1
|
Sun W, Shahrajabian MH, Ma K, Wang S. Advances in Molecular Function and Recombinant Expression of Human Collagen. Pharmaceuticals (Basel) 2025; 18:430. [PMID: 40143206 PMCID: PMC11945623 DOI: 10.3390/ph18030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Collagen is the main protein found in skin, bone, cartilage, ligaments, tendons and connective tissue, and it can exhibit properties ranging from compliant to rigid or form gradients between these states. The collagen family comprises 28 members, each containing at least one triple-helical domain. These proteins play critical roles in maintaining mechanical characteristics, tissue organization, and structural integrity. Collagens regulate cellular processes such as proliferation, migration, and differentiation through interactions with cell surface receptors. Fibrillar collagens, the most abundant extracellular matrix (ECM) proteins, provide organs and tissues with structural stability and connectivity. In the mammalian myocardial interstitium, types I and III collagens are predominant: collagen I is found in organs, tendons, and bones; collagen II is found in cartilage; collagen III is found in reticular fibers; collagen IV is found in basement membranes; and collagen V is found in nails and hair. Recombinant human collagens, particularly in sponge-like porous formats combined with bone morphogenetic proteins, serve as effective scaffolds for bone repair. Due to their biocompatibility and low immunogenicity, collagens are pivotal in tissue engineering applications for skin, bone, and wound regeneration. Recombinant technology enables the production of triple-helical collagens with amino acid sequences identical to human tissue-derived collagens. This review summarizes recent advances in the molecular functions and recombinant expression of human collagens, with a focus on their biomedical applications.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Kun Ma
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| | - Shubin Wang
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| |
Collapse
|
2
|
Herbert A. Flipons and the origin of the genetic code. Biol Lett 2025; 21:20240635. [PMID: 39837490 PMCID: PMC11883820 DOI: 10.1098/rsbl.2024.0635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
This paper is focused on the origins of the contemporary genetic code. A novel explanation is proposed for how the mapping of nucleotides in DNA to amino acids in proteins arose that derives from repeat nucleotide sequences able to form alternative nucleic acid structures (ANS), such as the unusual left-handed Z-DNA, triplex, G-quadruplex and I-motif conformations. The scheme identifies sequence-specific contacts that map ANS repeats to dipeptide polymers (DPS). The stereochemistry required naturally evolves into a non-overlapping, triplet code for mapping nucleotides to amino acids. The ANS/DPS complexes form a simple, genetically transmitted, self-templating, autonomously replicating collection of 'tinkers' for Nature to evolve. Tinkers have agency and promote their own synthesis by forming catalytic scaffolds with metals, further enhancing their capabilities. Initial support for the model is provided by computational models built with AlphaFold3. The predictions made are properly falsifiable with the currently available methodology.
Collapse
|
3
|
Kleinnijenhuis AJ, van Holthoon FL, van der Steen B. Identification of collagen 1α3 in teleost fish species and typical collision induced internal fragmentations. Food Chem X 2022; 14:100333. [PMID: 35634226 PMCID: PMC9130073 DOI: 10.1016/j.fochx.2022.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/22/2022] [Accepted: 05/15/2022] [Indexed: 12/01/2022] Open
Abstract
Identification of collagen 1α3 in several fish species using LC-MS. Visualization of collagen (type) similarity on the nucleotide and amino acid level. Assessment of database collagen annotations. Further investigation of the formation of pG+ fragment ions. Detailed description of collagen-specific collision induced internal fragment ion series.
In contrast to collagens 1α1 and 1α2, the more obscure collagen 1α3 is sparsely mentioned in literature. In skin collagen type 1 of teleosts (bony fish), however, the chain occurs in a heterotrimer together with collagens 1α1 and 1α2, which makes it one of the most abundant proteins in teleosts. As teleost fish species and gelatin (hydrolysate) prepared from their skin are a major source for food products and nutraceuticals, the goal of the study was to selectively identify collagen 1α3 in several fish species. Fish skin extracts and fish skin gelatins were analyzed using LC-MS. Depending on the amount of available genetic information different approaches were used to identify collagen 1α3. Additionally, collagen-specific collision induced internal fragmentations are discussed, which are important to consider during data analysis. Ultimately the presence of collagen 1α3 could be confirmed using LC-MS in multiple fish species.
Collapse
|
4
|
Fassini D, Wilkie IC, Pozzolini M, Ferrario C, Sugni M, Rocha MS, Giovine M, Bonasoro F, Silva TH, Reis RL. Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules 2021; 22:1815-1834. [PMID: 33835787 DOI: 10.1021/acs.biomac.1c00013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Marine biodiversity is expressed through the huge variety of vertebrate and invertebrate species inhabiting intertidal to deep-sea environments. The extraordinary variety of "forms and functions" exhibited by marine animals suggests they are a promising source of bioactive molecules and provides potential inspiration for different biomimetic approaches. This diversity is familiar to biologists and has led to intensive investigation of metabolites, polysaccharides, and other compounds. However, marine collagens are less well-known. This review will provide detailed insight into the diversity of collagens present in marine species in terms of their genetics, structure, properties, and physiology. In the last part of the review the focus will be on the most common marine collagen sources and on the latest advances in the development of innovative materials exploiting, or inspired by, marine collagens.
Collapse
Affiliation(s)
- Dario Fassini
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Iain C Wilkie
- Institute of Biodiversity Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Cinzia Ferrario
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Michela Sugni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miguel S Rocha
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Francesco Bonasoro
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
5
|
Koutsouveli V, Cárdenas P, Santodomingo N, Marina A, Morato E, Rapp HT, Riesgo A. The Molecular Machinery of Gametogenesis in Geodia Demosponges (Porifera): Evolutionary Origins of a Conserved Toolkit across Animals. Mol Biol Evol 2020; 37:3485-3506. [PMID: 32929503 PMCID: PMC7743902 DOI: 10.1093/molbev/msaa183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All animals are capable of undergoing gametogenesis. The ability of forming haploid cells from diploid cells through meiosis and recombination appeared early in eukaryotes, whereas further gamete differentiation is mostly a metazoan signature. Morphologically, the gametogenic process presents many similarities across animal taxa, but little is known about its conservation at the molecular level. Porifera are the earliest divergent animals and therefore are an ideal phylum to understand evolution of the gametogenic toolkits. Although sponge gametogenesis is well known at the histological level, the molecular toolkits for gamete production are largely unknown. Our goal was to identify the genes and their expression levels which regulate oogenesis and spermatogenesis in five gonochoristic and oviparous species of the genus Geodia, using both RNAseq and proteomic analyses. In the early stages of both female and male gametogenesis, genes involved in germ cell fate and cell-renewal were upregulated. Then, molecular signals involved in retinoic acid pathway could trigger the meiotic processes. During later stages of oogenesis, female sponges expressed genes involved in cell growth, vitellogenesis, and extracellular matrix reassembly, which are conserved elements of oocyte maturation in Metazoa. Likewise, in spermatogenesis, genes regulating the whole meiotic cycle, chromatin compaction, and flagellum axoneme formation, that are common across Metazoa were overexpressed in the sponges. Finally, molecular signals possibly related to sperm capacitation were identified during late stages of spermatogenesis for the first time in Porifera. In conclusion, the activated molecular toolkit during gametogenesis in sponges was remarkably similar to that deployed during gametogenesis in vertebrates.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Nadiezhda Santodomingo
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Esperanza Morato
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Hans Tore Rapp
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| |
Collapse
|
6
|
Senadheera TR, Dave D, Shahidi F. Sea Cucumber Derived Type I Collagen: A Comprehensive Review. Mar Drugs 2020; 18:E471. [PMID: 32961970 PMCID: PMC7551324 DOI: 10.3390/md18090471] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/31/2023] Open
Abstract
Collagen is the major fibrillar protein in most living organisms. Among the different types of collagen, type I collagen is the most abundant one in tissues of marine invertebrates. Due to the health-related risk factors and religious constraints, use of mammalian derived collagen has been limited. This triggers the search for alternative sources of collagen for both food and non-food applications. In this regard, numerous studies have been conducted on maximizing the utilization of seafood processing by-products and address the need for collagen. However, less attention has been given to marine invertebrates and their by-products. The present review has focused on identifying sea cucumber as a potential source of collagen and discusses the general scope of collagen extraction, isolation, characterization, and physicochemical properties along with opportunities and challenges for utilizing marine-derived collagen.
Collapse
Affiliation(s)
- Tharindu R.L. Senadheera
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John’s, NL A1C 5R3, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| |
Collapse
|
7
|
Costa ML, de Andrade Rosa I, Andrade L, Mermelstein C, C Coutinho C. Distinct interactions between epithelial and mesenchymal cells control cell morphology and collective migration during sponge epithelial to mesenchymal transition. J Morphol 2019; 281:183-195. [PMID: 31854473 DOI: 10.1002/jmor.21090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 11/10/2022]
Abstract
Epithelial and mesenchymal cell types are basic for animal multicellularity and they have complementary functions coordinated by cellular interactions. Sponges are especially important model organisms to address the evolutionary basis of morphogenetic programs for epithelial and mesenchymal organization in animals. Evolutionary studies in sponges can contribute to the understanding of the mechanisms that control tissue maintenance and tumor progression in humans. In the present study, sponge mesenchymal and epithelial cells were isolated from the demosponge Hymeniacidon heliophila, and aggregate formation was observed by video microscopy. Epithelial-mesenchymal interaction, epithelial transition, and cell migration led to sponge cell aggregation after drastic stress. Based on their different morphologies, adhesion specificities, and motilities, we suggest a role for different sponge cell types as well as complementary functions in cell aggregation. Micromanipulation under the microscope and cell tracking were also used to promote specific grafting-host interaction, to further test the effects of cell type interaction. The loss of cell polarity and flattened shape during the epithelial to mesenchymal cell transition generated small immobile aggregates of round/amoeboid cells. The motility of these transited epithelial-cell aggregates was observed by cell tracking using fluorescent dye, but only after interaction with streams of migratory mesenchymal cells. Cell motility occurred independently of morphological changes, indicating a progressive step in the transition toward a migratory mesenchymal state. Our data suggest a two-step signaling process: (a) the lack of interaction between mesenchymal and epithelial cells triggers morphological changes; and (b) migratory mesenchymal cells instruct epithelial cells for directional cell motility. These results could have an impact on the understanding of evolutionary aspects of metastatic cancer cells. HIGHLIGHTS: Morphogenetic movements observed in modern sponges could have a common evolutionary origin with collective cell migration of human metastatic cells. A sponge regenerative model was used here to characterize epithelial and mesenchymal cells, and for the promotion of grafting/host interactions with subsequent cell tracking. The transition from epithelial to mesenchymal cell type can be observed in sponges in two steps: (a) withdrawal of epithelial/mesenchymal cell interactions to trigger morphological changes; (b) migratory mesenchymal cells to induce epithelial cells to a collective migratory state.
Collapse
Affiliation(s)
- Manoel L Costa
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Ivone de Andrade Rosa
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Leonardo Andrade
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Claudia Mermelstein
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Cristiano C Coutinho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Chen J, Li J, Li Z, Yi R, Shi S, Wu K, Li Y, Wu S. Physicochemical and Functional Properties of Type I Collagens in Red Stingray ( Dasyatis akajei) Skin. Mar Drugs 2019; 17:E558. [PMID: 31569390 PMCID: PMC6835876 DOI: 10.3390/md17100558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Collagen is widely used in the pharmaceutical, tissue engineering, nutraceutical, and cosmetic industries. In this study, acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were extracted from the skin of red stingray, and its physicochemical and functional properties were investigated. The yields of ASC and PSC were 33.95 ± 0.7% and 37.18 ± 0.71% (on a dry weight basis), respectively. ASC and PSC were identified as type I collagen by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis, possessing a complete triple helix structure as determined by UV absorption, Fourier transform infrared, circular dichroism, and X-ray diffraction spectroscopy. Contact angle experiments indicated that PSC was more hydrophobic than ASC. Thermal stability tests revealed that the melting temperature of PSC from red stingray skin was higher than that of PSC from duck skin, and the difference in the melting temperature between these two PSCs was 9.24 °C. Additionally, both ASC and PSC were functionally superior to some other proteins from terrestrial sources, such as scallop gonad protein, whey protein, and goose liver protein. These results suggest that PSC from red stingray skin could be used instead of terrestrial animal collagen in drugs, foods, cosmetics, and biological functional materials, and as scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Junde Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
| | - Jianying Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
- Fisheries College, Jimei University, Xiamen 361021, China.
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory, Marine Fishery Resources and Eco-environment, Jimei University, Xiamen 361021, China.
| | - Ruizao Yi
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
| | - Shenjia Shi
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
- Fisheries College, Jimei University, Xiamen 361021, China.
| | - Kunyuan Wu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
| | - Yushuang Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
| | - Sijia Wu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China. (J.L.).
| |
Collapse
|
9
|
Modelling the early evolution of extracellular matrix from modern Ctenophores and Sponges. Essays Biochem 2019; 63:389-405. [DOI: 10.1042/ebc20180048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
AbstractAnimals (metazoans) include some of the most complex living organisms on Earth, with regard to their multicellularity, numbers of differentiated cell types, and lifecycles. The metazoan extracellular matrix (ECM) is well-known to have major roles in the development of tissues during embryogenesis and in maintaining homoeostasis throughout life, yet insight into the ECM proteins which may have contributed to the transition from unicellular eukaryotes to multicellular animals remains sparse. Recent phylogenetic studies place either ctenophores or poriferans as the closest modern relatives of the earliest emerging metazoans. Here, we review the literature and representative genomic and transcriptomic databases for evidence of ECM and ECM-affiliated components known to be conserved in bilaterians, that are also present in ctenophores and/or poriferans. Whereas an extensive set of related proteins are identifiable in poriferans, there is a strikingly lack of conservation in ctenophores. From this perspective, much remains to be learnt about the composition of ctenophore mesoglea. The principal ECM-related proteins conserved between ctenophores, poriferans, and bilaterians include collagen IV, laminin-like proteins, thrombospondin superfamily members, integrins, membrane-associated proteoglycans, and tissue transglutaminase. These are candidates for a putative ancestral ECM that may have contributed to the emergence of the metazoans.
Collapse
|
10
|
Carvalho AM, Marques AP, Silva TH, Reis RL. Evaluation of the Potential of Collagen from Codfish Skin as a Biomaterial for Biomedical Applications. Mar Drugs 2018; 16:E495. [PMID: 30544788 PMCID: PMC6316778 DOI: 10.3390/md16120495] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Collagen is one of the most widely used biomaterials, not only due its biocompatibility, biodegradability and weak antigenic potential, but also due to its role in the structure and function of tissues. Searching for alternative collagen sources, the aim of this study was to extract collagen from the skin of codfish, previously obtained as a by-product of fish industrial plants, and characterize it regarding its use as a biomaterial for biomedical application, according to American Society for Testing and Materials (ASTM) Guidelines. Collagen type I with a high degree of purity was obtained through acid-extraction, as confirmed by colorimetric assays, SDS-PAGE and amino acid composition. Thermal analysis revealed a denaturing temperature around 16 °C. Moreover, collagen showed a concentration-dependent effect in metabolism and on cell adhesion of lung fibroblast MRC-5 cells. In conclusion, this study shows that collagen can be obtained from marine-origin sources, while preserving its bioactivity, supporting its use in biomedical applications.
Collapse
Affiliation(s)
- Ana M Carvalho
- 3B's Research Group, I3Bs⁻Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine Avepark⁻Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's⁻PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Alexandra P Marques
- 3B's Research Group, I3Bs⁻Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine Avepark⁻Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's⁻PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Tiago H Silva
- 3B's Research Group, I3Bs⁻Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine Avepark⁻Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's⁻PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs⁻Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine Avepark⁻Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's⁻PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
11
|
Orgel JPRO, Sella I, Madhurapantula RS, Antipova O, Mandelberg Y, Kashman Y, Benayahu D, Benayahu Y. Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 2017; 220:3327-3335. [PMID: 28705830 PMCID: PMC5612020 DOI: 10.1242/jeb.163824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022]
Abstract
We report here the biochemical, molecular and ultrastructural features of a unique organization of fibrillar collagen extracted from the octocoral Sarcophyton ehrenbergi Collagen, the most abundant protein in the animal kingdom, is often defined as a structural component of extracellular matrices in metazoans. In the present study, collagen fibers were extracted from the mesenteries of S. ehrenbergi polyps. These fibers are organized as filaments and further compacted as coiled fibers. The fibers are uniquely long, reaching an unprecedented length of tens of centimeters. The diameter of these fibers is 9±0.37 μm. The amino acid content of these fibers was identified using chromatography and revealed close similarity in content to mammalian type I and II collagens. The ultrastructural organization of the fibers was characterized by means of high-resolution microscopy and X-ray diffraction. The fibers are composed of fibrils and fibril bundles in the range of 15 to 35 nm. These data indicate a fibrillar collagen possessing structural aspects of both types I and II collagen, a highly interesting and newly described form of fibrillar collagen organization.
Collapse
Affiliation(s)
- Joseph P R O Orgel
- Departments of Biology, Physics and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 S. Dearborn Ave, Chicago, IL 60616, USA
- BioCAT, Advanced Photon Source, Argonne National Laboratory, IL, USA
| | - Ido Sella
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Rama S Madhurapantula
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 S. Dearborn Ave, Chicago, IL 60616, USA
| | - Olga Antipova
- Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 S. Dearborn Ave, Chicago, IL 60616, USA
- BioCAT, Advanced Photon Source, Argonne National Laboratory, IL, USA
| | - Yael Mandelberg
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yoel Kashman
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yehuda Benayahu
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Grau-Bové X, Torruella G, Donachie S, Suga H, Leonard G, Richards TA, Ruiz-Trillo I. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife 2017; 6:26036. [PMID: 28726632 PMCID: PMC5560861 DOI: 10.7554/elife.26036] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022] Open
Abstract
Which genomic innovations underpinned the origin of multicellular animals is still an open debate. Here, we investigate this question by reconstructing the genome architecture and gene family diversity of ancestral premetazoans, aiming to date the emergence of animal-like traits. Our comparative analysis involves genomes from animals and their closest unicellular relatives (the Holozoa), including four new genomes: three Ichthyosporea and Corallochytrium limacisporum. Here, we show that the earliest animals were shaped by dynamic changes in genome architecture before the emergence of multicellularity: an early burst of gene diversity in the ancestor of Holozoa, enriched in transcription factors and cell adhesion machinery, was followed by multiple and differently-timed episodes of synteny disruption, intron gain and genome expansions. Thus, the foundations of animal genome architecture were laid before the origin of complex multicellularity – highlighting the necessity of a unicellular perspective to understand early animal evolution. DOI:http://dx.doi.org/10.7554/eLife.26036.001 Hundreds of millions of years ago, some single-celled organisms gained the ability to work together and form multicellular organisms. This transition was a major step in evolution and took place at separate times in several parts of the tree of life, including in animals, plants, fungi and algae. Animals are some of the most complex organisms on Earth. Their single-celled ancestors were also quite genetically complex themselves and their genomes (the complete set of the organism’s DNA) already contained many genes that now coordinate the activity of the cells in a multicellular organism. The genome of an animal typically has certain features: it is large, diverse and contains many segments (called introns) that are not genes. By seeing if the single-celled relatives of animals share these traits, it is possible to learn more about when specific genetic features first evolved, and whether they are linked to the origin of animals. Now, Grau-Bové et al. have studied the genomes of several of the animal kingdom’s closest single-celled relatives using a technique called whole genome sequencing. This revealed that there was a period of rapid genetic change in the single-celled ancestors of animals during which their genes became much more diverse. Another ‘explosion’ of diversity happened after animals had evolved. Furthermore, the overall amount of the genomic content inside cells and the number of introns found in the genome rapidly increased in separate, independent events in both animals and their single-celled ancestors. Future research is needed to investigate whether other multicellular life forms – such as plants, fungi and algae – originated in the same way as animal life. Understanding how the genetic material of animals evolved also helps us to understand the genetic structures that affect our health. For example, genes that coordinate the behavior of cells (and so are important for multicellular organisms) also play a role in cancer, where cells break free of this regulation to divide uncontrollably. DOI:http://dx.doi.org/10.7554/eLife.26036.002
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barelona, Barcelona, Catalonia, Spain
| | - Guifré Torruella
- Unité d'Ecologie, Systématique et Evolution, Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Stuart Donachie
- Department of Microbiology, University of Hawai'i at Mānoa, Honolulu, United States.,Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawai'i at Mānoa, Honolulu, United States
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Guy Leonard
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Thomas A Richards
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Universitat de Barelona, Barcelona, Catalonia, Spain.,ICREA, Passeig Lluís Companys, Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Goh KL, Holmes DF. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue. Int J Mol Sci 2017; 18:ijms18050901. [PMID: 28441344 PMCID: PMC5454814 DOI: 10.3390/ijms18050901] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced composites to a wide variety of collagen reinforcing (non-mutable) connective tissue, has allowed us to draw general conclusions concerning the mechanical response of the MCT at specific mechanical states, namely the stiff and complaint states. The intent of this review is to provide the latest insights, as well as identify technical challenges and opportunities, that may be useful for developing methods for effective mechanical support when adapting decellularised connective tissues from the sea urchin for tissue engineering or for the design of a synthetic analogue.
Collapse
Affiliation(s)
- Kheng Lim Goh
- Newcastle University Singapore, SIT Building at Nanyang Polytechnic, 172A Ang Mo Kio Avenue 8 #05-01, Singapore 567739, Singapore.
- Newcastle University, School of Mechanical & Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK.
| | - David F Holmes
- Manchester University, Wellcome Trust Centre for Cell Matrix Research, B.3016 Michael Smith Building, Faculty of Life Sciences, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
14
|
Babonis LS, Martindale MQ. Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150477. [PMID: 27994120 PMCID: PMC5182411 DOI: 10.1098/rstb.2015.0477] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Communication among cells was paramount to the evolutionary increase in cell type diversity and, ultimately, the origin of large body size. Across the diversity of Metazoa, there are only few conserved cell signalling pathways known to orchestrate the complex cell and tissue interactions regulating development; thus, modification to these few pathways has been responsible for generating diversity during the evolution of animals. Here, we summarize evidence for the origin and putative function of the intracellular, membrane-bound and secreted components of seven metazoan cell signalling pathways with a special focus on early branching metazoans (ctenophores, poriferans, placozoans and cnidarians) and basal unikonts (amoebozoans, fungi, filastereans and choanoflagellates). We highlight the modular incorporation of intra- and extracellular components in each signalling pathway and suggest that increases in the complexity of the extracellular matrix may have further promoted the modulation of cell signalling during metazoan evolution. Most importantly, this updated view of metazoan signalling pathways highlights the need for explicit study of canonical signalling pathway components in taxa that do not operate a complete signalling pathway. Studies like these are critical for developing a deeper understanding of the evolution of cell signalling.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| |
Collapse
|
15
|
Cheng X, Shao Z, Li C, Yu L, Raja MA, Liu C. Isolation, Characterization and Evaluation of Collagen from Jellyfish Rhopilema esculentum Kishinouye for Use in Hemostatic Applications. PLoS One 2017; 12:e0169731. [PMID: 28103327 PMCID: PMC5245839 DOI: 10.1371/journal.pone.0169731] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022] Open
Abstract
Hemostat has been a crucial focus since human body is unable to control massive blood loss, and collagen proves to be an effective hemostat in previous studies. In this study, collagen was isolated from the mesoglea of jellyfish Rhopilema esculentum Kishinouye and its hemostatic property was studied. The yields of acid-soluble collagen (ASC) and pepsin-soluble (PSC) were 0.12% and 0.28% respectively. The SDS-PAGE patterns indicated that the collagen extracted from jellyfish mesoglea was type I collagen. The lyophilized jellyfish collagen sponges were cross-linked with EDC and interconnected networks in the sponges were revealed by scanning electron microscope (SEM). Collagen sponges exhibited higher water absorption rates than medical gauze and EDC/NHS cross-linking method could improve the stability of the collagen sponges. Compared with medical gauze groups, the blood clotting indexes (BCIs) of collagen sponges were significantly decreased (P < 0.05) and the concentration of collagen also had an influence on the hemostatic property (P < 0.05). Collagen sponges had an improved hemostatic ability compared to the gauze control in tail amputation rat models. Hemostatic mechanism studies showed that hemocytes and platelets could adhere and aggregate on the surface of collagen sponge. All properties make jellyfish collagen sponge to be a suitable candidate used as hemostatic material and for wound healing applications.
Collapse
Affiliation(s)
- Xiaochen Cheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, P. R. China
| | - Ziyu Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, P. R. China
| | - Chengbo Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, P. R. China
| | - Lejun Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, P. R. China
| | - Mazhar Ali Raja
- College of Marine Life Sciences, Ocean University of China, Qingdao, P. R. China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, P. R. China
- * E-mail:
| |
Collapse
|
16
|
Abstract
Fibrillar collagens (types I, II, III, V, XI, XXIV and XXVII) constitute a sub-group within the collagen family (of which there are 28 types in humans) whose functions are to provide three-dimensional frameworks for tissues and organs. These networks confer mechanical strength as well as signalling and organizing functions through binding to cellular receptors and other components of the extracellular matrix (ECM). Here we describe the structure and assembly of fibrillar collagens, and their procollagen precursors, from the molecular to the tissue level. We show how the structure of the collagen triple-helix is influenced by the amino acid sequence, hydrogen bonding and post-translational modifications, such as prolyl 4-hydroxylation. The numerous steps in the biosynthesis of the fibrillar collagens are reviewed with particular attention to the role of prolyl 3-hydroxylation, collagen chaperones, trimerization of procollagen chains and proteolytic maturation. The multiple steps controlling fibril assembly are then discussed with a focus on the cellular control of this process in vivo. Our current understanding of the molecular packing in collagen fibrils, from different tissues, is then summarized on the basis of data from X-ray diffraction and electron microscopy. These results provide structural insights into how collagen fibrils interact with cell receptors, other fibrillar and non-fibrillar collagens and other ECM components, as well as enzymes involved in cross-linking and degradation.
Collapse
Affiliation(s)
- Jordi Bella
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering Unit (UMR5305), CNRS/Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
17
|
Rodriguez-Pascual F, Slatter DA. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix. Sci Rep 2016; 6:37374. [PMID: 27876853 PMCID: PMC5120351 DOI: 10.1038/srep37374] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.
Collapse
Affiliation(s)
- Fernando Rodriguez-Pascual
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas (C.S.I.C.)/Universidad Autónoma de Madrid (Madrid), Madrid, Spain
| | | |
Collapse
|
18
|
Mandelberg Y, Benayahu D, Benayahu Y. Octocoral Sarcophyton auritum Verseveldt & Benayahu, 1978: Microanatomy and Presence of Collagen Fibers. THE BIOLOGICAL BULLETIN 2016; 230:68-77. [PMID: 26896179 DOI: 10.1086/bblv230n1p68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The study presents the microanatomy of the polyps of the reef-dwelling octocoral Sarcophyton auritum. We demonstrate the presence of its unique collagen fibers in the colony by means of Masson Trichrome histological staining. Based on peptide profiling, mass spectroscopy analysis confirmed that the fiber proteins were homologous with those of mammalian collagen. Histological and electron microscopy results showed that six of the eight mesenterial filaments of the polyps possess an internal, coiled, spring-like collagen fiber. High-resolution electron microscopy revealed for the first time in cnidarian collagen the interwoven, three-dimensional arrangement of the fibrils that comprise the fibers. Some fibrils feature free ends, while others are bifurcated, the latter being attributed to collagen undergoing fibrogenesis. Along with the mass spectroscopy finding, the coiled nature of the fibers and the fibril microanatomy show a resemblance to those of vertebrates, demonstrating the conserved nature of collagen fibers at both the biochemical and ultrastructural levels. The location, arrangement, and small diameter of the fibers and fibrils of S. auritum may provide a highly protective factor against occasional rupture and injury during the bending of the octocoral's extended polyps under strong current conditions; that is, providing the octocoral with a hydromechanical support. The findings from the microanatomical features of these unique fibers in S. auritum, as well as their suggested function, raise the potential for translation to biomedical applications.
Collapse
Affiliation(s)
- Yael Mandelberg
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; and
| | - Dafna Benayahu
- Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yehuda Benayahu
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; and
| |
Collapse
|
19
|
Grau-Bové X, Ruiz-Trillo I, Rodriguez-Pascual F. Origin and evolution of lysyl oxidases. Sci Rep 2015; 5:10568. [PMID: 26024311 PMCID: PMC4448552 DOI: 10.1038/srep10568] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize primary amine substrates to reactive aldehydes. The best-studied role of LOX enzymes is the remodeling of the extracellular matrix (ECM) in animals by cross-linking collagens and elastin, although intracellular functions have been reported as well. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, showing a highly conserved catalytic carboxy terminal domain and more divergence in the rest of the sequence. Here we have surveyed a wide selection of genomes in order to infer the evolutionary history of LOX. We identified LOX proteins not only in animals, but also in many other eukaryotes, as well as in bacteria and archaea - which reveals a pre-metazoan origin for this gene family. LOX genes expanded during metazoan evolution resulting in two superfamilies, LOXL2/L3/L4 and LOX/L1/L5. Considering the current knowledge on the function of mammalian LOX isoforms in ECM remodeling, we propose that LOXL2/L3/L4 members might have preferentially been involved in making cross-linked collagen IV-based basement membrane, whereas the diversification of LOX/L1/L5 forms contributed to chordate/vertebrate-specific ECM innovations, such as elastin and fibronectin. Our work provides a novel view on the evolution of this family of enzymes.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Fernando Rodriguez-Pascual
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas (C.S.I.C.) / Universidad Autónoma de Madrid (Madrid), Madrid, Spain
| |
Collapse
|
20
|
Szatkowski T, Wysokowski M, Lota G, Pęziak D, Bazhenov VV, Nowaczyk G, Walter J, Molodtsov SL, Stöcker H, Himcinschi C, Petrenko I, Stelling AL, Jurga S, Jesionowski T, Ehrlich H. Novel nanostructured hematite–spongin composite developed using an extreme biomimetic approach. RSC Adv 2015. [DOI: 10.1039/c5ra09379a] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The characteristic mineral-free fibrous skeletons (made of structural protein-spongin) of H. communis (Demospongiae: Porifera) was used as a structural template in hydrothermal synthesis of hematite (α-Fe2O3) nanoparticles.
Collapse
|
21
|
Armani A, Giusti A, Castigliego L, Rossi A, Tinacci L, Gianfaldoni D, Guidi A. Pentaplex PCR as screening assay for jellyfish species identification in food products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12134-12143. [PMID: 25393326 DOI: 10.1021/jf504654b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Salted jellyfish, a traditional food in Asian Countries, is nowadays spreading on the Western markets. In this work, we developed a Pentaplex PCR for the identification of five edible species (Nemopilema nomurai, Rhopilema esculentum, Rhizostoma pulmo, Pelagia noctiluca, and Cotylorhiza tuberculata), which cannot be identified by a mere visual inspection in jellyfish products sold as food. A common degenerated forward primer and five specie-specific reverse primers were designed to amplify COI gene regions of different lengths. Another primer pair targeted the 28SrRNA gene and was intended as common positive reaction control. Considering the high level of degradation in the DNA extracted from acidified and salted products, the maximum length of the amplicons was set at 200 bp. The PCR was developed using 66 reference DNA samples. It gave successful amplifications in 85.4% of 48 ready to eat products (REs) and in 60% of 30 classical salted products (CPs) collected on the market.
Collapse
Affiliation(s)
- Andrea Armani
- FishLab, Department of Veterinary Sciences, University of Pisa , Via delle Piagge 2, 56124 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The first animals arose more than six hundred million years ago, yet they left little impression in the fossil record. Nonetheless, the cell biology and genome composition of the first animal, the Urmetazoan, can be reconstructed through the study of phylogenetically relevant living organisms. Comparisons among animals and their unicellular and colonial relatives reveal that the Urmetazoan likely possessed a layer of epithelium-like collar cells, preyed on bacteria, reproduced by sperm and egg, and developed through cell division, cell differentiation, and invagination. Although many genes involved in development, body patterning, immunity, and cell-type specification evolved in the animal stem lineage or after animal origins, several gene families critical for cell adhesion, signaling, and gene regulation predate the origin of animals. The ancestral functions of these and other genes may eventually be revealed through studies of gene and genome function in early-branching animals and their closest non-animal relatives.
Collapse
Affiliation(s)
- Daniel J Richter
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200; ,
| | | |
Collapse
|
23
|
Williams F, Tew HA, Paul CE, Adams JC. The predicted secretomes of Monosiga brevicollis and Capsaspora owczarzaki, close unicellular relatives of metazoans, reveal new insights into the evolution of the metazoan extracellular matrix. Matrix Biol 2014; 37:60-8. [PMID: 24561726 DOI: 10.1016/j.matbio.2014.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/15/2014] [Accepted: 02/16/2014] [Indexed: 12/27/2022]
Abstract
The extracellular matrix (ECM) is a major mediator of multi-cellularity in the metazoa. Multiple ECM proteins are conserved from sponges to human, raising questions about the evolutionary origin of ECM. Choanoflagellates are the closest unicellular relatives of the metazoa and proteins with domains characteristic of metazoan ECM proteins have been identified from the genome-predicted proteome of the choanoflagellate Monosiga brevicollis. However, a systematic analysis of M. brevicollis secretory signal peptide-containing proteins with ECM domains has been lacking. We analysed all predicted secretory signal-peptide-containing proteins of M. brevicollis for ECM domains. Nine domains that are widespread in metazoan ECM proteins are represented, with EGF, fibronectin III, laminin G, and von Willebrand Factor_A domains being the most numerous. Three proteins contain more than one category of ECM domain, however, no proteins correspond to the domain architecture of metazoan ECM proteins. The fibronectin III domains are all present within glycoside hydrolases and none contain an integrin-binding motif. Glycosaminoglycan-binding motifs identified in animal thrombospondin type 1 domains are conserved in some M. brevicollis representatives of this domain, whereas there is little evidence of conservation of glycosaminoglycan-binding motifs in the laminin G domains. The identified proteins were compared with the predicted secretory ECM domain-containing proteins of the integrin-expressing filasterean, Capsaspora owczarzaki. C. owczarzaki encodes a smaller number of secretory, ECM domain-containing proteins and only EGF, fibronectin type III and laminin G domains are represented. The M. brevicollis and C. owczarzaki proteins have distinct domain architectures and all proteins differ in their domain architecture to metazoan ECM proteins. These identifications provide a basis for future experiments to validate the extracellular location of these proteins and uncover their functions in choanoflagellates and C. owczarzaki. The data strengthen the model that ECM proteins are metazoan-specific and evolved as innovations in the last common metazoan ancestor.
Collapse
Affiliation(s)
| | - Hannah A Tew
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Catherine E Paul
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
24
|
Tucker RP, Adams JC. Adhesion networks of cnidarians: a postgenomic view. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:323-77. [PMID: 24411175 DOI: 10.1016/b978-0-12-800097-7.00008-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-extracellular matrix (ECM) and cell-cell adhesion systems are fundamental to the multicellularity of metazoans. Members of phylum Cnidaria were classified historically by their radial symmetry as an outgroup to bilaterian animals. Experimental study of Hydra and jellyfish has fascinated zoologists for many years. Laboratory studies, based on dissection, biochemical isolations, or perturbations of the living organism, have identified the ECM layer of cnidarians (mesoglea) and its components as important determinants of stem cell properties, cell migration and differentiation, tissue morphogenesis, repair, and regeneration. Studies of the ultrastructure and functions of intercellular gap and septate junctions identified parallel roles for these structures in intercellular communication and morphogenesis. More recently, the sequenced genomes of sea anemone Nematostella vectensis, Hydra magnipapillata, and coral Acropora digitifera have opened up a new frame of reference for analyzing the cell-ECM and cell-cell adhesion molecules of cnidarians and examining their conservation with bilaterians. This chapter integrates a review of literature on the structure and functions of cell-ECM and cell-cell adhesion systems in cnidarians with current analyses of genome-encoded repertoires of adhesion molecules. The postgenomic perspective provides a fresh view on fundamental similarities between cnidarian and bilaterian animals and is impelling wider adoption of species from phylum Cnidaria as model organisms.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, USA.
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
25
|
Price S, Anandan S. Characterization of a novel collagen-like protein TrpA in the cyanobacterium Trichodesmium erythraeum IMS101. JOURNAL OF PHYCOLOGY 2013; 49:758-764. [PMID: 27007208 DOI: 10.1111/jpy.12086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/26/2013] [Indexed: 06/05/2023]
Abstract
The collagen protein family is diverse and its membership is continually expanding as new collagen-like molecules are identified. Identification of collagen in unicellular eukaryotes and prokaryotes has opened discussion on the function of these collagens and their role in the emergence of multicellularity. The previous identification of a collagen gene in Trichodesmium erythraeum raises the question of function of this structural protein in a prokaryote. In this study, we show that this gene is expressed during all phases of growth, indicating that it may be required for all phases of growth. Using immunofluorescence techniques, we demonstrate that the collagen-like protein is localized in a specific manner between adjacent cells along the trichome of T. erythraeum. Trichomes treated with the enzyme collagenase exhibited fragmentation, supporting our immunofluorescence localization data that this collagen-like protein is found between adjacent cells. Our data strongly suggest that the collagen-like protein found in T. erythraeum functions to maintain the structural integrity of the trichome through the adhesion of adjacent cells.
Collapse
Affiliation(s)
- Simara Price
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, Pennsylvania, 19104, USA
| | - Shivanthi Anandan
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
26
|
|
27
|
Mori H, Tone Y, Shimizu K, Zikihara K, Tokutomi S, Ida T, Ihara H, Hara M. Studies on fish scale collagen of Pacific saury (Cololabis saira). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:174-81. [DOI: 10.1016/j.msec.2012.08.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/14/2012] [Accepted: 08/12/2012] [Indexed: 11/27/2022]
|
28
|
Wei F, Fallas JA, Hartgerink JD. Sequence Position and Side Chain Length Dependence of Charge Pair Interactions in Collagen Triple Helices. Macromol Rapid Commun 2012; 33:1445-52. [DOI: 10.1002/marc.201200221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/04/2012] [Indexed: 12/15/2022]
|
29
|
Abstract
Marine sponges (phylum Porifera) often contain dense and diverse microbial communities, which can constitute up to 35% of the sponge biomass. The genome of one sponge, Amphimedon queenslandica, was recently sequenced, and this has provided new insights into the origins of animal evolution. Complementary efforts to sequence the genomes of uncultivated sponge symbionts have yielded the first glimpse of how these intimate partnerships are formed. The remarkable microbial and chemical diversity of the sponge-microorganism association, coupled with its postulated antiquity, makes sponges important model systems for the study of metazoan host-microorganism interactions, and their evolution, as well as for enabling access to biotechnologically important symbiont-derived natural products. In this Review, we discuss our current understanding of the interactions between marine sponges and their microbial symbiotic consortia, and highlight recent insights into these relationships from genomic studies.
Collapse
|
30
|
Abstract
The modular domain structure of extracellular matrix (ECM) proteins and their genes has allowed extensive exon/domain shuffling during evolution to generate hundreds of ECM proteins. Many of these arose early during metazoan evolution and have been highly conserved ever since. Others have undergone duplication and divergence during evolution, and novel combinations of domains have evolved to generate new ECM proteins, particularly in the vertebrate lineage. The recent sequencing of several genomes has revealed many details of this conservation and evolution of ECM proteins to serve diverse functions in metazoa.
Collapse
Affiliation(s)
- Richard O Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Ivanova VP, Krivchenko AI. A current viewpoint on structure and evolution of collagens. I. Fibrillar collagens. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012020016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Cromar GL, Xiong X, Chautard E, Ricard-Blum S, Parkinson J. Toward a systems level view of the ECM and related proteins: a framework for the systematic definition and analysis of biological systems. Proteins 2012; 80:1522-44. [PMID: 22275077 DOI: 10.1002/prot.24036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/19/2011] [Accepted: 12/29/2011] [Indexed: 12/20/2022]
Abstract
Advances in high throughput 'omic technologies are starting to provide unprecedented insights into how components of biological systems are organized and interact. Key to exploiting these datasets is the definition of the components that comprise the system of interest. Although a variety of knowledge bases exist that capture such information, a major challenge is determining how these resources may be best utilized. Here we present a systematic curation strategy to define a systems-level view of the human extracellular matrix (ECM)--a three-dimensional meshwork of proteins and polysaccharides that impart structure and mechanical stability to tissues. Employing our curation strategy we define a set of 357 proteins that represent core components of the ECM, together with an additional 524 genes that mediate related functional roles, and construct a map of their physical interactions. Topological properties help identify modules of functionally related proteins, including those involved in cell adhesion, bone formation and blood clotting. Because of its major role in cell adhesion, proliferation and morphogenesis, defects in the ECM have been implicated in cancer, atherosclerosis, asthma, fibrosis, and arthritis. We use MeSH annotations to identify modules enriched for specific disease terms that aid to strengthen existing as well as predict novel gene-disease associations. Mapping expression and conservation data onto the network reveal modules evolved in parallel to convey tissue-specific functionality on otherwise broadly expressed units. In addition to demonstrating an effective workflow for defining biological systems, this study crystallizes our current knowledge surrounding the organization of the ECM.
Collapse
Affiliation(s)
- Graham L Cromar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
33
|
Abstract
Laminins are a family of multidomain glycoproteins that are important contributors to the structure of metazoan extracellular matrices. To investigate the origin and evolution of the laminin family, we characterized the full complement of laminin-related genes in the genome of the sponge, Amphimedon queenslandica. As a representative of the Demospongiae, a group consistently placed within the earliest diverging branch of animals by molecular phylogenies, Amphimedon is uniquely placed to provide insight into early steps in the evolution of metazoan gene families. Five Amphimedon laminin-related genes possess the conserved molecular features, and most of the domains found in bilaterian laminins, but all display domain architectures distinct from those of the canonical laminin chain types known from model bilaterians. This finding prompted us to perform a comparative genomic analysis of laminins and related genes from a choanoflagellate and diverse metazoans and to conduct phylogenetic analyses using the conserved Laminin N-terminal domain in order to explore the relationships between genes with distinct architectures. Laminin-like genes appear to have originated in the holozoan lineage (choanoflagellates + metazoans + several other unicellular opisthokont taxa), with several laminin domains originating later and appearing only in metazoan (animal) or eumetazoan (placozoans + ctenophores + cnidarians + bilaterians) laminins. Typical bilaterian α, β, and γ laminin chain forms arose in the eumetazoan stem and another chain type that is conserved in Amphimedon, the cnidarian, Nematostella vectensis, and the echinoderm, Strongylocentrotus purpuratus, appears to have been lost independently from the placozoan, Trichoplax adhaerens, and from multiple bilaterians. Phylogenetic analysis did not clearly reconstruct relationships between the distinct laminin chain types (with the exception of the α chains) but did reveal how several members of the netrin family were generated independently from within the laminin family by duplication and domain shuffling and by domain loss. Together, our results suggest that gene duplication and loss and domain shuffling and loss all played a role in the evolution of the laminin family and contributed to the generation of lineage-specific diversity in the laminin gene complements of extant metazoans.
Collapse
Affiliation(s)
- Bryony Fahey
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
34
|
Mitchell AL, Judis LM, Schwarze U, Vaynshtok PM, Drumm ML, Byers PH. Characterization of tissue-specific and developmentally regulated alternative splicing of exon 64 in the COL5A1 gene. Connect Tissue Res 2011; 53:267-76. [PMID: 22149965 PMCID: PMC3999617 DOI: 10.3109/03008207.2011.636160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The COL5A1 gene, a member of the clade B fibrillar collagen gene family, was recently shown to contain two alternatively spliced exons (64A and 64B) that encode 23 amino acids in the carboxyl-terminal propeptide. The two are identical in length, very similar in sequence, and used in a mutually exclusive fashion because of the small intron that separates them. Each COL5A1 allele uses both exons, but a given transcript will contain only one of the two exons. The sequences in other species are highly conserved at the amino acid level. The expression profile of the two isoforms was determined from analysis of RNA levels in a panel of murine tissues. While both isoforms were found in all tissues studied, actively proliferating tissues (liver, lung) used isoform B more often, while a less mitotically active tissue, brain, had a higher proportion of exon 64A. The high degree of conservation between the two exons is consistent with a regional genomic duplication. The presence of the two isoforms as far back as pufferfish (tetraodon) implies an important functional significance. The exact role determined by the two sequences is not known, but involvement in the determination of chain composition of mature type V collagen or regulation of cell activity is possible, given the differences in tissue distribution.
Collapse
Affiliation(s)
- Anna L Mitchell
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Ozbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC. The evolution of extracellular matrix. Mol Biol Cell 2011; 21:4300-5. [PMID: 21160071 PMCID: PMC3002383 DOI: 10.1091/mbc.e10-03-0251] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or “adhesome” also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology.
Collapse
Affiliation(s)
- Suat Ozbek
- Department of Molecular Evolution and Genomics, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
36
|
Ganot P, Moya A, Magnone V, Allemand D, Furla P, Sabourault C. Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications. PLoS Genet 2011; 7:e1002187. [PMID: 21811417 PMCID: PMC3141003 DOI: 10.1371/journal.pgen.1002187] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 06/01/2011] [Indexed: 12/23/2022] Open
Abstract
Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the symbiotic state and in the gastroderm. Our results thus offer new insight into the inter-partner signaling required for the physiological mechanisms of the symbiosis that is crucial for coral health.
Collapse
Affiliation(s)
- Philippe Ganot
- Université de Nice-Sophia-Antipolis, Nice, France
- Université Pierre et Marie Curie, Paris, France
- Centre National de la Recherche Scientifique, Roscoff, France
- UMR7138 Systématique, Adaptation, Evolution, Nice, France
| | - Aurélie Moya
- Université de Nice-Sophia-Antipolis, Nice, France
- Université Pierre et Marie Curie, Paris, France
- Centre National de la Recherche Scientifique, Roscoff, France
- UMR7138 Systématique, Adaptation, Evolution, Nice, France
| | - Virginie Magnone
- Université de Nice-Sophia-Antipolis, Nice, France
- Centre National de la Recherche Scientifique, Roscoff, France
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 6097, Sophia Antipolis, France
| | - Denis Allemand
- Université de Nice-Sophia-Antipolis, Nice, France
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Paola Furla
- Université de Nice-Sophia-Antipolis, Nice, France
- Université Pierre et Marie Curie, Paris, France
- Centre National de la Recherche Scientifique, Roscoff, France
- UMR7138 Systématique, Adaptation, Evolution, Nice, France
| | - Cécile Sabourault
- Université de Nice-Sophia-Antipolis, Nice, France
- Université Pierre et Marie Curie, Paris, France
- Centre National de la Recherche Scientifique, Roscoff, France
- UMR7138 Systématique, Adaptation, Evolution, Nice, France
| |
Collapse
|
37
|
Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs 2011; 9:967-983. [PMID: 21747742 PMCID: PMC3131555 DOI: 10.3390/md9060967] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 01/06/2023] Open
Abstract
Fibrillar collagens are the more abundant extracellular proteins. They form a metazoan-specific family, and are highly conserved from sponge to human. Their structural and physiological properties have been successfully used in the food, cosmetic, and pharmaceutical industries. On the other hand, the increase of jellyfish has led us to consider this marine animal as a natural product for food and medicine. Here, we have tested different Mediterranean jellyfish species in order to investigate the economic potential of their collagens. We have studied different methods of collagen purification (tissues and experimental procedures). The best collagen yield was obtained using Rhizostoma pulmo oral arms and the pepsin extraction method (2–10 mg collagen/g of wet tissue). Although a significant yield was obtained with Cotylorhiza tuberculata (0.45 mg/g), R. pulmo was used for further experiments, this jellyfish being considered as harmless to humans and being an abundant source of material. Then, we compared the biological properties of R. pulmo collagen with mammalian fibrillar collagens in cell cytotoxicity assays and cell adhesion. There was no statistical difference in cytotoxicity (p > 0.05) between R. pulmo collagen and rat type I collagen. However, since heparin inhibits cell adhesion to jellyfish-native collagen by 55%, the main difference is that heparan sulfate proteoglycans could be preferentially involved in fibroblast and osteoblast adhesion to jellyfish collagens. Our data confirm the broad harmlessness of jellyfish collagens, and their biological effect on human cells that are similar to that of mammalian type I collagen. Given the bioavailability of jellyfish collagen and its biological properties, this marine material is thus a good candidate for replacing bovine or human collagens in selected biomedical applications.
Collapse
|
38
|
Yung PY, Kjelleberg S, Thomas T. A polyphasic approach to the exploration of collagenolytic activity in the bacterial community associated with the marine sponge Cymbastela concentrica. FEMS Microbiol Lett 2011; 321:24-9. [PMID: 21569081 DOI: 10.1111/j.1574-6968.2011.02306.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Collagen is an important, extracellular structural protein for metazoans and provides a rich nutrient source for bacteria that possess collagen-degrading enzymes. In a symbiotic host system, collagen degradation could benefit the bacteria, but would be harmful for the eukaryotic host. Using a polyphasic approach, we investigated the presence of collagenolytic activity in the bacterial community hosted by the marine sponge Cymbastela concentrica. Functional screening for collagenase activity using metagenomic library clones (227 Mbp) and cultured isolates of sponge's bacterial community, as well as bioinformatic analysis of metagenomic shotgun-sequencing data (106,679 predicted genes) were used. The results show that the abundant members of the bacterial community contain very few genes encoding for collagenolytic enzymes, while some low-abundance sponge isolates possess collagenolytic activities. These findings indicate that collagen is not a preferred nutrient source for the majority of the members of the bacterial community associated with healthy C. concentrica, and that some low-abundance bacteria have collagenase activities that have the potential to harm the sponge through tissue degradation.
Collapse
Affiliation(s)
- Pui Yi Yung
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
39
|
Abstract
Epithelial tissues are a key metazoan cell type, providing a basic structural unit for the construction of diverse animal body plans. Historically, an epithelial grade of organization was considered to be restricted to the Eumetazoa, with the majority of cell layers described for Porifera lacking any of the conserved ultrastructural characteristics of epithelia. Now with the use of genomic information from the demosponge, Amphimedon queenslandica, we identify orthologs of bilaterian genes that determine epithelial cell polarity or encode components of specialized epithelial junctions and extracellular matrix structures. Amphimedon possesses orthologs of most bilaterian epithelial polarity and adherens junction genes but few or no tight junction, septate junction, or basal lamina genes. To place this information in an evolutionary context, we extended these analyses to the completed genomes of various fungi, the choanoflagellate, Monosiga brevicollis, the placozoan, Trichoplax adhaerens, and the cnidarian, Nematostella vectensis. The results indicate that the majority of "epithelial" genes originated in metazoan or eumetazoan lineages, with only two genes, Par-1 and Discs large, antedating the choanoflagellate-metazoan split. We further explored the mechanism of evolution for each of these genes by tracking the origin of constituent domains and domain combinations. In general, domain configurations found in contemporary bilaterians are inferred to have evolved early in metazoan evolution and are identical or similar to those present in representatives of modern cnidarians, placozoans, and demosponges.
Collapse
Affiliation(s)
- Bryony Fahey
- The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
40
|
The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 2010; 466:720-6. [PMID: 20686567 DOI: 10.1038/nature09201] [Citation(s) in RCA: 729] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 05/24/2010] [Indexed: 11/09/2022]
Abstract
Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.
Collapse
|
41
|
Bentley AA, Adams JC. The evolution of thrombospondins and their ligand-binding activities. Mol Biol Evol 2010; 27:2187-97. [PMID: 20427418 DOI: 10.1093/molbev/msq107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The extracellular matrix (ECM) is a complex, multiprotein network that has essential roles in tissue integrity and intercellular signaling in the metazoa. Thrombospondins (TSPs) are extracellular, calcium-binding glycoproteins that have biologically important roles in mammals in angiogenesis, vascular biology, connective tissues, immune response, and synaptogenesis. The evolution of these complex functional properties is poorly understood. We report here on the evolution of TSPs and their ligand-binding capacities, from comparative genomics of species representing the major phyla of metazoa and experimental analyses of the oligomerization properties of noncanonical TSPs of basal deuterostomes. Monomeric, dimeric, trimeric, and pentameric TSPs have arisen through separate evolutionary events involving gain, loss, or modification of a coiled-coil domain or distinct domains at the amino-terminus. The relative transience of monomeric forms under evolution implicates a biological importance for multivalency of the C-terminal region of TSPs. Most protostomes have a single TSP gene encoding a pentameric TSP. The pentameric form is also present in deuterostomes, and gene duplications at the origin of deuterostomes and gene loss and further gene duplication events in the vertebrate lineage gave rise to distinct forms and novel domain architectures. Parallel analysis of the major ligands of mammalian TSPs revealed that many binding activities are neofunctions representing either coevolutionary innovations in the deuterostome lineage or neofunctions of ancient molecules such as CD36. Contrasting widely conserved capacities include binding to heparan glycosaminoglycans, fibrillar collagen, or RGD-dependent integrins. These findings identify TSPs as fundamental components of the extracellular interaction systems of metazoa and thus impact understanding of the evolution of ECM networks. The widely conserved activities of TSPs in binding to ECM components or PS2 clade integrins will be relevant to use of TSPs in synthetic extracellular matrices or tissue engineering. In contrast, the neofunctions of vertebrate TSPs likely include interactions suitable for therapeutic targeting without general disruption of ECM.
Collapse
Affiliation(s)
- Amber A Bentley
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
42
|
Alié A, Manuel M. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans. BMC Evol Biol 2010; 10:34. [PMID: 20128896 PMCID: PMC2824662 DOI: 10.1186/1471-2148-10-34] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 02/03/2010] [Indexed: 11/24/2022] Open
Abstract
Background Comparative genomics of the early diverging metazoan lineages and of their unicellular sister-groups opens new window to reconstructing the genetic changes which preceded or accompanied the evolution of multicellular body plans. A recent analysis found that the genome of the nerve-less sponges encodes the homologues of most vertebrate post-synaptic proteins. In vertebrate excitatory synapses, these proteins assemble to form the post-synaptic density, a complex molecular platform linking membrane receptors, components of their signalling pathways, and the cytoskeleton. Newly available genomes from Monosiga brevicollis (a member of Choanoflagellata, the closest unicellular relatives of animals) and Trichoplax adhaerens (a member of Placozoa: besides sponges, the only nerve-less metazoans) offer an opportunity to refine our understanding of post-synaptic protein evolution. Results Searches for orthologous proteins and reconstruction of gene gains/losses based on the taxon phylogeny indicate that post-synaptic proteins originated in two main steps. The backbone scaffold proteins (Shank, Homer, DLG) and some of their partners were acquired in a unicellular ancestor of choanoflagellates and metazoans. A substantial additional set appeared in an exclusive ancestor of the Metazoa. The placozoan genome contains most post-synaptic genes but lacks some of them. Notably, the master-scaffold protein Shank might have been lost secondarily in the placozoan lineage. Conclusions The time of origination of most post-synaptic proteins was not concomitant with the acquisition of synapses or neural-like cells. The backbone of the scaffold emerged in a unicellular context and was probably not involved in cell-cell communication. Based on the reconstructed protein composition and potential interactions, its ancestral function could have been to link calcium signalling and cytoskeleton regulation. The complex later became integrated into the evolving synapse through the addition of novel functionalities.
Collapse
Affiliation(s)
- Alexandre Alié
- UPMC Univ Paris 06, UMR 7138 Systématique, Adaptation, Evolution CNRS IRD MNHN, Bâtiment A, Université Pierre et Marie Curie, 7 Quai St Bernard, 75005 Paris, France
| | | |
Collapse
|
43
|
Exposito JY, Valcourt U, Cluzel C, Lethias C. The fibrillar collagen family. Int J Mol Sci 2010; 11:407-426. [PMID: 20386646 PMCID: PMC2852846 DOI: 10.3390/ijms11020407] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 01/22/2010] [Accepted: 01/23/2010] [Indexed: 01/25/2023] Open
Abstract
Collagens, or more precisely collagen-based extracellular matrices, are often considered as a metazoan hallmark. Among the collagens, fibrillar collagens are present from sponges to humans, and are involved in the formation of the well-known striated fibrils. In this review we discuss the different steps in the evolution of this protein family, from the formation of an ancestral fibrillar collagen gene to the formation of different clades. Genomic data from the choanoflagellate (sister group of Metazoa) Monosiga brevicollis, and from diploblast animals, have suggested that the formation of an ancestral alpha chain occurred before the metazoan radiation. Phylogenetic studies have suggested an early emergence of the three clades that were first described in mammals. Hence the duplication events leading to the formation of the A, B and C clades occurred before the eumetazoan radiation. Another important event has been the two rounds of "whole genome duplication" leading to the amplification of fibrillar collagen gene numbers, and the importance of this diversification in developmental processes. We will also discuss some other aspects of fibrillar collagen evolution such as the development of the molecular mechanisms involved in the formation of procollagen molecules and of striated fibrils.
Collapse
Affiliation(s)
- Jean-Yves Exposito
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +33-4-72-72-26-77; Fax: +33-4-72-72-26-04
| | | | | | | |
Collapse
|
44
|
Engler AJ, Humbert PO, Wehrle-Haller B, Weaver VM. Multiscale modeling of form and function. Science 2009; 324:208-12. [PMID: 19359578 DOI: 10.1126/science.1170107] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Topobiology posits that morphogenesis is driven by differential adhesive interactions among heterogeneous cell populations. This paradigm has been revised to include force-dependent molecular switches, cell and tissue tension, and reciprocal interactions with the microenvironment. It is now appreciated that tissue development is executed through conserved decision-making modules that operate on multiple length scales from the molecular and subcellular level through to the cell and tissue level and that these regulatory mechanisms specify cell and tissue fate by modifying the context of cellular signaling and gene expression. Here, we discuss the origin of these decision-making modules and illustrate how emergent properties of adhesion-directed multicellular structures sculpt the tissue, promote its functionality, and maintain its homeostasis through spatial segregation and organization of anchored proteins and secreted factors and through emergent properties of tissues, including tension fields and energy optimization.
Collapse
Affiliation(s)
- Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|