Korin Sahinyan
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Aldo Hernández-Corchado
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Vincent Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
| | - Laura Raco
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Gabrielle Perron
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Pathology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine 37075 Göttingen, Germany
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine and University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Hamed S. Najafabadi
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - Vahab D. Soleimani
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
6
|
Wu XF, Xu Q, Wang A, Wang BZ, Lan XY, Li WY, Liu Y. Relationship between Indel Variants within the JAK2 Gene and Growth Traits in Goats. Animals (Basel) 2024; 14:1994. [PMID: 38998106 PMCID: PMC11240706 DOI: 10.3390/ani14131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Janus kinase 2 (JAK2) plays a critical role in myoblast proliferation and fat deposition in animals. Our previous RNA-Seq analyses identified a close association between the JAK2 gene and muscle development. To date, research delving into the relationship between the JAK2 gene and growth traits has been sparse. In this study, we sought to investigate the relationship between novel mutations within the JAK2 gene and goat growth traits. Herein, two novel InDel (Insertion/Deletion) polymorphisms within the JAK2 gene were detected in 548 goats, and only two genotypes were designated as ID (Insertion/Deletion) and DD (Deletion/Deletion). The results indicate that the two InDels, the del19008 locus in intron 2 and del72416 InDel in intron 6, showed significant associations with growth traits (p < 0.05). Compared to Nubian and Jianzhou Daer goats, the del72416 locus displayed a more pronounced effect in the Fuqing breed group. In the Nubian breed (NB) group, both InDels showed a marked influence on body height (BH). There were strong linkages observed for these two InDels between the Fuqing (FQ) and Jianzhou (JZ) populations. The DD-ID diplotype was associated with inferior growth traits in chest width (ChW) and cannon circumference (CaC) in the FQ goats compared to the other diplotypes. In the NB population, the DD-DD diplotype exhibited a marked negative impact on BH and HuWI (hucklebone width index), in contrast to the other diplotypes. In summary, our findings suggest that the two InDel polymorphisms within the JAK2 gene could serve as valuable molecular markers for enhancing goat growth traits in breeding programs.
Collapse
Affiliation(s)
- Xian-Feng Wu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qian Xu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Ao Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ben-Zhi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xian-Yong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wen-Yang Li
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yuan Liu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
7
|
Chiriac MT, Hracsko Z, Günther C, Gonzalez-Acera M, Atreya R, Stolzer I, Wittner L, Dressel A, Schickedanz L, Gamez-Belmonte R, Erkert L, Hundorfean G, Zundler S, Rath T, Vetrano S, Danese S, Sturm G, Trajanoski Z, Kühl AA, Siegmund B, Hartmann A, Wirtz S, Siebler J, Finotto S, Becker C, Neurath MF. IL-20 controls resolution of experimental colitis by regulating epithelial IFN/STAT2 signalling. Gut 2024; 73:282-297. [PMID: 37884352 PMCID: PMC10850655 DOI: 10.1136/gutjnl-2023-329628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/10/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVE We sought to investigate the role of interleukin (IL)-20 in IBD and experimental colitis. DESIGN Experimental colitis was induced in mice deficient in components of the IL-20 and signal transducer and activator of transcription (STAT)2 signalling pathways. In vivo imaging, high-resolution mini-endoscopy and histology were used to assess intestinal inflammation. We further used RNA-sequencing (RNA-Seq), RNAScope and Gene Ontology analysis, western blot analysis and co-immunoprecipitation, confocal microscopy and intestinal epithelial cell (IEC)-derived three-dimensional organoids to investigate the underlying molecular mechanisms. Results were validated using samples from patients with IBD and non-IBD control subjects by a combination of RNA-Seq, organoids and immunostainings. RESULTS In IBD, IL20 levels were induced during remission and were significantly higher in antitumour necrosis factor responders versus non-responders. IL-20RA and IL-20RB were present on IECs from patients with IBD and IL-20-induced STAT3 and suppressed interferon (IFN)-STAT2 signalling in these cells. In IBD, experimental dextran sulfate sodium (DSS)-induced colitis and mucosal healing, IECs were the main producers of IL-20. Compared with wildtype controls, Il20-/-, Il20ra-/- and Il20rb-/- mice were more susceptible to experimental DSS-induced colitis. IL-20 deficiency was associated with increased IFN/STAT2 activity in mice and IFN/STAT2-induced necroptotic cell death in IEC-derived organoids could be markedly blocked by IL-20. Moreover, newly generated Stat2ΔIEC mice, lacking STAT2 in IECs, were less susceptible to experimental colitis compared with wildtype controls and the administration of IL-20 suppressed colitis activity in wildtype animals. CONCLUSION IL-20 controls colitis and mucosal healing by interfering with the IFN/STAT2 death signalling pathway in IECs. These results indicate new directions for suppressing gut inflammation by modulating IL-20-controlled STAT2 signals.
Collapse
Affiliation(s)
- Mircea Teodor Chiriac
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Zsuzsanna Hracsko
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Leonie Wittner
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Anja Dressel
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Laura Schickedanz
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Gheorghe Hundorfean
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Timo Rath
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefania Vetrano
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Pieve Emanuele, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy & Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Universita Vita Salute San Raffaele, Milano, Italy
| | - Gregor Sturm
- Medical University of Innsbruck, Biocenter, Institute of Bioinformatics, Innsbruck, Austria
| | - Zlatko Trajanoski
- Medical University of Innsbruck, Biocenter, Institute of Bioinformatics, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin, Core Unit of Charité, Campus Benjamin Franklin, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Jürgen Siebler
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Susetta Finotto
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Molecular Pneumology, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
8
|
Xu C, Wu P, Gao Q, Cai C, Fan K, Zhou J, Lei L, Chen L. Molecular characterization, expression analysis and subcellular location of the members of STAT family from spotted seabass (Lateolabrax maculatus). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109241. [PMID: 37992914 DOI: 10.1016/j.fsi.2023.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is a pervasive intracellular signal transduction pathway, involving in biological processes such as cell proliferation, differentiation, apoptosis and immune regulation. In this study, seven STAT genes, STAT1, STAT1-like, STAT2, STAT3, STAT4, STAT5a and STAT5b, were identified and characterized in spotted seabass (Lateolabrax maculatus). Analyses of multiple sequence alignment, genomic organization, phylogeny and conserved synteny were conducted to infer the evolutionary conservation of these genes in the STAT family. The results of the bioinformatics analysis assumed that STAT1 and STAT1-like might be homologous to STAT1a and STAT1b, respectively. Furthermore, the expression of the seven genes were detected in eight tissues of healthy spotted seabass, which revealed that they were expressed in a variety of tissues, mainly in gill, spleen and muscle, and extremely under-expression in liver. The expression of the seven genes in gill, head-kidney, spleen and intestine were significantly induced by lipopolysaccharide (LPS) or Edwardsiella tarda challenge. The expression of most of the LmSTATs were up-regulated, and the highest expression levels at 12 h after LPS stimulation, however, the LmSTATs were down-regulated by E. tarda infection. The results of subcellular localization show that the native LmSTAT1, LmSTAT1-like, LmSTAT2, LmSTAT3 and LmSTAT5a were localized in the cytoplasm, but they were translocated into the nucleus after LPS stimulation. Whereas, LmSTAT4 and LmSTAT5b were translocation into the nucleus whether with LPS stimulation or not. Overall, this is the first study to systematically revealed the localization of STAT members in fish, and indicated that LmSTATs participate in the process of protecting the host from pathogens invasion in the form of entry into nucleus.
Collapse
Affiliation(s)
- Chong Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ping Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Chuanguo Cai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ke Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jie Zhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Lina Lei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
9
|
Bermejo-Álvarez I, Pérez-Baos S, Gratal P, Medina JP, Largo R, Herrero-Beaumont G, Mediero A. Effects of Tofacitinib on Muscle Remodeling in Experimental Rheumatoid Sarcopenia. Int J Mol Sci 2023; 24:13181. [PMID: 37685986 PMCID: PMC10487422 DOI: 10.3390/ijms241713181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Sarcopenia is a frequent comorbidity of rheumatoid arthritis (RA). Clinical trials have shown that JAK inhibitors (JAKi) produce an asymptomatic increase in serum creatine kinase (CK) in RA, suggesting an impact on muscle. We evaluated the effect of JAKi in muscle remodeling in an experimental RA model. Antigen-induced arthritis (experimental RA, e-RA) was performed in 14 rabbits. Seven rabbits received tofacitinib (TOFA, orally 10 mg/kg/day). Animals were euthanized one day after the last ovalbumin injection, and muscles were prepared for histology, RT-PCR, and WB. C-reactive protein (CRP) and Myostatin (MSTN) serum concentration were determined by ELISA. Creatine and creatine kinase (CK) were analyzed. An increase in body weight as well as tibialis anterior cross-sectional area and diameter was observed in e-RA+TOFA vs. e-RA. e-RA decreased type II fibers and increased the myonuclei number, with all reverted by TOFA. TOFA did not modify CRP levels, neither did MSTN. TOFA significantly reduced IL-6, atrogin-1, and MuRF-1 compared with e-RA. e-RA+TOFA showed higher CK and lower creatine levels compared with e-RA. No differences in PAX-7 were found, while TOFA prevented the increase in MyoD1 in e-RA. Our model reflects the features of rheumatoid sarcopenia in RA. JAKi increased muscle mass through attenuating IL-6/JAK/STAT activation, decreasing atrogenes, and restoring muscle differentiation markers. These data together with an increase in CK support the role of CK as a valuable marker of muscle gain following JAKi treatment.
Collapse
Affiliation(s)
| | | | | | | | - Raquel Largo
- Bone and Joint Research Unit, Rheumatology Department, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain
| | | | | |
Collapse
|
10
|
Tóthová Z, Šemeláková M, Bhide K, Bhide M, Kováč A, Majerová P, Kvaková M, Štofilová J, Solárová Z, Solár P. Differentially Expressed Genes Induced by Erythropoietin Receptor Overexpression in Rat Mammary Adenocarcinoma RAMA 37-28 Cells. Int J Mol Sci 2023; 24:ijms24108482. [PMID: 37239828 DOI: 10.3390/ijms24108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The erythropoietin receptor (EPOR) is a transmembrane type I receptor with an essential role in the proliferation and differentiation of erythroid progenitors. Besides its function during erythropoiesis, EPOR is expressed and has protective effect in various non-hematopoietic tissues, including tumors. Currently, the advantageous aspect of EPOR related to different cellular events is still under scientific investigation. Besides its well-known effect on cell proliferation, apoptosis and differentiation, our integrative functional study revealed its possible associations with metabolic processes, transport of small molecules, signal transduction and tumorigenesis. Comparative transcriptome analysis (RNA-seq) identified 233 differentially expressed genes (DEGs) in EPOR overexpressed RAMA 37-28 cells compared to parental RAMA 37 cells, whereas 145 genes were downregulated and 88 upregulated. Of these, for example, GPC4, RAP2C, STK26, ZFP955A, KIT, GAS6, PTPRF and CXCR4 were downregulated and CDH13, NR0B1, OCM2, GPM6B, TM7SF3, PARVB, VEGFD and STAT5A were upregulated. Surprisingly, two ephrin receptors, EPHA4 and EPHB3, and EFNB1 ligand were found to be upregulated as well. Our study is the first demonstrating robust differentially expressed genes evoked by simple EPOR overexpression without the addition of erythropoietin ligand in a manner which remains to be elucidated.
Collapse
Affiliation(s)
- Zuzana Tóthová
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Martina Šemeláková
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, 04001 Košice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, 04001 Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Petra Majerová
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Monika Kvaková
- Department of Experimental Medicine, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Jana Štofilová
- Department of Experimental Medicine, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University in Košice, 04001 Košice, Slovakia
| |
Collapse
|
11
|
Li A, Anbuchelvan M, Fathi A, Abu-Zahra M, Evseenko D, Petrigliano FA, Dar A. Distinct human skeletal muscle-derived CD90 progenitor subsets for myo-fibro-adipogenic disease modeling and treatment in multiplexed conditions. Front Cell Dev Biol 2023; 11:1173794. [PMID: 37143896 PMCID: PMC10151706 DOI: 10.3389/fcell.2023.1173794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Chronic muscle injuries, such as massive rotator cuff tears, are associated with progressive muscle wasting, fibrotic scarring, and intramuscular fat accumulation. While progenitor cell subsets are usually studied in culture conditions that drive either myogenic, fibrogenic, or adipogenic differentiation, it is still unknown how combined myo-fibro-adipogenic signals, which are expected to occur in vivo, modulate progenitor differentiation. We therefore evaluated the differentiation potential of retrospectively generated subsets of primary human muscle mesenchymal progenitors in multiplexed conditions in the presence or absence of 423F drug, a modulator of gp130 signaling. We identified a novel CD90+CD56- non-adipogenic progenitor subset that maintained a lack of adipogenic potential in single and multiplexed myo-fibro-adipogenic culture conditions. CD90-CD56- demarcated fibro-adipogenic progenitors (FAP) and CD56+CD90+ progenitors were typified as myogenic. These human muscle subsets exhibited varying degrees of intrinsically regulated differentiation in single and mixed induction cultures. Modulation of gp130 signaling via 423F drug mediated muscle progenitor differentiation in a dose-, induction-, and cell subset-dependent manner and markedly decreased fibro-adipogenesis of CD90-CD56- FAP. Conversely, 423F promoted myogenesis of CD56+CD90+ myogenic subset, indicated by increased myotube diameter and number of nuclei per myotube. 423F treatment eliminated FAP-derived mature adipocytes from mixed adipocytes-FAP cultures but did not modify the growth of non-differentiated FAP in these cultures. Collectively, these data demonstrate that capability of myogenic, fibrogenic, or adipogenic differentiation is largely dependent on the intrinsic features of cultured subsets, and that the degree of lineage differentiation varies when signals are multiplexed. Moreover, our tests performed in primary human muscle cultures reveal and confirm the potential triple-therapeutic effects of 423F drug which simultaneously attenuates degenerative fibrosis, fat accumulation and promotes myo-regeneration.
Collapse
Affiliation(s)
- Angela Li
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Madhavan Anbuchelvan
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amir Fathi
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maya Abu-Zahra
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Frank A. Petrigliano
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ayelet Dar
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Ma X, Xu W, Jin X, Mu H, Wang Z, Hua Y, Cai Z, Zhang T. Telocinobufagin inhibits osteosarcoma growth and metastasis by inhibiting the JAK2/STAT3 signaling pathway. Eur J Pharmacol 2023; 942:175529. [PMID: 36690054 DOI: 10.1016/j.ejphar.2023.175529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Osteosarcoma is the most common primary bone malignancy in children and adolescents; it exhibits rapid growth and a high metastatic potential and may thus lead to relatively high mortality. The JAK2/STAT3 signaling pathway, which plays a critical role in the occurrence and development of osteosarcoma, is a potential target for the treatment of osteosarcoma. Here, we identified the natural product telocinobufagin (TCB), which is a component isolated from toad cake, as a potent candidate with anti-osteosarcoma effects. TCB inhibited osteosarcoma cell growth, migration, invasion and induced cancer cell apoptosis. Mechanistically, TCB specifically inhibited the JAK2/STAT3 signaling pathway. More importantly, TCB significantly suppressed tumor growth and metastasis in an osteosarcoma xenograft animal model. Moreover, TCB also showed strong inhibitory effects in other cancer types, such as lung cancer, liver cancer, colon cancer, breast cancer and gastric cancer. Hence, our study reveals TCB as a potent anti-osteosarcoma therapeutic agent that inhibits the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xinglong Ma
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Wenyuan Xu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xinmeng Jin
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Haoran Mu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Tao Zhang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
13
|
Emerging Mechanisms of Skeletal Muscle Homeostasis and Cachexia: The SUMO Perspective. Cells 2023; 12:cells12040644. [PMID: 36831310 PMCID: PMC9953977 DOI: 10.3390/cells12040644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Mobility is an intrinsic feature of the animal kingdom that stimulates evolutionary processes and determines the biological success of animals. Skeletal muscle is the primary driver of voluntary movements. Besides, skeletal muscles have an immense impact on regulating glucose, amino acid, and lipid homeostasis. Muscle atrophy/wasting conditions are accompanied by a drastic effect on muscle function and disrupt steady-state muscle physiology. Cachexia is a complex multifactorial muscle wasting syndrome characterized by extreme loss of skeletal muscle mass, resulting in a dramatic decrease in life quality and reported mortality in more than 30% of patients with advanced cancers. The lack of directed treatments to prevent or relieve muscle loss indicates our inadequate knowledge of molecular mechanisms involved in muscle cell organization and the molecular etiology of cancer-induced cachexia (CIC). This review highlights the latest knowledge of regulatory mechanisms involved in maintaining muscle function and their deregulation in wasting syndromes, particularly in cachexia. Recently, protein posttranslational modification by the small ubiquitin-like modifier (SUMO) has emerged as a key regulatory mechanism of protein function with implications for different aspects of cell physiology and diseases. We also review an atypical association of SUMO-mediated pathways in this context and deliberate on potential treatment strategies to alleviate muscle atrophy.
Collapse
|
14
|
Interleukin-11 (IL11) inhibits myogenic differentiation of C2C12 cells through activation of extracellular signal-regulated kinase (ERK). Cell Signal 2023; 101:110509. [PMID: 36328118 DOI: 10.1016/j.cellsig.2022.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Cancer-associated cachexia (CAC) is a multifactorial wasting syndrome characterized by loss of skeletal muscle. Interleukin-11 (IL11), one of the IL6 family cytokines, is highly expressed in various types of cancer including cancers frequently associated with cachexia. However, the impact of IL11 on muscle metabolism remains to be determined. Since one of the mechanisms of muscle wasting in cachexia is defective muscle regeneration due to impaired myogenic differentiation, we examined the effect of IL11 on the differentiation of C2C12 mouse myoblasts. Treatment of C2C12 cells with recombinant mouse IL11 resulted in decreased myotube formation. In addition, IL11 treatment reduced the protein and mRNA levels of myosin heavy chain (MHC), a marker of myogenic differentiation. Moreover, the levels of myogenic regulatory factors including myogenin and Mrf4 were significantly reduced by IL11 treatment. IL11 treatment increased the number of BrdU-positive cells and the level of phosphorylated retinoblastoma (Rb) protein, while the levels of p21Waf1 and p27Kip1 were reduced by IL11 treatment in differentiating C2C12 cells, suggesting that IL11 interferes with cell cycle exit during the early stages of myogenic differentiation. Consistent with this, IL11 treatment at the late stage of differentiation did not affect myotube formation and MHC expression. IL11 treatment resulted in an activation of ERK, STAT3, and AKT in differentiating C2C12 cells. However, only ERK inhibitors including PD98059 and U0126 were able to ameliorate the suppressive effect of IL11 on the expression of MHC and myogenin. Additionally, pretreatment with PD98059 and U0126 resulted in improved myotube formation and reduced BrdU staining in IL11-treated cells. Together, our results suggest that IL11 inhibits myogenic differentiation through delayed cell cycle exit in an ERK-dependent manner. To our knowledge, this study is the first to demonstrate an inhibitory role of IL11 in myogenic differentiation and identifies the previously unrecognized role of IL11 as a possible mediator of CAC.
Collapse
|
15
|
Zhu A, Liu N, Shang Y, Zhen Y, An Y. Signaling pathways of adipose stem cell-derived exosomes promoting muscle regeneration. Chin Med J (Engl) 2022; 135:2525-2534. [PMID: 36583914 PMCID: PMC9945488 DOI: 10.1097/cm9.0000000000002404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT Severe muscle injury is still a challenging clinical problem. Exosomes derived from adipose stem cells (ASC-exos) may be a potential therapeutic tool, but their mechanism is not completely clear. This review aims to elaborate the possible mechanism of ASC-exos in muscle regeneration from the perspective of signal pathways and provide guidance for further study. Literature cited in this review was acquired through PubMed using keywords or medical subject headings, including adipose stem cells, exosomes, muscle regeneration, myogenic differentiation, myogenesis, wingless/integrated (Wnt), mitogen-activated protein kinases, phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/Akt), Janus kinase/signal transducers and activators of transcription, and their combinations. We obtained the related signal pathways from proteomics analysis of ASC-exos in the literature, and identified that ASC-exos make different contributions to multiple stages of skeletal muscle regeneration by those signal pathways.
Collapse
Affiliation(s)
- Aoxuan Zhu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
16
|
Reed KM, Mendoza KM, Xu J, Strasburg GM, Velleman SG. Transcriptome Response of Differentiating Muscle Satellite Cells to Thermal Challenge in Commercial Turkey. Genes (Basel) 2022; 13:1857. [PMID: 36292741 PMCID: PMC9601516 DOI: 10.3390/genes13101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
Early muscle development involves the proliferation and differentiation of stem cells (satellite cells, SCs) in the mesoderm to form multinucleated myotubes that mature into muscle fibers and fiber bundles. Proliferation of SCs increases the number of cells available for muscle formation while simultaneously maintaining a population of cells for future response. Differentiation dramatically changes properties of the SCs and environmental stressors can have long lasting effects on muscle growth and physiology. This study was designed to characterize transcriptional changes induced in turkey SCs undergoing differentiation under thermal challenge. Satellite cells from the pectoralis major (p. major) muscle of 1-wk old commercial fast-growing birds (Nicholas turkey, NCT) and from a slower-growing research line (Randombred Control Line 2, RBC2) were proliferated for 72 h at 38 °C and then differentiated for 48 h at 33 °C (cold), 43 °C (hot) or 38 °C (control). Gene expression among thermal treatments and between turkey lines was examined by RNAseq to detect significant differentially expressed genes (DEGs). Cold treatment resulted in significant gene expression changes in the SCs from both turkey lines, with the primary effect being down regulation of the DEGs with overrepresentation of genes involved in regulation of skeletal muscle tissue regeneration and sarcomere organization. Heat stress increased expression of genes reported to regulate myoblast differentiation and survival and to promote cell adhesion particularly in the NCT line. Results suggest that growth selection in turkeys has altered the developmental potential of SCs in commercial birds to increase hypertrophic potential of the p. major muscle and sarcomere assembly. The biology of SCs may account for the distinctly different outcomes in response to thermal challenge on breast muscle growth, development, and structure of the turkey.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Jiahui Xu
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| |
Collapse
|
17
|
Gros K, Matkovič U, Parato G, Miš K, Luin E, Bernareggi A, Sciancalepore M, Marš T, Lorenzon P, Pirkmajer S. Neuronal Agrin Promotes Proliferation of Primary Human Myoblasts in an Age-Dependent Manner. Int J Mol Sci 2022; 23:ijms231911784. [PMID: 36233091 PMCID: PMC9570459 DOI: 10.3390/ijms231911784] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Neuronal agrin, a heparan sulphate proteoglycan secreted by the α-motor neurons, promotes the formation and maintenance of the neuromuscular junction by binding to Lrp4 and activating muscle-specific kinase (MuSK). Neuronal agrin also promotes myogenesis by enhancing differentiation and maturation of myotubes, but its effect on proliferating human myoblasts, which are often considered to be unresponsive to agrin, remains unclear. Using primary human myoblasts, we determined that neuronal agrin induced transient dephosphorylation of ERK1/2, while c-Abl, STAT3, and focal adhesion kinase were unresponsive. Gene silencing of Lrp4 and MuSK markedly reduced the BrdU incorporation, suggesting the functional importance of the Lrp4/MuSK complex for myoblast proliferation. Acute and chronic treatments with neuronal agrin increased the proliferation of human myoblasts in old donors, but they did not affect the proliferation of myoblasts in young donors. The C-terminal fragment of agrin which lacks the Lrp4-binding site and cannot activate MuSK had a similar age-dependent effect, indicating that the age-dependent signalling pathways activated by neuronal agrin involve the Lrp4/MuSK receptor complex as well as an Lrp4/MuSK-independent pathway which remained unknown. Collectively, our results highlight an age-dependent role for neuronal agrin in promoting the proliferation of human myoblasts.
Collapse
Affiliation(s)
- Katarina Gros
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Urška Matkovič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Giulia Parato
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- The B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34127 Trieste, Italy
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Elisa Luin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- The B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34127 Trieste, Italy
| | - Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- The B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34127 Trieste, Italy
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- The B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34127 Trieste, Italy
| | - Tomaž Marš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- The B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34127 Trieste, Italy
- Correspondence: (P.L.); (S.P.)
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (P.L.); (S.P.)
| |
Collapse
|
18
|
Liang Z, Zhang T, Liu H, Li Z, Peng L, Wang C, Wang T. Inflammaging: The ground for sarcopenia? Exp Gerontol 2022; 168:111931. [PMID: 35985553 DOI: 10.1016/j.exger.2022.111931] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Sarcopenia is a progressive skeletal muscle disease that occurs most commonly in the elderly population, contributing to increased costs and hospitalization. Exercise and nutritional therapy have been proven to be effective for sarcopenia, and some drugs can also alleviate declines in muscle mass and function due to sarcopenia. However, there is no specific pharmacological treatment for sarcopenia at present. This review will mainly discuss the relationship between inflammaging and sarcopenia. The increased secretion of proinflammatory cytokines with aging may be because of cellular senescence, immunosenescence, alterations in adipose tissue, damage-associated molecular patterns (DAMPs), and gut microbes due to aging. These sources of inflammaging can impact the sarcopenia process through direct or indirect pathways. Conversely, sarcopenia can also aggravate the process of inflammaging, creating a vicious cycle. Targeting sources of inflammaging can influence muscle function, which could be considered a therapeutic target for sarcopenia. Moreover, not only proinflammatory cytokines but also anti-inflammatory cytokines can influence muscle and inflammation and participate in the progression of sarcopenia. This review focuses on the effects of TNF-α, IL-6, and IL-10, which can be detected in plasma. Therefore, clearing chronic inflammation by targeting proinflammatory cytokines (TNF-α, IL-1, IL-6) and the inflammatory pathway (JAK/STAT, autophagy, NF-κB) may be effective in treating sarcopenia.
Collapse
Affiliation(s)
- Zejun Liang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tianxiao Zhang
- School of Healthcare Sciences, Cardiff University, Health Park, CF14 4XN Wales, UK
| | - Honghong Liu
- West China School of Nursing/West China Hospital, Sichuan University, NO.37 Alley, Chengdu 610041, Sichuan, PR China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lihong Peng
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, PR China
| | - Changyi Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
19
|
Fan LL, Du R, Liu JS, Jin JY, Wang CY, Dong Y, He WX, Yan RQ, Xiang R. Loss of RTN3 phenocopies chronic kidney disease and results in activation of the IGF2-JAK2 pathway in proximal tubular epithelial cells. Exp Mol Med 2022; 54:653-661. [PMID: 35596061 PMCID: PMC9166791 DOI: 10.1038/s12276-022-00763-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
Reticulon 3 (RTN3) is an endoplasmic reticulum protein that has previously been shown to play roles in neurodegenerative diseases, but little is known about its function in the kidneys. The aim of the present study was to clarify the roles of RTN3 in chronic kidney disease (CKD) and kidney fibrosis. In this study, RTN3 levels were measured in kidney tissues from healthy controls and CKD or kidney fibrosis patients. An RTN3-null mouse model was generated to explore the pathophysiological roles of RTN3 in the kidneys. The underlying mechanisms were studied in primary proximal tubular epithelial cells and HEK293 cells in vitro. The results showed that (1) a reduction in RTN3 in mice induces CKD and kidney fibrosis; (2) decreased RTN3 expression is found in patients with CKD; (3) RTN3 plays critical roles in regulating collagen biosynthesis and mitochondrial function; and (4) mechanistically, RTN3 regulates these phenotypes by interacting with GC-Rich Promoter Binding Protein 1 (GPBP1), which activates the IGF2-JAK2-STAT3 pathway. Our study indicates that RTN3 might play crucial roles in CKD and kidney fibrosis and that a reduction in RTN3 in the kidneys might be a risk factor for CKD and kidney fibrosis. A protein (RTN3) known to be involved in neurodegenerative diseases may play a causative role in kidney fibrosis or scarring, and chronic kidney disease (CKD). An estimated 20% of CKD cases may have genetic causes and identifying the genes involved may help find better treatments. Ri-Qiang Yan at the University of Connecticut Health, Farmington, USA, and Rong Xian at Central South University, China, noticed that mice in which the gene coding for RTN3 was inactivated had kidney fibrosis. The researchers showed that RTN3 levels were also lower in kidney tissues of patients with CKD than in healthy individuals and that RTN3 levels were inversely proportional to disease progression. Further investigation showed that decreased RTN3 caused extra collagen deposition and misshapen mitochondria, the cellular powerhouses, in the kidney. These results identify a potential novel risk factor for CKD.
Collapse
Affiliation(s)
- Liang-Liang Fan
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ran Du
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ji-Shi Liu
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Hunan Key Laboratory of Organ Fibrosis, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jie-Yuan Jin
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Chen-Yu Wang
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Yi Dong
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Wan-Xia He
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06032, United States
| | - Ri-Qiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06032, United States.
| | - Rong Xiang
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China. .,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410013, China. .,Hunan Key Laboratory of Organ Fibrosis, Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
20
|
Identification of Genes Related to Squab Muscle Growth and Lipid Metabolism from Transcriptome Profiles of Breast Muscle and Liver in Domestic Pigeon (Columba livia). Animals (Basel) 2022; 12:ani12091061. [PMID: 35565488 PMCID: PMC9100022 DOI: 10.3390/ani12091061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Domestic pigeon is an important small poultry species raised for high-quality meat production. However, the relevant gene associated with meat growth and lipid metabolism during the period from dehulling to marketing are not known. Therefore, we aim to identify genes related to squab muscle growth and lip metabolism from transcriptome profiles of breast muscle and liver in domestic pigeon. In this study, we totally found that 4465 differentially expressed genes (DEGs) identified in the breast muscle and liver libraries, which include 2585 genes that were up-regulated and 2122 genes that were down-regulated. Most genes are involved in cell proliferation and differentiation, lipid metabolism and energy metabolism according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs. We also detected 16 DEGs to verify data from RNA-Seq and qPCR, which were consistent in quantitatively estimating the transcription levels of the tested transcripts by qPCR analysis. The results of this study will lay the foundation for understanding the mechanisms of muscle growth and lipid metabolism in domestic pigeons. Abstract The improvements in muscle growth rate and meat quality are the major breeding aims in pigeon industry. Liver and muscle are recognized as important sites for fatty acid metabolism; understanding the role of specific transcripts in the breast muscle and liver might lead to the elucidation of interrelated biological processes. In this study, RNA-Sequencing (RNA-Seq) was applied to compare the transcriptomes of breast muscle and liver tissues among pigeons at five developmental periods (0, 1, 2, 3, 4 weeks post-hatching) to identify candidate genes related to muscle growth and lipid metabolism. There were 3142 differentially expressed genes (DEGs) identified in the breast muscle libraries; 1794 genes were up-regulated while 1531 genes were down-regulated. A total of 1323 DEGs were acquired from the liver libraries, with 791 up-regulated genes and 591 down-regulated genes. By pathway enrichment analysis, a set of significantly enriched pathways were identified for the DEGs, which are potentially involved in cell proliferation and differentiation, lipid metabolism and energy metabolism in pigeon breast muscle and liver. Our results are consistent with previous partial reports from domestic animals and poultry and provide some unidentified genes involved in muscle growth and lipid metabolism. The reliability of the sequencing data was verified through qPCR analysis of 16 genes from eight comparison groups (two genes per group). The findings from this study could contribute to future investigations of muscle growth and lipid metabolism mechanisms and establish molecular approaches to improve muscle growth rate and meat quality in domestic pigeon breeding.
Collapse
|
21
|
Ferrer B, Suresh H, Santamaria A, Rocha JB, Bowman AB, Aschner M. The antioxidant role of STAT3 in methylmercury-induced toxicity in mouse hypothalamic neuronal GT1-7 cell line. Free Radic Biol Med 2021; 171:245-259. [PMID: 34010664 PMCID: PMC8217327 DOI: 10.1016/j.freeradbiomed.2021.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 12/27/2022]
Abstract
Oxidative stress, impairment of antioxidant defenses, and disruption of calcium homeostasis are associated with the toxicity of methylmercury (MeHg). Yet, the relative contribution and interdependence of these effects and other molecular mechanisms that mediate MeHg-induced neurotoxicity remain uncertain. The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates the expression of anti-apoptotic and cell cycle progression genes. In addition to its role in cell growth and survival, STAT3 regulates redox homeostasis and prevents oxidative stress by the modulation of nuclear genes that encode for electron transport complexes (ETC) and antioxidant enzymes. Here we tested the hypothesis that STAT3 contributes to the orchestration of the antioxidant defense response against MeHg injury. We show that MeHg (>1 μM) exposure induced STAT3 activation within 1 h and beyond in mouse hypothalamic neuronal GT1-7 cells in a concentration-and time-dependent manner. Pharmacological inhibition of STAT3 phosphorylation exacerbated MeHg-induced reactive oxygen species (ROS) production and antioxidant responses. Finally, treatment with the antioxidant Trolox demonstrated that MeHg-induced STAT3 activation is mediated, at least in part, by MeHg-induced ROS generation. Combined, our results demonstrated a role for the STAT3 signaling pathway as an early response to MeHg-induced oxidative stress.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA.
| | - Harshini Suresh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA.
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
| | - João Batista Rocha
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA; IM Sechenov First Moscow State Medical University, Moscow, Russia, Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| |
Collapse
|
22
|
The Role of PI3K/AKT and MAPK Signaling Pathways in Erythropoietin Signalization. Int J Mol Sci 2021; 22:ijms22147682. [PMID: 34299300 PMCID: PMC8307237 DOI: 10.3390/ijms22147682] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (EPO) is a glycoprotein cytokine known for its pleiotropic effects on various types of cells and tissues. EPO and its receptor EPOR trigger signaling cascades JAK2/STAT5, MAPK, and PI3K/AKT that are interconnected and irreplaceable for cell survival. In this article, we describe the role of the MAPK and PI3K/AKT signaling pathways during red blood cell formation as well as in non-hematopoietic tissues and tumor cells. Although the central framework of these pathways is similar for most of cell types, there are some stage-specific, tissue, and cell-lineage differences. We summarize the current state of research in this field, highlight the novel members of EPO-induced PI3K and MAPK signaling, and in this respect also the differences between erythroid and non-erythroid cells.
Collapse
|
23
|
Gao Y, Liang X, Tian Z, Ma Y, Sun C. Betalain exerts cardioprotective and anti-inflammatory effects against the experimental model of heart failure. Hum Exp Toxicol 2021; 40:S16-S28. [PMID: 34189972 DOI: 10.1177/09603271211027933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Betalain is a natural plant pigment known to elicit various biological activities. However, studies on the protective effect of betalain against heart failure have not reported yet. The experimental model of heart failure was created in Wistar rats using isoproterenol (ISO). The animals were randomly assigned into four groups such as sham-control, ISO-induced heart failure, betalain pretreated before ISO induction (50 mg/kg/day), and betalain drug control group were maintained for 6 weeks. At the end of the experimental period, anti-oxidant enzymes, inflammatory markers, matrix proteins, cardiac-specific markers, and micro RNAs were elucidated using RT-PCR, and ELISA analysis. The results demonstrated that the rats induced with ISO displayed an abnormality in cardiac functions, increased oxidative stress markers (p < 0.01), inflammatory cytokines (p < 0.01) while abrogated the expression of miR-18a, and increased miR-199a. While betalain pre-treated rats prevented the cardiac failure significantly (p < 0.01) with improved anti-oxidant enzymes, abrogated the inflammatory signals with restored matrix proteins, cardiac biomarker genes, and attenuated miR-423 and miR-27 compared to heart failure rats. The results of the study suggest that the betalain treatment protected the hearts from failing via microRNA mediated activation the anti-inflammatory signaling and restoring the matrix protein modulation.
Collapse
Affiliation(s)
- Y Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - X Liang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Z Tian
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Y Ma
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - C Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
24
|
Pircher T, Wackerhage H, Aszodi A, Kammerlander C, Böcker W, Saller MM. Hypoxic Signaling in Skeletal Muscle Maintenance and Regeneration: A Systematic Review. Front Physiol 2021; 12:684899. [PMID: 34248671 PMCID: PMC8260947 DOI: 10.3389/fphys.2021.684899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
In skeletal muscle tissue, oxygen (O2) plays a pivotal role in both metabolism and the regulation of several intercellular pathways, which can modify proliferation, differentiation and survival of cells within the myogenic lineage. The concentration of oxygen in muscle tissue is reduced during embryogenesis and pathological conditions. Myogenic progenitor cells, namely satellite cells, are necessary for muscular regeneration in adults and are localized in a hypoxic microenvironment under the basal lamina, suggesting that the O2 level could affect their function. This review presents the effects of reduced oxygen levels (hypoxia) on satellite cell survival, myoblast regeneration and differentiation in vertebrates. Further investigations and understanding of the pathways involved in adult muscle regeneration during hypoxic conditions are maybe clinically relevant to seek for novel drug treatments for patients with severe muscle damage. We especially outlined the effect of hypoxia-inducible factor 1-alpha (HIF1A), the most studied transcriptional regulator of cellular and developmental response to hypoxia, whose investigation has recently been awarded with the Nobel price.
Collapse
Affiliation(s)
- Tamara Pircher
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Henning Wackerhage
- Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Christian Kammerlander
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Wolfgang Böcker
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
25
|
Yang R, Liu Y, Cheng Y, Wang C, Song J, Lu G, Feng T, Wang S, Sun X, Meng J, Hao L. Effects and Molecular Mechanism of Single-Nucleotide Polymorphisms of MEG3 on Porcine Skeletal Muscle Development. Front Genet 2021; 12:607910. [PMID: 33692824 PMCID: PMC7937967 DOI: 10.3389/fgene.2021.607910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Maternally expressed gene 3 (MEG3) is a long non-coding RNA that is a crucial regulator of skeletal muscle development. Some single-nucleotide polymorphism (SNP) mutants in MEG3 had strong associations with meat quality traits. Nevertheless, the function and mechanism of MEG3 mutants on porcine skeletal muscle development have not yet been well-demonstrated. In this study, eight SNPs were identified in MEG3 of fat- and lean-type pig breeds. Four of these SNPs (g.3087C > T, g.3108C > T, g.3398C > T, and g.3971A > C) were significantly associated with meat quality and consisted of the CCCA haplotype for fat-type pigs and the TTCC haplotype for lean-type pigs. Quantitative real-time PCR results showed that the expression of MEG3-TTCC was higher than that of MEG3-CCCA in transcription level (P < 0.01). The stability assay showed that the lncRNA stability of MEG3-TTCC was lower than that of MEG3-CCCA (P < 0.05). Furthermore, the results of qRT-PCR, Western blot, and Cell Counting Kit-8 assays demonstrated that the overexpression of MEG3-TTCC more significantly inhibited the proliferation of porcine skeletal muscle satellite cells (SCs) than that of MEG3-CCCA (P < 0.05). Moreover, the overexpression of MEG3-TTCC more significantly promoted the differentiation of SCs than that of MEG3-CCCA (P < 0.05). The Western blot assay suggested that the overexpression of MEG3-TTCC and MEG3-CCCA inhibited the proliferation of SCs by inhibiting PI3K/AKT and MAPK/ERK1/2 signaling pathways. The overexpression of the two haplotypes also promoted the differentiation of SCs by activating the JAK2/STAT3 signaling pathway in different degrees. These data are valuable for further studies on understanding the crucial role of lncRNAs in skeletal muscle development.
Collapse
Affiliation(s)
- Rui Yang
- College of Animal Science, Jilin University, Changchun, China
| | - Yinuo Liu
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yunyun Cheng
- College of Public Health, Jilin University, Changchun, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Guanhong Lu
- College of Animal Science, Jilin University, Changchun, China
| | - Tianqi Feng
- College of Animal Science, Jilin University, Changchun, China
| | - Siyao Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Xiaotong Sun
- College of Animal Science, Jilin University, Changchun, China
| | - Jilun Meng
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
26
|
Modulation of IGF2 Expression in the Murine Thymus and Thymic Epithelial Cells Following Coxsackievirus-B4 Infection. Microorganisms 2021; 9:microorganisms9020402. [PMID: 33672010 PMCID: PMC7919294 DOI: 10.3390/microorganisms9020402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Coxsackievirus B4 (CV-B4) can infect human and murine thymic epithelial cells (TECs). In a murine TEC cell line, CV-B4 can downregulate the transcription of the insulin-like growth factor 2 (Igf2) gene coding for the self-peptide of the insulin family. In this study, we show that CV-B4 infections of a murine TEC cell line decreased Igf2 P3 promoter activity by targeting a region near the transcription start site; however, the stability of Igf2 transcripts remained unchanged, indicating a regulation of Igf2 transcription. Furthermore, CV-B4 infections decreased STAT3 phosphorylation in vitro. We also showed that mice infected with CV-B4 had an altered expression of Igf2 isoforms as detected in TECs, followed by a decrease in the pro-IGF2 precursor in the thymus. Our study sheds new light on the intrathymic regulation of Igf2 transcription during CV-B4 infections and supports the hypothesis that a viral infection can disrupt central self-tolerance to insulin by decreasing Igf2 transcription in the thymic epithelium.
Collapse
|
27
|
Teo WH, Lo JF, Fan YN, Huang CY, Huang TF. Ganoderma microsporum immunomodulatory protein, GMI, promotes C2C12 myoblast differentiation in vitro via upregulation of Tid1 and STAT3 acetylation. PLoS One 2021; 15:e0244791. [PMID: 33382817 PMCID: PMC7774968 DOI: 10.1371/journal.pone.0244791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022] Open
Abstract
Ageing and chronic diseases lead to muscle loss and impair the regeneration of skeletal muscle. Thus, it’s crucial to seek for effective intervention to improve the muscle regeneration. Tid1, a mitochondrial co-chaperone, is important to maintain mitochondrial membrane potential and ATP synthesis. Previously, we demonstrated that mice with skeletal muscular specific Tid1 deficiency displayed muscular dystrophy and postnatal lethality. Tid1 can interact with STAT3 protein, which also plays an important role during myogenesis. In this study, we used GMI, immunomodulatory protein of Ganoderma microsporum, as an inducer in C2C12 myoblast differentiation. We observed that GMI pretreatment promoted the myogenic differentiation of C2C12 myoblasts. We also showed that the upregulation of mitochondria protein Tid1 with the GMI pre-treatment promoted myogenic differentiation ability of C2C12 cells. Strikingly, we observed the concomitant elevation of STAT3 acetylation (Ac-STAT3) during C2C12 myogenesis. Our study suggests that GMI promotes the myogenic differentiation through the activation of Tid1 and Ac-STAT3.
Collapse
Affiliation(s)
- Wan-Huai Teo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (J-FL); (T-FH)
| | - Yu-Ning Fan
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Chinese Medical Science and Institute of Medical Science, China Medical University, Taichung, Taiwan
- Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Tung-Fu Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (J-FL); (T-FH)
| |
Collapse
|
28
|
Taetzsch T, Shapiro D, Eldosougi R, Myers T, Settlage RE, Valdez G. The microRNA miR-133b functions to slow Duchenne muscular dystrophy pathogenesis. J Physiol 2021; 599:171-192. [PMID: 32991751 PMCID: PMC8418193 DOI: 10.1113/jp280405] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Impairment of muscle biogenesis contributes to the progression of Duchenne muscular dystrophy (DMD). As a muscle enriched microRNA that has been implicated in muscle biogenesis, the role of miR-133b in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. We show that deletion of miR-133b exacerbates the dystrophic phenotype of DMD-afflicted skeletal muscle by dysregulating muscle stem cells involved in muscle biogenesis, in addition to affecting signalling pathways related to inflammation and fibrosis. Our results provide evidence that miR-133b may underlie DMD pathology by affecting the proliferation and differentiation of muscle stem cells. ABSTRACT Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle degeneration. No treatments are currently available to prevent the disease. While the muscle enriched microRNA miR-133b has been implicated in muscle biogenesis, its role in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. In the absence of miR-133b, the tibialis anterior muscle of P30 mdx mice is smaller in size and exhibits a thickened interstitial space containing more mononucleated cells. Additional analysis revealed that miR-133b deletion influences muscle fibre regeneration, satellite cell proliferation and differentiation, and induces widespread transcriptomic changes in mdx muscle. These include known miR-133b targets as well as genes involved in cell proliferation and fibrosis. Altogether, our data demonstrate that skeletal muscles utilize miR-133b to mitigate the deleterious effects of DMD.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Dillon Shapiro
- Molecular Biology, Cell Biology, & Biochemistry Graduate Program, Brown University, Providence, RI, USA
| | - Randa Eldosougi
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Tracey Myers
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | | | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, United States
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, United States
| |
Collapse
|
29
|
Hangül C, Yücel OK, Toylu A, Uysal H, Berker Karaüzüm S. A Novel Coincidence: Essential Thrombocythemia with Facioscapulohumeral Muscular Dystrophy. Turk J Haematol 2020; 37:306-307. [PMID: 32812416 PMCID: PMC7702655 DOI: 10.4274/tjh.galenos.2020.2020.0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Ceren Hangül
- Akdeniz University Faculty of Medicine, Department of Medical Biology and Genetics, Antalya, Turkey
| | - Orhan Kemal Yücel
- Akdeniz University Faculty of Medicine, Department of Hematology, Antalya, Turkey
| | - Aslı Toylu
- Akdeniz University Faculty of Medicine, Department of Medical Genetics, Antalya, Turkey
| | - Hilmi Uysal
- Akdeniz University Faculty of Medicine, Department of Neurology, Antalya, Turkey
| | - Sibel Berker Karaüzüm
- Akdeniz University Faculty of Medicine, Department of Medical Biology and Genetics, Antalya, Turkey
| |
Collapse
|
30
|
Liang Y, Liu H, Li X, Huang W, Huang B, Xu J, Xiong J, Zhai S. Molecular insight, expression profile and subcellular localization of two STAT family members, STAT1a and STAT2, from Japanese eel, Anguilla japonica. Gene 2020; 769:145257. [PMID: 33164823 DOI: 10.1016/j.gene.2020.145257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription 1 (STAT1) and STAT2 are critical components of type I and type II IFNs signaling. To date, seven STAT family proteins have been identified from mammals. However, the information on STAT genes in teleost fish is still limited. In the present study, two STAT family genes (STAT1a and STAT2) were identified from Japanese eel, Anguilla japonica and designated as AjSTAT1a and AjSTAT2. The open reading frames of AjSTAT1a and AjSTAT2 are 2244 bp and 2421 bp, encoding for polypeptides of 747 aa and 806 aa, respectively. Both AjSTAT1a and AjSTAT2 contain the conserved domains of STAT proteins. Phylogenetic analysis was performed based on the STATs protein sequences, and showed that AjSTAT1a and AjSTAT2 shared the closest relationship with Oncorhynchus mykiss. Quantitative real-time PCR analysis revealed that AjSTAT1a and AjSTAT2 were expressed in most examined tissues, with the highest expression both in blood. Significantly up-regulated transcripts of AjSTAT1a and AjSTAT2 were detected in response to poly I:C stimulation, and Edwardsiella tarda induced increase in the expression of AjSTAT1a and AjSTAT2 genes. Subcellular localization analysis showed that in both IFNγ-stimulated and unstimulated EPC cells AjSTAT1a and AjSTAT2 were mainly distributed in the cytoplasm, but few AjSTAT1a was distributed in the nucleus. All these results suggested that AjSTAT1a and AjSTAT2 may be critical for regulating the host innate immune defense against pathogens invasion.
Collapse
Affiliation(s)
- Ying Liang
- Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361000, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China.
| | - Haizi Liu
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiang Li
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Wenshu Huang
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Bei Huang
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Jisong Xu
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Jing Xiong
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| | - Shaowei Zhai
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, P.R. China, Xiamen 361021, China
| |
Collapse
|
31
|
STAT3 transcription factor as target for anti-cancer therapy. Pharmacol Rep 2020; 72:1101-1124. [PMID: 32880101 DOI: 10.1007/s43440-020-00156-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
STATs constitute a large family of transcription activators and transducers of signals that have an important role in many cell functions as regulation of proliferation and differentiation of the cell also regulation of apoptosis and angiogenesis. STAT3 as a member of that family, recently was discovered to have a vital role in progression of different types of cancers. The activation of STAT3 was observed to regulate multiple gene functions during cancer-like cell proliferation, differentiation, apoptosis, metastasis, inflammation, immunity, cell survival, and angiogenesis. The inhibition of STAT3 activation has been an important target for cancer therapy. Inhibitors of STAT3 have been used for a long time for treatment of many types of cancers like leukemia, melanoma, colon, and renal cancer. In this review article, we summarize and discuss different drugs inhibiting the action of STAT3 and used in treatment of different types of cancer.
Collapse
|
32
|
Yanay N, Rabie M, Nevo Y. Impaired Regeneration in Dystrophic Muscle-New Target for Therapy. Front Mol Neurosci 2020; 13:69. [PMID: 32523512 PMCID: PMC7261890 DOI: 10.3389/fnmol.2020.00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Muscle stem cells (MuSCs), known as satellite cells (SCs) have an incredible ability to regenerate, which enables the maintenance and growth of muscle tissue. In response to damaging stimuli, SCs are activated, proliferate, differentiate, and fuse to repair or generate a new muscle fiber. However, dystrophic muscles are characterized by poor muscle regeneration along with chronic inflammation and fibrosis. Indications for SC involvement in muscular dystrophy pathologies are accumulating, but their contribution to muscle pathophysiology is not precisely understood. In congenital muscular dystrophy type 1A (LAMA2-CMD), mutations in Lama2 gene cause either complete or partial absence in laminin-211 protein. Laminin-211 functions as a link between muscle extracellular matrix (ECM) and two adhesion systems in the sarcolemma; one is the well-known dystrophin-glycoprotein complex (DGC), and the second is the integrin complex. Because of its protein interactions and location, laminin-211 has a crucial role in muscle function and survival by maintaining sarcolemma integrity. In addition, laminin-211 is expressed in SCs and suggested to have a role in SC proliferation and differentiation. Downstream to the primary defect in laminin-211, several secondary genes and pathways accelerate disease mechanism, while at the same time there are unsuccessful attempts to regenerate as compensation for the dystrophic process. Lately, next-generation sequencing platforms have advanced our knowledge about the secondary events occurring in various diseases, elucidate the pathophysiology, and characterize new essential targets for development of new treatment strategies. This review will mainly focus on SC contribution to impaired regeneration in muscular dystrophies and specifically new findings suggesting SC involvement in LAMA2-CMD pathology.
Collapse
Affiliation(s)
- Nurit Yanay
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Malcolm Rabie
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoram Nevo
- Felsenstein Medical Research Center (FMRC), Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
33
|
Lautaoja JH, Pekkala S, Pasternack A, Laitinen M, Ritvos O, Hulmi JJ. Differentiation of Murine C2C12 Myoblasts Strongly Reduces the Effects of Myostatin on Intracellular Signaling. Biomolecules 2020; 10:biom10050695. [PMID: 32365803 PMCID: PMC7277184 DOI: 10.3390/biom10050695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Alongside in vivo models, a simpler and more mechanistic approach is required to study the effects of myostatin on skeletal muscle because myostatin is an important negative regulator of muscle size. In this study, myostatin was administered to murine (C2C12) and human (CHQ) myoblasts and myotubes. Canonical and noncanonical signaling downstream to myostatin, related ligands, and their receptor were analyzed. The effects of tumorkines were analyzed after coculture of C2C12 and colon cancer-C26 cells. The effects of myostatin on canonical and noncanonical signaling were strongly reduced in C2C12 cells after differentiation. This may be explained by increased follistatin, an endogenous blocker of myostatin and altered expression of activin receptor ligands. In contrast, CHQ cells were equally responsive to myostatin, and follistatin remained unaltered. Both myostatin administration and the coculture stimulated pathways associated with inflammation, especially in C2C12 cells. In conclusion, the effects of myostatin on intracellular signaling may be cell line- or organism-specific, and C2C12 myotubes seem to be a nonoptimal in vitro model for investigating the effects of myostatin on canonical and noncanonical signaling in skeletal muscle. This may be due to altered expression of activin receptor ligands and their regulators during muscle cell differentiation.
Collapse
Affiliation(s)
- Juulia H. Lautaoja
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, 40014 Jyväskylä, Finland; (S.P.); (J.J.H.)
- Correspondence: ; Tel.: +358-40-805-5042
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, 40014 Jyväskylä, Finland; (S.P.); (J.J.H.)
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (A.P.); (O.R.)
| | - Mika Laitinen
- Department of Medicine, Faculty of Medicine, University of Helsinki, 00029 Helsinki, Finland;
- Department of Medicine, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (A.P.); (O.R.)
| | - Juha J. Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, 40014 Jyväskylä, Finland; (S.P.); (J.J.H.)
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (A.P.); (O.R.)
| |
Collapse
|
34
|
Su Y, Yu Y, Liu C, Zhang Y, Liu C, Ge M, Li L, Lan M, Wang T, Li M, Liu F, Xiong L, Wang K, He T, Shi J, Song Y, Zhao Y, Li N, Yu Z, Meng Q. Fate decision of satellite cell differentiation and self-renewal by miR-31-IL34 axis. Cell Death Differ 2020; 27:949-965. [PMID: 31332295 PMCID: PMC7206105 DOI: 10.1038/s41418-019-0390-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/13/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
Quiescent satellite cells (SCs) that are activated to produce numerous myoblasts underpin the complete healing of damaged skeletal muscle. How cell-autonomous regulatory mechanisms modulate the balance among cells committed to differentiation and those committed to self-renewal to maintain the stem cell pool remains poorly explored. Here, we show that miR-31 inactivation compromises muscle regeneration in adult mice by impairing the expansion of myoblasts. miR-31 is pivotal for SC proliferation, and its deletion promotes asymmetric cell fate segregation of proliferating cells, resulting in enhanced myogenic commitment and re-entry into quiescence. Further analysis revealed that miR-31 posttranscriptionally suppresses interleukin 34 (IL34) mRNA, the protein product of which activates JAK-STAT3 signaling required for myogenic progression. IL34 inhibition rescues the regenerative deficiency of miR-31 knockout mice. Our results provide evidence that targeting miR-31 or IL34 activities in SCs could be used to counteract the functional exhaustion of SCs in pathological conditions.
Collapse
Affiliation(s)
- Yang Su
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Yingying Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Chuncheng Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yuying Zhang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Chang Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Mengxu Ge
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Lei Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Miaomiao Lan
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Tongtong Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Min Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Fan Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Lei Xiong
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Kun Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Ting He
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Jianyun Shi
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Yongli Song
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Yaofeng Zhao
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Ning Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Qingyong Meng
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China.
| |
Collapse
|
35
|
Daou HN. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation. Am J Physiol Regul Integr Comp Physiol 2020; 318:R296-R310. [DOI: 10.1152/ajpregu.00147.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a complicated disorder of extreme, progressive skeletal muscle wasting. It is directed by metabolic alterations and systemic inflammation dysregulation. Numerous studies have demonstrated that increased systemic inflammation promotes this type of cachexia and have suggested that cytokines are implicated in the skeletal muscle loss. Exercise is firmly established as an anti-inflammatory therapy that can attenuate or even reverse the process of muscle wasting in cancer cachexia. The interleukin IL-6 is generally considered to be a key player in the development of the microenvironment of malignancy; it promotes tumor growth and metastasis by acting as a bridge between chronic inflammation and cancerous tissue and it also induces skeletal muscle atrophy and protein breakdown. Paradoxically, a beneficial role for IL-6 has also been identified recently, and that is its status as a “founding member” of the myokine class of proteins. Skeletal muscle is an important source of circulating IL-6 in people who participate in exercise training. IL-6 acts as an anti-inflammatory myokine by inhibiting TNFα and improving glucose uptake through the stimulation of AMPK signaling. This review discusses the action of IL-6 in skeletal muscle tissue dysfunction and the role of IL-6 as an “exercise factor” that modulates the immune system. This review also sheds light on the main considerations related to the treatment of muscle wasting in cancer cachexia.
Collapse
|
36
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
37
|
Interleukin-6 Induces Myogenic Differentiation via JAK2-STAT3 Signaling in Mouse C2C12 Myoblast Cell Line and Primary Human Myoblasts. Int J Mol Sci 2019; 20:ijms20215273. [PMID: 31652937 PMCID: PMC6862063 DOI: 10.3390/ijms20215273] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
Postnatal muscle growth and exercise- or injury-induced regeneration are facilitated by myoblasts. Myoblasts respond to a variety of proteins such as cytokines that activate various signaling cascades. Cytokines belonging to the interleukin 6 superfamily (IL-6) influence myoblasts' proliferation but their effect on differentiation is still being researched. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is one of the key signaling pathways identified to be activated by IL-6. The aim of this study was to investigate myoblast fate as well as activation of JAK-STAT pathway at different physiologically relevant IL-6 concentrations (10 pg/mL; 100 pg/mL; 10 ng/mL) in the C2C12 mouse myoblast cell line and primary human myoblasts, isolated from eight young healthy male volunteers. Myoblasts' cell cycle progression, proliferation and differentiation in vitro were assessed. Low IL-6 concentrations facilitated cell cycle transition from the quiescence/Gap1 (G0/G1) to the synthesis (S-) phases. Low and medium IL-6 concentrations decreased the expression of myoblast determination protein 1 (MyoD) and myogenin and increased proliferating cell nuclear antigen (PCNA) expression. In contrast, high IL-6 concentration shifted a larger proportion of cells to the pro-differentiation G0/G1 phase of the cell cycle, substantiated by significant increases of both MyoD and myogenin expression and decreased PCNA expression. Low IL-6 concentration was responsible for prolonged JAK1 activation and increased suppressor of cytokine signaling 1 (SOCS1) protein expression. JAK-STAT inhibition abrogated IL-6-mediated C2C12 cell proliferation. In contrast, high IL-6 initially increased JAK1 activation but resulted in prolonged JAK2 activation and elevated SOCS3 protein expression. High IL-6 concentration decreased interleukin-6 receptor (IL-6R) expression 24 h after treatment whilst low IL-6 concentration increased IL-6 receptor (IL-6R) expression at the same time point. In conclusion, this study demonstrated that IL-6 has concentration- and time-dependent effects on both C2C12 mouse myoblasts and primary human myoblasts. Low IL-6 concentration induces proliferation whilst high IL-6 concentration induces differentiation. These effects are mediated by specific components of the JAK/STAT/SOCS pathway.
Collapse
|
38
|
Shen W, Huang B, He Y, Shi L, Yang J. Long non‐coding RNA RP11‐820 promotes extracellular matrix production via regulating miR‐3178/MYOD1 in human trabecular meshwork cells. FEBS J 2019; 287:978-990. [PMID: 31495061 DOI: 10.1111/febs.15058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Wencui Shen
- Tianjin Eye Hospital & Eye Institute Tianjin Key Lab of Ophthalmology and Visual Science NanKai University Tianjin China
| | - Bingqing Huang
- Department of Pathology Institute of Hematology and Blood Diseases Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin China
| | - Ye He
- Tianjin Medical University Eye Hospital China
| | - Liukun Shi
- Tianjin Eye Hospital & Eye Institute Tianjin Key Lab of Ophthalmology and Visual Science NanKai University Tianjin China
| | - Jin Yang
- Tianjin Eye Hospital & Eye Institute Tianjin Key Lab of Ophthalmology and Visual Science NanKai University Tianjin China
| |
Collapse
|
39
|
Greene MA, Britt JL, Powell RR, Feltus FA, Bridges WC, Bruce T, Klotz JL, Miller MF, Duckett SK. Ergot alkaloid exposure during gestation alters: 3. Fetal growth, muscle fiber development, and miRNA transcriptome1. J Anim Sci 2019; 97:3153-3168. [PMID: 31051033 DOI: 10.1093/jas/skz153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
The objective of this study was to assess how exposure to ergot alkaloids during 2 stages of gestation alters fetal growth, muscle fiber formation, and miRNA expression. Pregnant ewes (n = 36; BW = 83.26 ± 8.14 kg; 4/group; 9 groups) were used in a 2 × 2 factorial arrangement with 2 tall fescue seed treatments [endophyte-infected (E+) vs. endophyte-free (E-)] fed during 2 stages of gestation (MID, days 35 to 85 vs. LATE, days 86 to 133), which created 4 possible treatments (E-/E-, E+/E-, E-/E+, or E+/E+). Ewes were individually fed a total mixed ration containing E+ or E- fescue seed according to treatment assignment. Terminal surgeries were conducted on day 133 of gestation for the collection of fetal measurements and muscle samples. Data were analyzed as a 2 × 2 factorial with fescue treatment, stage of gestation, and 2-way interaction as fixed effects. Fetuses exposed to E+ seed during LATE gestation had reduced (P = 0.0020) fetal BW by 10% compared with E- fetuses; however, fetal body weight did not differ (P = 0.41) with E+ exposure during MID gestation. Fetuses from ewes fed E+ seed during MID and LATE gestation tended to have smaller (P = 0.058) kidney weights compared with E- fetuses. Liver weight was larger (P = 0.0069) in fetuses fed E- during LATE gestation compared with E+. Fetal brain weight did not differ by fescue treatment fed during MID (P = 0.36) or LATE (P = 0.40) gestation. The percentage of brain to empty body weight (EBW) was greater (P = 0.0048) in fetuses from ewes fed E+ fescue seed during LATE gestation, which is indicative of intrauterine growth restriction (IUGR). Primary muscle fiber number was lower (P = 0.0005) in semitendinosus (STN) of fetuses exposed to E+ during MID and/or LATE gestation compared with E-/E-. miRNA sequencing showed differential expression (P < 0.010) of 6 novel miRNAs including bta-miR-652_R+1, mdo-miR-22-3p, bta-miR-1277_R-1, ppy-miR-133a_L+1_1ss5TG, hsa-miR-129-1-3p, and ssc-miR-615 in fetal STN muscle. These miRNA are associated with glucose transport, insulin signaling, intracellular ATP, hypertension, or adipogenesis. This work supports the hypothesis that E+ tall fescue seed fed during late gestation reduces fetal weight and causes asymmetrical growth, which is indicative of IUGR. Changes in primary fiber number and miRNA of STN indicate that exposure to E+ fescue fed during MID and LATE gestation alters fetal muscle development that may affect postnatal muscle growth and meat quality.
Collapse
Affiliation(s)
- Maslyn A Greene
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Jessica L Britt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Rhonda R Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC
| | - F Alex Feltus
- Department of Genetics, Clemson University, Clemson, SC
| | - William C Bridges
- §Department of Mathematical Sciences, Clemson University, Clemson, SC
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC.,Department of Bioengineering, Clemson University, Clemson, SC
| | - James L Klotz
- USDA-ARS-Forage Production Research Unit, Lexington, KY
| | - Markus F Miller
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Susan K Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| |
Collapse
|
40
|
Dent JR, Hetrick B, Tahvilian S, Sathe A, Greyslak K, LaBarge SA, Svensson K, McCurdy CE, Schenk S. Skeletal muscle mitochondrial function and exercise capacity are not impaired in mice with knockout of STAT3. J Appl Physiol (1985) 2019; 127:1117-1127. [PMID: 31513449 DOI: 10.1152/japplphysiol.00003.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) was recently found to be localized to mitochondria in a number of tissues and cell types, where it modulates oxidative phosphorylation via interactions with the electron transport proteins, complex I and complex II. Skeletal muscle is densely populated with mitochondria although whether STAT3 contributes to skeletal muscle oxidative capacity is unknown. In the present study, we sought to elucidate the contribution of STAT3 to mitochondrial and skeletal muscle function by studying mice with muscle-specific knockout of STAT3 (mKO). First, we developed a novel flow cytometry-based approach to confirm that STAT3 is present in skeletal muscle mitochondria. However, contrary to findings in other tissue types, complex I and complex II activity and maximal mitochondrial respiratory capacity in skeletal muscle were comparable between mKO mice and floxed/wild-type littermates. Moreover, there were no genotype differences in endurance exercise performance, skeletal muscle force-generating capacity, or the adaptive response of skeletal muscle to voluntary wheel running. Collectively, although we confirm the presence of STAT3 in skeletal muscle mitochondria, our data establish that STAT3 is dispensable for mitochondrial and physiological function in skeletal muscle.NEW & NOTEWORTHY Whether signal transducer and activator of transcription 3 (STAT3) can regulate the activity of complex I and II of the electron transport chain and mitochondrial oxidative capacity in skeletal muscle, as it can in other tissues, is unknown. By using a mouse model lacking STAT3 in muscle, we demonstrate that skeletal muscle mitochondrial and physiological function, both in vivo and ex vivo, is not impacted by the loss of STAT3.
Collapse
Affiliation(s)
- Jessica R Dent
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Shahriar Tahvilian
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Abha Sathe
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Keenan Greyslak
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Samuel A LaBarge
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| |
Collapse
|
41
|
Chen H, Li M, Sanchez E, Soof CM, Bujarski S, Ng N, Cao J, Hekmati T, Zahab B, Nosrati JD, Wen M, Wang CS, Tang G, Xu N, Spektor TM, Berenson JR. JAK1/2 pathway inhibition suppresses M2 polarization and overcomes resistance of myeloma to lenalidomide by reducing TRIB1, MUC1, CD44, CXCL12, and CXCR4 expression. Br J Haematol 2019; 188:283-294. [PMID: 31423579 DOI: 10.1111/bjh.16158] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022]
Abstract
Monocytes polarize into pro-inflammatory macrophage-1 (M1) or alternative macrophage-2 (M2) states with distinct phenotypes and physiological functions. M2 cells promote tumour growth and metastasis whereas M1 macrophages show anti-tumour effects. We found that M2 cells were increased whereas M1 cells were decreased in bone marrow (BM) from multiple myeloma (MM) patients with progressive disease (PD) compared to those in complete remission (CR). Gene expression of Tribbles homolog 1 (TRIB1) protein kinase, an inducer of M2 polarization, was increased in BM from MM patients with PD compared to those in CR. Ruxolitinib (RUX) is an inhibitor of the Janus kinase family of protein tyrosine kinases (JAKs) and is effective for treating patients with myeloproliferative disorders. RUX markedly reduces both M2 polarization and TRIB1 gene expression in MM both in vitro and in vivo in human MM xenografts in severe combined immunodeficient mice. RUX also downregulates the expression of CXCL12, CXCR4, MUC1, and CD44 in MM cells and monocytes co-cultured with MM tumour cells; overexpression of these genes is associated with resistance of MM cells to the immunomodulatory agent lenalidomide. These results provide the rationale for evaluation of JAK inhibitors, including MM BM in combination with lenalidomide, for the treatment of MM patients.
Collapse
Affiliation(s)
- Haiming Chen
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - Mingjie Li
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - Eric Sanchez
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - Camilia M Soof
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - Sean Bujarski
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - Nicole Ng
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - Jasmin Cao
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - Tara Hekmati
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - Brian Zahab
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - Jason D Nosrati
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - Mingxiang Wen
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - Cathy S Wang
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - George Tang
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | - Ning Xu
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| | | | - James R Berenson
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA
| |
Collapse
|
42
|
Miki Y, Morioka T, Shioi A, Fujimoto K, Sakura T, Uedono H, Kakutani Y, Ochi A, Mori K, Shoji T, Emoto M, Inaba M. Oncostatin M induces C2C12 myotube atrophy by modulating muscle differentiation and degradation. Biochem Biophys Res Commun 2019; 516:951-956. [PMID: 31272716 DOI: 10.1016/j.bbrc.2019.06.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023]
Abstract
Oncostatin M (OSM) is a cytokine of the interleukin-6 family and plays a role in various disorders such as cancer and inflammatory diseases, which are often accompanied by skeletal muscle atrophy, or sarcopenia. However, the role of OSM in the regulation of skeletal muscle mass remains to be identified. In this study, we investigated the effect of OSM on C2C12 myotube formation in vitro. C2C12 myoblasts were induced to differentiate into myotubes for 3 days and then treated with OSM for 24 or 48 h. The diameter of differentiated C2C12 myotubes were reduced by 18.7% and 23.3% compared to control cells after treatment with OSM for 24 and 48 h, respectively. The expression levels of MyoD and myogenin were decreased, while those of atrogin-1, CCAAT/enhancer binding protein δ, and OSM receptor were increased in C2C12 myotubes treated with OSM for 24 h compared to control cells. Furthermore, the inhibitory effect of OSM on myotube formation was significantly attenuated by pretreatment with an inhibitor of signal transducer and activator of transcription (STAT) 3 or by knockdown of Stat3. Finally, the OSM-induced changes in the expression levels of MyoD, myogenin, and atrogin-1 were reversed by pretreatment with an inhibitor of STAT3 or by Stat3 knockdown in C2C12 myotubes. In conclusion, OSM induces C2C12 myotube atrophy by inhibiting myogenic differentiation and activating muscle degradation in a STAT3-dependent manner.
Collapse
Affiliation(s)
- Yuya Miki
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tomoaki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Atsushi Shioi
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Vascular Science Center for Translational Research, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kenta Fujimoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Takeshi Sakura
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hideki Uedono
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yoshinori Kakutani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Akinobu Ochi
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Vascular Science Center for Translational Research, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan; Vascular Science Center for Translational Research, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
43
|
Soundharrajan I, Kim DH, Kuppusamy P, Choi KC. Modulation of osteogenic and myogenic differentiation by a phytoestrogen formononetin via p38MAPK-dependent JAK-STAT and Smad-1/5/8 signaling pathways in mouse myogenic progenitor cells. Sci Rep 2019; 9:9307. [PMID: 31243298 PMCID: PMC6594940 DOI: 10.1038/s41598-019-45793-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/12/2019] [Indexed: 11/09/2022] Open
Abstract
Formononetin (FN), a typical phytoestrogen has attracted substantial attention as a novel agent because of its diverse biological activities including, osteogenic differentiation. However, the molecular mechanisms underlying osteogenic and myogenic differentiation by FN in C2C12 progenitor cells remain unknown. Therefore the objective of the current study was to investigate the action of FN on myogenic and osteogenic differentiation and its impact on signaling pathways in C2C12 cells. FN significantly increased myogenic markers such as Myogenin, myosin heavy chains, and myogenic differentiation 1 (MyoD). In addition, the expression of osteogenic specific genes alkaline phosphatase (ALP), Run-related transcription factor 2(RUNX2), and osteocalcin (OCN) were up-regulated by FN treatment. Moreover, FN enhanced the ALP level, calcium deposition and the expression of bone morphogenetic protein isoform (BMPs). Signal transduction pathways mediated by p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-related kinases (ERKs), protein kinase B (Akt), Janus kinases (JAKs), and signal transducer activator of transcription proteins (STATs) in myogenic and osteogenic differentiation after FN treatment were also examined. FN treatment activates myogenic differentiation by increasing p38MAPK and decreasing JAK1-STAT1 phosphorylation levels, while osteogenic induction was enhanced by p38MAPK dependent Smad, 1/5/8 signaling pathways in C2C12 progenitor cells.
Collapse
Affiliation(s)
- Ilavenil Soundharrajan
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Da Hye Kim
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY, 40536, USA
| | - Palaniselvam Kuppusamy
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea.
| |
Collapse
|
44
|
Moresi V, Adamo S, Berghella L. The JAK/STAT Pathway in Skeletal Muscle Pathophysiology. Front Physiol 2019; 10:500. [PMID: 31114509 PMCID: PMC6502894 DOI: 10.3389/fphys.2019.00500] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is a key intracellular mediator of a variety of metabolically relevant hormones and cytokines, including the interleukin-6 (IL-6) family of cytokines. The JAK/STAT pathway transmits extracellular signals to the nucleus, leading to the transcription of genes involved in multiple biological activities. The JAK/STAT pathway has been reported to be required for the homeostasis of different tissues and organs. Indeed, when deregulated, it promotes the initiation and progression of pathological conditions, including cancer, obesity, diabetes, and other metabolic diseases. In skeletal muscle, activation of the JAK/STAT pathway by the IL-6 cytokines accounts for opposite effects: on the one hand, it promotes muscle hypertrophy, by increasing the proliferation of satellite cells; on the other hand, it contributes to muscle wasting. The expression of IL-6 and of key members of the JAK/STAT pathway is regulated at the epigenetic level through histone methylation and histone acetylation mechanisms. Thus, manipulation of the JAK/STAT signaling pathway by specific inhibitors and/or drugs that modulate epigenetics is a promising therapeutic intervention for the treatment of numerous diseases. We focus this review on the JAK/STAT pathway functions in striated muscle pathophysiology and the potential role of IL-6 as an effector of the cross talk between skeletal muscle and other organs.
Collapse
Affiliation(s)
- Viviana Moresi
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Sergio Adamo
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Libera Berghella
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
45
|
Wang C, Sun H, Zhong Y. Notoginsenoside R1 promotes MC3T3-E1 differentiation by up-regulating miR-23a via MAPK and JAK1/STAT3 pathways. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:603-609. [PMID: 30831034 DOI: 10.1080/21691401.2019.1573189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chunsheng Wang
- Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Huanwei Sun
- Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Yiming Zhong
- Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| |
Collapse
|
46
|
Swiderski K, Caldow MK, Naim T, Trieu J, Chee A, Koopman R, Lynch GS. Deletion of suppressor of cytokine signaling 3 (SOCS3) in muscle stem cells does not alter muscle regeneration in mice after injury. PLoS One 2019; 14:e0212880. [PMID: 30811469 PMCID: PMC6392323 DOI: 10.1371/journal.pone.0212880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/11/2019] [Indexed: 11/19/2022] Open
Abstract
Muscles of older animals are more susceptible to injury and regenerate poorly, in part due to a persistent inflammatory response. The janus kinase (Jak)/signal transducer and activator of transcription (Stat) pathway mediates inflammatory signaling and is tightly regulated by the suppressor of cytokine signaling (SOCS) proteins, especially SOCS3. SOCS3 expression is altered in the muscle of aged animals and may contribute to the persistent inflammation and impaired regeneration. To test this hypothesis, we performed myotoxic injuries on mice with a tamoxifen-inducible deletion of SOCS3 specifically within the muscle stem cell compartment. Muscle stem cell-specific SOCS3 deletion reduced muscle mass at 14 days post-injury (-14%, P < 0.01), altered the myogenic transcriptional program, and reduced myogenic fusion based on the number of centrally-located nuclei per muscle fiber. Despite the delay in myogenesis, muscles with a muscle stem cell-specific deletion of SOCS3 were still able to regenerate after a single bout or multiple bouts of myotoxic injury. A reduction in SOCS3 expression in muscle stem cells is unlikely to be responsible for the incomplete muscle repair in aged animals.
Collapse
Affiliation(s)
- Kristy Swiderski
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Marissa K. Caldow
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Annabel Chee
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - René Koopman
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Gordon S. Lynch
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
47
|
Muscle transcriptome signature and gene regulatory network analysis in two divergent lines of a hilly bovine species Mithun (Bos frontalis). Genomics 2019; 112:252-262. [PMID: 30822468 DOI: 10.1016/j.ygeno.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 11/23/2022]
Abstract
A massive bovine, Bos frontalis, also known as Mithun or Gayal, found at higher altitude is very promising meat and milk animal. For candidate gene and marker discovery, RNA-seq data was generated from longissimus dorsi muscle tissues with Illumina-HiSeq. Such markers can be used in future for genetic gain of traits like feed conversion efficiency (FCE) and average daily gain (ADG). Analysis revealed 297differentially expressed genes (DEGs) having 173 up and 124 down-regulated unigenes. Extensive conservation was found in genic region while comparing with Bos taurus. Analysis revealed 57 pathways having 112 enzymes, 72 transcriptional factors and cofactors, 212 miRNAs regulating 71 DEGs, 25,855 SSRs, mithun-specific 104,822 variants and 7288 indels, gene regulatory network (GRN) having 24 hub-genes and transcriptional factors regulating cell proliferation, immune tolerance and myogenesis. This is first report of muscle transcriptome depicting candidate genes with GRN controlling FCE and ADG. Reported putative molecular markers, candidate genes and hub proteins can be valuable genomic resources for association studies in genetic improvement programme.
Collapse
|
48
|
Park JK, Kim YS, Kang SU, Lee YS, Won HR, Kim CH. Nonthermal atmospheric plasma enhances myoblast differentiation by eliciting STAT3 phosphorylation. FASEB J 2018; 33:4097-4106. [PMID: 30548079 DOI: 10.1096/fj.201800695rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of nonthermal atmospheric plasma (NTP) in the biomedical field has recently expanded into cell death induction in cancer, infection prevention, inflammation treatment, and wound-healing enhancement. NTP has been demonstrated to enhance skin and muscle regeneration, but its effects on tissue regeneration, following deep tissue or muscle damage, remains underinvestigated. In this study, we determined the effects of NTP on muscle differentiation and the mechanisms of NTP's contribution to differentiation and regeneration. NTP treatment enhanced cell differentiation in primary normal human skeletal muscle myoblast cells and increased the relative expression of mRNA levels of MyoD which is one of the earliest markers of myogenic commitment, and myogenin, which are important transcription factors required for myogenic differentiation. Furthermore, NTP treatment induced increases in the levels of myosin heavy chain, a differentiated muscle-specific protein, and in myotube formation of myoblasts. We observed that signal transducer and activator of transcription 3 (STAT3) activation induced by NTP treatment affects the myogenic differentiation. In addition, STAT3 phosphorylation was also enhanced by NTP treatment in injured animal muscle. These findings indicate that NTP could enhance musculoskeletal differentiation by acting as an external stimulus for myoblast differentiation, suggesting its treatment potential in promoting regeneration of damaged muscle.-Park, J. K., Kim, Y. S., Kang, S. U., Lee, Y. S., Won, H.-R., Kim, C.-H. Nonthermal atmospheric plasma enhances myoblast differentiation by eliciting STAT3 phosphorylation.
Collapse
Affiliation(s)
- Ju Kyeong Park
- Laboratory Animal Resources Division, Toxicological Evaluation Research Department, National Institute of Food and Drug Safety Evaluation, Cheongju, South Korea
| | - Yeon Soo Kim
- Department of Otorhinolaryngology, Myunggok Medical Research Institute, Konyang University Hospital, Konyang University College of Medicine, Daejeon, South Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon, South Korea; and
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
49
|
Obi S, Nakajima T, Hasegawa T, Nakamura F, Sakuma M, Toyoda S, Tei C, Inoue T. Heat induces myogenic transcription factors of myoblast cells via transient receptor potential vanilloid 1 (Trpv1). FEBS Open Bio 2018; 9:101-113. [PMID: 30652078 PMCID: PMC6325605 DOI: 10.1002/2211-5463.12550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/25/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022] Open
Abstract
Exercise generates heat, blood flow, and metabolic changes, thereby inducing hypertrophy of skeletal muscle cells. However, the mechanism by which heat incudes hypertrophy in response to heat is not well known. Here, we hypothesized that heat would induce differentiation of myoblast cells. We investigated the underlying mechanism by which myoblast cells respond to heat. When mouse myoblast cells were exposed to 42 °C for over 30 min, the phosphorylation level of protein kinase C (PKC) and heat shock factor 1 (Hsf1) increased, and the mRNA and protein expression level of heat shock protein 70 (Hsp70) increased. Inhibitors of transient receptor potential vanilloid 1 (Trpv1), calmodulin, PKC, and Hsf1, and the small interfering RNA‐mediated knockdown of Trpv1 diminished those heat responses. Heat exposure increased the phosphorylation levels of thymoma viral proto‐oncogene 1 (Akt), mammalian target of rapamycin (mTOR), eukaryotic translation initiation factor 4E binding protein 1 (Eif4ebp1), and ribosomal protein S6 kinase, polypeptide 1 (S6K1). The knockdown of Trpv1 decreased these heat‐induced responses. Antagonists of Hsp70 inhibited the phosphorylation level of Akt. Finally, heat increased the protein expression level of skeletal muscle markers such as myocyte enhancer factor 2D, myogenic factor 5, myogenic factor 6, and myogenic differentiation 1. Heat also increased myotube formation. Knockdown of Trpv1 diminished heat‐induced increases of those proteins and myotube formation. These results indicate that heat induces myogenic transcription factors of myoblast cells through the Trpv1, calmodulin, PKC, Hsf1, Hsp70, Akt, mTOR, Eif4ebp1, and S6K1 pathway. Moreover, heat increases myotube formation through Trpv1.
Collapse
Affiliation(s)
- Syotaro Obi
- Research Support Center Dokkyo Medical University Tochigi Japan.,Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan.,Heart Center Dokkyo Medical University Hospital Tochigi Japan
| | - Takaaki Hasegawa
- Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan
| | - Fumitaka Nakamura
- Third Department of Internal Medicine Teikyo University Chiba Medical Center Japan
| | - Masashi Sakuma
- Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan.,Heart Center Dokkyo Medical University Hospital Tochigi Japan
| | - Chuwa Tei
- Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan
| | - Teruo Inoue
- Research Support Center Dokkyo Medical University Tochigi Japan.,Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan.,Heart Center Dokkyo Medical University Hospital Tochigi Japan
| |
Collapse
|
50
|
Khaliq M, Ko S, Liu Y, Wang H, Sun Y, Solnica-Krezel L, Shin D. Stat3 Regulates Liver Progenitor Cell-Driven Liver Regeneration in Zebrafish. Gene Expr 2018; 18:157-170. [PMID: 29690953 PMCID: PMC6190120 DOI: 10.3727/105221618x15242506133273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After liver injury, regeneration manifests as either (1) hepatocytes proliferating to restore the lost hepatocyte mass or (2) if hepatocyte proliferation is compromised, biliary epithelial cells (BECs) dedifferentiating into liver progenitor cells (LPCs), which subsequently differentiate into hepatocytes. Following pharmacogenetic ablation of hepatocytes in Tg(fabp10a:CFP-NTR) zebrafish, resulting in severe liver injury, signal transducer and activator of transcription 3 (Stat3) and its target gene and negative regulator, socs3a, were upregulated in regenerating livers. Using either Stat3 inhibitors, JSI-124 and S3I-201, or stat3 zebrafish mutants, we investigated the role of Stat3 in LPC-driven liver regeneration. Although Stat3 suppression reduced the size of regenerating livers, BEC dedifferentiation into LPCs was unaffected. However, regenerating livers displayed a delay in LPC-to-hepatocyte differentiation and a significant reduction in the number of BECs. While no difference in cell death was detected, Stat3 inhibition significantly reduced LPC proliferation. Notably, stat3 mutants phenocopied the effects of Stat3 chemical inhibitors, although the mutant phenotype was incompletely penetrant. Intriguingly, a subset of socs3a mutants also displayed a lower number of BECs in regenerating livers. We conclude that the Stat3/Socs3a pathway is necessary for the proper timing of LPC-to-hepatocyte differentiation and establishing the proper number of BECs during LPC-driven liver regeneration.
Collapse
Affiliation(s)
- Mehwish Khaliq
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sungjin Ko
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yinzi Liu
- †Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hualin Wang
- ‡China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Yonghua Sun
- ‡China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Lila Solnica-Krezel
- †Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Donghun Shin
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|