1
|
Zhou Q, Hao Y, Jie J, Wang S, Xia Y, Yang C, Liu L, Fang WH, Su H. Dual Functionality of 6-Methylthioguanine: Synergistic Effects Enhancing the Photolability of DNA Nucleobases. JACS AU 2024; 4:441-453. [PMID: 38425924 PMCID: PMC10900203 DOI: 10.1021/jacsau.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/02/2024]
Abstract
A small chemical modification of the nucleobase structure can significantly enhance the photoactivity of DNA, which may incur DNA damage, thus holding promising applications in photochemotherapy treatment of cancers or pathogens. However, single substitution confers only limited phototoxicity to DNA. Herein, we combine femtosecond and nanosecond time-resolved spectroscopy with high-level ab initio calculations to disentangle the excited-state dynamics of 6-methylthioguanine (me6-TG) under variable wavelength UVA excitation (310-330 nm). We find that double substitution of nucleobases (thionation and methylation) boosts the photoactivity by introducing more reactive channels. Intriguingly, 1nNπ*, rather than 1nSπ*, acts as the doorway state engendering the formation of the long-lived reactive triplet state in me6-TG. The 1nNπ* induces a low spin-orbit coupling of 8.3 cm-1, which increases the intersystem crossing (ISC) time (2.91 ± 0.14 ns). Despite the slowed ISC, the triplet quantum yield (ΦT) still accounts for a large fraction (0.6 ± 0.1), consistent with the potential energy surface that favors excited-state bifurcation to 1nNπ*min (3.36 ± 0.15 ps) rather than 1ππ*min (5.05 ± 0.26 ps), such that the subsequent ISC to triplet via 1nNπ*min constitutes the main relaxation pathway in me6-TG. Although this ΦT is inferior to its single-substituted predecessor 6-thioguanine (6-TG, 0.8 ± 0.2), the effect of thionation in synergy with methylation opens a unique C-S bond cleavage pathway through crossing to a repulsive 1πσ* state, generating thiyl radicals as highly reactive intermediates that may invoke biological damage. This photodissociation channel is extremely difficult for conventional nucleobases. These findings demonstrate the synergistic effects of double functionality substitution in modulating excited-state dynamics and enhancing the photolabile character of DNA nucleobases, providing inspirations for the rational design of advanced photodynamic and photochemotherapy approaches.
Collapse
Affiliation(s)
| | | | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shuo Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ye Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chunfan Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lihong Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Dong J, Huang C, Guo S, Xia Y, Hou Y, Yang C, Zhang X, Jie J, Zhu BZ, Su H. Free-Radical-Mediated Photoinduced Electron Transfer between 6-Thioguanine and Tryptophan Leading to DNA-Protein-Like Cross-Link. J Phys Chem B 2021; 126:14-22. [PMID: 34951313 DOI: 10.1021/acs.jpcb.1c03380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleobase analog 6-thioguanine (6-TG) has emerged as important immunosuppressant, anti-inflammatory, and anticancer drug in the past few decades, but its unique photosensitivity of absorbing strongly ultraviolet UVA light elicits photochemical hazards in many ways. The particularly intriguing yet unresolved question is whether the direct photoreaction of 6-TG can promote DNA-protein cross-links (DPCs) formation, which are large DNA adducts blocking DNA replication and physically impede DNA-related processes. Herein, by real-time observation of radical intermediates using time-resolved UV-vis absorption spectroscopy in conjunction with product analysis by HPLC-MS, we discover that UVA excitation of 6-TG triggers direct covalent cross-linking with tryptophan (TrpH) via an exquisite radical mechanism of electron transfer. The photoexcitation prepares the redox-active triplet 36-TG*, which initiates electron transfer with TrpH, creating TrpH•+ and 6-TG•- in the first step. The deprotonated Trp• undergoes radical-recombination with its geminate partner 6-TG•- and eliminates a H2S, leading to the cross-linking product 6-TG-Trp. The photoadduct structures (two chiral isomers and one constitutional isomer) are identified unambiguously, validating further the mechanism. These findings pinpoint the exact amino acid that is vulnerable to photo-cross-linking with 6-TG and establish a mechanistic framework for understanding mutagenic DPCs formation and developing photoprobes based on this new type of photo-cross-linking.
Collapse
Affiliation(s)
- Junjie Dong
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Chunhua Huang
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Shaoshi Guo
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ye Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yue Hou
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Chunfan Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xianwang Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ben-Zhan Zhu
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
3
|
Zee BM, Poels KE, Yao CH, Kawabata KC, Wu G, Duy C, Jacobus WD, Senior E, Endress JE, Jambhekar A, Lovitch SB, Ma J, Dhall A, Harris IS, Blanco MA, Sykes DB, Licht JD, Weinstock DM, Melnick A, Haigis MC, Michor F, Shi Y. Combined epigenetic and metabolic treatments overcome differentiation blockade in acute myeloid leukemia. iScience 2021; 24:102651. [PMID: 34151238 PMCID: PMC8192696 DOI: 10.1016/j.isci.2021.102651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
A hallmark of acute myeloid leukemia (AML) is the inability of self-renewing malignant cells to mature into a non-dividing terminally differentiated state. This differentiation block has been linked to dysregulation of multiple cellular processes, including transcriptional, chromatin, and metabolic regulation. The transcription factor HOXA9 and the histone demethylase LSD1 are examples of such regulators that promote differentiation blockade in AML. To identify metabolic targets that interact with LSD1 inhibition to promote myeloid maturation, we screened a small molecule library to identify druggable substrates. We found that differentiation caused by LSD1 inhibition is enhanced by combined perturbation of purine nucleotide salvage and de novo lipogenesis pathways, and identified multiple lines of evidence to support the specificity of these pathways and suggest a potential basis of how perturbation of these pathways may interact synergistically to promote myeloid differentiation. In sum, these findings suggest potential drug combination strategies in the treatment of AML.
Collapse
Affiliation(s)
- Barry M. Zee
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, OX3 7DQ, UK
| | - Kamrine E. Poels
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cong-Hui Yao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kimihito C. Kawabata
- Division of Hematology-Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Cihangir Duy
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - William D. Jacobus
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Elizabeth Senior
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Ashwini Jambhekar
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- The Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Scott B. Lovitch
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jiexian Ma
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Abhinav Dhall
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, OX3 7DQ, UK
| | - Isaac S. Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - M. Andres Blanco
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan D. Licht
- Division of Hematology and Oncology, University of Florida Health Care Center, Gainesville, FL 32610, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Biology Program, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Ari Melnick
- Division of Hematology-Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marcia C. Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Franziska Michor
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- The Ludwig Center at Harvard, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yang Shi
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, OX3 7DQ, UK
| |
Collapse
|
4
|
Manohar S, Thongprayoon C, Cheungpasitporn W, Markovic SN, Herrmann SM. Systematic Review of the Safety of Immune Checkpoint Inhibitors Among Kidney Transplant Patients. Kidney Int Rep 2020; 5:149-158. [PMID: 32043028 PMCID: PMC7000848 DOI: 10.1016/j.ekir.2019.11.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Kidney transplant (Ktx) recipients are excluded from clinical trials of immune checkpoint inhibitors. The aim of this systematic review was to assess the safety of immune checkpoint inhibitors among Ktx patients. METHODS A literature search was conducted using MEDLINE, EMBASE, and Cochrane Database from inception through April 2019. We included studies that reported outcomes of Ktx recipients who received immune checkpoint inhibitors for cancer treatment. Outcomes of interest were allograft rejection and/or allograft failure. RESULTS Twenty-seven articles with a total of 44 Ktx patients treated with immune checkpoint inhibitor were identified. Of 44 Ktx patients, 18 were reported to have acute rejection. Median time from immune checkpoint inhibitors to acute rejection diagnosis was 24 (interquartile range, 10-60) days. Reported types of acute allograft rejection were cellular rejection (33%), mixed cellular and antibody-mediated rejection (17%), and unspecified type (50%). Fifteen (83%) had allograft failure and 8 (44%) died. Three patients had a partial remission (17%), 1 patient achieved cancer response (6%), and 5 patients had stable disease (28%). CONCLUSION The findings of our study raise awareness of the increased risk for acute allograft rejection/failure following immune checkpoint inhibitors for cancer treatment among Ktx patients, in particular with programmed cell death 1 (PD-1) inhibitors. Future large-scale clinical studies are required to appraise the pathogenesis and plan optimal balanced therapy that helps sustain graft tolerance.
Collapse
Affiliation(s)
- Sandhya Manohar
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Wisit Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Sandra M. Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Bayoumy AB, Simsek M, Seinen ML, Mulder CJJ, Ansari A, Peters GJ, De Boer NK. The continuous rediscovery and the benefit-risk ratio of thioguanine, a comprehensive review. Expert Opin Drug Metab Toxicol 2020; 16:111-123. [PMID: 32090622 DOI: 10.1080/17425255.2020.1719996] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Introduction: In the 1950s, thioguanine (TG), a thiopurine-derivative together with azathioprine (AZA) and mercaptopurine (MP), were developed for the treatment of childhood leukemia. Over the years, the use of TG was also explored for other, mainly immune-mediated and inflammatory, diseases such as in the field of dermatology and rheumatology (e.g. psoriasis, systemic lupus erythematosus (SLE)) and gastroenterology and hepatology (e.g. inflammatory bowel diseases (IBD), autoimmune hepatitis).Areas covered: This review provides a comprehensive overview of all the clinical uses of TG and describes its mechanism of action, pharmacokinetic/pharmacodynamic features, and toxicity.Expert opinion: Thioguanine has shown beneficial clinical effects in hematological (particularly leukemia) and several immune-inflammatory diseases including psoriasis, SLE, polycythemia vera, Churg-Strauss syndrome, IBD, collagenous sprue, refractory celiac disease, and autoimmune hepatitis. Thioguanine is not effective in treating solid-cancers. At relatively low dosages, i.e. 0.2- 0.3mg/kg/day or 20 mg/day, TG has a favorable risk-benefit ratio and is a safe and effective drug in the long-term treatment of amongst other IBD patients. Thioguanine toxicity, especially myelotoxicity, and hepatotoxicity, including nodular regenerative hyperplasia (NRH) of the liver, is limited when dosed adequately. The occurrence of NRH appears dose-dependent and has been especially described during high dose TG above 40 mg/day.
Collapse
Affiliation(s)
- Ahmed B Bayoumy
- Amsterdam UMC, Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, Netherlands
| | - Melek Simsek
- Amsterdam UMC, Department of Gastroenterology and Hepatology, VU University Medical Center, AG&M Research Institute, Amsterdam, Netherlands
| | - Margien L Seinen
- Amsterdam UMC, Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, Netherlands
| | - Chris J J Mulder
- Amsterdam UMC, Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, Netherlands
| | - Azhar Ansari
- Department of Gastroenterology, Surrey and Sussex NHS, Easy Surrey Hospital, Surrey, UK
| | - Godefridus J Peters
- Amsterdam UMC, VU University Medical Center, Laboratory Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Nanne K De Boer
- Amsterdam UMC, Department of Gastroenterology and Hepatology, VU University Medical Center, AG&M Research Institute, Amsterdam, Netherlands
| |
Collapse
|
6
|
Li B, Brady SW, Ma X, Shen S, Zhang Y, Li Y, Szlachta K, Dong L, Liu Y, Yang F, Wang N, Flasch DA, Myers MA, Mulder HL, Ding L, Liu Y, Tian L, Hagiwara K, Xu K, Zhou X, Sioson E, Wang T, Yang L, Zhao J, Zhang H, Shao Y, Sun H, Sun L, Cai J, Sun HY, Lin TN, Du L, Li H, Rusch M, Edmonson MN, Easton J, Zhu X, Zhang J, Cheng C, Raphael BJ, Tang J, Downing JR, Alexandrov LB, Zhou BBS, Pui CH, Yang JJ, Zhang J. Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood 2020; 135:41-55. [PMID: 31697823 PMCID: PMC6940198 DOI: 10.1182/blood.2019002220] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022] Open
Abstract
To study the mechanisms of relapse in acute lymphoblastic leukemia (ALL), we performed whole-genome sequencing of 103 diagnosis-relapse-germline trios and ultra-deep sequencing of 208 serial samples in 16 patients. Relapse-specific somatic alterations were enriched in 12 genes (NR3C1, NR3C2, TP53, NT5C2, FPGS, CREBBP, MSH2, MSH6, PMS2, WHSC1, PRPS1, and PRPS2) involved in drug response. Their prevalence was 17% in very early relapse (<9 months from diagnosis), 65% in early relapse (9-36 months), and 32% in late relapse (>36 months) groups. Convergent evolution, in which multiple subclones harbor mutations in the same drug resistance gene, was observed in 6 relapses and confirmed by single-cell sequencing in 1 case. Mathematical modeling and mutational signature analysis indicated that early relapse resistance acquisition was frequently a 2-step process in which a persistent clone survived initial therapy and later acquired bona fide resistance mutations during therapy. In contrast, very early relapses arose from preexisting resistant clone(s). Two novel relapse-specific mutational signatures, one of which was caused by thiopurine treatment based on in vitro drug exposure experiments, were identified in early and late relapses but were absent from 2540 pan-cancer diagnosis samples and 129 non-ALL relapses. The novel signatures were detected in 27% of relapsed ALLs and were responsible for 46% of acquired resistance mutations in NT5C2, PRPS1, NR3C1, and TP53. These results suggest that chemotherapy-induced drug resistance mutations facilitate a subset of pediatric ALL relapses.
Collapse
Affiliation(s)
- Benshang Li
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital-Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Karol Szlachta
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Li Dong
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Fan Yang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningling Wang
- Department of Pediatrics, the Second Hospital of Anhui Medical University, Hefei, China
| | - Diane A Flasch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Matthew A Myers
- Department of Computer Science, Princeton University, Princeton, NJ
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Lixia Ding
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Ke Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Tianyi Wang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
| | - Liu Yang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
| | - Jie Zhao
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
| | - Hui Zhang
- Department of Pediatric Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Lele Sun
- WuXi NextCODE Co., Ltd, Shanghai, China
| | - Jiaoyang Cai
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
| | - Hui-Ying Sun
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
| | | | - Lijuan Du
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital-Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jingliao Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital-Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | | | | | - Jingyan Tang
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, TN
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA; and
| | - Bin-Bing S Zhou
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center-National Children's Medical Center, and
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
7
|
Wareham NE, Li Q, Sengeløv H, Da Cunha-Bang C, Gustafsson F, Heilmann C, Perch M, Rasmussen A, Sørensen SS, Mocroft A, Lundgren JD. "Risk of de novo or secondary cancer after solid organ or allogeneic haematopoietic stem cell transplantation". J Cancer Res Clin Oncol 2019; 145:3125-3135. [PMID: 31587105 DOI: 10.1007/s00432-019-03039-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Solid organ (SOT) and allogeneic haematopoietic stem cell (HSCT) transplant recipients have elevated risks of de novo or secondary cancer. We explored risk factors hereof. METHODS Among SOT and HSCT between January 2004 and December 2014, standardised incidence ratio (SIR) of de novo/secondary cancer compared with the Danish population was determined and risk factors were identified using Poisson regression. RESULTS During a median of 3.4 (IQR 1.3-6.4) and 2.6 (0.8-5.4) person-years (PY) after SOT and HSCT, a total of 212/1656 (13%) and 75/992 (8%) persons developed cancer; SIR 3.61 (3.0-4.3) and 2.2 (1.6-3.0), resp.). SIR correlated with younger age and was highest for skin and haematological cancers for both types of transplantation. Within the cohort, cancer was associated with older age (adjusted incidence rate ratio > 50 vs ≤ 19 years, among SOT and HSCT: 9.4 (3.4-25.7) and 25.4 (5.1-126.0), resp.) and current elevated C-reactive protein (CRP) (≥ 10 vs < 10 mg/L: 2.5 (1.8-3.4) and 2.3 (1.4-3.9), resp.), but neither with prior cancer nor type of immunosuppressants. CONCLUSION Rates of de novo or secondary cancers are elevated in both SOT and HSCT compared with the general population and mainly for skin and haematological cancers. Among transplant recipients, older age and current elevated CRP are risk factors.
Collapse
Affiliation(s)
- Neval E Wareham
- CHIP, Department of Infectious Diseases, Centre for Cardiac, Pulmonary and Infectious Diseases Vascular, University of Copenhagen, Rigshospitalet, Section 2100, Blegdamsvej 9, 2100 Copenhagen, Copenhagen Ø, Denmark.
| | - Qiuju Li
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), University College London, London, UK
| | - Henrik Sengeløv
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | | | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | | | - Michael Perch
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Allan Rasmussen
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen, Denmark
| | | | - Amanda Mocroft
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), University College London, London, UK
| | - Jens D Lundgren
- CHIP, Department of Infectious Diseases, Centre for Cardiac, Pulmonary and Infectious Diseases Vascular, University of Copenhagen, Rigshospitalet, Section 2100, Blegdamsvej 9, 2100 Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
8
|
Biological Evaluation of DNA Biomarkers in a Chemically Defined and Site-Specific Manner. TOXICS 2019; 7:toxics7020036. [PMID: 31242562 PMCID: PMC6631660 DOI: 10.3390/toxics7020036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
Abstract
As described elsewhere in this Special Issue on biomarkers, much progress has been made in the detection of modified DNA within organisms at endogenous and exogenous levels of exposure to chemical species, including putative carcinogens and chemotherapeutic agents. Advances in the detection of damaged or unnatural bases have been able to provide correlations to support or refute hypotheses between the level of exposure to oxidative, alkylative, and other stresses, and the resulting DNA damage (lesion formation). However, such stresses can form a plethora of modified nucleobases, and it is therefore difficult to determine the individual contribution of a particular modification to alter a cell's genetic fate, as measured in the form of toxicity by stalled replication past the damage, by subsequent mutation, and by lesion repair. Chemical incorporation of a modification at a specific site within a vector (site-specific mutagenesis) has been a useful tool to deconvolute what types of damage quantified in biologically relevant systems may lead to toxicity and/or mutagenicity, thereby allowing researchers to focus on the most relevant biomarkers that may impact human health. Here, we will review a sampling of the DNA modifications that have been studied by shuttle vector techniques.
Collapse
|
9
|
Kirsanova OV, Sergeev AV, Yasko IS, Gromova ES. The impact of 6-thioguanine incorporation into DNA on the function of DNA methyltransferase Dnmt3a. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:392-405. [PMID: 28498075 DOI: 10.1080/15257770.2017.1287921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The incorporation of chemotherapeutic agent 6-thioguanine (SG) into DNA is a prerequisite for its cytotoxic action. This modification of DNA impedes the activity of enzymes involved in DNA repair and replication. Here, using hemimethylated DNA substrates we demonstrated that DNA methylation by Dnmt3a-CD is reduced if DNA is damaged by the incorporation of SG into one or two CpG sites separated by nine base pairs. An increase in the number of SG substitutions did not enhance the effect. Dnmt3a-CD binding to either of SG-containing DNA substrates was not distorted. Our results suggest that SG incorporation into DNA may influence epigenetic regulation via DNA methylation.
Collapse
Affiliation(s)
- Olga V Kirsanova
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Alexander V Sergeev
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Ivan S Yasko
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Elizaveta S Gromova
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
10
|
Patra A, Su Y, Zhang Q, Johnson KM, Guengerich FP, Egli M. Structural and Kinetic Analysis of Miscoding Opposite the DNA Adduct 1,N6-Ethenodeoxyadenosine by Human Translesion DNA Polymerase η. J Biol Chem 2016; 291:14134-14145. [PMID: 27226627 PMCID: PMC4933172 DOI: 10.1074/jbc.m116.732487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/13/2016] [Indexed: 01/12/2023] Open
Abstract
1,N(6)-Ethenodeoxyadenosine (1,N(6)-ϵdA) is the major etheno lesion formed in the reaction of DNA with epoxides substituted with good leaving groups (e.g. vinyl chloride epoxide). This lesion is also formed endogenously in DNA from lipid oxidation. Recombinant human DNA polymerase η (hpol η) can replicate oligonucleotide templates containing 1,N(6)-ϵdA. In steady-state kinetic analysis, hpol η preferred to incorporate dATP and dGTP, compared with dTTP. Mass spectral analysis of incorporation products also showed preferred purine (A, G) incorporation and extensive -1 frameshifts, suggesting pairing of the inserted purine and slippage before further replication. Five x-ray crystal structures of hpol η ternary complexes were determined, three at the insertion and two at the extension stage. Two insertion complexes revealed incoming non-hydrolyzable dATP or dGTP analogs not pairing with but instead in a staggered configuration relative to 1,N(6)-ϵdA in the anti conformation, thus opposite the 5'-T in the template, explaining the proclivity for frameshift misincorporation. In another insertion complex, dTTP was positioned opposite 1,N(6)-ϵdA, and the adduct base was in the syn conformation, with formation of two hydrogen bonds. At the extension stage, with either an incorporated dA or dT opposite 1,N(6)-ϵdA and 2'-deoxythymidine-5'-[(α,β)-imido]triphosphate opposite the 5'-A, the 3'-terminal nucleoside of the primer was disordered, consistent with the tendency not to incorporate dTTP opposite 1,N(6)-ϵdA. Collectively, the results show a preference for purine pairing opposite 1,N(6)-ϵdA and for -1 frameshifts.
Collapse
Affiliation(s)
- Amritraj Patra
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Yan Su
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Qianqian Zhang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Kevin M Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
11
|
You C, Wang Y. Mass Spectrometry-Based Quantitative Strategies for Assessing the Biological Consequences and Repair of DNA Adducts. Acc Chem Res 2016; 49:205-13. [PMID: 26758048 DOI: 10.1021/acs.accounts.5b00437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The genetic integrity of living organisms is constantly threatened by environmental and endogenous sources of DNA damaging agents that can induce a plethora of chemically modified DNA lesions. Unrepaired DNA lesions may elicit cytotoxic and mutagenic effects and contribute to the development of human diseases including cancer and neurodegeneration. Understanding the deleterious outcomes of DNA damage necessitates the investigation about the effects of DNA adducts on the efficiency and fidelity of DNA replication and transcription. Conventional methods for measuring lesion-induced replicative or transcriptional alterations often require time-consuming colony screening and DNA sequencing procedures. Recently, a series of mass spectrometry (MS)-based strategies have been developed in our laboratory as an efficient platform for qualitative and quantitative analyses of the changes in genetic information induced by DNA adducts during DNA replication and transcription. During the past few years, we have successfully used these MS-based methods for assessing the replicative or transcriptional blocking and miscoding properties of more than 30 distinct DNA adducts. When combined with genetic manipulation, these methods have also been successfully employed for revealing the roles of various DNA repair proteins or translesion synthesis DNA polymerases (Pols) in modulating the adverse effects of DNA lesions on transcription or replication in mammalian and bacterial cells. For instance, we found that Escherichia coli Pol IV and its mammalian ortholog (i.e., Pol κ) are required for error-free bypass of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) in cells. We also found that the N(2)-CEdG lesions strongly inhibit DNA transcription and they are repaired by transcription-coupled nucleotide excision repair in mammalian cells. In this Account, we focus on the development of MS-based approaches for determining the effects of DNA adducts on DNA replication and transcription, where liquid chromatography-tandem mass spectrometry is employed for the identification, and sometimes quantification, of the progeny products arising from the replication or transcription of lesion-bearing DNA substrates in vitro and in mammalian cells. We also highlight their applications to lesion bypass, mutagenesis, and repair studies of three representative types of DNA lesions, that is, the methylglyoxal-induced N(2)-CEdG, oxidatively induced 8,5'-cyclopurine-2'-deoxynucleosides, and regioisomeric alkylated thymidine lesions. Specially, we discuss the similar and distinct effects of the minor-groove DNA lesions including N(2)-CEdG and O(2)-alkylated thymidine lesions, as well as the major-groove O(4)-alkylated thymidine lesions on DNA replication and transcription machinery. For example, we found that the addition of an alkyl group to the O(4) position of thymine may facilitate its preferential pairing with guanine and thus induce exclusively the misincorporation of guanine nucleotide opposite the lesion, whereas alkylation of thymine at the O(2) position may render the nucleobase unfavorable in pairing with any of the canonical nucleobases and thus exhibit promiscuous miscoding properties during DNA replication and transcription. The MS-based strategies described herein should be generally applicable for quantitative measurement of the biological consequences and repair of other DNA lesions in vitro and in cells.
Collapse
Affiliation(s)
- Changjun You
- Department
of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department
of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
12
|
Zhai Q, Wang P, Wang Y. Cytotoxic and mutagenic properties of regioisomeric O²-, N3- and O⁴-ethylthymidines in bacterial cells. Carcinogenesis 2014; 35:2002-6. [PMID: 24710626 DOI: 10.1093/carcin/bgu085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exposure to environmental agents and endogenous metabolism can both give rise to DNA alkylation. Thymine is known to be alkylated at O(2), N3 and O(4) positions; however, it remains poorly explored how the regioisomeric alkylated thymidine lesions compromise the flow of genetic information by perturbing DNA replication in cells. Herein, we assessed the differential recognition of the regioisomeric O(2)-, N3- and O(4)-ethylthymidine (O(2)-, N3- and O(4)-EtdT) by the DNA replication machinery of Escherichia coli cells. We found that O(4)-EtdT did not inhibit appreciably DNA replication, whereas O(2)- and N3-EtdT were strongly blocking to DNA replication. In addition, O(4)-EtdT induced a very high frequency of T→C mutation, whereas nucleotide incorporation opposite O(2)- and N3-EtdT was promiscuous. Replication experiments with the use of polymerase-deficient cells revealed that Pol V constituted the major polymerase for the mutagenic bypass of all three EtdT lesions, though Pol IV also contributed to the T→G mutation induced by O(2)- and N3-EtdT. The distinct cytotoxic and mutagenic properties of the three regioisomeric lesions could be attributed to their unique chemical properties.
Collapse
Affiliation(s)
| | - Pengcheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Wensing A, Gernold M, Jock S, Jansen R, Geider K. Identification and genetics of 6-thioguanine secreted by Erwinia species and its interference with the growth of other bacteria. Mol Genet Genomics 2013; 289:215-23. [DOI: 10.1007/s00438-013-0805-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
|
14
|
Xing XW, Liu YL, Vargas M, Wang Y, Feng YQ, Zhou X, Yuan BF. Mutagenic and cytotoxic properties of oxidation products of 5-methylcytosine revealed by next-generation sequencing. PLoS One 2013; 8:e72993. [PMID: 24066027 PMCID: PMC3774748 DOI: 10.1371/journal.pone.0072993] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
5-methylcytosine (5-mC) can be sequentially oxidized to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and finally to 5-carboxylcytosine (5-caC), which is thought to function in active DNA cytosine demethylation in mammals. Although the roles of 5-mC in epigenetic regulation of gene expression are well established, the effects of 5-hmC, 5-foC and 5-caC on DNA replication remain unclear. Here we report a systematic study on how these cytosine derivatives (5-hmC, 5-foC and 5-caC) perturb the efficiency and accuracy of DNA replication using shuttle vector technology in conjugation with next-g
sequencing. Our results demonstrated that, in Escherichia coli cells, all the cytosine derivatives could induce CT transition mutation at frequencies of 0.17%–1.12%, though no effect on replication efficiency was observed. These findings provide an important new insight on the potential mutagenic properties of cytosine derivatives occurring as the intermediates of DNA demethylation.
Collapse
Affiliation(s)
- Xi-Wen Xing
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Yu-Li Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Mario Vargas
- Department of Chemistry, University of California Riverside, Riverside, California, United States of America
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, California, United States of America
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Xiang Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, P.R. China
- * E-mail: (BFY); (XZ)
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, P.R. China
- * E-mail: (BFY); (XZ)
| |
Collapse
|
15
|
Zhang F, Fu L, Wang Y. 6-thioguanine induces mitochondrial dysfunction and oxidative DNA damage in acute lymphoblastic leukemia cells. Mol Cell Proteomics 2013; 12:3803-11. [PMID: 24043426 DOI: 10.1074/mcp.m113.029595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thiopurines are among the most successful chemotherapeutic agents used for treating various human diseases, including acute lymphoblastic leukemia and chronic inflammation. Although metabolic conversion and the subsequent incorporation of 6-thioguanine ((S)G) nucleotides into nucleic acids are considered important for allowing the thiopurine drugs to induce their cytotoxic effects, alternative mechanisms may also exist. We hypothesized that an unbiased analysis of (S)G-induced perturbation of the entire proteome might uncover novel mechanism(s) of action of the drug. We performed a quantitative assessment of global protein expression in control and (S)G-treated Jurkat T cells by employing stable isotope labeling by amino acids in cell culture and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. LC-MS/MS quantification results uncovered substantially decreased expression of a large number of proteins in the mitochondrial respiratory chain complex, and Ingenuity Pathway Analysis of the significantly altered proteins showed that (S)G treatment induced mitochondrial dysfunction. This was accompanied by diminished uptake of MitoTracker Deep Red and the elevated formation of oxidatively induced DNA lesions, including 8,5'-cyclo-2'-deoxyadenosine and 8,5'-cyclo-2'-deoxyguanosine. Together, our results suggested that (S)G may exert its cytotoxic effect by inducing mitochondrial dysfunction and reactive oxygen species formation in acute lymphoblastic leukemia cells.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | | | | |
Collapse
|
16
|
Abstract
Background: Lymphomatoid papulosis is a rare CD30+ lymphoproliferative T-cell disorder with limited effective treatments. Objective: We describe the case of a 50-year-old woman diagnosed with lymphomatoid papulosis who was unable to access phototherapy and who failed to clear while on systemic treatment with methotrexate. Methods: The patient was initiated on mycophenolate mofetil (MMF), a prodrug of mycophenolic acid, at a dose of 2 g divided twice daily. Results: MMF produced a rapid response with complete clearing within 8 weeks, and the patient has been successfully maintained for 2 years at the same dose with no noted side effects. Other patients in our clinic have had similar success. Conclusions: Mycophenolic acid is a safe and well-tolerated therapy for lymphomatoid papulosis.
Collapse
Affiliation(s)
- Trevor Champagne
- From the Division of Dermatology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Scott Walsh
- From the Division of Dermatology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| |
Collapse
|
17
|
Gómez-García M, Cabello-Tapia MJ, Sánchez-Capilla AD, Teresa-Galván JD, Redondo-Cerezo E. Thiopurines related malignancies in inflammatory bowel disease: local experience in Granada, Spain. World J Gastroenterol 2013; 19:4877-4886. [PMID: 23946592 PMCID: PMC3740417 DOI: 10.3748/wjg.v19.i30.4877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/25/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the incidence of neoplasms in inflammatory bowel disease (IBD) patients and the potential causative role of thiopurines. METHODS We performed an observational descriptive study comparing the incidence of malignancies in IBD patients treated with thiopurines and patients not treated with these drugs. We included 812 patients which were divided in two groups depending on whether they have received thiopurines or not. We have studied basal characteristics of both groups (age when the disease was diagnosed, sex, type of IBD, etc.) and treatments received (Azathioprine, mercaptopurine, infliximab, adalimumab or other immunomodulators), as well as neoplasms incidence. Univariate analysis was performed with the student t test, χ(2) test or Wilcoxon exact test as appropriate. A logistic regression analysis was performed as multivariate analysis. Statistical significance was establish at P values of less than 0.05, and 95%CI were used for the odds ratios. RESULTS Among 812 patients included, 429 (52.83%) have received thiopurines: 79.5% azathioprine, 14% mercaptopurine and 6.5% both drugs. 44.76% of patients treated with thiopurines and 46, 48% of patients who did not receive this treatment were women (P > 0.05). The proportion of ulcerative colitis patients treated with thiopurines was 30.3% compare to 66. 67% of patients not treated (P < 0.001). Mean azathioprine dose was 123.79 ± 36.5 mg/d (range: 50-250 mg/d), mean usage time was 72.16 ± 55.7 mo (range: 1-300 mo) and the accumulated dose along this time was 274.32 ± 233.5 g (1.5-1350 g). With respect to mercaptopurine, mean dose was 74.7 ± 23.9 mg/d (range: 25-150 mg/d), mean usage time of 23.37 ± 27.6 mo (range: 1-118 mo), and the accumulated dose along this time was 52.2 ± 63.5 g (range: 1.5-243 g). Thiopurine S-methyltransferase activity was tested in 66% of patients treated with thiopurines, among which 98.2% had an intermediate or high activity. Among the patients treated with thiopurines, 27.27% (112 patients) and 11.66% (50 patients) received treatment with Infliximab and Adalimumab respectively, but only 1.83% (7 patients) and 0.78% (3 patients) received these drugs in the group of patients who did not received thiopurines (P < 0.001 and P < 0.001 respectively). Finally, 6.8% (29 patients) among those treated with thiopurines have received other immunosuppressants (Methotrexate, Tacrolimus, Cyclosporin), compare to 1% (4 patients) of patients not treated with thiopurines (P < 0.001). Among patients treated with thiopurines, 3.97% developed a malignancy, and among those not treated neoplasms presented in 8.1% (P = 0.013). The most frequent neoplasms were colorectal ones (12 cases in patients not treated with thiopurines but none in treated, P < 0.001) followed by non-melanoma skin cancer (8 patients in treated with thiopurines and 6 in not treated, P > 0.05). CONCLUSION In our experience, thiopurine therapy did not increase malignancies development in IBD patients, and was an effective and safe treatment for these diseases.
Collapse
|
18
|
You C, Dai X, Yuan B, Wang Y. Effects of 6-thioguanine and S6-methylthioguanine on transcription in vitro and in human cells. J Biol Chem 2012; 287:40915-23. [PMID: 23076150 DOI: 10.1074/jbc.m112.418681] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Thiopurine drugs are extensively used as chemotherapeutic agents in clinical practice, even though there is concern about the risk of therapy-related cancers. It has been previously suggested that the cytotoxicity of thiopurine drugs involves their metabolic activation, the resultant generation of 6-thioguanine ((S)G) and S(6)-methylthioguanine (S(6)mG) in DNA, and the futile mismatch repair triggered by replication-induced (S)G:T and S(6)mG:T mispairs. Disruption of transcription is known to be one of the major consequences of DNA damage induced by many antiviral and antitumor agents; however, it remains undefined how (S)G and S(6)mG compromise the efficiency and fidelity of transcription. Using our recently developed competitive transcription and adduct bypass assay, herein we examined the impact of (S)G and S(6)mG on transcription in vitro and in human cells. Our results revealed that, when situated on the transcribed strand, S(6)mG exhibited both inhibitory and mutagenic effects during transcription mediated by single-subunit T7 RNA polymerase or multisubunit human RNA polymerase II in vitro and in human cells. Moreover, we found that the impact of S(6)mG on transcriptional efficiency and fidelity is modulated by the transcription-coupled nucleotide excision repair capacity. In contrast, (S)G did not considerably compromise the efficiency or fidelity of transcription, and it was a poor substrate for NER. We propose that S(6)mG might contribute, at least in part, to thiopurine-mediated cytotoxicity through inhibition of transcription and to potential therapy-related carcinogenesis via transcriptional mutagenesis.
Collapse
Affiliation(s)
- Changjun You
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | | | | | |
Collapse
|
19
|
Hosni-Ahmed A, Barnes JD, Wan J, Jones TS. Thiopurine methyltransferase predicts the extent of cytotoxicty and DNA damage in astroglial cells after thioguanine exposure. PLoS One 2011; 6:e29163. [PMID: 22216194 PMCID: PMC3244435 DOI: 10.1371/journal.pone.0029163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/22/2011] [Indexed: 01/11/2023] Open
Abstract
Thiopurine methyltransferase (Tpmt) is the primary enzyme responsible for deactivating thiopurine drugs. Thiopurine drugs (i.e., thioguanine [TG], mercaptopurine, azathioprine) are commonly used for the treatment of cancer, organ transplant, and autoimmune disorders. Chronic thiopurine therapy has been linked to the development of brain cancer (most commonly astrocytomas), and Tpmt status has been associated with this risk. Therefore, we investigated whether the level of Tpmt protein activity could predict TG-associated cytotoxicity and DNA damage in astrocytic cells. We found that TG induced cytotoxicity in a dose-dependent manner in Tpmt+/+, Tpmt+/− and Tpmt−/− primary mouse astrocytes and that a low Tpmt phenotype predicted significantly higher sensitivity to TG than did a high Tpmt phenotype. We also found that TG exposure induced significantly more DNA damage in the form of single strand breaks (SSBs) and double strand breaks (DSBs) in primary astrocytes with low Tpmt versus high Tpmt. More interestingly, we found that Tpmt+/− astrocytes had the highest degree of cytotoxicity and genotoxicity (i.e., IC50, SSBs and DSBs) after TG exposure. We then used human glioma cell lines as model astroglial cells to represent high (T98) and low (A172) Tpmt expressers and found that A172 had the highest degree of cytoxicity and SSBs after TG exposure. When we over-expressed Tpmt in the A172 cell line, we found that TG IC50 was significantly higher and SSB's were significantly lower as compared to mock transfected cells. This study shows that low Tpmt can lead to greater sensitivity to thiopurine therapy in astroglial cells. When Tpmt deactivation at the germ-line is considered, this study also suggests that heterozygosity may be subject to the greatest genotoxic effects of thiopurine therapy.
Collapse
Affiliation(s)
- Amira Hosni-Ahmed
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Chemistry, College of Science, Fayoum University, Fayoum, Egypt
| | - Joseph D. Barnes
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jim Wan
- Division of Biostatistics and Epidemiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Terreia S. Jones
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
20
|
Yuan B, Wang J, Cao H, Sun R, Wang Y. High-throughput analysis of the mutagenic and cytotoxic properties of DNA lesions by next-generation sequencing. Nucleic Acids Res 2011; 39:5945-54. [PMID: 21470959 PMCID: PMC3152323 DOI: 10.1093/nar/gkr159] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human cells are constantly exposed to environmental and endogenous agents which can induce damage to DNA. Understanding the implications of these DNA modifications in the etiology of human diseases requires the examination about how these DNA lesions block DNA replication and induce mutations in cells. All previously reported shuttle vector-based methods for investigating the cytotoxic and mutagenic properties of DNA lesions in cells have low-throughput, where plasmids containing individual lesions are transfected into cells one lesion at a time and the products from the replication of individual lesions are analyzed separately. The advent of next-generation sequencing (NGS) technology has facilitated investigators to design scientific approaches that were previously not technically feasible or affordable. In this study, we developed a new method employing NGS, together with shuttle vector technology, to have a multiplexed and quantitative assessment of how DNA lesions perturb the efficiency and accuracy of DNA replication in cells. By using this method, we examined the replication of four carboxymethylated DNA lesions and two oxidatively induced bulky DNA lesions including (5′S) diastereomers of 8,5′-cyclo-2′-deoxyguanosine (cyclo-dG) and 8,5′-cyclo-2′-deoxyadenosine (cyclo-dA) in five different strains of Escherichia coli cells. We further validated the results obtained from NGS using previously established methods. Taken together, the newly developed method provided a high-throughput and readily affordable method for assessing quantitatively how DNA lesions compromise the efficiency and fidelity of DNA replication in cells.
Collapse
Affiliation(s)
- Bifeng Yuan
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | | | | | | | |
Collapse
|
21
|
Yuan B, You C, Andersen N, Jiang Y, Moriya M, O'Connor TR, Wang Y. The roles of DNA polymerases κ and ι in the error-free bypass of N2-carboxyalkyl-2'-deoxyguanosine lesions in mammalian cells. J Biol Chem 2011; 286:17503-11. [PMID: 21454642 DOI: 10.1074/jbc.m111.232835] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To counteract the deleterious effects of DNA damage, cells are equipped with specialized polymerases to bypass DNA lesions. Previous biochemical studies revealed that DinB family DNA polymerases, including Escherichia coli DNA polymerase IV and human DNA polymerase κ, efficiently incorporate the correct nucleotide opposite some N(2)-modified 2'-deoxyguanosine derivatives. Herein, we used shuttle vector technology and demonstrated that deficiency in Polk or Poli in mouse embryonic fibroblast (MEF) cells resulted in elevated frequencies of G→T and G→A mutations at N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) and N(2)-carboxymethyl-2'-deoxyguanosine (N(2)-CMdG) sites. Steady-state kinetic measurements revealed that human DNA polymerase ι preferentially inserts the correct nucleotide, dCMP, opposite N(2)-CEdG lesions. In contrast, no mutation was found after the N(2)-CEdG- and N(2)-CMdG-bearing plasmids were replicated in POLH-deficient human cells or Rev3-deficient MEF cells. Together, our results revealed that, in mammalian cells, both polymerases κ and ι are necessary for the error-free bypass of N(2)-CEdG and N(2)-CMdG. However, in the absence of polymerase κ or ι, other translesion synthesis polymerase(s) could incorporate nucleotide(s) opposite these lesions but would do so inaccurately.
Collapse
Affiliation(s)
- Bifeng Yuan
- From the Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Yuan B, Zhang J, Wang H, Xiong L, Cai Q, Wang T, Jacobsen S, Pradhan S, Wang Y. 6-Thioguanine reactivates epigenetically silenced genes in acute lymphoblastic leukemia cells by facilitating proteasome-mediated degradation of DNMT1. Cancer Res 2011; 71:1904-11. [PMID: 21239472 PMCID: PMC3049985 DOI: 10.1158/0008-5472.can-10-3430] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Thiopurines including 6-thioguanine ((S)G), 6-mercaptopurine, and azathioprine are effective anticancer agents with remarkable success in clinical practice, especially in effective treatment of acute lymphoblastic leukemia (ALL). (S)G is understood to act as a DNA hypomethylating agent in ALL cells, however, the underlying mechanism leading to global cytosine demethylation remains unclear. Here we report that (S)G treatment results in reactivation of epigenetically silenced genes in T leukemia cells. Bisulfite genomic sequencing revealed that (S)G treatment universally elicited demethylation in the promoters and/or first exons of the genes that were reactivated. (S)G treatment also attenuated the expression of histone lysine-specific demethylase 1 (LSD1), thereby stimulating lysine methylation of the DNA methylase DNMT1 and triggering its degradation via the ubiquitin-proteasomal pathway. Taken together, our findings reveal a previously uncharacterized but vital mechanistic link between (S)G treatment and DNA hypomethylation.
Collapse
Affiliation(s)
- Bifeng Yuan
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| | - Jing Zhang
- Department of Chemistry, University of California, Riverside, CA 92521-0403
- School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, P. R. China
| | - Hongxia Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| | - Lei Xiong
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| | - Qian Cai
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403
| | - Tina Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| | - Steven Jacobsen
- Howard Hughes Medical Institute and Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095-1606
| | - Sriharsa Pradhan
- New England Biolabs Incorporated, 240 County Road, Ipswich, MA 01938
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403
| |
Collapse
|
23
|
Chakraborty S, Shah NH, Fishbein JC, Hosmane RS. A novel transition state analog inhibitor of guanase based on azepinomycin ring structure: Synthesis and biochemical assessment of enzyme inhibition. Bioorg Med Chem Lett 2011; 21:756-9. [PMID: 21183343 PMCID: PMC3035156 DOI: 10.1016/j.bmcl.2010.11.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/21/2010] [Accepted: 11/23/2010] [Indexed: 11/27/2022]
Abstract
Synthesis and biochemical inhibition studies of a novel transition state analog inhibitor of guanase bearing the ring structure of azepinomycin have been reported. The compound was synthesized in five-steps from a known compound and biochemically screened against the rabbit liver guanase. The compound exhibited competitive inhibition profile with a K(i) of 16.7±0.5μM.
Collapse
Affiliation(s)
- Saibal Chakraborty
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA
| | - Niti H. Shah
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA
| | - James C. Fishbein
- Laboratory for Drug Design & Synthesis, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA
| | | |
Collapse
|
24
|
Abstract
Thiopurines are effective immunosuppressants and anticancer agents. However, the long-term use of thiopurines was found to be associated with a significantly increased risk of various types of cancer. To date, the specific mechanism(s) underlying the carcinogenicity associated with thiopurine treatment remain(s) unclear. Herein, we constructed duplex pTGFP-Hha10 shuttle vectors carrying a 6-thioguanine ((S)G) or S⁶-methylthioguanine (S⁶mG) at a unique site and allowed the vectors to propagate in three different human cell lines. Analysis of the replication products revealed that although neither thionucleoside blocked considerably DNA replication in any of the human cell lines, both (S)G and S⁶mG were mutagenic, resulting in G→A mutation at frequencies of ~8% and ~39%, respectively. Consistent with what was found from our previous study in E. coli cells, our data demonstrated that the mutagenic properties of (S)G and S⁶mG provided significant evidence for mutation induction as a potential carcinogenic mechanism associated with chronic thiopurine intervention.
Collapse
Affiliation(s)
- Bifeng Yuan
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Timothy R. O’Connor
- Biology Division, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521
| |
Collapse
|
25
|
Ren X, Xu YZ, Karran P. Photo-oxidation of 6-thioguanine by UVA: the formation of addition products with low molecular weight thiol compounds. Photochem Photobiol 2010; 86:1038-45. [PMID: 20573042 DOI: 10.1111/j.1751-1097.2010.00771.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The thiopurine, 6-thioguanine (6-TG) is present in the DNA of patients treated with the immunosuppressant and anticancer drugs azathioprine or mercaptopurine. The skin of these patients is selectively sensitive to UVA radiation-which comprises >90% of the UV light in incident sunlight-and they suffer high rates of skin cancer. UVA irradiation of DNA 6-TG produces DNA lesions that may contribute to the development of cancer. Antioxidants can protect 6-TG against UVA but 6-TG oxidation products may undergo further reactions. We characterize some of these reactions and show that addition products are formed between UVA-irradiated 6-TG and N-acetylcysteine and other low molecular weight thiol compounds including β-mercaptoethanol, cysteine and the cysteine-containing tripeptide glutathione (GSH). GSH is also adducted to 6-TG-containing oligodeoxynucleotides in an oxygen- and UVA-dependent nucleophilic displacement reaction that involves an intermediate oxidized 6-TG, guanine sulfonate (G(SO3) ). These photochemical reactions of 6-TG, particularly the formation of a covalent oligodeoxynucleotide-GSH complex, suggest that crosslinking of proteins or low molecular weight thiol compounds to DNA may be a previously unrecognized hazard in sunlight-exposed cells of thiopurine-treated patients.
Collapse
Affiliation(s)
- Xiaolin Ren
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, UK
| | | | | |
Collapse
|
26
|
Smith MA, Irving PM, Marinaki AM, Sanderson JD. Review article: malignancy on thiopurine treatment with special reference to inflammatory bowel disease. Aliment Pharmacol Ther 2010; 32:119-30. [PMID: 20412066 DOI: 10.1111/j.1365-2036.2010.04330.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Immunosuppression is a risk factor for carcinogenesis. Thiopurines specifically contribute to this. As thiopurines are used more aggressively in the treatment of IBD, it is likely that we will see more thiopurine-related malignancy. AIM To review the literature, exploring how immunosuppression, thiopurines specifically, might cause cancer and which malignancies occur in practice, placing specific emphasis on IBD cohorts. METHODS Search terms included 'malignancy' 'cancer' 'azathioprine' 'mercaptopurine' 'tioguanine (thioguanine)' 'thiopurine' and 'inflammatory bowel disease' 'Crohn's disease' 'ulcerative colitis'. We also searched for specific cancers (lymphoma, colorectal cancer, skin cancer, cervical cancer) and reviewed the reference lists of the articles detected. RESULTS Immunosuppression is associated with an increased risk of cancer. Thiopurines are associated with specific additional risks. In IBD cohorts, very few thiopurine-related malignancies have been reported. However, studies suggest a relative risk of 4-5 for lymphoma. This still translates into a low actual risk, (one extra lymphoma in every 300-1400 years of thiopurine treatment). CONCLUSIONS Whilst we must be aware of this risk and counsel our patients appropriately, thiopurines remain a mainstay of IBD therapy. We present practical advice aimed at minimizing our patients' risk of developing malignancy, whilst optimizing the benefits that thiopurines can provide.
Collapse
Affiliation(s)
- M A Smith
- Department of Gastroenterology Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | | | | | | |
Collapse
|
27
|
Wang H, Wang Y. LC-MS/MS coupled with stable isotope dilution method for the quantification of 6-thioguanine and S(6)-methylthioguanine in genomic DNA of human cancer cells treated with 6-thioguanine. Anal Chem 2010; 82:5797-803. [PMID: 20550170 PMCID: PMC2922690 DOI: 10.1021/ac1008628] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thiopurines, including mercaptopurine (MP), 6-thioguanine ((S)G) and azathioprine, are widely used for the treatment of many human diseases including acute lymphoblastic leukemia (ALL). To exert their cytotoxic effect, these prodrugs need to be metabolically activated to (S)G nucleotides and incorporated into nucleic acids. (S)G in DNA can be methylated spontaneously to S(6)-methylthioguanine (S(6)mG) in the presence of S-adenosyl-l-methionine. It was proposed that S(6)mG, owing to its high miscoding potential (pairing preferentially with thymine), may induce cell death by triggering the postreplicative mismatch repair pathway. Understanding the implications of this pathway in the cytotoxic effect of thiopurine drugs necessitates an accurate measurement of the level of S(6)-methylthio-2'-deoxyguanosine (S(6)mdG) in DNA of cells treated with thiopurine drugs. Here we developed a sensitive HPLC coupled with tandem mass spectrometry (LC-MS/MS) method and measured the level of 6-thio-2'-deoxyguanosine ((S)dG) and S(6)mdG in genomic DNA of four human leukemia cell lines and one human colorectal carcinoma cell line. Our results revealed that, upon treatment with 3 muM (S)G for 24 h, approximately 10, 7.4, 7, and 3% of guanine was replaced with (S)G in Jurkat T, HL-60, CCRF-CEM and K-562 cells, respectively. However, only less than 0.02% of (S)dG was converted to S(6)mdG in the above cell lines. HCT-116 cells had the lowest level (0.2%) of guanine being replaced with (S)G in DNA, and approximately 5 out of 10(4 S)G was converted to its methylated counterpart. This is the first report of the simultaneous and accurate quantification of (S)dG and S(6)mdG in genomic DNA of cultured human cells treated with (S)G. In addition, our results suggested that DNA (S)G might trigger mismatch repair (MMR) pathway without being converted to S(6)mG.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
28
|
Yuan B, Jiang Y, Wang Y, Wang Y. Efficient formation of the tandem thymine glycol/8-oxo-7,8-dihydroguanine lesion in isolated DNA and the mutagenic and cytotoxic properties of the tandem lesions in Escherichia coli cells. Chem Res Toxicol 2010; 23:11-9. [PMID: 20014805 DOI: 10.1021/tx9004264] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species can induce the formation of not only single-nucleobase lesions, which have been extensively studied, but also tandem lesions. Herein, we report a high frequency of formation of a type of tandem lesion, where two commonly observed oxidatively induced single-nucleobase lesions, that is, thymidine glycol (Tg) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), are vicinal to each other in calf thymus DNA upon exposure to Cu(II)/ascorbate along with H(2)O(2) or gamma-rays. We further explored how the tandem lesions perturb the efficiency and fidelity of DNA replication by assessing the replication products formed from the propagation, in Escherichia coli cells, of the single-stranded pYMV1 shuttle vectors containing two tandem lesions [5'-(8-oxodG)-Tg-3' and 5'-Tg-(8-oxodG)-3'] or an isolated Tg or 8-oxodG. The bypass efficiencies for the two tandem lesions were approximately one-half of those for the two isolated single-nucleobase lesions. The presence of an adjacent Tg could lead to significant increases in G-->T transversion at the 8-oxodG site as compared to that of a single 8-oxodG lesion; the frequencies of G-->T mutation were approximately 18, 32, and 28% for 8-oxodG that is isolated, in 5'-(8-oxodG)-Tg-3' and in 5'-Tg-(8-oxodG)-3', respectively. Moreover, both pol IV and pol V are involved, in part, in bypassing the Tg, either present alone or as part of the tandem lesions, in E. coli cells. Together, our results support that complex lesions could exert greater cytotoxic and mutagenic effects than when the composing individual lesions are present alone.
Collapse
Affiliation(s)
- Bifeng Yuan
- Department of Chemistry and, Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, USA
| | | | | | | |
Collapse
|
29
|
Zhang H, Bren U, Kozekov ID, Rizzo CJ, Stec DF, Guengerich FP. Steric and electrostatic effects at the C2 atom substituent influence replication and miscoding of the DNA deamination product deoxyxanthosine and analogs by DNA polymerases. J Mol Biol 2009; 392:251-69. [PMID: 19607842 PMCID: PMC2755575 DOI: 10.1016/j.jmb.2009.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 12/22/2022]
Abstract
Deoxyinosine (dI) and deoxyxanthosine (dX) are both formed in DNA at appreciable levels in vivo by deamination of deoxyadenosine (dA) and deoxyguanosine (dG), respectively, and can miscode. Structure-activity relationships for dA pairing have been examined extensively using analogs but relatively few studies have probed the roles of the individual hydrogen-bonding atoms of dG in DNA replication. The replicative bacteriophage T7 DNA polymerase/exonuclease and the translesion DNA polymerase Sulfolobus solfataricus pol IV were used as models to discern the mechanisms of miscoding by DNA polymerases. Removal of the 2-amino group from the template dG (i.e., dI) had little impact on the catalytic efficiency of either polymerase, as judged by either steady-state or pre-steady-state kinetic analysis, although the misincorporation frequency was increased by an order of magnitude. dX was highly miscoding with both polymerases, and incorporation of several bases was observed. The addition of an electronegative fluorine atom at the 2-position of dI lowered the oligonucleotide T(m) and strongly inhibited incorporation of dCTP. The addition of bromine or oxygen (dX) at C2 lowered the T(m) further, strongly inhibited both polymerases, and increased the frequency of misincorporation. Linear activity models show the effects of oxygen (dX) and the halogens at C2 on both DNA polymerases as mainly due to a combination of both steric and electrostatic factors, producing a clash with the paired cytosine O2 atom, as opposed to either bulk or perturbation of purine ring electron density alone.
Collapse
Affiliation(s)
- Huidong Zhang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
- Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Urban Bren
- National Institute of Chemistry, SI-1001 Ljubljana, Slovenia
| | - Ivan D. Kozekov
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
- Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Carmelo J. Rizzo
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
- Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Donald F. Stec
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
- Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
30
|
Ingvar A, Smedby KE, Lindelöf B, Fernberg P, Bellocco R, Tufveson G, Höglund P, Adami J. Immunosuppressive treatment after solid organ transplantation and risk of post-transplant cutaneous squamous cell carcinoma. Nephrol Dial Transplant 2009; 25:2764-71. [PMID: 19729465 DOI: 10.1093/ndt/gfp425] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The risk of cutaneous squamous cell carcinoma (CSCC) is found to be substantially increased after organ transplantation. The association with specific immunosuppressive regimens has been previously investigated, but results are not concordant. We aimed to clarify the relationship between separate immunosuppressive drugs, drug load, timing and risk of post-transplant CSCC. METHODS A population-based nested case-control study was performed in the Swedish organ transplantation cohort (n = 5931). All patients who developed CSCC during the follow-up (1970-97) were eligible as cases (n = 207). Controls (n = 189) were randomly selected from the cohort and individually matched to the cases on follow-up time, age at and calendar period of transplantation. Exposure information was collected through extensive and standardized review of medical records. RESULTS The median time to CSCC was 6.7 years. Post-transplant azathioprine (Aza) treatment considerably increased the risk of CSCC during all time periods analysed, and the risk augmented with increasing dose and duration. Patients who after the entire follow-up period had received a high accumulated dose of Aza had an 8.8-fold increased risk of CSCC in multivariate analysis (P < 0.0001), compared to patients never treated with Aza. Additionally, a high accumulated dose of corticosteroids during the same period conferred a 3.9-fold elevated risk of CSCC (P = 0.09), compared to the lowest accumulated dose of corticosteroids. Cyclosporine treatment was not associated with the risk of CSCC post-transplantation. CONCLUSIONS This study provides evidence that Aza treatment, but not cyclosporine treatment, is strongly associated with post-transplant CSCC risk. The results suggest that the risk of CSCC after organ transplantation is not only an effect of the immunosuppressive load per se.
Collapse
Affiliation(s)
- Asa Ingvar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nguyen T, Vacek PM, O’Neill P, Colletti RB, Finette BA. Mutagenicity and potential carcinogenicity of thiopurine treatment in patients with inflammatory bowel disease. Cancer Res 2009; 69:7004-12. [PMID: 19706768 PMCID: PMC2749269 DOI: 10.1158/0008-5472.can-09-0451] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The thiopurines azathioprine and 6-mercaptopurine (6-MP) are effective immune modulators and cytotoxic agents extensively used in the treatment of autoimmune diseases, graft rejection, and cancer. There is compelling epidemiologic evidence that thiopurine treatment increases the risk for a variety of tumors by mechanisms that are unclear. We investigated the in vivo mutagenicity of long-term thiopurine treatment by determining the frequency and spectra of somatic mutation events at the hypoxanthine phosphoribosyltransferase (HPRT) locus in peripheral T lymphocytes as well as the prevalence of mutant clonal proliferation in a cross-sectional analysis of data from 119 children and adults with inflammatory bowel disease (IBD). ANOVA and regression were performed to assess relationships among the frequency and spectra of HPRT mutations with disease, duration of illness, duration of treatment, and total therapeutic dose of azathioprine and 6-MP. We observed a significant increase in the frequency of somatic mutations in 56 subjects treated with thiopurines for IBD compared with 63 subjects not treated with thiopurines. This increase was related to both total dose (P < 0.001) and duration of treatment (P < 0.001). Comparative mutation spectra analysis of 1,020 mutant isolates revealed a significant increase in the proportion of all transitions (P < 0.001), particularly G:C to A:T transitions (P < 0.001). Combined analyses of two signatures for mutant clonality, HPRT mutation, and T-cell receptor beta CDR3 region unique gene sequence also showed a significant thiopurine-dependent increase in mutant cell clonal proliferation (P < 0.001). These findings provide in vivo evidence for mutation induction as a potential carcinogenic mechanism associated with chronic thiopurine intervention.
Collapse
Affiliation(s)
- Truc Nguyen
- Department of Pediatrics, University of Vermont, Burlington, 89 Beaumont Avenue, VT 05405
| | - Pamela M. Vacek
- Vermont Cancer Center, University of Vermont, Burlington, 89 Beaumont Avenue, VT 05405
- Department of Medical Biostatistics, University of Vermont, Burlington, 89 Beaumont Avenue, VT 05405
| | - Patrick O’Neill
- Department of Pediatrics, University of Vermont, Burlington, 89 Beaumont Avenue, VT 05405
- Vermont Cancer Center, University of Vermont, Burlington, 89 Beaumont Avenue, VT 05405
| | - Richard B. Colletti
- Department of Pediatrics, University of Vermont, Burlington, 89 Beaumont Avenue, VT 05405
| | - Barry A. Finette
- Department of Pediatrics, University of Vermont, Burlington, 89 Beaumont Avenue, VT 05405
- Vermont Cancer Center, University of Vermont, Burlington, 89 Beaumont Avenue, VT 05405
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, 89 Beaumont Avenue, VT 05405
| |
Collapse
|
32
|
Wang H, Wang Y. 6-Thioguanine perturbs cytosine methylation at the CpG dinucleotide site by DNA methyltransferases in vitro and acts as a DNA demethylating agent in vivo. Biochemistry 2009; 48:2290-9. [PMID: 19236003 PMCID: PMC2673989 DOI: 10.1021/bi801467z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thiopurines are among the most successful chemotherapeutic agents for treating a number of human diseases including acute lymphoblastic leukemia. The mechanisms through which the thiopurines elicit their cytotoxic effects remain unclear. We postulate that the incorporation of 6-thioguanine into the CpG site may perturb the methyltransferase-mediated cytosine methylation at this site, thereby interfering with the epigenetic pathways of gene regulation. To gain biochemical evidence for this hypothesis, we assessed, by using a restriction enzyme digestion coupled with LC-MS/MS method, the impact of 6-thioguanine on cytosine methylation mediated by two DNA methyltransferases, human DNMT1 and bacterial HpaII. Our results revealed that the incorporation of 6-thioguanine into the CpG site could affect the methylation of the cytosine residue by both methyltransferases and the effect on cytosine methylation is dependent on the position of 6-thioguanine with respect to the cytosine to be methylated. The presence of 6-thioguanine at the methylated CpG site enhanced the DNMT1-mediated methylation of the opposing cytosine in the complementary strand, whereas the presence of 6-thioguanine at the unmethylated CpG site abolished almost completely the methylation of its 5' adjacent cytosine by both DNMT1 and HpaII. We further demonstrated that the treatment of Jurkat T cells, which were derived from acute lymphoblastic leukemia, with 6-thioguanine could result in an appreciable drop in the level of global cytosine methylation. These results showed that 6-thioguanine, after being incorporated into DNA, may perturb the epigenetic pathway of gene regulation.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
33
|
Lahoud G, Timoshchuk V, Lebedev A, Arar K, Hou YM, Gamper H. Properties of pseudo-complementary DNA substituted with weakly pairing analogs of guanine or cytosine. Nucleic Acids Res 2008; 36:6999-7008. [PMID: 18987000 PMCID: PMC2602760 DOI: 10.1093/nar/gkn797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A straightforward enzymatic protocol for converting regular DNA into pseudo-complementary DNA could improve the performance of oligonucleotide microarrays by generating readily hybridizable structure-free targets. Here we screened several highly destabilizing analogs of G and C for one that could be used with 2-aminoadenine (nA) and 2-thiothymine (sT) to generate structure-free DNA that is fully accessible to complementary probes. The analogs, which included bioactive bases such as 6-thioguanine (sG), 5-nitrocytosine (NitroC), 2-pyrimidinone (P; the free base of zebularine) and 6-methylfuranopyrimidinone (MefP), were prepared as dNTPs and evaluated as substrates for T7 and Phi29 DNA polymerases that lacked editor function. Pairing properties of the analogs were characterized by solution hybridization assays using modified oligonucleotides or primer extension products. P and MeP did not support robust primer extension whereas sG and NitroC did. In hybridization assays, however, sG lacked discrimination and NitroC paired too strongly to C. The dNTPs of two other base analogs, 7-nitro-7-deazahypoxanthine (NitrocH) and 2-thiocytosine (sC), exhibited the greatest promise. Either analog could be used with nA and sT to generate DNA that was nearly structure-free. Hybridization of probes to these modified DNAs will require the development of base analogs that pair strongly to NitrocH or sC.
Collapse
Affiliation(s)
- Georges Lahoud
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|