1
|
Li Y, Dong X, Xing H, Liu W, Gu R, Qiu S, Xu Y, Wei H, Wang M, Zheng G, Rao Q, Wang J. U2AF1 mutation causes an oxidative stress and DNA repair defect in hematopoietic and leukemic cells. Free Radic Biol Med 2025; 228:379-391. [PMID: 39814107 DOI: 10.1016/j.freeradbiomed.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
U2AF1 is a core component of spliceosome and controls cell-fate specific alternative splicing. U2AF1 mutations have been frequently identified in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients, and mutations in U2AF1 are associated with poor prognosis in hematopoietic malignant diseases. Here, by forced expression of mutant U2AF1 (U2AF1 S34F) in hematopoietic and leukemic cell lines, we find that U2AF1 S34F causes increased reactive oxygen species (ROS) production. In hematopoietic cell line, a defect in mitochondrial function and DNA damage response deficiency are found in U2AF1 S34F expressing 32D cells. In leukemic cell line Molm13 cells, U2AF1 mutation leads to resistance to DNA damaging agents. Accumulation of DNA damage is also found in U2AF1 S34F expressing leukemic cells when treated with DNA damage agent. Finally, in our established hematopoietic-specific U2af1 S34F knock-in mice model, U2AF1 mutation leads to the development of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) and causes DNA damage accumulation in hematopoietic cells. Our study provides evidence that U2AF1 mutation causes DNA damage response deficiency and DNA damage accumulation in hematopoietic cells, and suggests that mutant U2AF1 induced higher ROS production, resistance to DNA damaging agents and increased genomic instability may contribute to poor prognosis of AML patients with U2AF1 mutations.
Collapse
Affiliation(s)
- Yishuang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Xuanjia Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Wenbing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China.
| |
Collapse
|
2
|
Zhang S, Feng X, Li CH, Zheng YM, Wang MY, Li JJ, Dai YP, Jing N, Zhou JW, Wang G. Mediator MED23 controls oligodendrogenesis and myelination by modulating Sp1/P300-directed gene programs. Cell Discov 2024; 10:102. [PMID: 39402028 PMCID: PMC11473658 DOI: 10.1038/s41421-024-00730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/26/2024] [Indexed: 10/17/2024] Open
Abstract
Gaining the molecular understanding for myelination development and regeneration has been a long-standing goal in neurological research. Mutations in the transcription cofactor Mediator Med23 subunit are often associated with intellectual disability and white matter defects, although the precise functions and mechanisms of Mediator in myelination remain unclear. In this study, we generated a mouse model carrying an Med23Q649R mutation that has been identified in a patient with hypomyelination features. The MED23Q649R mouse model develops white matter thinning and cognitive decline, mimicking common clinical phenotypes. Further, oligodendrocyte-lineage specific Med23 knockout mice verified the important function of MED23 in regulating central nervous system myelination and postinjury remyelination. Utilizing the in vitro cellular differentiation assay, we found that the oligodendrocyte progenitor cells, either carrying the Q649R mutation or lacking Med23, exhibit significant deficits in their capacity to differentiate into mature oligodendrocytes. Gene profiling combined with reporter assays demonstrated that Mediator Med23 controls Sp1-directed gene programs related to oligodendrocyte differentiation and cholesterol metabolism. Integrative analysis demonstrated that Med23 modulates the P300 binding to Sp1-targeted genes, thus orchestrating the H3K27 acetylation and enhancer activation for the oligodendrocyte lineage progression. Collectively, our findings identified the critical role for the Mediator Med23 in oligodendrocyte fate determination and provide mechanistic insights into the myelination pathogenesis associated with MED23 mutations.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Feng
- Laboratory Animal Resource Center, Fudan University, Shanghai, China
| | - Chong-Hui Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuan-Ming Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Ya Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jun-Jie Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun-Peng Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Parker K, Zhang Y, Anchondo G, Smith A, Guerrero Pacheco S, Kondo T, Su L. Combination of HDAC and FYN inhibitors in synovial sarcoma treatment. Front Cell Dev Biol 2024; 12:1422452. [PMID: 39045458 PMCID: PMC11264242 DOI: 10.3389/fcell.2024.1422452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The SS18-SSX fusion protein is an oncogenic driver in synovial sarcoma. At the molecular level, SS18-SSX functions as both an activator and a repressor to coordinate transcription of different genes responsible for tumorigenesis. Here, we identify the proto-oncogene FYN as a new SS18-SSX target gene and examine its relation to synovial sarcoma therapy. FYN is a tyrosine kinase that promotes cancer growth, metastasis and therapeutic resistance, but SS18-SSX appears to negatively regulate FYN expression in synovial sarcoma cells. Using both genetic and histone deacetylase inhibitor (HDACi)-based pharmacologic approaches, we show that suppression of SS18-SSX leads to FYN reactivation. In support of this notion, we find that blockade of FYN activity synergistically enhances HDACi action to reduce synovial sarcoma cell proliferation and migration. Our results support a role for FYN in attenuation of anti-cancer activity upon inhibition of SS18-SSX function and demonstrate the feasibility of targeting FYN to improve the effectiveness of HDACi treatment against synovial sarcoma.
Collapse
Affiliation(s)
- Kyra Parker
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | - Yanfeng Zhang
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gavin Anchondo
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | - Ashlyn Smith
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | | | | | - Le Su
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| |
Collapse
|
4
|
Benegas P, Ziegler B, Dieminger V, Bengió R, Zapata P, Larripa I, Ferri C. Expression of genes potentially involved in loss of response in patients with chronic myeloid leukemia. Gene 2024; 896:148047. [PMID: 38042214 DOI: 10.1016/j.gene.2023.148047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/28/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Chronic Myeloid Leukemia (CML) is a hematological malignancy characterized by the presence of the BCR::ABL1 fusion gene, which leads to uncontrolled cell growth and survival. Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of CML, but a significant proportion of patients develop resistance or lose response to these drugs. Understanding the molecular mechanisms underlying treatment response and resistance is crucial for improving patient outcomes. This study aimed to analyze the expression patterns of genes involved in treatment response and resistance in CML patients receiving TKI therapy. The expression levels of MET, FOXO3, p15, p16, HCK, and FYN genes were examined in CML patients and compared to healthy donors. Gene expression levels were compared between optimal responders (OR) and resistant patients (R) vs. healthy donors (HD). The MET and FOXO3 OR group showed significant differences compared with the HD, (p < 0.0001) and (p = 0.0003), respectively. p15 expression showed significant differences between OR and HD groups (p = 0.0078), while no significant differences were found in p16 expression between the HD groups. FYN showed a statistically significant difference between R vs. HD (p = 0.0157). The results of HCK expression analysis revealed significant differences between OR and HD (p = 0.0041) and between R and HD (p = 0.0026). When we analyzed OR patients with undetectable BCR::ABL1 transcripts, a greater expression of HCK was observed in the R group. These findings suggest that monitoring the expression levels of MET and FOXO3 genes could be valuable in predicting treatment response and relapse in CML patients. Our study provides important insights into the potential use of gene expression analysis as a tool for predicting treatment response and guiding treatment decisions in CML patients. This knowledge may ultimately contribute to the development of personalized treatment strategies to improve patient outcomes in CML.
Collapse
Affiliation(s)
- Paula Benegas
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular (BIOTECMOL), Misiones, Argentina; Consejo Nacional de Invetigaciones Cientìficas y Tècnicas (CONICET), Buenos Aires, Argentina
| | - Betiana Ziegler
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular (BIOTECMOL), Misiones, Argentina; Laboratorio de Genética Hematológica, IMEX, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Victoria Dieminger
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular (BIOTECMOL), Misiones, Argentina
| | - Raquel Bengió
- Departamento de Hemato-oncología, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Pedro Zapata
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular (BIOTECMOL), Misiones, Argentina; Consejo Nacional de Invetigaciones Cientìficas y Tècnicas (CONICET), Buenos Aires, Argentina
| | - Irene Larripa
- Laboratorio de Genética Hematológica, IMEX, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Cristian Ferri
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular (BIOTECMOL), Misiones, Argentina.
| |
Collapse
|
5
|
Zhong CC, Zhao T, Hogstrand C, Song CC, Zito E, Tan XY, Xu YC, Song YF, Wei XL, Luo Z. Copper induces liver lipotoxicity disease by up-regulating Nrf2 expression via the activation of MTF-1 and inhibition of SP1/Fyn pathway. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166752. [PMID: 37182554 DOI: 10.1016/j.bbadis.2023.166752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Excessive copper (Cu) intake leads to hepatic lipotoxicity disease, which has adverse effects on health, but the underlying mechanism is unclear. We found that Cu increased lipotoxicity by promoting Nrf2 recruitment to the ARE site in the promoters of five lipogenic genes (g6pd, 6pgd, me, icdh and pparγ). We also found that Cu affected the Nrf2 expression via different pathways: metal regulatory transcription factor 1 (MTF-1) mediated the Cu-induced Nrf2 transcriptional activation; Cu also enhanced the expression of Nrf2 by inhibiting the SP1 expression, which was achieved by inhibiting the negative regulator Fyn of Nrf2. These promoted the enrichment of Nrf2 in the nucleus and ultimately affected lipotoxicity. Thus, for the first time, we elucidated that Cu induced liver lipotoxicity disease by up-regulating Nrf2 expression via the MTF-1 activation and the inhibition of SP1/Fyn pathway. Our study elucidates the Cu-associated obesity and NAFLD for fish and possibly humans.
Collapse
Affiliation(s)
- Chong-Chao Zhong
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiao-Lei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong Province, China.
| |
Collapse
|
6
|
Peng S, Fu Y. FYN: emerging biological roles and potential therapeutic targets in cancer. J Transl Med 2023; 21:84. [PMID: 36740671 PMCID: PMC9901160 DOI: 10.1186/s12967-023-03930-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Src family protein kinases (SFKs) play a key role in cell adhesion, invasion, proliferation, survival, apoptosis, and angiogenesis during tumor development. In humans, SFKs consists of eight family members with similar structure and function. There is a high level of overexpression or hyperactivity of SFKs in tumor, and they play an important role in multiple signaling pathways involved in tumorigenesis. FYN is a member of the SFKs that regulate normal cellular processes. Additionally, FYN is highly expressed in many cancers and promotes cancer growth and metastasis through diverse biological functions such as cell growth, apoptosis, and motility migration, as well as the development of drug resistance in many tumors. Moreover, FYN is involved in the regulation of multiple cancer-related signaling pathways, including interactions with ERK, COX-2, STAT5, MET and AKT. FYN is therefore an attractive therapeutic target for various tumor types, and suppressing FYN can improve the prognosis and prolong the life of patients. The purpose of this review is to provide an overview of FYN's structure, expression, upstream regulators, downstream substrate molecules, and biological functions in tumors.
Collapse
Affiliation(s)
- SanFei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
7
|
Li Z, Shao Z, Chen S, Huang D, Peng Y, Chen S, Ma K. TIGAR impedes compression-induced intervertebral disc degeneration by suppressing nucleus pulposus cell apoptosis and autophagy. J Cell Physiol 2019; 235:1780-1794. [PMID: 31317559 DOI: 10.1002/jcp.29097] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
To investigate whether TP53-induced glycolysis and apoptosis regulator (TIGAR) participates in compression-induced intervertebral disc (IVD) degeneration, and to determine the regulatory effect of TIGAR on nucleus pulposus (NP) cell autophagy and apoptosis following compression-induced injuries. IVD tissues were collected from human patients undergoing surgery (n = 20) and skeletally mature Sprague-Dawley rats (n = 15). Initially, the effect of compression on the expression of TIGAR was evaluated with in vivo and in vitro models. In addition, TIGAR was silenced to investigate the regulatory effect of TIGAR on compression-induced intracellular reactive oxygen species (ROS) levels, autophagy, and apoptosis in rat NP cells. Furthermore, the P53 inhibitor pifithrin-α (PFTα) and SP1 inhibitor mithramycin A were employed to detect expression level changes of TIGAR and autophagy-associated target molecules. TIGAR expression of NP cells increased gradually in human degenerative IVDs and in rat NP cells under compression both in vivo and in vitro. TIGAR knockdown enhanced compression-induced intracellular ROS generation and the NADPH/NADP+ and GSH/GSSG ratios. Moreover, TIGAR knockdown amplified the compression-induced caspase-3 activation and the apoptosis rate of rat NP cells. Likewise, knockdown of TIGAR significantly accelerated LC3B expression and autophagosome formation in rat NP cells during compression-induced injuries. The results also established that mithramycin A could inhibit TIGAR expression and autophagy levels in NP cells under compression conditions, while PFTα had no similar effect. Our data demonstrated that TIGAR acted as an important endogenous negative regulator of ROS levels, which might inhibit compression-induced apoptosis and autophagy through SP1-dependent mechanisms.
Collapse
Affiliation(s)
- Zhiliang Li
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Donghua Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Samimi A, Kalantari H, Lorestani MZ, Shirzad R, Saki N. Oxidative stress in normal hematopoietic stem cells and leukemia. APMIS 2018; 126:284-294. [PMID: 29575200 DOI: 10.1111/apm.12822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022]
Abstract
Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject.
Collapse
Affiliation(s)
- Azin Samimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishpur University of Medical Sciences, Ahvaz, Iran
| | - Heybatullah Kalantari
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishpur University of Medical Sciences, Ahvaz, Iran
| | - Marzieh Zeinvand Lorestani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishpur University of Medical Sciences, Ahvaz, Iran
| | - Reza Shirzad
- WHO-Collaborating Centre for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Najmaldin Saki
- Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Siveen KS, Prabhu KS, Achkar IW, Kuttikrishnan S, Shyam S, Khan AQ, Merhi M, Dermime S, Uddin S. Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products. Mol Cancer 2018; 17:31. [PMID: 29455667 PMCID: PMC5817858 DOI: 10.1186/s12943-018-0788-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinases belong to a family of enzymes that mediate the movement of the phosphate group to tyrosine residues of target protein, thus transmitting signals from the cell surface to cytoplasmic proteins and the nucleus to regulate physiological processes. Non-receptor tyrosine kinases (NRTK) are a sub-group of tyrosine kinases, which can relay intracellular signals originating from extracellular receptor. NRTKs can regulate a huge array of cellular functions such as cell survival, division/propagation and adhesion, gene expression, immune response, etc. NRTKs exhibit considerable variability in their structural make up, having a shared kinase domain and commonly possessing many other domains such as SH2, SH3 which are protein-protein interacting domains. Recent studies show that NRTKs are mutated in several hematological malignancies, including lymphomas, leukemias and myelomas, leading to aberrant activation. It can be due to point mutations which are intragenic changes or by fusion of genes leading to chromosome translocation. Mutations that lead to constitutive kinase activity result in the formation of oncogenes, such as Abl, Fes, Src, etc. Therefore, specific kinase inhibitors have been sought after to target mutated kinases. A number of compounds have since been discovered, which have shown to inhibit the activity of NRTKs, which are remarkably well tolerated. This review covers the role of various NRTKs in the development of hematological cancers, including their deregulation, genetic alterations, aberrant activation and associated mutations. In addition, it also looks at the recent advances in the development of novel natural compounds that can target NRTKs and perhaps in combination with other forms of therapy can show great promise for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Iman W. Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Sunitha Shyam
- Medical Research Center, Hamad Medical Corporation, Doha, State of Qatar
| | - Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| |
Collapse
|
10
|
Laidlaw KME, Berhan S, Liu S, Silvestri G, Holyoake TL, Frank DA, Aggarwal B, Bonner MY, Perrotti D, Jørgensen HG, Arbiser JL. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia. Oncotarget 2018; 7:51651-51664. [PMID: 27438151 PMCID: PMC5239504 DOI: 10.18632/oncotarget.10541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/30/2016] [Indexed: 01/23/2023] Open
Abstract
The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation.
Collapse
Affiliation(s)
- Kamilla M E Laidlaw
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 0ZD, United Kingdom
| | - Samuel Berhan
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 0ZD, United Kingdom
| | - Suhu Liu
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Giovannino Silvestri
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tessa L Holyoake
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 0ZD, United Kingdom
| | - David A Frank
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Bharat Aggarwal
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Y Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Atlanta Veterans Administration Hospital, Atlanta, GA 30322, USA
| | - Danilo Perrotti
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Heather G Jørgensen
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, G12 0ZD, United Kingdom
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Atlanta Veterans Administration Hospital, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Culbreth M, Zhang Z, Aschner M. Methylmercury augments Nrf2 activity by downregulation of the Src family kinase Fyn. Neurotoxicology 2017; 62:200-206. [PMID: 28736149 DOI: 10.1016/j.neuro.2017.07.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 12/26/2022]
Abstract
Methylmercury (MeHg) is a potent developmental neurotoxicant that induces an oxidative stress response in the brain. It has been demonstrated that MeHg exposure increases nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Nrf2 is a transcription factor that translocates to the nucleus in response to oxidative stress, and upregulates phase II detoxifying enzymes. Although, Nrf2 activity is augmented subsequent to MeHg exposure, it has yet to be established whether Nrf2 moves into the nucleus as a result. Furthermore, the potential effect MeHg might have on the non-receptor tyrosine kinase, Fyn, has not been addressed. Fyn phosphorylates Nrf2 in the nucleus, resulting in its inactivation, and consequent downregulation of the oxidative stress response. Here, we observe Nrf2 translocates to the nucleus subsequent to MeHg-induced oxidative stress. This response is concomitant with reduced Fyn expression and nuclear localization. Moreover, we detected an increase in phosphorylated Akt and glycogen synthase kinase 3 beta (GSK-3β) at activating and inhibitory sites, respectively. Akt phosphorylates and inhibits GSK-3β, which subsequently prevents Fyn phosphorylation to signal nuclear import. Our results demonstrate MeHg downregulates Fyn to maintain Nrf2 activity, and further illuminate a potential mechanism by which MeHg elicits neurotoxicity.
Collapse
Affiliation(s)
- Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
12
|
Zahratka JA, Shao Y, Shaw M, Todd K, Formica SV, Khrestian M, Montine T, Leverenz JB, Bekris LM. Regulatory region genetic variation is associated with FYN expression in Alzheimer's disease. Neurobiol Aging 2016; 51:43-53. [PMID: 28033507 DOI: 10.1016/j.neurobiolaging.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022]
Abstract
Neurofibrillary tangles (NFTs), composed of hyperphosphorylated tau, are a key pathologic feature of Alzheimer's disease (AD). Tau phosphorylation is under the control of multiple kinases and phosphatases, including Fyn. Previously, our group found an association between 2 regulatory single nucleotide polymorphisms in the FYN gene with increased tau levels in the cerebrospinal fluid. In this study, we hypothesized that Fyn expression in the brain is influenced by AD status and genetic content. We found that Fyn protein, but not messenger RNA, levels were increased in AD patients compared to cognitively normal controls and are associated with regulatory region single nucleotide polymorphisms. In addition, the expression of the FYN 3'UTR can decrease expression in multiple cell lines, suggesting this regulatory region plays an important role in FYN expression. Taken together, these data suggest that FYN expression is regulated according to AD status and regulatory region haplotype, and genetic variants may be instrumental in the development of neurofibrillary tangles in AD and other tauopathies.
Collapse
Affiliation(s)
- Jeffrey A Zahratka
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Yvonne Shao
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - McKenzie Shaw
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kaitlin Todd
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shane V Formica
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Maria Khrestian
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas Montine
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
13
|
A NOX2/Egr-1/Fyn pathway delineates new targets for TKI-resistant malignancies. Oncotarget 2016; 6:23631-46. [PMID: 26136341 PMCID: PMC4695141 DOI: 10.18632/oncotarget.4604] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022] Open
Abstract
Tyrosine kinase inhibitors (TKI) have improved CML response rates, and some are effective against resistance-promoting point mutations in BCR-ABL1. However, in the absence of point mutations, resistance still occurs. Here, we identify a novel pathway mediating resistance which connects p47phox, the organizer subunit of NADPH oxidase-2 (NOX2), with early growth response-1 (Egr-1) and the Src family kinase Fyn. We found up-regulation of p47phox, Egr-1, and Fyn mRNA and protein using paired isogenic CML cell lines and mined data. Isolation of CD34+ cells and tissue microarray staining from blast crisis CML patients confirmed in vivo over-expression of components of this pathway. Knockdown studies revealed that p47phox modulated reactive oxygen species and Egr-1 expression, which, in turn, controlled Fyn expression. Interestingly, Fyn knockdown sensitized TKI-resistant cells to dasatinib, a dual BCR-ABL1/Src inhibitor. Egr-1 knockdown had similar effects, indicating the utility of targeting Fyn expression over activation. Pointedly, p47phox knockdown also restored TKI-sensitivity, indicating that targeting the NOX2 complex can overcome resistance. The NOX2/Egr-1/Fyn pathway was also conserved within TKI-resistant EGFRΔIII-expressing glioblastoma and patient-derived glioblastoma stem cells. Thus, our findings suggest that targeting the NOX2/Egr-1/Fyn pathway may have clinical implications within multiple cancer types; particularly where efficacy of TKI is compromised.
Collapse
|
14
|
Radin DP, Patel P. Delineating the molecular mechanisms of tamoxifen’s oncolytic actions in estrogen receptor-negative cancers. Eur J Pharmacol 2016; 781:173-80. [DOI: 10.1016/j.ejphar.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022]
|
15
|
Monin A, Baumann PS, Griffa A, Xin L, Mekle R, Fournier M, Butticaz C, Klaey M, Cabungcal JH, Steullet P, Ferrari C, Cuenod M, Gruetter R, Thiran JP, Hagmann P, Conus P, Do KQ. Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients. Mol Psychiatry 2015; 20:827-38. [PMID: 25155877 DOI: 10.1038/mp.2014.88] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/30/2014] [Accepted: 06/23/2014] [Indexed: 12/18/2022]
Abstract
Schizophrenia pathophysiology implies both abnormal redox control and dysconnectivity of the prefrontal cortex, partly related to oligodendrocyte and myelin impairments. As oligodendrocytes are highly vulnerable to altered redox state, we investigated the interplay between glutathione and myelin. In control subjects, multimodal brain imaging revealed a positive association between medial prefrontal glutathione levels and both white matter integrity and resting-state functional connectivity along the cingulum bundle. In early psychosis patients, only white matter integrity was correlated with glutathione levels. On the other side, in the prefrontal cortex of peripubertal mice with genetically impaired glutathione synthesis, mature oligodendrocyte numbers, as well as myelin markers, were decreased. At the molecular levels, under glutathione-deficit conditions induced by short hairpin RNA targeting the key glutathione synthesis enzyme, oligodendrocyte progenitors showed a decreased proliferation mediated by an upregulation of Fyn kinase activity, reversed by either the antioxidant N-acetylcysteine or Fyn kinase inhibitors. In addition, oligodendrocyte maturation was impaired. Interestingly, the regulation of Fyn mRNA and protein expression was also impaired in fibroblasts of patients deficient in glutathione synthesis. Thus, glutathione and redox regulation have a critical role in myelination processes and white matter maturation in the prefrontal cortex of rodent and human, a mechanism potentially disrupted in schizophrenia.
Collapse
Affiliation(s)
- A Monin
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - P S Baumann
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [3] Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - A Griffa
- 1] Signal Processing Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland [2] Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - L Xin
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - R Mekle
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - M Fournier
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - C Butticaz
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - M Klaey
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - J H Cabungcal
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - P Steullet
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - C Ferrari
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - M Cuenod
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - R Gruetter
- 1] Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland [2] Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - J P Thiran
- 1] Signal Processing Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland [2] Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - P Hagmann
- 1] Signal Processing Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland [2] Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - P Conus
- 1] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Service of General Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| | - K Q Do
- 1] Center for Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland [2] Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV-UNIL), Prilly-Lausanne, Switzerland
| |
Collapse
|
16
|
Oxidative stress responses and NRF2 in human leukaemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:454659. [PMID: 25918581 PMCID: PMC4396545 DOI: 10.1155/2015/454659] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 01/21/2023]
Abstract
Oxidative stress as a result of elevated levels of reactive oxygen species (ROS) has been observed in almost all cancers, including leukaemia, where they contribute to disease development and progression. However, cancer cells also express increased levels of antioxidant proteins which detoxify ROS. This includes glutathione, the major antioxidant in human cells, which has recently been identified to have dysregulated metabolism in human leukaemia. This suggests that critical balance of intracellular ROS levels is required for cancer cell function, growth, and survival. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor plays a dual role in cancer. Primarily, NRF2 is a transcription factor functioning to protect nonmalignant cells from malignant transformation and oxidative stress through transcriptional activation of detoxifying and antioxidant enzymes. However, once malignant transformation has occurred within a cell, NRF2 functions to protect the tumour from oxidative stress and chemotherapy-induced cytotoxicity. Moreover, inhibition of the NRF2 oxidative stress pathway in leukaemia cells renders them more sensitive to cytotoxic chemotherapy. Our improved understanding of NRF2 biology in human leukaemia may permit mechanisms by which we could potentially improve future cancer therapies. This review highlights the mechanisms by which leukaemic cells exploit the NRF2/ROS response to promote their growth and survival.
Collapse
|
17
|
Ku M, Wall M, MacKinnon RN, Walkley CR, Purton LE, Tam C, Izon D, Campbell L, Cheng HC, Nandurkar H. Src family kinases and their role in hematological malignancies. Leuk Lymphoma 2015; 56:577-86. [PMID: 24898666 DOI: 10.3109/10428194.2014.907897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Src family protein tyrosine kinases (SFKs) are non-receptor intracellular kinases that have important roles in both hematopoiesis and leukemogenesis. The derangement of their expression or activation has been demonstrated to contribute to hematological malignancies. This review first examines the mechanisms of SFK overexpression and hyperactivation, emphasizing the dysregulation of the upstream modulators. Subsequently, the role of SFK up-regulation in the initiation, progression and therapy resistance of many hematological malignancies is also analyzed. The presented evidence endeavors to highlight the influence of SFK up-regulation on an extensive number of hematological malignancies and the need to consider them as candidates in targeted anticancer therapy.
Collapse
Affiliation(s)
- Matthew Ku
- Haematology Department and Victorian Cancer Cytogenetics Service, St Vincent's Hospital , Fitzroy , Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Secchi C, Carta M, Crescio C, Spano A, Arras M, Caocci G, Galimi F, La Nasa G, Pippia P, Turrini F, Pantaleo A. T cell tyrosine phosphorylation response to transient redox stress. Cell Signal 2015; 27:777-88. [PMID: 25572700 DOI: 10.1016/j.cellsig.2014.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/09/2014] [Accepted: 12/24/2014] [Indexed: 12/29/2022]
Abstract
Reactive Oxygen Species (ROS) are crucial to multiple biological processes involved in the pathophysiology of inflammation, and are also involved in redox signaling responses. Although previous reports have described an association between oxidative events and the modulation of innate immunity, a role for redox signaling in T cell mediated adaptive immunity has not been described yet. This work aims at assessing if T cells can sense redox stress through protein sulfhydryl oxidation and respond with tyrosine phosphorylation changes. Our data show that Jurkat T cells respond to -SH group oxidation with specific tyrosine phosphorylation events. The release of T cell cytokines TNF, IFNγ and IL2 as well as the expression of a number of receptors are affected by those changes. Additionally, experiments with spleen tyrosine kinase (Syk) inhibitors showed a major involvement of Syk in these responses. The experiments described herein show a link between cysteine oxidation and tyrosine phosphorylation changes in T cells, as well as a novel mechanism by which Syk inhibitors exert their anti-inflammatory activity through the inhibition of a response initiated by ROS.
Collapse
Affiliation(s)
- Christian Secchi
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; Istituto Nazionale Biostrutture e Biosistemi, University of Sassari, I-07100, Sassari, Italy
| | - Marissa Carta
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Claudia Crescio
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Alessandra Spano
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Marcella Arras
- Haematology, Hospital Binaghi, ASL 8 Cagliari, I-09126, Cagliari, Italy
| | - Giovanni Caocci
- Haematology, Department of Medical Sciences, University of Cagliari, I-09042 Cagliari, Italy
| | - Francesco Galimi
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; Istituto Nazionale Biostrutture e Biosistemi, University of Sassari, I-07100, Sassari, Italy
| | - Giorgio La Nasa
- Haematology, Department of Medical Sciences, University of Cagliari, I-09042 Cagliari, Italy
| | - Proto Pippia
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Francesco Turrini
- Department of Genetics, Biology and Biochemistry, University of Turin, I-10126 Turin, Italy
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy.
| |
Collapse
|
19
|
Fenton SE, Denning MF. FYNagling divergent adhesive functions for Fyn in keratinocytes. Exp Dermatol 2014; 24:81-5. [PMID: 24980626 DOI: 10.1111/exd.12485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 12/29/2022]
Abstract
Fyn, a member of the Src family kinases (SFKs), has been shown to play important yet contradictory roles in keratinocyte (KC) adhesion. During KC differentiation, physiological activation of Fyn results in the formation of adherens junctions, recruiting junctional components and inducing signaling pathways that control the differentiation program. However, in KC transformation and oncogenesis, increased Fyn activity has been implicated in the dissolution of adhesion structures and an increased migratory phenotype. Fyn activity is also associated with both the formation and dissolution of focal adhesions, and to a lesser extent hemidesmosomes and desmosomes. This viewpoint article aims to reconcile these disparate bodies of literature regarding Fyn's role in cell-cell and cell-matrix adhesion by proposing several alternative, testable hypotheses that unify Fyn's fractured functions.
Collapse
Affiliation(s)
- Sarah E Fenton
- Molecular Biology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | | |
Collapse
|
20
|
Fenton SE, Hutchens KA, Denning MF. Targeting Fyn in Ras-transformed cells induces F-actin to promote adherens junction-mediated cell-cell adhesion. Mol Carcinog 2014; 54:1181-93. [PMID: 24976598 DOI: 10.1002/mc.22190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/04/2014] [Accepted: 05/14/2014] [Indexed: 12/23/2022]
Abstract
Fyn, a member of the Src family kinases (SFK), is an oncogene in murine epidermis and is associated with cell-cell adhesion turnover and induction of cell migration. Additionally, Fyn upregulation has been reported in multiple tumor types, including cutaneous squamous cell carcinoma (cSCC). Introduction of active H-Ras(G12V) into the HaCaT human keratinocyte cell line resulted in upregulation of Fyn mRNA (200-fold) and protein, while expression of other SFKs remained unaltered. Transduction of active Ras or Fyn was sufficient to induce an epithelial-to-mesenchymal transition in HaCaT cells. Inhibition of Fyn activity, using siRNA or the clinical SFK inhibitor Dasatinib, increased cell-cell adhesion and rapidly (5-60 min) increased levels of cortical F-actin. Fyn inhibition with siRNA or Dasatinib also induced F-actin in MDA-MB-231 breast cancer cells, which have elevated Fyn. F-actin co-localized with adherens junction proteins, and Dasatinib-induced cell-cell adhesion could be blocked by Cytochalasin D, indicating that F-actin polymerization was a key initiator of cell-cell adhesion through the adherens junction. Conversely, inhibiting cell-cell adhesion with low Ca(2+) media did not block Dasatinib-induced F-actin polymerization. Inhibition of the Rho effector kinase ROCK blocked Dasatinib-induced F-actin and cell-cell adhesion, implicating relief of Rho GTPase inhibition as a mechanism of Dasatinib-induced cell-cell adhesion. Finally, topical Dasatinib treatment significantly reduced total tumor burden in the SKH1 mouse model of UV-induced skin carcinogenesis. Together these results identify the promotion of actin-based cell-cell adhesion as a newly described mechanism of action for Dasatinib and suggest that Fyn inhibition may be an effective therapeutic approach in treating cSCC.
Collapse
Affiliation(s)
- Sarah E Fenton
- Molecular Biology Program, Loyola University Chicago, Maywood, Illinois.,Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois
| | - Kelli A Hutchens
- Department of Pathology, Loyola University Chicago, Maywood, Illinois
| | - Mitchell F Denning
- Molecular Biology Program, Loyola University Chicago, Maywood, Illinois.,Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois.,Department of Pathology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
21
|
Irwin ME, Rivera-Del Valle N, Chandra J. Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2013; 18:1349-83. [PMID: 22900756 PMCID: PMC3584825 DOI: 10.1089/ars.2011.4258] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability-some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients.
Collapse
Affiliation(s)
- Mary E Irwin
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
22
|
Singh MM, Howard A, Irwin ME, Gao Y, Lu X, Multani A, Chandra J. Expression and activity of Fyn mediate proliferation and blastic features of chronic myelogenous leukemia. PLoS One 2012; 7:e51611. [PMID: 23284724 PMCID: PMC3524192 DOI: 10.1371/journal.pone.0051611] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/01/2012] [Indexed: 12/30/2022] Open
Abstract
The BCR-ABL1 oncogene is a tyrosine kinase that activates many signaling pathways, resulting in the induction of chronic myeloid leukemia (CML). Kinase inhibitors, such as imatinib, have been developed for the treatment of CML; however, the terminal, blast crisis phase of the disease remains a clinical challenge. Blast crisis CML is difficult to treat due to resistance to tyrosine kinase inhibitors, increased genomic instability and acquired secondary mutations. Our recent studies uncovered a role for Fyn in promoting BCR-ABL1 mediated cell growth and sensitivity to imatinib. Here we demonstrate that Fyn contributes to BCR-ABL1 induced genomic instability, a feature of blast crisis CML. Bone marrow cells and mouse embryonic fibroblasts derived from Fyn knockout mice transduced with BCR-ABL1 display slowed growth and clonogenic potential as compared to Fyn wild-type BCR-ABL1 expressing counterparts. K562 cells overexpressing constitutively active Fyn kinase were larger in size and displayed an accumulation of genomic abnormalities such as chromosomal aberrations and polyploidy. Importantly, loss of Fyn protected mouse embryonic fibroblast cells from increased number of chromosomal aberrations and fragments induced by BCR-ABL1. Together, these results reveal a novel role for Fyn in regulating events required for genomic maintenance and suggest that Fyn kinase activity plays a role in the progression of CML to blast crisis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Blast Crisis/pathology
- Blotting, Western
- Cell Cycle
- Cell Differentiation
- Cell Proliferation
- Cell Size
- Cells, Cultured
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genomic Instability
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Knockout
- Proto-Oncogene Proteins c-fyn/genetics
- Proto-Oncogene Proteins c-fyn/metabolism
- Proto-Oncogene Proteins c-fyn/physiology
Collapse
Affiliation(s)
- Melissa M. Singh
- Department of Pediatrics Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Adrienne Howard
- Department of Pediatrics Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas at Houston Health Science Center, Houston, Texas, United States of America
| | - Mary E. Irwin
- Department of Pediatrics Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Yin Gao
- Department of Pediatrics Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Xiaolin Lu
- Department of Pediatrics Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Asha Multani
- Molecular Cytogenetics Core Facility, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Joya Chandra
- Department of Pediatrics Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas at Houston Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
When cellular reducing enzymes fail to shield the cell from increased amounts of reactive oxygen species (ROS), oxidative stress arises. The redox state is misbalanced, DNA and proteins are damaged and cellular transcription networks are activated. This condition can lead to the initiation and/or to the progression of atherosclerosis, tumors or pulmonary hypertension; diseases that are decisively furthered by the presence of oxidizing agents. Redox sensitive genes, like the zinc finger transcription factor early growth response 1 (Egr-1), play a pivotal role in the pathophysiology of these diseases. Apart from inducing apoptosis, signaling partners like the MEK/ERK pathway or the protein kinase C (PKC) can activate salvage programs such as cell proliferation that do not ameliorate, but rather worsen their outcome. Here, we review the currently available data on Egr-1 related signal transduction cascades in response to oxidative stress in the progression of epidemiologically significant diseases. Knowing the molecular pathways behind the pathology will greatly enhance our ability to identify possible targets for the development of new therapeutic strategies.
Collapse
|
24
|
Kim AY, Lee CG, Lee DY, Li H, Jeon R, Ryu JH, Kim SG. Enhanced antioxidant effect of prenylated polyphenols as Fyn inhibitor. Free Radic Biol Med 2012; 53:1198-208. [PMID: 22771471 DOI: 10.1016/j.freeradbiomed.2012.06.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 05/07/2012] [Accepted: 06/26/2012] [Indexed: 12/31/2022]
Abstract
Polyphenols have antioxidant effects. In view of the diverse biological activities of prenylated natural products, this study investigated whether polyphenols with prenyl residues have improved antioxidant and cytoprotective activity against oxidative stress, and explored the underlying basis for this effect. A set of structurally related polyphenols exhibited varying degrees of antioxidant effect in HepG2 cells, as evidenced by increases in cell viability against oxidative injury; kazinol E and C with three prenyls had greater potency than other kazinols having fewer prenyl chains. Polyphenols without prenyl (tupichinol C and resveratrol) showed weaker potency. Treatment with kazinol E diminished H(2)O(2) production and enabled cells to protect the mitochondria, as indicated by the inhibition of mitochondrial fragmentation, mitochondrial permeability transition, and cytochrome c release. Moreover, kazinol E activated LKB1 by its phosphorylation and cytoplasmic translocation, contributing to the protection of mitochondria via AMPK. In vitro or in a cell-based assay, tyrosine phosphorylation of Fyn was prohibited by kazinol E, which led to LKB1 activation, as shown by the experiments using Fyn over-expression construct or siRNA. SU6656, a known Fyn inhibitor, had a similar effect. Moreover, oxidative stress facilitated Fyn phosphorylation with repression of AMPKα and GSK3β phosphorylation, which was abolished by kazinol E treatment. The role of Fyn inhibition by kazinol E in AMPK-mediated protection of the cell viability and mitochondrial function was strengthened by ectopically expressed Fyn's reversal of these effects. In conclusion, kazinols as multi-prenylated polyphenols possess increased antioxidant and cytoprotective activity, which depends on the activation of LKB1-AMPK pathway downstream of Fyn inhibition.
Collapse
Affiliation(s)
- A Young Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Musolino C, Allegra A, Saija A, Alonci A, Russo S, Spatari G, Penna G, Gerace D, Cristani M, David A, Saitta S, Gangemi S. Changes in advanced oxidation protein products, advanced glycation end products, and s-nitrosylated proteins, in patients affected by polycythemia vera and essential thrombocythemia. Clin Biochem 2012; 45:1439-43. [PMID: 22850610 DOI: 10.1016/j.clinbiochem.2012.07.100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/16/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Oxidative stress has a clear pro tumoral effect in myeloproliferative neoplasms (MPDs). In this study, we analyzed oxidative stress in patients with essential thrombocythemia (ET) and polycythemia vera (PV). Design and methods We analyzed serum levels of advanced oxidation protein products (AOPPs) degradation, advanced glycation end products (AGEs), and protein nitrosylation in ET and PV patients. We also evaluated neutrophil gelatinase-associated lipocalin (NGAL) levels, an acute phase protein isolated in human neutrophils, the activation status of platelets and leukocytes, and the JAK2 (V617F) mutation status. RESULTS AOPPs and s-nitrosylated proteins were significantly higher in PV and ET subjects as compared to healthy volunteers, while AGEs were higher in ET subjects with respect to controls. Moreover, in PV patients we found a correlation between s-nitrosylated proteins and Hb value. In ET patients AGEs were significantly higher in patients with thrombosis compared with those without thrombotic events. CONCLUSIONS Our results suggest that oxidative stress could play a role in the physiopathology of MPDs and in the onset of myeloproliferative associated thrombotic risk.
Collapse
|
26
|
Belrose JC, Xie YF, Gierszewski LJ, MacDonald JF, Jackson MF. Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons. Mol Brain 2012; 5:11. [PMID: 22487454 PMCID: PMC3352021 DOI: 10.1186/1756-6606-5-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/09/2012] [Indexed: 11/12/2022] Open
Abstract
Background Glutathione (GSH) plays an important role in neuronal oxidant defence. Depletion of cellular GSH is observed in neurodegenerative diseases and thereby contributes to the associated oxidative stress and Ca2+ dysregulation. Whether depletion of cellular GSH, associated with neuronal senescence, directly influences Ca2+ permeation pathways is not known. Transient receptor potential melastatin type 2 (TRPM2) is a Ca2+ permeable non-selective cation channel expressed in several cell types including hippocampal pyramidal neurons. Moreover, activation of TRPM2 during oxidative stress has been linked to cell death. Importantly, GSH has been reported to inhibit TRPM2 channels, suggesting they may directly contribute to Ca2+ dysregulation associated with neuronal senescence. Herein, we explore the relation between cellular GSH and TRPM2 channel activity in long-term cultures of hippocampal neurons. Results In whole-cell voltage-clamp recordings, we observe that TRPM2 current density increases in cultured pyramidal neurons over time in vitro. The observed increase in current density was prevented by treatment with NAC, a precursor to GSH synthesis. Conversely, treatment of cultures maintained for 2 weeks in vitro with L-BSO, which depletes GSH by inhibiting its synthesis, augments TRPM2 currents. Additionally, we demonstrate that GSH inhibits TRPM2 currents through a thiol-independent mechanism, and produces a 3.5-fold shift in the dose-response curve generated by ADPR, the intracellular agonist for TRPM2. Conclusion These results indicate that GSH plays a physiologically relevant role in the regulation of TRPM2 currents in hippocampal pyramidal neurons. This interaction may play an important role in aging and neurological diseases associated with depletion of GSH.
Collapse
Affiliation(s)
- Jillian C Belrose
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, N6A 5 K8, Canada
| | | | | | | | | |
Collapse
|
27
|
Garaud JC, Schickel JN, Blaison G, Knapp AM, Dembele D, Ruer-Laventie J, Korganow AS, Martin T, Soulas-Sprauel P, Pasquali JL. B cell signature during inactive systemic lupus is heterogeneous: toward a biological dissection of lupus. PLoS One 2011; 6:e23900. [PMID: 21886837 PMCID: PMC3160348 DOI: 10.1371/journal.pone.0023900] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosous (SLE) is an autoimmune disease with an important clinical and biological heterogeneity. B lymphocytes appear central to the development of SLE which is characterized by the production of a large variety of autoantibodies and hypergammaglobulinemia. In mice, immature B cells from spontaneous lupus prone animals are able to produce autoantibodies when transferred into immunodeficient mice, strongly suggesting the existence of intrinsic B cell defects during lupus. In order to approach these defects in humans, we compared the peripheral B cell transcriptomas of quiescent lupus patients to normal B cell transcriptomas. When the statistical analysis is performed on the entire group of patients, the differences between patients and controls appear quite weak with only 14 mRNA genes having a false discovery rate ranging between 11 and 17%, with 6 underexpressed genes (PMEPA1, TLR10, TRAF3IP2, LDOC1L, CD1C and EGR1). However, unforced hierarchical clustering of the microarrays reveals a subgroup of lupus patients distinct from both the controls and the other lupus patients. This subgroup has no detectable clinical or immunological phenotypic peculiarity compared to the other patients, but is characterized by 1/an IL-4 signature and 2/the abnormal expression of a large set of genes with an extremely low false discovery rate, mainly pointing to the biological function of the endoplasmic reticulum, and more precisely to genes implicated in the Unfolded Protein Response, suggesting that B cells entered an incomplete BLIMP1 dependent plasmacytic differentiation which was undetectable by immunophenotyping. Thus, this microarray analysis of B cells during quiescent lupus suggests that, despite a similar lupus phenotype, different biological roads can lead to human lupus.
Collapse
Affiliation(s)
- Jean-Claude Garaud
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | - Anne-Marie Knapp
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Doulaye Dembele
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Julie Ruer-Laventie
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Anne-Sophie Korganow
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thierry Martin
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Pauline Soulas-Sprauel
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Jean-Louis Pasquali
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
28
|
Abstract
Abstract
Reactive oxygen species (ROS) are a heterogeneous group of molecules that are generated by mature myeloid cells during innate immune responses, and are also implicated in normal intracellular signaling. Excessive production of ROS (and/or a deficiency in antioxidant pathways) can lead to oxidative stress, a state that has been observed in several hematopoietic malignancies including acute and chronic myeloid leukemias (AML and CML). Currently it is unclear what the cause of oxidative stress might be and whether oxidative stress contributes to the development, progression, or maintenance of these diseases. This article reviews the current evidence suggesting a role for ROS both in normal hematopoiesis and in myeloid leukemogenesis, and discusses the usefulness of therapeutically targeting oxidative stress in myeloid malignancy.
Collapse
|
29
|
Kaspar JW, Jaiswal AK. Tyrosine phosphorylation controls nuclear export of Fyn, allowing Nrf2 activation of cytoprotective gene expression. FASEB J 2011; 25:1076-87. [PMID: 21097520 PMCID: PMC3042843 DOI: 10.1096/fj.10-171553] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/11/2010] [Indexed: 11/11/2022]
Abstract
Fyn, an Src kinase family member, acts as a negative regulator of NF-E2-related factor 2 (Nrf2). Under stressful conditions, Nrf2 translocates into the nucleus and binds to the antioxidant response element (ARE), activating defensive gene expression. Once Nrf2 completes activation, Fyn phosphorylates tyrosine 568 of Nrf2, resulting in the nuclear export and degradation of Nrf2. The present studies demonstrate that within 0.5 h of antioxidant treatment in human hepatoblastoma (HepG2) cells, Fyn exports out of the nucleus, allowing Nrf2 unimpeded movement to the ARE. Mutation of tyrosine 213 of Fyn stymied nuclear export, suggesting that tyrosine phosphorylation controls nuclear export. Mass spectrometry confirmed tyrosine 213 as the site of phosphorylation. ChIP and real-time PCR assays revealed that FynY213A mutant caused decreased binding of Nrf2 to the promoter of defensive gene NAD(P)H:quinone oxidoreductase 1 (NQO1) and decreased NQO1 expression by 5-fold (P<0.0001) compared to wild-type Fyn. In addition, a putative nuclear export signal (NES) was identified, and mutation of it also inhibited nuclear export of Fyn. Furthermore, FynY213A caused an increased susceptibility to cell death following treatment with etoposide in mouse hepatoma (Hepa-1) cells. The preinduction regulation of Nrf2 is controlled by the nuclear export of Fyn, allowing for activation of defensive gene expression.
Collapse
Affiliation(s)
- James W. Kaspar
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anil K. Jaiswal
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Yadav V, Denning MF. Fyn is induced by Ras/PI3K/Akt signaling and is required for enhanced invasion/migration. Mol Carcinog 2010; 50:346-52. [PMID: 21480388 DOI: 10.1002/mc.20716] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/15/2010] [Accepted: 11/01/2010] [Indexed: 12/12/2022]
Abstract
Src family kinases (SFKs) are frequently over-expressed and/or activated in human cancers, and play key roles in cancer cell invasion, metastasis, proliferation, survival, and angiogenesis. Allosteric activation of SFKs occurs through well-defined post-translational mechanisms, however the SFK member Fyn is over-expressed in multiple human cancers (prostate, melanoma, pancreatic, glioma, chronic myelogenous leukemia) and the mechanism of increased Fyn expression is unclear. Since activation of Ras oncogenes is a common oncogenic event leading to the activation of multiple effector pathways, we explored if Ras could induce Fyn expression. Retroviral transduction of the human keratinocyte cell line HaCaT with oncogenic H-Ras dramatically up-regulated Fyn mRNA (>100-fold, P < 0.001), protein, and kinase activity without affecting Src levels or activity. Activation of Akt, but not MAPK or EGFR, was necessary and sufficient for induction of Fyn by H-Ras. Expression of active Fyn was sufficient to increase HaCaT cell migration and invasion, and the enhanced migration and invasion induced by H-Ras could be significantly blocked (70% reduction, P < 0.01) by knockdown of Fyn with a specific siRNA or inhibition of SFKs with PP2. In addition, expression of Fyn in MDA-MB-231 breast cancer cells was dependent on PI3K activity and was involved in their invasive phenotype. Thus, the Ras/PI3K/Akt pathway can account for Fyn over-expression in cancers, and Fyn is a critical mediator of the Ras-stimulated invasive cell phenotype. These results support the development of therapeutic strategies targeting Akt/Fyn pathway to block migration and invasion of tumor cells.
Collapse
Affiliation(s)
- Vipin Yadav
- Molecular Biology Program, Loyola University Chicago, Maywood, Illinois, USA
| | | |
Collapse
|