1
|
Zhang H, Zhou X, Wang X, Zheng J, Feng Y. A Methyl-Accepting Chemotaxis Protein MCP-5685 Associated with Indole Synthesis in Pantoea ananatis YJ76 Influences its Plant Growth-Promoting Potential and Adaptability to Stress Conditions. Curr Microbiol 2025; 82:281. [PMID: 40327119 DOI: 10.1007/s00284-025-04252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
Pantoea ananatis YJ76 is a predominant endophytic diazotrophic bacterium isolated from rice, which can produce indole as a signal to improve stress resistance, colonization, and growth-promoting effect on the host. Methyl-accepting chemotaxis proteins (MCPs) are the main chemoreceptor in bacteria and participate in regulating various cellular activities. By constructing an mTn5 transposon mutant library of YJ76, we screened out a mutant with decreased indole production. And its ability to resist stresses and starvation, as well as colonizing and growth-promoting effect on host rice plants, was inhibited. Using the hiTAIL-PCR technique combined the genome re-sequencing, the mutation site was identified as the mcp-5685 gene with a length of 1545 bp. Bioinformatics analysis and chemotaxis experiments showed that the MCP encoded by mcp-5685 had L-serine chemotaxis functions, revealing the mechanism of the gene encoding protein to drive L-serine uptake, a key component for tryptophan synthesis, and thus promote indole synthesis in the regulatory pathways for indole synthesis. Starting from the upstream regulation direction of indole synthesis, this study breaks through the previous researching limitation of focusing only on the downstream physiological function regulation of indole and provides new ideas for studying the indole signal.
Collapse
Affiliation(s)
- Haotian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinyi Zhou
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xueying Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jing Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
2
|
Joos M, Van Ginneken S, Villanueva X, Dijkmans M, Coppola GA, Pérez-Romero CA, Vackier T, Van der Eycken E, Marchal K, Lories B, Steenackers HP. EPS inhibitor treatment of Salmonella impacts evolution without selecting for resistance to biofilm inhibition. NPJ Biofilms Microbiomes 2025; 11:73. [PMID: 40328762 PMCID: PMC12056028 DOI: 10.1038/s41522-025-00693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Virulence factors of pathogens, such as toxin production and biofilm formation, often exhibit a public character, providing benefits to nearby non-producers. Consequently, anti-virulence drugs targeting these public traits may not select for resistance, as resistant mutants that resume production of the virulence factor share the benefits of their resistance with surrounding sensitive cells. In agreement with this, we show that even after long-term treatment with a 2-amino-imidazole (2-AI) biofilm inhibitor, Salmonella populations remained as susceptible to biofilm inhibition as the ancestral populations. Nonetheless, further genotypic and phenotypic analysis revealed that the Salmonella populations did adapt to the treatment and accumulated mutations in efflux pump regulators and alternative sigma factors. These mutations resulted in a reduced biofilm-forming capacity and increased efflux activity. Their selection was due to a growth delaying side effect of the biofilm inhibitor. Enhanced efflux activity helped overcome this growth delay, providing a fitness advantage over the ancestor. Finally, we demonstrate that chemical modification of the inhibitor enhances its specificity by partially alleviating the unintended growth delay while retaining the anti-biofilm activity, which in turn eliminated the selection pressure for increased efflux. Overall, our findings highlight that while unintended side effects can complicate anti-virulence strategies, adaptation to these effects does not necessarily restore the inhibited virulence trait. Moreover, chemical modification can mitigate these unintended side effects and enhance drug specificity.
Collapse
Affiliation(s)
- Mathieu Joos
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Sybren Van Ginneken
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Xabier Villanueva
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Marie Dijkmans
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Guglielmo A Coppola
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
- Department of Chemistry, KU Leuven - Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven, Belgium
| | - Camilo Andres Pérez-Romero
- Department of Plant Biotechnology and Bioinformatics, UGent - Internet Technology and Data Science Lab (IDLab), Gent, Belgium
| | - Thijs Vackier
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Erik Van der Eycken
- Department of Chemistry, KU Leuven - Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven, Belgium
- People's Friendship University of Russia (RUDN University), Moscow, Russia
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, UGent - Internet Technology and Data Science Lab (IDLab), Gent, Belgium
| | - Bram Lories
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Hans P Steenackers
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium.
| |
Collapse
|
3
|
Salama GG, El-Mahdy TS, Moustafa WH, Emara M. Downregulation of Klebsiella pneumoniae RND efflux pump genes following indole signal produced by Escherichia coli. BMC Microbiol 2024; 24:312. [PMID: 39182027 PMCID: PMC11344464 DOI: 10.1186/s12866-024-03443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND More than a century has passed since it was discovered that many bacteria produce indole, but research into the actual biological roles of this molecule is just now beginning. The influence of indole on bacterial virulence was extensively investigated in indole-producing bacteria like Escherichia coli. To gain a deeper comprehension of its functional role, this study investigated how indole at concentrations of 0.5-1.0 mM found in the supernatant of Escherichia coli stationary phase culture was able to alter the virulence of non-indole-producing bacteria, such as Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae, which are naturally exposed to indole in mixed infections with Escherichia coli. RESULTS Biofilm formation, antimicrobial susceptibility, and efflux pump activity were the three phenotypic tests that were assessed. Indole was found to influence antibiotic susceptibly of Pseudomonas aeruginosa, Proteus mirabilis and Klebsiella pneumoniae to ciprofloxacin, imipenem, ceftriaxone, ceftazidime, and amikacin through significant reduction in MIC with fold change ranged from 4 to 16. Biofilm production was partially abrogated in both 32/45 Pseudomonas aeruginosa and all eight Proteus mirabilis, while induced biofilm production was observed in 30/40 Klebsiella pneumoniae. Moreover, acrAB and oqxAB, which encode four genes responsible for resistance-nodulation-division multidrug efflux pumps in five isolates of Klebsiella pneumoniae were investigated genotypically using quantitative real-time (qRT)-PCR. This revealed that all four genes exhibited reduced expression indicated by 2^-ΔΔCT < 1 in indole-treated isolates compared to control group. CONCLUSION The outcomes of qRT-PCR investigation of efflux pump expression have established a novel clear correlation of the molecular mechanism that lies beneath the influence of indole on bacterial antibiotic tolerance. This research provides novel perspectives on the various mechanisms and diverse biological functions of indole signaling and how it impacts the pathogenicity of non-indole-producing bacteria.
Collapse
Affiliation(s)
- Galila G Salama
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt
| | - Taghrid S El-Mahdy
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology, and Information (MTI), Cairo, Egypt
| | - Walaa H Moustafa
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt
| | - Mohamed Emara
- Faculty of Pharmacy, Department of Microbiology and Immunology, Helwan University, P.O. Box 11795, Ain-Helwan, Cairo, Egypt.
| |
Collapse
|
4
|
Chen Q, Yu Y, Xu Y, Quan H, Liu D, Li C, Liu M, Gong X. Salmonella Typhimurium alters galactitol metabolism under ciprofloxacin treatment to balance resistance and virulence. J Bacteriol 2024; 206:e0017824. [PMID: 39082861 PMCID: PMC11340313 DOI: 10.1128/jb.00178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024] Open
Abstract
Ciprofloxacin-resistant Salmonella Typhimurium (S. Typhimurium) causes a significant health burden worldwide. A wealth of studies has been published on the contributions of different mechanisms to ciprofloxacin resistance in Salmonella spp. But we still lack a deep understanding of the physiological responses and genetic changes that underlie ciprofloxacin exposure. This study aims to know how phenotypic and genotypic characteristics are impacted by ciprofloxacin exposure, from ciprofloxacin-susceptible to ciprofloxacin-resistant strains in vitro. Here, we investigated the multistep evolution of resistance in replicate populations of S. Typhimurium during 24 days of continuously increasing ciprofloxacin exposure and assessed how ciprofloxacin impacts physiology and genetics. Numerous studies have demonstrated that RamA is a global transcriptional regulator that prominently perturbs the transcriptional landscape of S. Typhimurium, resulting in a ciprofloxacin-resistant phenotype appearing first; the quinolone resistance-determining region mutation site can only be detected later. Comparing the microbial physiological changes and RNA sequencing (RNA-Seq) results of ancestral and selectable mutant strains, the selectable mutant strains had some fitness costs, such as decreased virulence, an increase of biofilm-forming ability, a change of "collateral" sensitivity to other drugs, and inability to utilize galactitol. Importantly, in the ciprofloxacin induced, RamA directly binds and activates the gatR gene responsible for the utilization of galactitol, but RamA deletion strains could not activate gatR. The elevated levels of RamA, which inhibit the galactitol metabolic pathway through the activation of gatR, can lead to a reduction in the growth rate, adhesion, and colonization resistance of S. Typhimurium. This finding is supported by studies conducted in M9 medium as well as in vivo infection models. IMPORTANCE Treatment of antibiotic resistance can significantly benefit from a deeper understanding of the interactions between drugs and genetics. The physiological responses and genetic mechanisms in antibiotic-exposed bacteria are not well understood. Traditional resistance studies, often retrospective, fail to capture the entire resistance development process and typically exhibit unpredictable dynamics. To explore how clinical isolates of S. Typhimurium respond to ciprofloxacin, we analyzed their adaptive responses. We found that S. Typhimurium RamA-mediated regulation disrupts microbial metabolism under ciprofloxacin exposure, affecting genes in the galactitol metabolic pathways. This disruption facilitates adaptive responses to drug therapy and enhances the efficiency of intracellular survival. A more comprehensive and integrated understanding of these physiological and genetic changes is crucial for improving treatment outcomes.
Collapse
Affiliation(s)
- Qiwei Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yongfeng Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yongchang Xu
- Department of Immunology and Pathogen Biology, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Heng Quan
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Donghui Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Caiyu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Mengyao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaowei Gong
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Laborda P, Molin S, Johansen HK, Martínez JL, Hernando-Amado S. Role of bacterial multidrug efflux pumps during infection. World J Microbiol Biotechnol 2024; 40:226. [PMID: 38822187 DOI: 10.1007/s11274-024-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Multidrug efflux pumps are protein complexes located in the cell envelope that enable bacteria to expel, not only antibiotics, but also a wide array of molecules relevant for infection. Hence, they are important players in microbial pathogenesis. On the one hand, efflux pumps can extrude exogenous compounds, including host-produced antimicrobial molecules. Through this extrusion, pathogens can resist antimicrobial agents and evade host defenses. On the other hand, efflux pumps also have a role in the extrusion of endogenous compounds, such as bacterial intercommunication signaling molecules, virulence factors or metabolites. Therefore, efflux pumps are involved in the modulation of bacterial behavior and virulence, as well as in the maintenance of the bacterial homeostasis under different stresses found within the host. This review delves into the multifaceted roles that efflux pumps have, shedding light on their impact on bacterial virulence and their contribution to bacterial infection. These observations suggest that strategies targeting bacterial efflux pumps could both reinvigorate the efficacy of existing antibiotics and modulate the bacterial pathogenicity to the host. Thus, a comprehensive understanding of bacterial efflux pumps can be pivotal for the development of new effective strategies for the management of infectious diseases.
Collapse
Affiliation(s)
- Pablo Laborda
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark.
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
6
|
Novelli M, Bolla JM. RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:501. [PMID: 38927168 PMCID: PMC11200565 DOI: 10.3390/antibiotics13060501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The rise of multi-drug-resistant (MDR) pathogenic bacteria presents a grave challenge to global public health, with antimicrobial resistance ranking as the third leading cause of mortality worldwide. Understanding the mechanisms underlying antibiotic resistance is crucial for developing effective treatments. Efflux pumps, particularly those of the resistance-nodulation-cell division (RND) superfamily, play a significant role in expelling molecules from bacterial cells, contributing to the emergence of multi-drug resistance. These are transmembrane transporters naturally produced by Gram-negative bacteria. This review provides comprehensive insights into the modulation of RND efflux pump expression in bacterial pathogens by numerous and common molecules (bile, biocides, pharmaceuticals, additives, plant extracts, etc.). The interplay between these molecules and efflux pump regulators underscores the complexity of antibiotic resistance mechanisms. The clinical implications of efflux pump induction by non-antibiotic compounds highlight the challenges posed to public health and the urgent need for further investigation. By addressing antibiotic resistance from multiple angles, we can mitigate its impact and preserve the efficacy of antimicrobial therapies.
Collapse
Affiliation(s)
- Marine Novelli
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France;
- Université Paris Cité, CNRS, Biochimie des Protéines Membranaires, F-75005 Paris, France
| | | |
Collapse
|
7
|
Zheng J, Zuo G, Zhou Z, Shi Z, Guo H, Sun Z, Feng Y. Indole inhibited the expression of csrA gene in Escherichia coli. J GEN APPL MICROBIOL 2024; 69:239-248. [PMID: 37423745 DOI: 10.2323/jgam.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycogen accumulation and enhances starvation resistance of Escherichia coli. However, the regulatory effects of indole became insignificant while the global csrA gene was mutated. To reveal the regulatory relationship between indole and csrA, we studied the effects of indole on the transcription level of csrA, flhDC, glgCAP and cstA, and also the sensing of the promoters of the genes on indole. It was found that indole inhibited the transcription of csrA, and only the promoter of the csrA gene can sense indole. Namely, indole indirectly regulated the translation level of FlhDC, GlgCAP and CstA. These data indicates that indole regulation is related with the regulation of CsrA, which may throw light on the regulation mechanism research of indole.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology
- School of Life Science, Langfang Normal University
| | - Guocai Zuo
- School of Life Science, Langfang Normal University
| | - Zhiguo Zhou
- School of Life Science, Langfang Normal University
| | - Zhenxia Shi
- School of Life Science, Langfang Normal University
| | - Huiying Guo
- School of Life Science, Langfang Normal University
| | - Zemin Sun
- School of Life Science, Beijing Institute of Technology
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology
| |
Collapse
|
8
|
Rosli NA, Al-Maleki AR, Loke MF, Tay ST, Rofiee MS, Teh LK, Salleh MZ, Vadivelu J. Exposure of Helicobacter pylori to clarithromycin in vitro resulting in the development of resistance and triggers metabolic reprogramming associated with virulence and pathogenicity. PLoS One 2024; 19:e0298434. [PMID: 38446753 PMCID: PMC10917248 DOI: 10.1371/journal.pone.0298434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024] Open
Abstract
In H. pylori infection, antibiotic-resistance is one of the most common causes of treatment failure. Bacterial metabolic activities, such as energy production, bacterial growth, cell wall construction, and cell-cell communication, all play important roles in antimicrobial resistance mechanisms. Identification of microbial metabolites may result in the discovery of novel antimicrobial therapeutic targets and treatments. The purpose of this work is to assess H. pylori metabolomic reprogramming in order to reveal the underlying mechanisms associated with the development of clarithromycin resistance. Previously, four H. pylori isolates were induced to become resistant to clarithromycin in vitro by incrementally increasing the concentrations of clarithromycin. Bacterial metabolites were extracted using the Bligh and Dyer technique and analyzed using metabolomic fingerprinting based on Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-ToF-MS). The data was processed and analyzed using the MassHunter Qualitative Analysis and Mass Profiler Professional software. In parental sensitivity (S), breakpoint isolates (B), and induced resistance isolates (R) H. pylori isolates, 982 metabolites were found. Furthermore, based on accurate mass, isotope ratios, abundances, and spacing, 292 metabolites matched the metabolites in the Agilent METLIN precise Mass-Personal Metabolite Database and Library (AM-PCDL). Several metabolites associated with bacterial virulence, pathogenicity, survival, and proliferation (L-leucine, Pyridoxone [Vitamine B6], D-Mannitol, Sphingolipids, Indoleacrylic acid, Dulcitol, and D-Proline) were found to be elevated in generated resistant H. pylori isolates when compared to parental sensitive isolates. The elevated metabolites could be part of antibiotics resistance mechanisms. Understanding the fundamental metabolome changes in the course of progressing from clarithromycin-sensitive to breakpoint to resistant in H. pylori clinical isolates may be a promising strategy for discovering novel alternatives therapeutic targets.
Collapse
Affiliation(s)
- Naim Asyraf Rosli
- Faculty of Medicine, Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Faculty of Medicine, Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health Sciences, Department of Medical Microbiology, Sana’a University, Sana’a, Yemen
| | - Mun Fai Loke
- Camtech Biomedical Pte Ltd, Singapore, Singapore
| | - Sun Tee Tay
- Faculty of Medicine, Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Salleh Rofiee
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Selangor, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Selangor, Malaysia
| | - Jamuna Vadivelu
- Faculty of Medicine, Medical Education Research and Development Unit (MERDU), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Giraud E, Baucheron S, Foubert I, Doublet B, Nishino K, Cloeckaert A. Major primary bile salts repress Salmonella enterica serovar Typhimurium invasiveness partly via the efflux regulatory locus ramRA. Front Microbiol 2024; 15:1338261. [PMID: 38410385 PMCID: PMC10895713 DOI: 10.3389/fmicb.2024.1338261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Bile represses Salmonella enterica serovar Typhimurium (S. Typhimurium) intestinal cell invasion, but it remains unclear which bile components and mechanisms are implicated. Previous studies reported that bile inhibits the RamR binding to the ramA promoter, resulting in ramA increased transcription, and that ramA overexpression is associated to decreased expression of type III secretion system 1 (TTSS-1) invasion genes and to impaired intestinal cell invasiveness in S. Typhimurium. In this study, we assessed the possible involvement of the ramRA multidrug efflux regulatory locus and individual bile salts in the bile-mediated repression of S. Typhimurium invasion, using Caco-2 intestinal epithelial cells and S. Typhimurium strain ATCC 14028s. Our results indicate that (i) major primary bile salts, chenodeoxycholate and its conjugated-derivative salts, cholate, and deoxycholate, activate ramA transcription in a RamR-dependent manner, and (ii) it results in repression of hilA, encoding the master activator of TTSS-1 genes, and as a consequence in the repression of cellular invasiveness. On the other hand, crude ox bile extract and cholate were also shown to repress the transcription of hilA independently of RamR, and to inhibit cell invasion independently of ramRA. Altogether, these data suggest that bile-mediated repression of S. Typhimurium invasion occurs through pleiotropic effects involving partly ramRA, as well as other unknown regulatory pathways. Bile components other than the bile salts used in this study might also participate in this phenomenon.
Collapse
Affiliation(s)
| | | | | | | | - Kunihiko Nishino
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | | |
Collapse
|
10
|
Abstract
Environments inhabited by Enterobacteriaceae are diverse and often stressful. This is particularly true for Escherichia coli and Salmonella during host association in the gastrointestinal systems of animals. There, E. coli and Salmonella must survive exposure to various antimicrobial compounds produced or ingested by their host. A myriad of changes to cellular physiology and metabolism are required to achieve this feat. A central regulatory network responsible for sensing and responding to intracellular chemical stressors like antibiotics are the Mar, Sox, and Rob systems found throughout the Enterobacteriaceae. Each of these distinct regulatory networks controls expression of an overlapping set of downstream genes whose collective effects result in increased resistance to a wide array of antimicrobial compounds. This collection of genes is known as the mar-sox-rob regulon. This review will provide an overview of the mar-sox-rob regulon and molecular architecture of the Mar, Sox, and Rob systems.
Collapse
Affiliation(s)
- Lon M. Chubiz
- Department of Biology, University of Missouri–St. Louis, St. Louis, Missouri, USA
- Biochemistry and Biotechnology Program, University of Missouri–St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Ricci V, Kaur J, Stone J, Piddock LJV. Antibiotics do not induce expression of acrAB directly but via a RamA-dependent pathway. Antimicrob Agents Chemother 2023; 67:e0062023. [PMID: 37815378 PMCID: PMC10649046 DOI: 10.1128/aac.00620-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023] Open
Abstract
The aim of this study was to determine if acrAB induction in Salmonella Typhimurium relies solely on RamA or if other transcriptional activator pathways are also involved, and to better understand the kinetics of induction of both acrAB and ramA. We evaluated the expression of acrAB in S. Typhimurium in response to a variety of compounds that are known to induce the expression of one or more of the transcriptional activators, MarA, SoxS, RamA, and Rob. We utilized green fluorescent protein (GFP) transcriptional reporter fusions to investigate the changes in the expression of acrAB, ramA, marA, and soxS following exposure to sub-inhibitory concentrations of antimicrobial compounds. Of the compounds tested, 13 induce acrAB expression in S. Typhimurium via RamA, MarA, SoxS, and Rob-dependent pathways. None of the tested antibiotics induced acrAB expression, and compounds that induced acrAB expression also induced a general stress response. The results from this study show that the majority of compounds tested induced acrAB via the RamA-dependent pathway. However, none of the antibiotic substrates of the AcrB efflux pump directly increased the expression of AcrAB either directly or indirectly via the induction of one of the transcriptional activators. Using a dual GFP/RFP reporter, we investigated the kinetics of the induction of ramA and acrAB simultaneously and found that acrAB gene expression was transient compared to ramA gene expression. ramA gene expression increased with time and would remain high or decrease slowly over the course of the experiment indicating that RamA exerts a wider global effect and is not limited to efflux regulation alone.
Collapse
Affiliation(s)
- Vito Ricci
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Jaswant Kaur
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Jack Stone
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Laura J. V. Piddock
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Graßl F, Konrad MMB, Krüll J, Pezerovic A, Zähnle L, Burkovski A, Heinrich MR. Tuning the Polarity of Antibiotic-Cy5 Conjugates Enables Highly Selective Labeling of Binding Sites. Chemistry 2023; 29:e202301208. [PMID: 37247408 DOI: 10.1002/chem.202301208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Multidrug-resistant bacteria pose a major threat to global health, even as newly introduced antibiotics continue to lose their therapeutic value. Against this background, deeper insights into bacterial interaction with antibiotic drugs are urgently required, whereas fluorescently labeled drug conjugates can serve as highly valuable tools. Herein, the preparation and biological evaluation of 13 new fluorescent antibiotic-Cy5 dye conjugates is described, in which the tuning of the polarity of the Cy5 dye proved to be a key element to achieve highly favorable properties for various fields of application.
Collapse
Affiliation(s)
- Fabian Graßl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Maike M B Konrad
- Department of Biology, Microbiology Division, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Jasmin Krüll
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Azra Pezerovic
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Leon Zähnle
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Andreas Burkovski
- Department of Biology, Microbiology Division, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
13
|
Yamasaki S, Zwama M, Yoneda T, Hayashi-Nishino M, Nishino K. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001322. [PMID: 37319001 PMCID: PMC10333786 DOI: 10.1099/mic.0.001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/18/2023] [Indexed: 06/17/2023]
Abstract
Drug efflux pumps transport antimicrobial agents out of bacteria, thereby reducing the intracellular antimicrobial concentration, which is associated with intrinsic and acquired bacterial resistance to these antimicrobials. As genome analysis has advanced, many drug efflux pump genes have been detected in the genomes of bacterial species. In addition to drug resistance, these pumps are involved in various essential physiological functions, such as bacterial adaptation to hostile environments, toxin and metabolite efflux, biofilm formation and quorum sensing. In Gram-negative bacteria, efflux pumps in the resistance–nodulation–division (RND) superfamily play a clinically important role. In this review, we focus on Gram-negative bacteria, including Salmonella enterica , Escherichia coli and Pseudomonas aeruginosa , and discuss the role of RND efflux pumps in drug resistance and physiological functions.
Collapse
Affiliation(s)
- Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, 2-8 Yamadaoka, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Kumawat M, Nabi B, Daswani M, Viquar I, Pal N, Sharma P, Tiwari S, Sarma DK, Shubham S, Kumar M. Role of bacterial efflux pump proteins in antibiotic resistance across microbial species. Microb Pathog 2023:106182. [PMID: 37263448 DOI: 10.1016/j.micpath.2023.106182] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Efflux proteins are transporter molecules that actively pump out a variety of substrates, including antibiotics, from cells to the environment. They are found in both Gram-positive and Gram-negative bacteria and eukaryotic cells. Based on their protein sequence homology, energy source, and overall structure, efflux proteins can be divided into seven groups. Multidrug efflux pumps are transmembrane proteins produced by microbes to enhance their survival in harsh environments and contribute to antibiotic resistance. These pumps are present in all bacterial genomes studied, indicating their ancestral origins. Many bacterial genes encoding efflux pumps are involved in transport, a significant contributor to antibiotic resistance in microbes. Efflux pumps are widely implicated in the extrusion of clinically relevant antibiotics from cells to the extracellular environment and, as such, represent a significant challenge to antimicrobial therapy. This review aims to provide an overview of the structures and mechanisms of action, substrate profiles, regulation, and possible inhibition of clinically relevant efflux pumps. Additionally, recent advances in research and the pharmacological exploitation of efflux pump inhibitors as a promising intervention for combating drug resistance will be discussed.
Collapse
Affiliation(s)
- Manoj Kumawat
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Bilkees Nabi
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, 211007, India
| | - Muskan Daswani
- Department of Biotechnology, SantHirdaram Girls College, Bhopal, 462030, India
| | - Iqra Viquar
- Department of Biotechnology, SantHirdaram Girls College, Bhopal, 462030, India
| | - Namrata Pal
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Poonam Sharma
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Shikha Tiwari
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Swasti Shubham
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Manoj Kumar
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India.
| |
Collapse
|
15
|
Chunxiao D, Ma F, Wu W, Li S, Yang J, Chen Z, Lian S, Qu Y. Metagenomic analysis reveals indole signaling effect on microbial community in sequencing batch reactors: Quorum sensing inhibition and antibiotic resistance enrichment. ENVIRONMENTAL RESEARCH 2023; 229:115897. [PMID: 37054839 DOI: 10.1016/j.envres.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Indole is an essential signal molecule in microbial studies. However, its ecological role in biological wastewater treatments remains enigmatic. This study explores the links between indole and complex microbial communities using sequencing batch reactors exposed to 0, 15, and 150 mg/L indole concentrations. A concentration of 150 mg/L indole enriched indole degrader Burkholderiales, while pathogens, such as Giardia, Plasmodium, and Besnoitia were inhibited at 15 mg/L indole concentration. At the same time, indole reduced the abundance of predicted genes in the "signaling transduction mechanisms" pathway via the Non-supervised Orthologous Groups distributions analysis. Indole significantly decreased the concentration of homoserine lactones, especially C14-HSL. Furthermore, the quorum-sensing signaling acceptors containing LuxR, the dCACHE domain, and RpfC showed negative distributions with indole and indole oxygenase genes. Signaling acceptors' potential origins were mainly Burkholderiales, Actinobacteria, and Xanthomonadales. Meanwhile, concentrated indole (150 mg/L) increased the total abundance of antibiotic resistance genes by 3.52 folds, especially on aminoglycoside, multidrug, tetracycline, and sulfonamide. Based on Spearman's correlation analysis, the homoserine lactone degradation genes which were significantly impacted by indole negatively correlated with the antibiotic resistance gene abundance. This study brings new insights into the effect of indole signaling on in biological wastewater treatment plants.
Collapse
Affiliation(s)
- Dai Chunxiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shuzhen Li
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
16
|
Fanelli G, Pasqua M, Prosseda G, Grossi M, Colonna B. AcrAB efflux pump impacts on the survival of adherent-invasive Escherichia coli strain LF82 inside macrophages. Sci Rep 2023; 13:2692. [PMID: 36792672 PMCID: PMC9931695 DOI: 10.1038/s41598-023-29817-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The tripartite complex AcrAB-TolC is the major RND pump in Escherichia coli and other Enterobacteriaceae. It consists of the AcrB transporter, which is embedded in the inner membrane, the AcrA adapter located in the periplasm, and the channel protein TolC responsible for the transport of substrates towards the extracellular environment. Besides conferring resistance to many classes of antibiotics, AcrAB plays a role in the pathogenesis and virulence of several bacterial pathogens. Here we report that the AcrAB pump heavily affects the infection process of the LF82 strain, the prototype of Adherent-Invasive Escherichia coli (AIEC) which are highly abundant in the ileal mucosa of Chron disease patients. We found that the deletion of genes encoding AcrA and/or AcrB leads to decreased survival of LF82 within macrophages. Ectopic AcrAB expression in a acrAB defective mutant restores the wild type condition. Furthermore, we demonstrate that inhibition of AcrB and replacement of the transporter with an unfunctional AcrB also interfere with bacterial viability inside macrophages. Overall, these data suggest a pivotal role of the AcrAB efflux pump in bacteria-host cell interactions also in AIEC.
Collapse
Affiliation(s)
- Giulia Fanelli
- grid.7841.aDepartment of Biology and Biotechnology “C. Darwin”, Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Martina Pasqua
- grid.7841.aDepartment of Biology and Biotechnology “C. Darwin”, Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Gianni Prosseda
- grid.7841.aDepartment of Biology and Biotechnology “C. Darwin”, Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy
| | - Milena Grossi
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy.
| | - Bianca Colonna
- Department of Biology and Biotechnology "C. Darwin", Istituto Pasteur Italia, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
17
|
Chaudhari R, Singh K, Kodgire P. Biochemical and molecular mechanisms of antibiotic resistance in Salmonella spp. Res Microbiol 2023; 174:103985. [PMID: 35944794 DOI: 10.1016/j.resmic.2022.103985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2023]
Abstract
Salmonella is a diverse Gram-negative bacterium that represents the major disease burden worldwide. According to WHO, Salmonella is one of the fourth global causes of diarrhoeal disease. Antibiotic resistance is a worldwide health concern, and Salmonella spp. is one of the microorganisms that can evade the toxicity of antimicrobials via antibiotic resistance. This review aims to deliver in-depth knowledge of the molecular mechanisms and the underlying biochemical alterations perceived in antibiotic resistance in Salmonella. This information will help understand and mitigate the impact of antibiotic-resistant bacteria on humans and contribute to the state-of-the-art research developing newer and more potent antibiotics.
Collapse
Affiliation(s)
- Rahul Chaudhari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Kanika Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India.
| |
Collapse
|
18
|
Characterization of the Role of Two-Component Systems in Antibiotic Resistance Formation in Salmonella enterica Serovar Enteritidis. mSphere 2022; 7:e0038322. [PMID: 36286534 PMCID: PMC9769886 DOI: 10.1128/msphere.00383-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The two-component system (TCS) is one of the primary pathways by which bacteria adapt to environmental stresses such as antibiotics. This study aimed to systematically explore the role of TCSs in the development of multidrug resistance (MDR) in Salmonella enterica serovar Enteritidis. Twenty-six in-frame deletion mutants of TCSs were generated from S. Enteritidis SJTUF12367 (the wild type [WT]). Antimicrobial susceptibility tests with these mutants revealed that 10 TCSs were involved in the development of antibiotic resistance in S. Enteritidis. In these 10 pairs of TCSs, functional defects in CpxAR, PhoPQ, and GlnGL in various S. Enteritidis isolates led to a frequent decrease in MIC values against at least three classes of clinically important antibiotics, including cephalosporins and quinolones, which indicated the importance of these TCSs to the formation of MDR. Interaction network analysis via STRING revealed that the genes cpxA, cpxR, phoP, and phoQ played important roles in the direct interaction with global regulatory genes and the relevant genes of efflux pumps and outer membrane porins. Quantitative reverse transcription-PCR analysis further demonstrated that the increased susceptibility to cephalosporins and quinolones in ΔphoP and ΔcpxR mutant cells was accompanied by increased expression of membrane porin genes (ompC, ompD, and ompF) and reduced expression of efflux pump genes (acrA, macB, and mdtK), as well as an adverse transcription of the global regulatory genes (ramA and crp). These results indicated that CpxAR and PhoPQ played an important role in the development of MDR in S. Enteritidis through regulation of cell membrane permeability and efflux pump activity. IMPORTANCE S. Enteritidis is a predominant Salmonella serotype that causes human salmonellosis and frequently exhibits high-level resistance to commonly used antibiotics, including cephalosporins and quinolones. Although TCSs are known as regulators for bacterial adaptation to stressful conditions, which modulates β-lactam resistance in Vibrio parahaemolyticus and colistin resistance in Salmonella enterica serovar Typhimurium, there is little knowledge of their functional mechanisms underlying the development of antibiotic resistance in S. Enteritidis. Here, we systematically identified the TCS elements in S. Enteritidis SJTUF12367, revealed that the three TCSs CpxAR, PhoPQ, and GlnGL were crucial for the MDR formation in S. Enteritidis, and preliminarily illustrated the regulatory functions of CpxAR and PhoPQ for antimicrobial resistance genes. Our work provides the basis to understand the important TCSs that regulate formation of antibiotic resistance in S. Enteritidis.
Collapse
|
19
|
Waters EV, Tucker LA, Ahmed JK, Wain J, Langridge GC. Impact of Salmonella genome rearrangement on gene expression. Evol Lett 2022; 6:426-437. [PMID: 36579163 PMCID: PMC9783417 DOI: 10.1002/evl3.305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022] Open
Abstract
In addition to nucleotide variation, many bacteria also undergo changes at a much larger scale via rearrangement of their genome structure (GS) around long repeat sequences. These rearrangements result in genome fragments shifting position and/or orientation in the genome without necessarily affecting the underlying nucleotide sequence. To date, scalable techniques have not been applied to GS identification, so it remains unclear how extensive this variation is and the extent of its impact upon gene expression. However, the emergence of multiplexed, long-read sequencing overcomes the scale problem, as reads of several thousand bases are routinely produced that can span long repeat sequences to identify the flanking chromosomal DNA, allowing GS identification. Genome rearrangements were generated in Salmonella enterica serovar Typhi through long-term culture at ambient temperature. Colonies with rearrangements were identified via long-range PCR and subjected to long-read nanopore sequencing to confirm genome variation. Four rearrangements were investigated for differential gene expression using transcriptomics. All isolates with changes in genome arrangement relative to the parent strain were accompanied by changes in gene expression. Rearrangements with similar fragment movements demonstrated similar changes in gene expression. The most extreme rearrangement caused a large imbalance between the origin and terminus of replication and was associated with differential gene expression as a factor of distance moved toward or away from the origin of replication. Genome structure variation may provide a mechanism through which bacteria can quickly adapt to new environments and warrants routine assessment alongside traditional nucleotide-level measures of variation.
Collapse
Affiliation(s)
- Emma V. Waters
- Microbes in the Food ChainQuadram Institute BioscienceNorwichNR4 7UQUnited Kingdom
| | - Liam A. Tucker
- Microbes in the Food ChainQuadram Institute BioscienceNorwichNR4 7UQUnited Kingdom
| | - Jana K. Ahmed
- The Wellcome Trust Sanger InstituteCambridgeCB10 1SAUnited Kingdom
| | - John Wain
- Microbes in the Food ChainQuadram Institute BioscienceNorwichNR4 7UQUnited Kingdom
- Norwich Medical SchoolUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - Gemma C. Langridge
- Microbes in the Food ChainQuadram Institute BioscienceNorwichNR4 7UQUnited Kingdom
| |
Collapse
|
20
|
Forster ER, Yang X, Tai AK, Hang HC, Shen A. Identification of a Bile Acid-Binding Transcription Factor in Clostridioides difficile Using Chemical Proteomics. ACS Chem Biol 2022; 17:3086-3099. [PMID: 36279369 PMCID: PMC10518218 DOI: 10.1021/acschembio.2c00463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobic bacterium that is the leading cause of hospital-acquired gastroenteritis in the US. In the gut milieu, C. difficile encounters microbiota-derived, growth-inhibiting bile acids that are thought to be a significant mechanism of colonization resistance. While the levels of certain bile acids in the gut correlate with susceptibility to C. difficile infection, their molecular targets in C. difficile remain unknown. In this study, we sought to use chemical proteomics to identify bile acid-interacting proteins in C. difficile. Using photoaffinity bile acid probes and chemical proteomics, we identified a previously uncharacterized MerR family protein, CD3583 (now BapR), as a putative bile acid-sensing transcription regulator. Our data indicate that BapR specifically binds to and is stabilized by lithocholic acid (LCA) in C. difficile. Although loss of BapR did not affect C. difficile's sensitivity to LCA, ΔbapR cells elongated more in the presence of LCA compared to wild-type cells. Transcriptomics revealed that BapR regulates several gene clusters, with the expression of the mdeA-cd3573 locus being specifically de-repressed in the presence of LCA in a BapR-dependent manner. Electrophoretic mobility shift assays revealed that BapR directly binds to the mdeA promoter region. Because mdeA is involved in amino acid-related sulfur metabolism and the mdeA-cd3573 locus encodes putative transporters, we propose that BapR senses a gastrointestinal tract-specific small molecule, LCA, as an environmental cue for metabolic adaptation.
Collapse
Affiliation(s)
- Emily R Forster
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, United States
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| | - Xinglin Yang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
- Data Intensive Studies Center, Tufts University, Medford, Massachusetts 02155, United States
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California 92037, United States
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| |
Collapse
|
21
|
Abril AG, Villa TG, Sánchez-Pérez Á, Notario V, Carrera M. The Role of the Gallbladder, the Intestinal Barrier and the Gut Microbiota in the Development of Food Allergies and Other Disorders. Int J Mol Sci 2022; 23:14333. [PMID: 36430811 PMCID: PMC9696009 DOI: 10.3390/ijms232214333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The microbiota present in the gastrointestinal tract is involved in the development or prevention of food allergies and autoimmune disorders; these bacteria can enter the gallbladder and, depending on the species involved, can either be benign or cause significant diseases. Occlusion of the gallbladder, usually due to the presence of calculi blocking the bile duct, facilitates microbial infection and inflammation, which can be serious enough to require life-saving surgery. In addition, the biliary salts are secreted into the intestine and can affect the gut microbiota. The interaction between the gut microbiota, pathogenic organisms, and the human immune system can create intestinal dysbiosis, generating a variety of syndromes including the development of food allergies and autoimmune disorders. The intestinal microbiota can aggravate certain food allergies, which become severe when the integrity of the intestinal barrier is affected, allowing bacteria, or their metabolites, to cross the intestinal barrier and invade the bloodstream, affecting distal body organs. This article deals with health conditions and severe diseases that are either influenced by the gut flora or caused by gallbladder obstruction and inflammation, as well as putative treatments for those illnesses.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Vicente Notario
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
| |
Collapse
|
22
|
Rogers AR, Turner EE, Johnson DT, Ellermeier JR. Envelope Stress Activates Expression of the Twin Arginine Translocation (Tat) System in Salmonella. Microbiol Spectr 2022; 10:e0162122. [PMID: 36036643 PMCID: PMC9604234 DOI: 10.1128/spectrum.01621-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
The twin arginine translocation system (Tat) is a protein export system that is conserved in bacteria, archaea, and plants. In Gram-negative bacteria, it is required for the export of folded proteins from the cytoplasm to the periplasm. In Salmonella, there are 30 proteins that are predicted substrates of Tat, and among these are enzymes required for anaerobic respiration and peptidoglycan remodeling. We have demonstrated that some conditions that induce bacterial envelope stress activate expression of a ΔtatABC-lacZ fusion in Salmonella enterica serovar Typhimurium. Particularly, the addition of bile salts to the growth medium causes a 3-fold induction of a ΔtatABC-lacZ reporter fusion. Our data demonstrate that this induction is mediated via the phage shock protein (Psp) stress response system protein PspA. Further, we show that deletion of tatABC increases the induction of tatABC expression in bile salts. Indeed, the data suggest significant interaction between PspA and the Tat system in the regulatory response to bile salts. Although we have not identified the precise mechanism of Psp regulation of tatABC, our work shows that PspA is involved in the activation of tatABC expression by bile salts and adds another layer of complexity to the Salmonella response to envelope stress. IMPORTANCE Salmonella species cause an array of diseases in a variety of hosts. This research is significant in showing induction of the Tat system as a defense against periplasmic stress. Understanding the underlying mechanism of this regulation broadens our understanding of the Salmonella stress response, which is critical to the ability of the organism to cause infection.
Collapse
Affiliation(s)
- Alexandra R. Rogers
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| | - Ezekeial E. Turner
- College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Deauna T. Johnson
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| | - Jeremy R. Ellermeier
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
23
|
Probiotication of Nutritious Fruit and Vegetable Juices: An Alternative to Dairy-Based Probiotic Functional Products. Nutrients 2022; 14:nu14173457. [PMID: 36079714 PMCID: PMC9459872 DOI: 10.3390/nu14173457] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Fruits and vegetables are widely known to be rich in nutrients, antioxidants, vitamins, dietary fiber, minerals, and a bioactive molecule, making them an essential component of a balanced diet with multiple documented positive effects on human health. The probiotication of plant-based juices for the production of functional and nutraceutical food serves as a healthy alternative to dairy probiotics. They are cholesterol free, lack several dairy allergens, and also encourage ingestion for people with lactose intolerance. This review highlights valuable claims regarding the efficacy of different probiotic strains on various diseases. A comprehensive nutrition comparison and the preference of plant-based over dairy probiotic drinks is also discussed, supported with updated market trends of probiotic drinks (dairy and non-dairy based). An extensive compilation of current plant-based probiotic drinks that are available in markets around the world is listed as a reference. The fermentability of carbon sources by probiotic microorganisms is crucial in addressing the development of plant-based drinks. Therefore, the pathway involved in metabolism of sucrose, glucose, fructose, and galactose in fruit and vegetable juice was also underlined. Finally, the key factors in monitoring the quality of probiotic products such as total soluble solids, sugar consumption, titratable acidity, pH, and stability at low storage temperatures were outlined.
Collapse
|
24
|
Dawan J, Ahn J. Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10071385. [PMID: 35889104 PMCID: PMC9322497 DOI: 10.3390/microorganisms10071385] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria can be adapted to adverse and detrimental conditions that induce general and specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes, such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the regulation of stress response in association with antibiotic resistance provides useful information for the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel therapies targeting bacterial stress responses that have been identified as potential candidates for the effective control of Gram-negative antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Korea
- Correspondence: ; Tel.: +82-33-250-6564
| |
Collapse
|
25
|
Li Y, Feng T, Wang Y. The role of bacterial signaling networks in antibiotics response and resistance regulation. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:163-178. [PMID: 37073223 PMCID: PMC10077285 DOI: 10.1007/s42995-022-00126-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/07/2022] [Indexed: 05/03/2023]
Abstract
Excessive use of antibiotics poses a threat to public health and the environment. In ecosystems, such as the marine environment, antibiotic contamination has led to an increase in bacterial resistance. Therefore, the study of bacterial response to antibiotics and the regulation of resistance formation have become an important research field. Traditionally, the processes related to antibiotic responses and resistance regulation have mainly included the activation of efflux pumps, mutation of antibiotic targets, production of biofilms, and production of inactivated or passivation enzymes. In recent years, studies have shown that bacterial signaling networks can affect antibiotic responses and resistance regulation. Signaling systems mostly alter resistance by regulating biofilms, efflux pumps, and mobile genetic elements. Here we provide an overview of how bacterial intraspecific and interspecific signaling networks affect the response to environmental antibiotics. In doing so, this review provides theoretical support for inhibiting bacterial antibiotic resistance and alleviating health and ecological problems caused by antibiotic contamination.
Collapse
Affiliation(s)
- Yuying Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Tao Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| |
Collapse
|
26
|
Fan Q, Zuo J, Wang H, Grenier D, Yi L, Wang Y. Contribution of quorum sensing to virulence and antibiotic resistance in zoonotic bacteria. Biotechnol Adv 2022; 59:107965. [PMID: 35487393 DOI: 10.1016/j.biotechadv.2022.107965] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
Quorum sensing (QS), which is a key part of cell/cell communication, is widely distributed in microorganisms, especially in bacteria. Bacteria can produce and detect the presence of QS signal molecule, perceive the composition and density of microorganisms in their complex habitat, and then dynamically regulate their own gene expression to adapt to their environment. Among the many traits controlled by QS in pathogenic bacteria is the expression of virulence factors and antibiotic resistance. Many pathogenic bacteria rely on QS to govern the production of virulence factors and express drug-resistance, especially in zoonotic bacteria. The threat of antibiotic resistant zoonotic bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Targeting QS has proven to be a promising alternative to conventional antibiotic for controlling infections. Here we review the QS systems in common zoonotic pathogenic bacteria and outline how QS may control the virulence and antibiotic resistance of zoonotic bacteria.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Canada
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
27
|
Distinct Potentially Adaptive Accumulation of Truncation Mutations in Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A. Microbiol Spectr 2022; 10:e0196921. [PMID: 35467366 PMCID: PMC9241588 DOI: 10.1128/spectrum.01969-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene inactivation through the accumulation of truncation (or premature stop codon) mutations is a common mode of evolution in bacteria. It is frequently believed to result from reductive evolutionary processes allowing purging of superfluous traits. However, several works have demonstrated that, similar to the occurrences of inactivating nonsynonymous (i.e., amino acid replacement) mutations under positive selection pressures, truncation mutations can also be adaptive where specific traits deleterious in particular environmental conditions need to be inactivated for survival. Here, we performed a comparative analysis of genome-wide accumulation of truncation mutations in Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A. Considering the known convergent evolutionary trajectories in these two serovars, we expected a strong overlap of truncated genes in S. Typhi and S. Paratyphi A, emerging through either reductive or adaptive dynamics. However, we detected a distinct set of core truncated genes encoding different overrepresented functional clusters in each serovar. In 54% and 28% truncated genes in S. Typhi and S. Paratyphi A, respectively, inactivating mutations were acquired by only different subsets of isolates, instead of all isolates analyzed for that serovar. Importantly, 62% truncated genes (P < 0.001) in S. Typhi and S. Paratyphi A were also targeted by convergent amino acid mutations in different serovars, suggesting those genes to be under selection pressures. Our findings indicate significant presence of potentially adaptive truncation mutations in conjunction with the ones emerging due to reductive evolution. Further experimental and large-scale bioinformatic studies are necessary to better explore the impact of such adaptive footprints of truncation mutations in the evolution of bacterial virulence. IMPORTANCE Detecting the adaptive mutations leading to gene inactivation or loss of function is crucial for understanding their contribution in the evolution of bacterial virulence and antibiotic resistance. Such inactivating mutations, apart from being of nonsynonymous (i.e., amino acid replacement) nature, can also be truncation mutations, abruptly trimming the length of encoded proteins. Importantly, the notion of reductive evolutionary dynamics is primarily accepted toward the accumulation of truncation mutations. However, our case study on S. Typhi and S. Paratyphi A, two human-restricted systemically invasive pathogens exerting similar clinical manifestations, indicated that a significant proportion of truncation mutations emerge from positive selection pressures. The candidate genes from our study will enable directed functional assays for deciphering the adaptive role of truncation mutations in S. Typhi and S. Paratyphi A pathogenesis. Also, our genome-level analytical approach will pave the way to understand the contribution of truncation mutations in the adaptive evolution of other bacterial pathogens.
Collapse
|
28
|
Mindt M, Beyraghdar Kashkooli A, Suarez-Diez M, Ferrer L, Jilg T, Bosch D, Martins Dos Santos V, Wendisch VF, Cankar K. Production of indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications. Microb Cell Fact 2022; 21:45. [PMID: 35331232 PMCID: PMC8944080 DOI: 10.1186/s12934-022-01771-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
Background The nitrogen containing aromatic compound indole is known for its floral odor typical of jasmine blossoms. Due to its characteristic scent, it is frequently used in dairy products, tea drinks and fine fragrances. The demand for natural indole by the flavor and fragrance industry is high, yet, its abundance in essential oils isolated from plants such as jasmine and narcissus is low. Thus, there is a strong demand for a sustainable method to produce food-grade indole. Results Here, we established the biotechnological production of indole upon l-tryptophan supplementation in the bacterial host Corynebacterium glutamicum. Heterologous expression of the tryptophanase gene from E. coli enabled the conversion of supplemented l-tryptophan to indole. Engineering of the substrate import by co-expression of the native aromatic amino acid permease gene aroP increased whole-cell biotransformation of l-tryptophan to indole by two-fold. Indole production to 0.2 g L−1 was achieved upon feeding of 1 g L−1l-tryptophan in a bioreactor cultivation, while neither accumulation of side-products nor loss of indole were observed. To establish an efficient and robust production process, new tryptophanases were recruited by mining of bacterial sequence databases. This search retrieved more than 400 candidates and, upon screening of tryptophanase activity, nine new enzymes were identified as most promising. The highest production of indole in vivo in C. glutamicum was achieved based on the tryptophanase from Providencia rettgeri. Evaluation of several biological aspects identified the product toxicity as major bottleneck of this conversion. In situ product recovery was applied to sequester indole in a food-grade organic phase during the fermentation to avoid inhibition due to product accumulation. This process enabled complete conversion of l-tryptophan and an indole product titer of 5.7 g L−1 was reached. Indole partitioned to the organic phase which contained 28 g L−1 indole while no other products were observed indicating high indole purity. Conclusions The bioconversion production process established in this study provides an attractive route for sustainable indole production from tryptophan in C. glutamicum. Industrially relevant indole titers were achieved within 24 h and indole was concentrated in the organic layer as a pure product after the fermentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01771-y.
Collapse
Affiliation(s)
- Melanie Mindt
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands.,Axxence Aromatic GmbH, Emmerich am Rhein, Germany
| | - Arman Beyraghdar Kashkooli
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Lenny Ferrer
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Tatjana Jilg
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Dirk Bosch
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Vitor Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,Laboratory of Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Katarina Cankar
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
29
|
Kerr R, Jabbari S, Blair JMA, Johnston IG. Dynamic Boolean modelling reveals the influence of energy supply on bacterial efflux pump expression. J R Soc Interface 2022; 19:20210771. [PMID: 35078338 PMCID: PMC8790346 DOI: 10.1098/rsif.2021.0771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global health issue. One key factor contributing to AMR is the ability of bacteria to export drugs through efflux pumps, which relies on the ATP-dependent expression and interaction of several controlling genes. Recent studies have shown that significant cell-to-cell ATP variability exists within clonal bacterial populations, but the contribution of intrinsic cell-to-cell ATP heterogeneity is generally overlooked in understanding efflux pumps. Here, we consider how ATP variability influences gene regulatory networks controlling expression of efflux pump genes in two bacterial species. We develop and apply a generalizable Boolean modelling framework, developed to incorporate the dependence of gene expression dynamics on available cellular energy supply. Theoretical results show that differences in energy availability can cause pronounced downstream heterogeneity in efflux gene expression. Cells with higher energy availability have a superior response to stressors. Furthermore, in the absence of stress, model bacteria develop heterogeneous pulses of efflux pump gene expression which contribute to a sustained sub-population of cells with increased efflux expression activity, potentially conferring a continuous pool of intrinsically resistant bacteria. This modelling approach thus reveals an important source of heterogeneity in cell responses to antimicrobials and sheds light on potentially targetable aspects of efflux pump-related antimicrobial resistance.
Collapse
Affiliation(s)
- Ryan Kerr
- School of Mathematics, University of Birmingham, Birmingham, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Sara Jabbari
- School of Mathematics, University of Birmingham, Birmingham, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Iain G Johnston
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway.,CAMRIA Centre for Antimicrobial Resistance, Vestland, Norway
| |
Collapse
|
30
|
Mehta J, Rolta R, Dev K. Role of medicinal plants from North Western Himalayas as an efflux pump inhibitor against MDR AcrAB-TolC Salmonella enterica serovar typhimurium: In vitro and In silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114589. [PMID: 34492321 DOI: 10.1016/j.jep.2021.114589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zingiber officinale Roscoe has been utilized traditionally to cure various diseases like cold, cough, diarrhoea, nausea, asthma, vomiting, toothache, stomach upset, respiratory disorders, joint pain, and throat infection. It is also consumed as spices and ginger tea. AIM OF THE STUDY The current study was aimed to identify the phytocompounds of traditional medicinal plants of North-Western Himalaya that could inhibit the AcrAB-TolC efflux pump activity of Salmonella typhimurium and become sensitive to antibiotic killing at reduced dosage. MATERIAL AND METHODS Medicinal plant extracts were prepared using methanol, aqueous, and ethyl acetate and tested for efflux pump inhibitory activity of Salmonella typhimurium NKS70, NKS174, and NKS773 strains using Ethidium Bromide (EtBr)-agar cartwheel assay. Synergism was assessed by the agar well diffusion method and EPI activity by berberine uptake and EtBr efflux inhibition assays. Microdilution method and checkerboard assays were done to determine the minimum inhibitory concentration (MIC) and fractional inhibitory concentration index (FICI) respectively for a bioactive compound. To validate the phytocompound and efflux pump interaction, molecular docking with 6IE8 (RamA) and 6IE9 (RamR) targets was done using autoDock vina software. Toxicity prediction and drug-likeness were predicted by using ProTox-II and Molinspiration respectively. RESULTS Methanolic and ethyl acetate extracts of P. integerrima, O. sanctum, C. asiatica, M. charantia, Z. officinale, and W. somnifera in combination with ciprofloxacin and tetracycline showed synergistic antimicrobial activity with GIIs of 0.61-1.32 and GIIs 0.56-1.35 respectively. Methanolic extract of Z. officinal enhanced the antimicrobial potency of berberine (2 to 4-folds) and increased the EtBr accumulation. Furthermore, bioassay-guided fractionation leads to the identification of lariciresinol in ethyl acetate fraction, which decreased the MIC by 2-to 4-folds. The ΣFIC values varied from 0.30 to 0.55 with tetracycline, that indicated synergistic/additive effects. Lariciresinol also showed a good binding affinity with 6IE8 (-7.4 kcal mol-1) and 6IE9 (-8.2 kcal mol-1), which is comparable to tetracycline and chenodeoxycholic acid. Lariciresinol followed Lipinski's rule of five. CONCLUSION The data suggest that lariciresinol from Z. officinale could be a potential efflux pump inhibitor that could lead to effective killing of drug resistant Salmonella typhimurium at lower MIC. Molecular docking confirmed the antibacterial EPI mechanism of lariciresinol in Salmonella typhimurium and confirmed to be safe for future use.
Collapse
Affiliation(s)
- Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| |
Collapse
|
31
|
Nishino K, Yamasaki S, Nakashima R, Zwama M, Hayashi-Nishino M. Function and Inhibitory Mechanisms of Multidrug Efflux Pumps. Front Microbiol 2021; 12:737288. [PMID: 34925258 PMCID: PMC8678522 DOI: 10.3389/fmicb.2021.737288] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022] Open
Abstract
Multidrug efflux pumps are inner membrane transporters that export multiple antibiotics from the inside to the outside of bacterial cells, contributing to bacterial multidrug resistance (MDR). Postgenomic analysis has demonstrated that numerous multidrug efflux pumps exist in bacteria. Also, the co-crystal structural analysis of multidrug efflux pumps revealed the drug recognition and export mechanisms, and the inhibitory mechanisms of the pumps. A single multidrug efflux pump can export multiple antibiotics; hence, developing efflux pump inhibitors is crucial in overcoming infectious diseases caused by multidrug-resistant bacteria. This review article describes the role of multidrug efflux pumps in MDR, and their physiological functions and inhibitory mechanisms.
Collapse
Affiliation(s)
- Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Ryosuke Nakashima
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| |
Collapse
|
32
|
Hai D, Huang X. Protective effect of Lactobacillus reuteri Lb11 from chicken intestinal tract against Salmonella Enteritidis SE05 in vitro. Antonie van Leeuwenhoek 2021; 114:1745-1757. [PMID: 34529163 DOI: 10.1007/s10482-021-01625-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/19/2021] [Indexed: 02/05/2023]
Abstract
Salmonella infections in eggs with increasing morbidity and mortality exhibit worldwide prevalence. The present study intends to evaluate the efficacy of Lactobacillus reuteri Lb11 (L. reuteri Lb11, isolated from chicken intestinal tract) in inhibiting the growth of multi-drug resistant (MDR) Salmonella Enteritidis SE05 (obtained from egg content). The cell-free cell lysates (CFCL) of L. reuteri Lb11 obtained by the agar spot test performed well on inhibition of the MDR (Multi-Drug Resistant) Salmonella Enteritidis SE05, The heat-inactivated (HI) fraction of L. reuteri Lb11 showed no inhibition activity. By co-culturing with L. reuteri Lb11 in vitro, the growth of S. Enteritidis SE05 decreased along with time, while, the pH value decreased significantly. Furthermore, In order to evaluate the mechanism of action of CFCL of L.reuteri Lb11, the genes related to the transcription level of AcrAB-TolC efflux pump, outer membrane protein OMPs genes and drug resistance genes have been quantified by real-time PCR, when the S. Enteritidis was SE05 exposed to the CFCL of L. reuteri Lb11 (1 × 1012 CFU/mL). Almost all of the AcrAB-TolC efflux pump genes, outer membrane protein genes and antibiotic resistance genes were down-regulated. Especially, the level of ramA, tetA and tetB genes were down-regulated -20.77, -15.85 and -12.42 folds, respectively. L. reuteri Lb11 can effectively prevent the formation of efflux pump to inhibit the production of multidrug-resistant Salmonella Enteritidis in eggs.
Collapse
Affiliation(s)
- Dan Hai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
33
|
Sridhar S, Forrest S, Pickard D, Cormie C, Lees EA, Thomson NR, Dougan G, Baker S. Inhibitory Concentrations of Ciprofloxacin Induce an Adaptive Response Promoting the Intracellular Survival of Salmonella enterica Serovar Typhimurium. mBio 2021; 12:e0109321. [PMID: 34154399 PMCID: PMC8262899 DOI: 10.1128/mbio.01093-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial resistance (AMR) is a pressing global health crisis, which has been fueled by the sustained use of certain classes of antimicrobials, including fluoroquinolones. While the genetic mutations responsible for decreased fluoroquinolone (ciprofloxacin) susceptibility are known, the implications of ciprofloxacin exposure on bacterial growth, survival, and interactions with host cells are not well described. Aiming to understand the influence of inhibitory concentrations of ciprofloxacin in vitro, we subjected three clinical isolates of Salmonella enterica serovar Typhimurium to differing concentrations of ciprofloxacin, dependent on their MICs, and assessed the impact on bacterial growth, morphology, and transcription. We further investigated the differential morphology and transcription that occurred following ciprofloxacin exposure and measured the ability of ciprofloxacin-treated bacteria to invade and replicate in host cells. We found that ciprofloxacin-exposed S. Typhimurium is able to recover from inhibitory concentrations of ciprofloxacin and that the drug induces specific morphological and transcriptional signatures associated with the bacterial SOS response, DNA repair, and intracellular survival. In addition, ciprofloxacin-treated S. Typhimurium has increased capacity for intracellular replication in comparison to that of untreated organisms. These data suggest that S. Typhimurium undergoes an adaptive response under ciprofloxacin perturbation that promotes cellular survival, a consequence that may justify more measured use of ciprofloxacin for Salmonella infections. The combination of multiple experimental approaches provides new insights into the collateral effects that ciprofloxacin and other antimicrobials have on invasive bacterial pathogens. IMPORTANCE Antimicrobial resistance is a critical concern in global health. In particular, there is rising resistance to fluoroquinolones, such as ciprofloxacin, a first-line antimicrobial for many Gram-negative pathogens. We investigated the adaptive response of clinical isolates of Salmonella enterica serovar Typhimurium to ciprofloxacin, finding that the bacteria adapt in short timespans to high concentrations of ciprofloxacin in a way that promotes intracellular survival during early infection. Importantly, by studying three clinically relevant isolates, we were able to show that individual isolates respond differently to ciprofloxacin and that for each isolate, there was a heterogeneous response under ciprofloxacin treatment. The heterogeneity that arises from ciprofloxacin exposure may drive survival and proliferation of Salmonella during treatment and lead to drug resistance.
Collapse
Affiliation(s)
- Sushmita Sridhar
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Sally Forrest
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Derek Pickard
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Claire Cormie
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Emily A. Lees
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gordon Dougan
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Stephen Baker
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| |
Collapse
|
34
|
Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella-A Review. Pathogens 2021; 10:pathogens10070801. [PMID: 34202800 PMCID: PMC8308502 DOI: 10.3390/pathogens10070801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of antibiotics, especially those with a broad spectrum of activity, has resulted in the development of multidrug resistance in many strains of bacteria, including Salmonella. Salmonella is among the most prevalent causes of intoxication due to the consumption of contaminated food and water. Salmonellosis caused by this pathogen is pharmacologically treated using antibiotics such as fluoroquinolones, ceftriaxone, and azithromycin. This foodborne pathogen developed several molecular mechanisms of resistance both on the level of global and local transcription modulators. The increasing rate of antibiotic resistance in Salmonella poses a significant global concern, and an improved understanding of the multidrug resistance mechanisms in Salmonella is essential for choosing the suitable antibiotic for the treatment of infections. In this review, we summarized the current knowledge of molecular mechanisms that control gene expression related to antibiotic resistance of Salmonella strains. We characterized regulators acting as transcription activators and repressors, as well as two-component signal transduction systems. We also discuss the background of the molecular mechanisms of the resistance to metals, regulators of multidrug resistance to antibiotics, global regulators of the LysR family, as well as regulators of histone-like proteins.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Kamila J. Daniluk
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
- Correspondence: ; Tel.: +48-22-6063605
| |
Collapse
|
35
|
Zhang CZ, Zhang Y, Ding XM, Lin XL, Lian XL, Trampari E, Thomson NM, Ding HZ, Webber MA, Jiang HX. Emergence of ciprofloxacin heteroresistance in foodborne Salmonella enterica serovar Agona. J Antimicrob Chemother 2021; 75:2773-2779. [PMID: 32747937 DOI: 10.1093/jac/dkaa288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Bacterial heteroresistance has been increasingly identified as an important phenomenon for many antibiotic/bacterium combinations. OBJECTIVES To investigate ciprofloxacin heteroresistance in Salmonella and characterize mechanisms contributing to ciprofloxacin heteroresistance. METHODS Ciprofloxacin-heteroresistant Salmonella were identified by population analysis profiling (PAP). Target mutations and the presence of PMQR genes were detected using PCR and sequencing. Expression of acrB, acrF and qnrS was conducted by quantitative RT-PCR. Competition ability and virulence were also compared using pyrosequencing, blue/white screening, adhesion and invasion assays and a Galleria model. Two subpopulations were whole-genome sequenced using Oxford Nanopore and Illumina platforms. RESULTS PAP identified one Salmonella from food that yielded a subpopulation demonstrating heteroresistance to ciprofloxacin at a low frequency (10-9 to 10-7). WGS and PFGE analyses confirmed that the two subpopulations were isogenic, with six SNPs and two small deletions distinguishing the resistant from the susceptible. Both subpopulations possessed a T57S substitution in ParC and carried qnrS. The resistant subpopulation was distinguished by overexpression of acrB and acrF, a deletion within rsxC and altered expression of soxS. The resistant population had a competitive advantage against the parental population when grown in the presence of bile salts but was attenuated in the adhesion and invasion of human intestinal cells. CONCLUSIONS We determined that heteroresistance resulted from a combination of mutations in fluoroquinolone target genes and overexpression of efflux pumps associated with a deletion in rsxC. This study warns that ciprofloxacin heteroresistance exists in Salmonella in the food chain and highlights the necessity for careful interpretation of antibiotic susceptibility.
Collapse
Affiliation(s)
- Chuan-Zhen Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Yan Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Min Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Ling Lin
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Lei Lian
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Eleftheria Trampari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Nicholas M Thomson
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Huan-Zhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Hong-Xia Jiang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
36
|
Serratia marcescens RamA Expression Is under PhoP-Dependent Control and Modulates Lipid A-Related Gene Transcription and Antibiotic Resistance Phenotypes. J Bacteriol 2021; 203:e0052320. [PMID: 33927048 DOI: 10.1128/jb.00523-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Serratia marcescens is an enteric bacterium that can function as an opportunistic pathogen with increasing incidence in clinical settings. This is mainly due to the ability to express a wide range of virulence factors and the acquisition of antibiotic resistance mechanisms. For these reasons, S. marcescens has been declared by the World Health Organization (WHO) as a research priority to develop alternative antimicrobial strategies. In this study, we found a PhoP-binding motif in the promoter region of transcriptional regulator RamA of S. marcescens RM66262. We demonstrated that the expression of ramA is autoregulated and that ramA is also part of the PhoP/PhoQ regulon. We have also shown that PhoP binds directly and specifically to ramA, mgtE1, mgtE2, lpxO1, and lpxO2 promoter regions and that RamA binds to ramA and lpxO1 but not to mgtE1 and lpxO2, suggesting an indirect control for the latter genes. Finally, we have demonstrated that in S. marcescens, RamA overexpression induces the AcrAB-TolC efflux pump, required to reduce the susceptibility of the bacteria to tetracycline and nalidixic acid. In sum, we here provide the first report describing the regulation of ramA under the control of the PhoP/PhoQ regulon and the regulatory role of RamA in S. marcescens. IMPORTANCE We demonstrate that in S. marcescens, the transcriptional regulator RamA is autoregulated and also controlled by the PhoP/PhoQ signal transduction system. We show that PhoP is able to directly and specifically bind to ramA, mgtE1, mgtE2, lpxO1, and lpxO2 promoter regions. In addition, RamA is able to directly interact with the promoter regions of ramA and lpxO1 but indirectly regulates mgtE1 and lpxO2. Finally, we found that in S. marcescens, RamA overexpression induces the AcrAB-TolC efflux pump, required to reduce susceptibility to tetracycline and nalidixic acid. Collectively, these results further our understanding of the PhoP/PhoQ regulon in S. marcescens and demonstrate the involvement of RamA in the protection against antibiotic challenges.
Collapse
|
37
|
Yu J, Jia M, Feng Y. The cytidine repressor regulates the survival of Pantoea agglomerans YS19 under oxidative stress and sulfur starvation conditions. J GEN APPL MICROBIOL 2021; 67:59-66. [PMID: 33518552 DOI: 10.2323/jgam.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pantoea agglomerans YS19 is a dominant endophytic bacterium isolated from rice, which is capable of promoting host plant growth by nitrogen-fixing and phytohormone secreting. We previously found that the cytidine repressor (CytR) protein conducts the regulation of indole signal in YS19. Here, we compared the whole-cell protein of the wild type YS19 and the ΔcytR mutant and subsequently identified one differential protein as alkyl hydroperoxide reductase subunit C related to oxidative stress and sulfur starvation tolerance. It was tested that cytR had a positive effect on the survival of YS19 under the oxidative stress and sulfur starvation conditions and this effect was inhibited by indole. To further understand the functional mode of indole in this regulation, we cloned the cytR promoter region (PcytR) of YS19 and tested the effect of indole on PcytR using gfp as a reporter gene. It was found that PcytR can sense indole and significantly inhibit the expression of the downstream gene. This study provided a deeper understanding of the multiple function of cytR and expanded a new research direction of how indole participates in gene regulation.
Collapse
Affiliation(s)
- Jiajia Yu
- School of Life Science, Beijing Institute of Technology
| | - Mengqi Jia
- School of Life Science, Beijing Institute of Technology
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology
| |
Collapse
|
38
|
Wahlig TA, Stanton E, Godfrey JJ, Stasic AJ, Wong ACL, Kaspar CW. A Single Nucleotide Polymorphism in lptG Increases Tolerance to Bile Salts, Acid, and Staining of Calcofluor-Binding Polysaccharides in Salmonella enterica Serovar Typhimurium E40. Front Microbiol 2021; 12:671453. [PMID: 34149657 PMCID: PMC8208086 DOI: 10.3389/fmicb.2021.671453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
The outer membrane of Salmonella enterica plays an important role in combating stress encountered in the environment and hosts. The transport and insertion of lipopolysaccharides (LPS) into the outer membrane involves lipopolysaccharide transport proteins (LptA-F) and mutations in the genes encoding for these proteins are often lethal or result in the transport of atypical LPS that can alter stress tolerance in bacteria. During studies of heterogeneity in bile salts tolerance, S. enterica serovar Typhimurium E40 was segregated into bile salts tolerant and sensitive cells by screening for growth in TSB with 10% bile salts. An isolate (E40V) with a bile salts MIC >20% was selected for further characterization. Whole-genome sequencing of E40 and E40V using Illumina and PacBio SMRT technologies revealed a non-synonymous single nucleotide polymorphism (SNP) in lptG. Leucine at residue 26 in E40 was substituted with proline in E40V. In addition to growth in the presence of 10% bile salts, E40V was susceptible to novobiocin while E40 was not. Transcriptional analysis of E40 and E40V, in the absence of bile salts, revealed significantly greater (p < 0.05) levels of transcript in three genes in E40V; yjbE (encoding for an extracellular polymeric substance production protein), yciE (encoding for a putative stress response protein), and an uncharacterized gene annotated as an acid shock protein precursor (ASPP). No transcripts of genes were present at a greater level in E40 compared to E40V. Corresponding with the greater level of these transcripts, E40V had greater survival at pH 3.35 and staining of Calcofluor-binding polysaccharide (CBPS). To confirm the SNP in lptG was associated with these phenotypes, strain E40E was engineered from E40 to encode for the variant form of LptG (L26P). E40E exhibited the same differences in gene transcripts and phenotypes as E40V, including susceptibility to novobiocin, confirming the SNP was responsible for these differences.
Collapse
Affiliation(s)
- Taylor A Wahlig
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Eliot Stanton
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Jared J Godfrey
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Andrew J Stasic
- U. S. Food and Drug Administration, Center for Biologics Evaluation and Research, Washington, DC, United States
| | - Amy C L Wong
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Charles W Kaspar
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
39
|
Han JT, Li DY, Zhang MY, Yu XQ, Jia XX, Xu H, Yan X, Jia WJ, Niu S, Kempher ML, Tao X, He YX. EmhR is an indole-sensing transcriptional regulator responsible for the indole-induced antibiotic tolerance in Pseudomonas fluorescens. Environ Microbiol 2020; 23:2054-2069. [PMID: 33314494 DOI: 10.1111/1462-2920.15354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022]
Abstract
Indole is well known as an interspecies signalling molecule to modulate bacterial physiology; however, it is not clear how the indole signal is perceived and responded to by plant growth promoting rhizobacteria (PGPR) in the rhizosphere. Here, we demonstrated that indole enhanced the antibiotic tolerance of Pseudomonas fluorescens 2P24, a PGPR well known for its biocontrol capacity. Proteomic analysis revealed that indole influenced the expression of multiple genes including the emhABC operon encoding a major multidrug efflux pump. The expression of emhABC was regulated by a TetR-family transcription factor EmhR, which was demonstrated to be an indole-responsive regulator. Molecular dynamics simulation showed that indole allosterically affected the distance between the two DNA-recognizing helices within the EmhR dimer, leading to diminished EmhR-DNA interaction. It was further revealed the EmhR ortholog in Pseudomonas syringae was also responsible for indole-induced antibiotic tolerance, suggesting this EmhR-dependent, indole-induced antibiotic tolerance is likely to be conserved among Pseudomonas species. Taken together, our results elucidated the molecular mechanism of indole-induced antibiotic tolerance in Pseudomonas species and had important implications on how rhizobacteria sense and respond to indole in the rhizosphere.
Collapse
Affiliation(s)
- Jian-Ting Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Di-Yin Li
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou, China
| | - Meng-Yuan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Quan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiang-Xue Jia
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hang Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wen-Juan Jia
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shaomin Niu
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, Lanzhou, China
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Ok, USA
| | - Xuanyu Tao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Ok, USA
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
40
|
Sethupathy S, Sathiyamoorthi E, Kim YG, Lee JH, Lee J. Antibiofilm and Antivirulence Properties of Indoles Against Serratia marcescens. Front Microbiol 2020; 11:584812. [PMID: 33193228 PMCID: PMC7662412 DOI: 10.3389/fmicb.2020.584812] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Indole and its derivatives have been shown to interfere with the quorum sensing (QS) systems of a wide range of bacterial pathogens. While indole has been previously shown to inhibit QS in Serratia marcescens, the effects of various indole derivatives on QS, biofilm formation, and virulence of S. marcescens remain unexplored. Hence, in the present study, we investigated the effects of 51 indole derivatives on S. marcescens biofilm formation, QS, and virulence factor production. The results obtained revealed that several indole derivatives (3-indoleacetonitrile, 5-fluoroindole, 6-fluoroindole, 7-fluoroindole, 7-methylindole, 7-nitroindole, 5-iodoindole, 5-fluoro-2-methylindole, 2-methylindole-3-carboxaldehyde, and 5-methylindole) dose-dependently interfered with quorum sensing (QS) and suppressed prodigiosin production, biofilm formation, swimming motility, and swarming motility. Further assays showed 6-fluoroindole and 7-methylindole suppressed fimbria-mediated yeast agglutination, extracellular polymeric substance production, and secretions of virulence factors (e.g., proteases and lipases). QS assays on Chromobacterium violaceum CV026 confirmed that indole derivatives interfered with QS. The current results demonstrate the antibiofilm and antivirulence properties of indole derivatives and their potentials in applications targeting S. marcescens virulence.
Collapse
Affiliation(s)
| | | | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
41
|
Dawan J, Ahn J. Assessment of cross-resistance potential to serial antibiotic treatments in antibiotic-resistant Salmonella Typhimurium. Microb Pathog 2020; 148:104478. [DOI: 10.1016/j.micpath.2020.104478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
|
42
|
Local and Universal Action: The Paradoxes of Indole Signalling in Bacteria. Trends Microbiol 2020; 28:566-577. [PMID: 32544443 DOI: 10.1016/j.tim.2020.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Indole is a signalling molecule produced by many bacterial species and involved in intraspecies, interspecies, and interkingdom signalling. Despite the increasing volume of research published in this area, many aspects of indole signalling remain enigmatic. There is disagreement over the mechanism of indole import and export and no clearly defined target through which its effects are exerted. Progress is hindered further by the confused and sometimes contradictory body of indole research literature. We explore the reasons behind this lack of consistency and speculate whether the discovery of a new, pulse mode of indole signalling, together with a move away from the idea of a conventional protein target, might help to overcome these problems and enable the field to move forward.
Collapse
|
43
|
Nakkarach A, Foo HL, Song AAL, Nitisinprasert S, Withayagiat U. Promising discovery of beneficial Escherichia coli in the human gut. 3 Biotech 2020; 10:296. [PMID: 32550113 DOI: 10.1007/s13205-020-02289-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/01/2020] [Indexed: 01/03/2023] Open
Abstract
Ingested dietary fibres are hydrolysed by colon microbiota to produce energy-providing short-chain fatty acids (SCFA) that stimulate anti-inflammatory effects. SCFA-producing bacteria were screened from bacteria isolated from human faeces using bromothymol blue as an acid indicator and gas chromatography for SCFA profiling. The beneficial functions (antagonistic activity, haemolytic activities, antibiotic susceptibility, mucus adherent percentage and toxin gene detection) were evaluated for the top five SCFA-producing bacteria isolated from three healthy volunteers that identified as Escherichia coli strains. They produced acetic, propionic, isobutyric, butyric, isovaleric, valeric and caproic acids at average concentrations of 15.9, 1.8, 1.1, 1.9, 1.8, 2.7 and 3.4 mM, respectively. The SCFA production by E. coli strains was rapidly increased during the first 8 h of incubation and gradually decreased after 16 h of incubation. All E. coli strains showed acid and bile tolerance, resulting in a survival rate greater than 70% with no haemolytic activity, mucus adherence greater than 40% and susceptibility to conventional antibiotics. Hence, the selected E. coli strains exhibited promising probiotic properties with neither enterotoxin nor LPS producibility was detected. The present results confirm the existence of friendly and harmless E. coli strains in human microbiota as potential probiotics.
Collapse
Affiliation(s)
- Atchareeya Nakkarach
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok, 10900 Thailand
- Department of Bioprocess, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Hooi Ling Foo
- Department of Bioprocess, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Adelene Ai-Lian Song
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok, 10900 Thailand
| | - Ulaiwan Withayagiat
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok, 10900 Thailand
- Fermentation Technology Research Center, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok, 10900 Thailand
| |
Collapse
|
44
|
Abstract
Efflux is an important mechanism in Gram-negative bacteria conferring multidrug resistance. Inhibition of efflux is an encouraging strategy to restore the antibacterial activity of antibiotics. Chlorpromazine and amitriptyline have been shown to behave as efflux inhibitors. However, their mode of action is poorly understood. Exposure of Salmonella enterica serovar Typhimurium and Escherichia coli to chlorpromazine selected for mutations within genes encoding RamR and MarR, regulators of the multidrug tripartite efflux pump AcrAB-TolC. Further experiments with S. Typhimurium containing AcrB D408A (a nonfunctional efflux pump) and chlorpromazine or amitriptyline resulted in the reversion of the mutant acrB allele to the wild type. Together, this suggests these drugs are AcrB efflux substrates. Subsequent docking studies with AcrB from S. Typhimurium and E. coli, followed by molecular dynamics simulations and free energy calculations showed that chlorpromazine and amitriptyline bind at the hydrophobic trap, a preferred binding site for substrates and inhibitors within the distal binding pocket of AcrB. Based on these simulations, we suggest that chlorpromazine and amitriptyline inhibit AcrB-mediated efflux by interfering with substrate binding. Our findings provide evidence that these drugs are substrates and inhibitors of AcrB, yielding molecular details of their mechanism of action and informing drug discovery of new efflux inhibitors.IMPORTANCE Efflux pumps of the resistance nodulation-cell division (RND) superfamily are major contributors to multidrug resistance for most of the Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. The development of inhibitors of these pumps would be highly desirable; however, several issues have thus far hindered all efforts at designing new efflux inhibitory compounds devoid of adverse effects. An alternative route to de novo design relies on the use of marketed drugs, for which side effects on human health have been already assessed. In this work, we provide experimental evidence that the antipsychotic drugs chlorpromazine and amitriptyline are inhibitors of the AcrB transporter, the engine of the major RND efflux pumps in Escherichia coli and Salmonella enterica serovar Typhimurium. Furthermore, in silico calculations have provided a molecular-level picture of the inhibition mechanism, allowing rationalization of experimental data and paving the way for similar studies with other classes of marketed compounds.
Collapse
|
45
|
Shaheen A, Tariq A, Shehzad A, Iqbal M, Mirza O, Maslov DA, Rahman M. Transcriptional regulation of drug resistance mechanisms in Salmonella: where we stand and what we need to know. World J Microbiol Biotechnol 2020; 36:85. [PMID: 32468234 DOI: 10.1007/s11274-020-02862-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023]
Abstract
Salmonellae have evolved a wide range of molecular mechanisms to neutralize the effect of antibiotics and evade the host immune system response. These mechanisms are exquisitely controlled by global and local regulators and enable the pathogens to use its energy as per need and hence allow the pathogen to economize the consumption of energy by its cellular machinery. Several families that regulate the expression of different drug resistance genes are known; some of these are: the TetR family (which affects tetracycline resistance genes), the AraC/XylS family (regulators that can act as both transcriptional activators and repressors), two-component signal transduction systems (e.g. PhoPQ, a key regulator for virulence), mercury resistance Mer-R and multiple antibiotic resistance Mar-R regulators, LysR-type global regulators (e.g. LeuO) and histone-like protein regulators (involved in the repression of newly transferred resistance genes). This minireview focuses on the role of different regulators harbored by the Salmonella genome and characterized for mediating the drug resistance mechanisms particularly via efflux and influx systems. Understanding of such transcriptional regulation mechanisms is imperative to address drug resistance issues in Salmonella and other bacterial pathogens.
Collapse
Affiliation(s)
- Aqsa Shaheen
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Anam Tariq
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Aamir Shehzad
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmitry A Maslov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333
| | - Moazur Rahman
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
46
|
Hirakawa H, Uchida M, Kurabayashi K, Nishijima F, Takita A, Tomita H. In vitro activity of AST-120 that suppresses indole signaling in Escherichia coli, which attenuates drug tolerance and virulence. PLoS One 2020; 15:e0232461. [PMID: 32348373 PMCID: PMC7190153 DOI: 10.1371/journal.pone.0232461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/15/2020] [Indexed: 01/02/2023] Open
Abstract
AST-120 (Kremezin) is used to treat progressive chronic kidney disease (CKD) by adsorbing uremic toxin precursors produced by gut microbiota, such as indole and phenols. In this study, we propose that AST-120 reduces indole level, consequently suppresses indole effects on induction of drug tolerance and virulence in Escherichia coli including enterohaemorrhagic strains. In experiments, AST-120 adsorbed both indole and tryptophan, a precursor of indole production, and led to decreased expression of acrD and mdtEF which encode drug efflux pumps, and elevated glpT, which encodes a transporter for fosfomycin uptake and increases susceptibility to aztreonam, rhodamine 6G, and fosfomycin. AST-120 also decreased the production of EspB, which contributes to pathogenicity of enterohaemorrhagic E. coli (EHEC). Aztreonam, ciprofloxacin, minocycline, trimethoprim, and sulfamethoxazole were also adsorbed by AST-120. However, fosfomycin, in addition to rifampicin, colistin and amikacin were not adsorbed, thus AST-120 can be used together with these drugs for therapy to treat infections. These results suggest another benefit of AST-120, i.e., that it assists antibacterial chemotherapy.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
- * E-mail:
| | - Motoyuki Uchida
- Pharmaceuticals and Agrochemicals Division, Kureha Corporation, Shinjuku-ku, Tokyo, Japan
| | - Kumiko Kurabayashi
- Department of Bacteriology, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Fuyuhiko Nishijima
- Pharmaceuticals and Agrochemicals Division, Kureha Corporation, Shinjuku-ku, Tokyo, Japan
| | - Ayako Takita
- Department of Bacteriology, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
- Laboratory of Bacterial Drug Resistance, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
47
|
Debroy R, Miryala SK, Naha A, Anbarasu A, Ramaiah S. Gene interaction network studies to decipher the multi-drug resistance mechanism in Salmonella enterica serovar Typhi CT18 reveal potential drug targets. Microb Pathog 2020; 142:104096. [PMID: 32097747 DOI: 10.1016/j.micpath.2020.104096] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023]
Abstract
Salmonella enterica subsp. enterica serovar Typhi, a human enteric pathogen causing typhoid fever, developed resistance to multiple antibiotics over the years. The current study was dedicated to understand the multi-drug resistance (MDR) mechanism of S. enterica serovar Typhi CT18 and to identify potential drug targets that could be exploited for new drug discovery. We have employed gene interaction network analysis for 44 genes which had 275 interactions. Clustering analysis resulted in three highly interconnecting clusters (C1-C3). Functional enrichment analysis revealed the presence of drug target alteration and three different multi-drug efflux pumps in the bacteria that were associated with antibiotic resistance. We found seven genes (arnA,B,C,D,E,F,T) conferring resistance to Cationic Anti-Microbial Polypeptide (CAMP) molecules by membrane Lipopolysaccharide (LPS) modification, while macB was observed to be an essential controlling hub of the network and played a crucial role in MacAB-TolC efflux pump. Further, we identified five genes (mdtH, mdtM, mdtG, emrD and mdfA) which were involved in Major Facilitator Superfamily (MFS) efflux system and acrAB contributed towards AcrAB-TolC efflux pump. All three efflux pumps were seen to be highly dependent on tolC gene. The five genes, namely tolC, macB, acrA, acrB and mdfA which were involved in multiple resistance pathways, can act as potential drug targets for successful treatment strategies. Therefore, this study has provided profound insights into the MDR mechanism in S. Typhi CT18. Our results will be useful for experimental biologists to explore new leads for S. enterica.
Collapse
Affiliation(s)
- Reetika Debroy
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Aniket Naha
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
48
|
Colclough AL, Alav I, Whittle EE, Pugh HL, Darby EM, Legood SW, McNeil HE, Blair JM. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 2020; 15:143-157. [PMID: 32073314 DOI: 10.2217/fmb-2019-0235] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rresistance-nodulation-division (RND) efflux pumps in Gram-negative bacteria remove multiple, structurally distinct classes of antimicrobials from inside bacterial cells therefore directly contributing to multidrug resistance. There is also emerging evidence that many other mechanisms of antibiotic resistance rely on the intrinsic resistance conferred by RND efflux. In addition to their role in antibiotic resistance, new information has become available about the natural role of RND pumps including their established role in virulence of many Gram-negative organisms. This review also discusses the recent advances in understanding the regulation and structure of RND efflux pumps.
Collapse
Affiliation(s)
- Abigail L Colclough
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emily E Whittle
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hannah L Pugh
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elizabeth M Darby
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Simon W Legood
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Helen E McNeil
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica Ma Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
49
|
Multidrug Resistance Regulators MarA, SoxS, Rob, and RamA Repress Flagellar Gene Expression and Motility in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00385-19. [PMID: 31501286 DOI: 10.1128/jb.00385-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Production of flagella is costly and subject to global multilayered regulation, which is reflected in the hierarchical control of flagellar production in many bacterial species. For Salmonella enterica serovar Typhimurium and its relatives, global regulation of flagellar production primarily occurs through the control of flhDC transcription and mRNA translation. In this study, the roles of the homologous multidrug resistance regulators MarA, SoxS, Rob, and RamA (constituting the mar-sox-rob regulon in S Typhimurium) in regulating flagellar gene expression were explored. Each of these regulators was found to inhibit flagellar gene expression, production of flagella, and motility. To different degrees, repression via these transcription factors occurred through direct interactions with the flhDC promoter, particularly for MarA and Rob. Additionally, SoxS repressed flagellar gene expression via a posttranscriptional pathway, reducing flhDC translation. The roles of these transcription factors in reducing motility in the presence of salicylic acid were also elucidated, adding a genetic regulatory element to the response of S Typhimurium to this well-characterized chemorepellent. Integration of flagellar gene expression into the mar-sox-rob regulon in S Typhimurium contrasts with findings for closely related species such as Escherichia coli, providing an example of plasticity in the mar-sox-rob regulon throughout the Enterobacteriaceae family.IMPORTANCE The mar-sox-rob regulon is a large and highly conserved stress response network in the Enterobacteriaceae family. Although it is well characterized in E. coli, the extent of this regulon in related species is unclear. Here, the control of costly flagellar gene expression is connected to the mar-sox-rob regulon of S Typhimurium, contrasting with the E. coli regulon model. These findings demonstrate the flexibility of the mar-sox-rob regulon to accommodate novel regulatory targets, and they provide evidence for its broader regulatory role within this family of diverse bacteria.
Collapse
|
50
|
Whittle EE, Legood SW, Alav I, Dulyayangkul P, Overton TW, Blair JMA. Flow Cytometric Analysis of Efflux by Dye Accumulation. Front Microbiol 2019; 10:2319. [PMID: 31636625 PMCID: PMC6787898 DOI: 10.3389/fmicb.2019.02319] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/23/2019] [Indexed: 11/13/2022] Open
Abstract
Gram-negative infections are increasingly difficult to treat because of their impermeable outer membranes (OM) and efflux pumps which maintain a low intracellular accumulation of antibiotics within cells. Historically, measurement of accumulation of drugs or dyes within Gram-negative cells has concentrated on analyzing whole bacterial populations. Here, we have developed a method to measure the intracellular accumulation of ethidium bromide, a fluorescent DNA intercalating dye, in single cells using flow cytometry. Bacterial cells were stained with SYTOTM 84 to easily separate cells from background cell debris. Ethidium bromide fluorescence was then measured within the SYTOTM 84 positive population to measure accumulation. In S. Typhimurium SL1344, ethidium bromide accumulation was low, however, in a number of efflux mutants, accumulation of ethidium bromide increased more than twofold, comparable to previous whole population analysis of accumulation. We demonstrate simultaneous measurement of ethidium bromide accumulation and GFP allowing quantification of gene expression or other facets of phenotype in single cells. In addition, we show here that this assay can be adapted for use with efflux inhibitors, with both Gram-negative and Gram-positive bacteria, and with other fluorescent substrates with different fluorescence spectra.
Collapse
Affiliation(s)
- Emily E Whittle
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Simon W Legood
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ilyas Alav
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Punyawee Dulyayangkul
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|