1
|
Zhao Z, Wu Y, Cheng F, Wang Z, Geng Q, Niu Y, Zuo Q, Zhang Y. High levels of histone acetylation modifications promote the formation of PGCs. Poult Sci 2025; 104:104763. [PMID: 39798283 PMCID: PMC11954803 DOI: 10.1016/j.psj.2024.104763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025] Open
Abstract
This study investigates the role of histone acetylation in the differentiation of chicken embryonic stem cells (ESCs) into primordial germ cells (PGCs). Transcriptomic sequencing was used to analyze differentially expressed genes during this differentiation process, with functional annotation identifying genes associated with histone acetylation. To explore the role of acetylation, acetate and an acetyltransferase inhibitor (ANAC) were added to the ESCs induction medium. Transcriptomic analysis revealed that during ESCs differentiation into PGCs, genes involved in histone acetyltransferase activity were upregulated, while those associated with histone deacetylase activity were downregulated. Functional enrichment analysis indicated these genes are involved in pathways critical for germ cell differentiation, underscoring their importance in avian reproductive biology. Quantitative real-time PCR (qRT-PCR) confirmed significant differential expression of HAT8 and HDAC10 between ESCs and PGCs (P < 0.01). The acetate treatment group exhibited a significantly higher number of embryoid bodies and elevated expression levels of CVH, C-KIT, and NANOS3 compared to the ANAC group (P < 0.01). Furthermore, indirect immunofluorescence and flow cytometry demonstrated a significantly higher proportion of DDX4-positive cells in the acetate group (P < 0.01). These findings provide preliminary evidence that histone acetylation regulates chicken PGCs formation, offering a theoretical framework for the epigenetic induction of PGCs in vitro. This study enhances our understanding of the molecular mechanisms underlying PGCs development in poultry and contributes to advancements in avian reproductive technologies and genetic conservation.
Collapse
Affiliation(s)
- Ziduo Zhao
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Yuhui Wu
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Fufu Cheng
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Zhe Wang
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Qingqing Geng
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Yingjie Niu
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Qisheng Zuo
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Yani Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China.
| |
Collapse
|
2
|
Guo Z, Mo Z. Regulation of endothelial cell differentiation in embryonic vascular development and its therapeutic potential in cardiovascular diseases. Life Sci 2021; 276:119406. [PMID: 33785330 DOI: 10.1016/j.lfs.2021.119406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
During vertebrate development, the cardiovascular system begins operating earlier than any other organ in the embryo. Endothelial cell (EC) forms the inner lining of blood vessels, and its extensive proliferation and migration are requisite for vasculogenesis and angiogenesis. Many aspects of cellular biology are involved in vasculogenesis and angiogenesis, including the tip versus stalk cell specification. Recently, epigenetics has attracted growing attention in regulating embryonic vascular development and controlling EC differentiation. Some proteins that regulate chromatin structure have been shown to be directly implicated in human cardiovascular diseases. Additionally, the roles of important EC signaling such as vascular endothelial growth factor and its receptors, angiopoietin-1 and tyrosine kinase containing immunoglobulin and epidermal growth factor homology domain-2, and transforming growth factor-β in EC differentiation during embryonic vasculature development are briefly discussed in this review. Recently, the transplantation of human induced pluripotent stem cell (iPSC)-ECs are promising approaches for the treatment of ischemic cardiovascular disease including myocardial infarction. Patient-specific iPSC-derived EC is a potential new target to study differences in gene expression or response to drugs. However, clinical application of the iPSC-ECs in regenerative medicine is often limited by the challenges of maintaining cell viability and function. Therefore, novel insights into the molecular mechanisms underlying EC differentiation might provide a better understanding of embryonic vascular development and bring out more effective EC-based therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Zi Guo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaohui Mo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Ostrop J, Zwiggelaar RT, Terndrup Pedersen M, Gerbe F, Bösl K, Lindholm HT, Díez-Sánchez A, Parmar N, Radetzki S, von Kries JP, Jay P, Jensen KB, Arrowsmith C, Oudhoff MJ. A Semi-automated Organoid Screening Method Demonstrates Epigenetic Control of Intestinal Epithelial Differentiation. Front Cell Dev Biol 2021; 8:618552. [PMID: 33575256 PMCID: PMC7872100 DOI: 10.3389/fcell.2020.618552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal organoids are an excellent model to study epithelial biology. Yet, the selection of analytical tools to accurately quantify heterogeneous organoid cultures remains limited. Here, we developed a semi-automated organoid screening method, which we applied to a library of highly specific chemical probes to identify epigenetic regulators of intestinal epithelial biology. The role of epigenetic modifiers in adult stem cell systems, such as the intestinal epithelium, is still undefined. Based on this resource dataset, we identified several targets that affected epithelial cell differentiation, including HDACs, EP300/CREBBP, LSD1, and type I PRMTs, which were verified by complementary methods. For example, we show that inhibiting type I PRMTs, which leads enhanced epithelial differentiation, blocks the growth of adenoma but not normal organoid cultures. Thus, epigenetic probes are powerful tools to study intestinal epithelial biology and may have therapeutic potential.
Collapse
Affiliation(s)
- Jenny Ostrop
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Rosalie T. Zwiggelaar
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Marianne Terndrup Pedersen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - François Gerbe
- Cancer Biology Department, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Korbinian Bösl
- Department of Bioinformatics, Computational Biological Unit, University of Bergen, Bergen, Norway
| | - Håvard T. Lindholm
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Alberto Díez-Sánchez
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Naveen Parmar
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Silke Radetzki
- Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Jens Peter von Kries
- Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Philippe Jay
- Cancer Biology Department, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Kim B. Jensen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Menno J. Oudhoff
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Abstract
Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a transcription co-factor that interacts with several other transcription factors and co-factors, and serves critical roles in fundamental cell processes, including proliferation, apoptosis, differentiation, migration and autophagy. The interacting transcription factors or co-factors of CITED2 include LIM homeobox 2, transcription factor AP-2, SMAD2/3, peroxisome proliferator-activated receptor γ, oestrogen receptor, MYC, Nucleolin and p300/CBP, which regulate downstream gene expression, and serve important roles in the aforementioned fundamental cell processes. Emerging evidence has demonstrated that CITED2 serves an essential role in embryonic and adult tissue stem cells, including hematopoietic stem cells and tendon-derived stem/progenitor cells. Additionally, CITED2 has been reported to function in different types of cancer. Although the functions of CITED2 in different tissues vary depending on the interaction partner, altered CITED2 expression or altered interactions with transcription factors or co-factors result in alterations of fundamental cell processes, and may affect stem cell maintenance or cancer cell survival. The aim of this review is to summarize the molecular mechanisms of CITED2 function and how it serves a role in stem cells and different types of cancer based on the currently available literature.
Collapse
|
5
|
Histone Acetyltransferase MOF Blocks Acquisition of Quiescence in Ground-State ESCs through Activating Fatty Acid Oxidation. Cell Stem Cell 2020; 27:441-458.e10. [PMID: 32610040 DOI: 10.1016/j.stem.2020.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/26/2020] [Accepted: 06/07/2020] [Indexed: 02/08/2023]
Abstract
Self-renewing embryonic stem cells (ESCs) respond to environmental cues by exiting pluripotency or entering a quiescent state. The molecular basis underlying this fate choice remains unclear. Here, we show that histone acetyltransferase MOF plays a critical role in this process through directly activating fatty acid oxidation (FAO) in the ground-state ESCs. We further show that the ground-state ESCs particularly rely on elevated FAO for oxidative phosphorylation (OXPHOS) and energy production. Mof deletion or FAO inhibition induces bona fide quiescent ground-state ESCs with an intact core pluripotency network and transcriptome signatures akin to the diapaused epiblasts in vivo. Mechanistically, MOF/FAO inhibition acts through reducing mitochondrial respiration (i.e., OXPHOS), which in turn triggers reversible pluripotent quiescence specifically in the ground-state ESCs. The inhibition of FAO/OXPHOS also induces quiescence in naive human ESCs. Our study suggests a general function of the MOF/FAO/OXPHOS axis in regulating cell fate determination in stem cells.
Collapse
|
6
|
Fathi Maroufi N, Hasegawa K, Vahedian V, Nazari Soltan Ahmad S, Zarebkohan A, Miresmaeili Mazrakhondi SA, Hosseini V, Rahbarghazi R. A glimpse into molecular mechanisms of embryonic stem cells pluripotency: Current status and future perspective. J Cell Physiol 2020; 235:6377-6392. [DOI: 10.1002/jcp.29616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Nazila Fathi Maroufi
- Stem Cell and Regenerative Medicine InstituteTabriz University of Medical Sciences Tabriz Iran
- Student Research CommitteeTabriz University of Medical Sciences Tabriz Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
| | - Kouichi Hasegawa
- Institute for Integrated Cell‐Material Sciences, Institute for Advanced StudyKyoto University Kyoto Japan
| | - Vahid Vahedian
- Department of Medical Laboratory Sciences, Faculty of MedicineIslamic Azad University Sari Iran
- Clinical Laboratory Medicine DepartmentRofeydeh Hospital University of Social Welfare and Rehabilitation Science Tehran Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | | | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
7
|
Bromodomain inhibition of the coactivators CBP/EP300 facilitate cellular reprogramming. Nat Chem Biol 2019; 15:519-528. [PMID: 30962627 DOI: 10.1038/s41589-019-0264-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/27/2019] [Indexed: 01/09/2023]
Abstract
Silencing of the somatic cell type-specific genes is a critical yet poorly understood step in reprogramming. To uncover pathways that maintain cell identity, we performed a reprogramming screen using inhibitors of chromatin factors. Here, we identify acetyl-lysine competitive inhibitors targeting the bromodomains of coactivators CREB (cyclic-AMP response element binding protein) binding protein (CBP) and E1A binding protein of 300 kDa (EP300) as potent enhancers of reprogramming. These inhibitors accelerate reprogramming, are critical during its early stages and, when combined with DOT1L inhibition, enable efficient derivation of human induced pluripotent stem cells (iPSCs) with OCT4 and SOX2. In contrast, catalytic inhibition of CBP/EP300 prevents iPSC formation, suggesting distinct functions for different coactivator domains in reprogramming. CBP/EP300 bromodomain inhibition decreases somatic-specific gene expression, histone H3 lysine 27 acetylation (H3K27Ac) and chromatin accessibility at target promoters and enhancers. The master mesenchymal transcription factor PRRX1 is one such functionally important target of CBP/EP300 bromodomain inhibition. Collectively, these results show that CBP/EP300 bromodomains sustain cell-type-specific gene expression and maintain cell identity.
Collapse
|
8
|
Chen G, Zhang D, Zhang L, Feng G, Zhang B, Wu Y, Li W, Zhang Y, Hu B. RBM14 is indispensable for pluripotency maintenance and mesoderm development of mouse embryonic stem cells. Biochem Biophys Res Commun 2018; 501:259-265. [PMID: 29729270 DOI: 10.1016/j.bbrc.2018.04.231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
The pluripotency of embryonic stem cells (ESCs) is maintained by core pluripotency transcription factors, cofactors and several signaling pathways. RBM14 is a component of the para-speckle complex, which has been implicated in multiple important biological processes. The role of RBM14 in ESCs and lineage differentiation remains to be elucidated. In the present study, we provided evidence that RBM14 plays important roles in maintaining pluripotency and in the early differentiation of ESCs. RBM14 was demonstrated to be expressed in mouse embryonic stem cells (mESCs) and localized in the nucleus. RBM14 expression was depleted in mESCs using clustered regularly interspaced short palindromic repeats (CRISPR) technology. Our results also showed that RBM14 depletion altered the gene expression profiles of mESCs. In particular, pluripotency-associated genes and genes involved in the Wnt and TGF-β signaling pathways were downregulated in RBM14 knockout mESCs. Furthermore, RBM14 was found to be essential for mesoderm development in vitro and in vivo. The specific effects of RBM14 depletion were verified by conducting a rescue experiment. Our findings demonstrated that RBM14 not only plays an important role in maintaining the pluripotency of mESCs but is also indispensable for mesoderm development.
Collapse
Affiliation(s)
- Guilai Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Da Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linlin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihui Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
The soy-derived peptide Lunasin inhibits invasive potential of melanoma initiating cells. Oncotarget 2018; 8:25525-25541. [PMID: 28424421 PMCID: PMC5421948 DOI: 10.18632/oncotarget.16066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Lunasin is a 44 amino acid peptide with multiple functional domains including an aspartic acid tail, an RGD domain, and a chromatin-binding helical domain. We recently showed that Lunasin induced a phenotype switch of cancer initiating cells (CIC) out of the stem compartment by inducing melanocyte-associated differentiation markers while simultaneously reducing stem-cell-associated transcription factors. In the present study, we advance the hypothesis that Lunasin can reduce pools of melanoma cells with stem cell-like properties, and demonstrate that Lunasin treatment effectively inhibits the invasive potential of CICs in vitro as well as in vivo in a mouse experimental metastasis model. Mice receiving Lunasin treatment had significantly reduced pulmonary colonization after injection of highly metastatic B16-F10 melanoma cells compared to mice in the control group. Mechanistic studies demonstrate that Lunasin reduced activating phosphorylations of the intracellular kinases FAK and AKT as well as reduced histone acetylation of lysine residues in H3 and H4 histones. Using peptides with mutated activity domains, we functionally demonstrated that the RGD domain is necessary for Lunasin uptake and its ability to inhibit oncosphere formation by CICs, thus confirming that Lunasin's ability to affect CICs is at least in part due to the suppression of integrin signaling. Our studies suggest that Lunasin represents a unique anticancer agent that could be developed to help prevent metastasis and patient relapse by reducing the activity of CICs which are known to be resistant to current chemotherapies.
Collapse
|
10
|
Babu A, Kamaraj M, Basu M, Mukherjee D, Kapoor S, Ranjan S, Swamy MM, Kaypee S, Scaria V, Kundu TK, Sachidanandan C. Chemical and genetic rescue of an ep300 knockdown model for Rubinstein Taybi Syndrome in zebrafish. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1203-1215. [PMID: 29409755 DOI: 10.1016/j.bbadis.2018.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/08/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
EP300 is a member of the EP300/CBP family of lysine acetyltransferases (KATs) with multiple roles in development and physiology. Loss of EP300/CBP activity in humans causes a very rare congenital disorder called Rubinstein Taybi Syndrome (RSTS). The zebrafish genome has two co-orthologs of lysine acetyltransferase EP300 (KAT3B) in zebrafish viz. ep300a and ep300b. Chemical inhibition of Ep300 with C646, a competitive inhibitor and morpholino-based genetic knockdown of ep300a and ep300b cause defects in embryonic development reminiscent of the human RSTS syndrome. Remarkably, overexpression of Ep300a KAT domain results in near complete rescue of the jaw development defects, a characteristic feature of RSTS in human suggesting the dispensability of the protein-interaction and DNA-binding domains for at least some developmental roles of Ep300. We also perform a chemical screen and identify two inhibitors of deacetylases, CHIC35 and HDACi III, that can partially rescue the RSTS-like phenotypes. Thus, modeling rare human genetic disorders in zebrafish allows for functional understanding of the genes involved and can also yield small molecule candidates towards therapeutic goals.
Collapse
Affiliation(s)
- Aswini Babu
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Mageshi Kamaraj
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India
| | - Moumita Basu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Debanjan Mukherjee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Shruti Kapoor
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Shashi Ranjan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India
| | - Mahadeva M Swamy
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India.
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India.
| |
Collapse
|
11
|
Wang X, Wang Z, Wang Q, Wang H, Liang H, Liu D. Epigenetic modification differences between fetal fibroblast cells and mesenchymal stem cells of the Arbas Cashmere goat. Res Vet Sci 2017; 114:363-369. [PMID: 28710961 DOI: 10.1016/j.rvsc.2017.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 07/02/2017] [Accepted: 07/08/2017] [Indexed: 11/26/2022]
Abstract
To explore the epigenetic mechanisms regulating mesenchymal stem cells, we analyzed epigenetic patterns in control goat fetal fibroblast cells (gFFCs), adipose-derived stem cells (gADSCs), bone marrow stromal cells (gBMSCs), and muscle-derived satellite cells (gMDSCs). We found that the 5mC content of gBMSC genomes was lower than that of gFFC genomes, while the 5mC content of gADSC and gMDSC genomes surpassed that of gFFC genomes. H3K9 acetylation did not differ significantly among those cells; gFFCs, gADSCs, and gMDSCs contained acetylated H3K9, H3K14, H3K18, H4K5, and H4K12, but gBMSCs contained almost no acetylated H4K5 and H4K12. DNMT1, DNMT3A, and DNMT3B expression levels in gBMSCs and gMDSCs were relatively high; TET1 and TET2 expression levels in gFFCs, gADSCs, gBMSCs, and gMDSCs were relatively low; the TET3 expression level was relatively high, but was not statistically significant. The expression levels of HDAC1, HDAC6, SIRT1, Tip60, and PCAF in gADSCs, gBMSCs, and gMDSCs were higher than those in gFFCs; this observation was consistent with the real-time quantitative PCR results. P300 expression was not detected. We found that epigenetic modification was active in mesenchymal stem cells, which benefited the regulation of these cells.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Zhimin Wang
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Qing Wang
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Hefei Wang
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Hao Liang
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Dongjun Liu
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
12
|
Soleimani T, Falsafi N, Fallahi H. Dissection of Regulatory Elements During Direct Conversion of Somatic Cells Into Neurons. J Cell Biochem 2017; 118:3158-3170. [DOI: 10.1002/jcb.25944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Tahereh Soleimani
- Bioinformatics LabDepartment of BiologySchool of SciencesRazi UniversityKermanshahIran
| | - Nafiseh Falsafi
- Bioinformatics LabDepartment of BiologySchool of SciencesRazi UniversityKermanshahIran
| | - Hossein Fallahi
- Bioinformatics LabDepartment of BiologySchool of SciencesRazi UniversityKermanshahIran
| |
Collapse
|
13
|
Cao K, Collings CK, Marshall SA, Morgan MA, Rendleman EJ, Wang L, Sze CC, Sun T, Bartom ET, Shilatifard A. SET1A/COMPASS and shadow enhancers in the regulation of homeotic gene expression. Genes Dev 2017; 31:787-801. [PMID: 28487406 PMCID: PMC5435891 DOI: 10.1101/gad.294744.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/12/2017] [Indexed: 01/16/2023]
Abstract
In this study, Cao et al. identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Their results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development. The homeotic (Hox) genes are highly conserved in metazoans, where they are required for various processes in development, and misregulation of their expression is associated with human cancer. In the developing embryo, Hox genes are activated sequentially in time and space according to their genomic position within Hox gene clusters. Accumulating evidence implicates both enhancer elements and noncoding RNAs in controlling this spatiotemporal expression of Hox genes, but disentangling their relative contributions is challenging. Here, we identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Simultaneous deletion of these shadow enhancers in embryonic stem cells leads to impaired activation of HoxA genes upon differentiation, while knockdown of a long noncoding RNA overlapping E1 has no detectable effect on their expression. Although MLL/COMPASS (complex of proteins associated with Set1) family of histone methyltransferases is known to activate transcription of Hox genes in other contexts, we found that individual inactivation of the MLL1-4/COMPASS family members has little effect on early Hox gene activation. Instead, we demonstrate that SET1A/COMPASS is required for full transcriptional activation of multiple Hox genes but functions independently of the E1 and E2 cis-regulatory elements. Our results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development.
Collapse
Affiliation(s)
- Kaixiang Cao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Marc A Morgan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Christie C Sze
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Tianjiao Sun
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
14
|
Chen S, Jing Y, Kang X, Yang L, Wang DL, Zhang W, Zhang L, Chen P, Chang JF, Yang XM, Sun FL. Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy. Nucleic Acids Res 2017; 45:1144-1158. [PMID: 28180298 PMCID: PMC5388390 DOI: 10.1093/nar/gkw1025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 10/08/2016] [Accepted: 10/19/2016] [Indexed: 12/16/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular process that primarily participates in lysosome-mediated protein degradation. Although autophagy is a cytoplasmic event, how epigenetic pathways are involved in the regulation of autophagy remains incompletely understood. Here, we found that H2B monoubiquitination (H2Bub1) is down-regulated in cells under starvation conditions and that the decrease in H2Bub1 results in the activation of autophagy. We also identified that the deubiquitinase USP44 is responsible for the starvation-induced decrease in H2Bub1. Furthermore, the changes in H2Bub1 affect the transcription of genes involved in the regulation of autophagy. Therefore, this study reveals a novel epigenetic pathway for the regulation of autophagy through H2Bub1.
Collapse
Affiliation(s)
- Su Chen
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
- School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
- Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei 064200, PR China
| | - Yuanya Jing
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Xuan Kang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Lu Yang
- Research Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi 710061, PR China
| | - Da-Liang Wang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Wei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Lei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Ping Chen
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Xiao-Mei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
15
|
Hirsch CL, Wrana JL, Dent SYR. KATapulting toward Pluripotency and Cancer. J Mol Biol 2016; 429:1958-1977. [PMID: 27720985 DOI: 10.1016/j.jmb.2016.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/30/2016] [Indexed: 12/20/2022]
Abstract
Development is generally regarded as a unidirectional process that results in the acquisition of specialized cell fates. During this process, cellular identity is precisely defined by signaling cues that tailor the chromatin landscape for cell-specific gene expression programs. Once established, these pathways and cell states are typically resistant to disruption. However, loss of cell identity occurs during tumor initiation and upon injury response. Moreover, terminally differentiated cells can be experimentally provoked to become pluripotent. Chromatin reorganization is key to the establishment of new gene expression signatures and thus new cell identity. Here, we explore an emerging concept that lysine acetyltransferase (KAT) enzymes drive cellular plasticity in the context of somatic cell reprogramming and tumorigenesis.
Collapse
Affiliation(s)
- Calley L Hirsch
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Sharon Y R Dent
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
| |
Collapse
|
16
|
Long K, Moss L, Laursen L, Boulter L, Ffrench-Constant C. Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and Decorin. Nat Commun 2016; 7:10354. [PMID: 26838601 PMCID: PMC4742793 DOI: 10.1038/ncomms10354] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 12/03/2015] [Indexed: 01/14/2023] Open
Abstract
Development of the cerebral cortex requires regulation of proliferation and differentiation of neural stem cells and a diverse range of progenitors. Recent work suggests a role for extracellular matrix (ECM) and the major family of ECM receptors, the integrins. Here we show that enhancing integrin beta-1 signalling, by expressing a constitutively active integrin beta-1 (CA*β1) in the embryonic chick mesencephalon, enhances neurogenesis and increases the number of mitotic cells dividing away from the ventricular surface, analogous to sub-apical progenitors in mouse. Only non-integrin-expressing neighbouring cells (lacking CA*β1) contributed to the increased neurogenesis. Transcriptome analysis reveals upregulation of Wnt7a within the CA*β1 cells and upregulation of the ECM protein Decorin in the neighbouring non-expressing cells. Experiments using inhibitors in explant models and genetic knock-downs in vivo reveal an integrin-Wnt7a-Decorin pathway that promotes proliferation and differentiation of neuroepithelial cells, and identify Decorin as a novel neurogenic factor in the central nervous system. The extracellular matrix is suggested to play a role in neurogenesis, but it is unclear what role integrin signalling may play in the developing neuroepithelium. Here, in chick, Long et al. show that expression of constitutively active integrin beta-1 enhances neurogenesis via a novel Wnt7 and decorin pathway.
Collapse
Affiliation(s)
- K Long
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - L Moss
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - L Laursen
- Department of Molecular biology and Genetics, Aarhus University, Gustav Wieds Vej 10 C, 8000 Aarhus C, Denmark
| | - L Boulter
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK
| | - C Ffrench-Constant
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
17
|
The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis. Int J Mol Sci 2016; 17:ijms17010099. [PMID: 26784169 PMCID: PMC4730341 DOI: 10.3390/ijms17010099] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways.
Collapse
|
18
|
Mu X, Yan S, Fu C, Wei A. The Histone Acetyltransferase MOF Promotes Induces Generation of Pluripotent Stem Cells. Cell Reprogram 2015; 17:259-67. [DOI: 10.1089/cell.2014.0102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Xupeng Mu
- Department of Central Laboratory, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Shaohua Yan
- Department of Biological Engineering, College of Pharmacy, Jilin University, Changchun 130033, China
| | - Changhao Fu
- Department of Biological Engineering, College of Pharmacy, Jilin University, Changchun 130033, China
| | - Anhui Wei
- Department of Biological Engineering, College of Pharmacy, Jilin University, Changchun 130033, China
| |
Collapse
|
19
|
Boo K, Bhin J, Jeon Y, Kim J, Shin HJR, Park JE, Kim K, Kim CR, Jang H, Kim IH, Kim VN, Hwang D, Lee H, Baek SH. Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells. Nat Commun 2015; 6:6810. [PMID: 25857206 PMCID: PMC4403444 DOI: 10.1038/ncomms7810] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/27/2015] [Indexed: 01/05/2023] Open
Abstract
The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination. Long non-coding RNAs or lincRNAs identified in embryonic stem (ES) cells have been shown to regulate ES cell states; however, how these lincRNAs are regulated remains unclear. Here the authors show that the transcriptional coactivator Pontin regulates the expression of lincRNAs involved in ES cell maintenance in an Oct4-dependent manner.
Collapse
Affiliation(s)
- Kyungjin Boo
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Jinhyuk Bhin
- Department of Chemical Engineering, POSTECH, Pohang 790-784, South Korea
| | - Yoon Jeon
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 410-769, South Korea
| | - Joomyung Kim
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Hi-Jai R Shin
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Jong-Eun Park
- Institute for Basic Science, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Kyeongkyu Kim
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Chang Rok Kim
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Hyonchol Jang
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 410-769, South Korea
| | - In-Hoo Kim
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 410-769, South Korea
| | - V Narry Kim
- Institute for Basic Science, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Daehee Hwang
- 1] Department of Chemical Engineering, POSTECH, Pohang 790-784, South Korea [2] Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 711-873, South Korea
| | - Ho Lee
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 410-769, South Korea
| | - Sung Hee Baek
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| |
Collapse
|
20
|
The histone acetyltransferase Myst2 regulates Nanog expression, and is involved in maintaining pluripotency and self-renewal of embryonic stem cells. FEBS Lett 2015; 589:941-50. [PMID: 25743411 DOI: 10.1016/j.febslet.2015.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/28/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
The histone acetyltransferase Myst2 plays an important role in embryogenesis, but its function in undifferentiated ES cells remains poorly understood. Here, we show that Myst2 plays a role in pluripotency and self-renewal of ES cells. Myst2 deficiency results in loss of characteristic morphology, decreased alkaline phosphatase staining and reduced histone acetylation, as well as aberrant expression of pluripotency and differentiation markers. Our ChIP data reveal a direct association of Myst2 with the Nanog promoter and Myst2-dependent Oct4 binding on the Nanog promoter. Together our data suggest that Myst2-mediated histone acetylation may be required for recruitment of Oct4 to the Nanog promoter, thereby regulating Nanog transcription in ES cells.
Collapse
|
21
|
Fang F, Xu Y, Chew KK, Chen X, Ng HH, Matsudaira P. Coactivators p300 and CBP maintain the identity of mouse embryonic stem cells by mediating long-range chromatin structure. Stem Cells 2015; 32:1805-16. [PMID: 24648406 DOI: 10.1002/stem.1705] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/25/2013] [Accepted: 12/22/2013] [Indexed: 11/07/2022]
Abstract
Master transcription factors Oct4, Sox2, and Nanog are required to maintain the pluripotency and self-renewal of embryonic stem cells (ESCs) by regulating a specific transcriptional network. A few other transcription factors have been shown to be important in ESCs by interacting with these master transcription factors; however, little is known about the transcriptional mechanisms regulated by coregulators (coactivators and corepressors). In this study, we examined the function of two highly homologous coactivators, p300 and CREB-binding protein (CBP), in ESCs. We find that these two coactivators play redundant roles in maintaining the undifferentiated state of ESCs. They are recruited by Nanog through physical interaction to Nanog binding loci, mediating the formation of long-range chromatin looping structures, which is essential to maintain ESC-specific gene expression. Further functional studies reveal that the p300/CBP binding looping fragments contain enhancer activities, suggesting that the formation of p300/CBP-mediated looping structures may recruit distal enhancers to create a concentration of factors for the transcription activation of genes that are involved in self-renewal and pluripotency. Overall, these results provide a total new insight into the transcriptional regulation mechanism of coactivators p300 and CBP in ESCs, which is important in maintaining self-renewal and pluripotency, by mediating the formation of higher order chromosome structures.
Collapse
Affiliation(s)
- Fang Fang
- Computation and Systems Biology, Singapore-MIT Alliance, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
22
|
Davies AH, Reipas KM, Pambid MR, Berns R, Stratford AL, Fotovati A, Firmino N, Astanehe A, Hu K, Maxwell C, Mills GB, Dunn SE. YB-1 transforms human mammary epithelial cells through chromatin remodeling leading to the development of basal-like breast cancer. Stem Cells 2015; 32:1437-50. [PMID: 24648416 DOI: 10.1002/stem.1707] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 12/18/2022]
Abstract
There is growing evidence that cancer-initiation could result from epigenetic changes. Y-box binding protein-1 (YB-1) is a transcription/translation factor that promotes the formation of tumors in transgenic mice; however, the underlying molecular events are not understood. To explore this in a human model system, YB-1 was expressed in mammary epithelial cells under the control of a tetracycline-inducible promoter. The induction of YB-1 promoted phenotypes associated with malignancy in three-dimensional breast acini cultures. This was attributed to YB-1 enhancing the expression and activity of the histone acetyltransferase p300 leading to chromatin remodeling. Specifically, this relaxation of chromatin allowed YB-1 to bind to the BMI1 promoter. The induction of BMI1 engaged the Polycomb complex resulting in histone H2A ubiquitylation and repression of the CDKN2A locus. These events manifested functionally as enhanced self-renewal capacity that occurred in a BMI1-dependent manner. Conversely, p300 inhibition with anacardic acid prevented YB-1 from binding to the BMI1 promoter and thereby subverted self-renewal. Despite these early changes, full malignant transformation was not achieved until RSK2 became overexpressed concomitant with elevated human telomerase reverse transcriptase (hTERT) activity. The YB-1/RSK2/hTERT expressing cells formed tumors in mice that were molecularly subtyped as basal-like breast cancer. We conclude that YB-1 cooperates with p300 to allow BMI1 to over-ride p16(INK4a) -mediated cell cycle arrest enabling self-renewal and the development of aggressive breast tumors.
Collapse
Affiliation(s)
- Alastair H Davies
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Horne GA, Stewart HJS, Dickson J, Knapp S, Ramsahoye B, Chevassut T. Nanog requires BRD4 to maintain murine embryonic stem cell pluripotency and is suppressed by bromodomain inhibitor JQ1 together with Lefty1. Stem Cells Dev 2014; 24:879-91. [PMID: 25393219 DOI: 10.1089/scd.2014.0302] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Embryonic stem cells (ESCs) are maintained in an undifferentiated state through expression of the core transcriptional factors Nanog, Oct4, and Sox2. However, the epigenetic regulation of pluripotency is poorly understood. Differentiation of ESCs is accompanied by a global reduction of panacetylation of histones H3 and H4 suggesting that histone acetylation plays an important role in maintenance of ESC pluripotency. Acetylated lysine residues on histones are read by members of the bromodomain family that includes BET (bromodomain and extraterminal domain) proteins for which highly potent and selective inhibitors have been developed. In this study we demonstrate that the pan-BET bromodomain inhibitor JQ1 induces rapid spontaneous differentiation of murine ESCs by inducing marked transcriptional downregulation of Nanog as well as the stemness markers Lefty1 and Lefty2, but not Myc, often used as a marker of BET inhibitor activity in cancer. We show that the effects of JQ1 are recapitulated by knockdown of the BET family member BRD4 implicating this protein in Nanog regulation. These data are also supported by chromatin immunoprecipitation experiments which confirm BRD4 binding at the Nanog promoter that is known to require acetylation by the histone acetyltransferase MOF for transcriptional activity. In further support of our findings, we show that JQ1 antagonizes the stem cell-promoting effects of the histone deacetylase inhibitors sodium butyrate and valproic acid. Our data suggest that BRD4 is critical for the maintenance of ESC pluripotency and that this occurs primarily through the maintenance of Nanog expression.
Collapse
Affiliation(s)
- Gillian A Horne
- 1 Brighton and Sussex Medical School, University of Sussex , Brighton, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Qiao Y, Wang R, Yang X, Tang K, Jing N. Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem 2014; 290:2508-20. [PMID: 25519907 DOI: 10.1074/jbc.m114.603761] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Early neurodevelopment requires cell fate commitment from pluripotent stem cells to restricted neural lineages, which involves the epigenetic regulation of chromatin structure and lineage-specific gene transcription. However, it remains unclear how histone H3 lysine 9 acetylation (H3K9Ac), an epigenetic mark representing transcriptionally active chromatin, is involved in the neural commitment from pluripotent embryonic stem cells (ESCs). In this study, we demonstrate that H3K9Ac gradually declines during the first 4 days of in vitro neural differentiation of human ESCs (hESCs) and then increases during days 4-8. Consistent with this finding, the H3K9Ac enrichment at several pluripotency genes was decreased, and H3K9Ac occupancies at the loci of neurodevelopmental genes increased during hESC neural commitment. Inhibiting H3K9 deacetylation on days 0-4 by histone deacetylase inhibitors (HDACis) promoted hESC pluripotency and suppressed its neural differentiation. Conversely, HDACi-elicited up-regulation of H3K9 acetylation on days 4-8 enhanced neural differentiation and activated multiple neurodevelopmental genes. Mechanistically, HDACis promote pluripotency gene transcription to support hESC self-renewal through suppressing HDAC3 activity. During hESC neural commitment, HDACis relieve the inhibitory activities of HDAC1/5/8 and thereby promote early neurodevelopmental gene expression by interfering with gene-specific histone acetylation patterns. Furthermore, p300 is primarily identified as the major histone acetyltransferase involved in both hESC pluripotency and neural differentiation. Our results indicate that epigenetic modification plays pivotal roles during the early neural specification of hESCs. The histone acetylation, which is regulated by distinct HDAC members at different neurodevelopmental stages, plays dual roles in hESC pluripotency maintenance and neural differentiation.
Collapse
Affiliation(s)
- Yunbo Qiao
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ran Wang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xianfa Yang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, the School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China, and
| | - Ke Tang
- the Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Naihe Jing
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China,
| |
Collapse
|
25
|
Chen YH, Yu J. Epigenetic disruptions of histone signatures for the trophectoderm and inner cell mass in mouse parthenogenetic embryos. Stem Cells Dev 2014; 24:550-64. [PMID: 25315067 DOI: 10.1089/scd.2014.0310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epigenetic asymmetry has been shown to be associated with the first lineage allocation event in preimplantation development, that is, the formation of the trophectoderm (TE) and inner cell mass (ICM) lineages in the blastocyst. Since parthenogenesis causes aberrant segregation between the TE and ICM lineages, we examined several development-associated histone modifications in parthenotes, including those involved in (i) transcriptional activation [acetylated histone H3 lysine 9 (H3K9Ac) and lysine 14 (H3K14Ac), trimethylated histone H3 lysine 4 (H3K4Me3), and dimethylated histone H3 arginine 26 (H3R26Me2)] and (ii) transcriptional repression [trimethylated histone H3 lysine 9 (H3K9Me3) and lysine 27 (H3K27Me3), and mono-ubiquitinated histone H2A lysine 119 (H2AK119u1)]. Here, we report that in parthenotes, H3R26Me2 expression decreased from the morula stage, while expression patterns and levels of H3K9Ac, H3K27Me3, and H2AK119u1 were unchanged until the blastocyst stage; whereas H3K14Ac, H3K4Me3, and H3K9Me3 showed normal patterns and levels of expressions. Relative to the decrease of H3K9Ac in the ICM and increase in the TE of parthenotes, we detected reduced expression of TAT-interactive protein 60 acetyltransferase and histone deacetylase 1 deacetylase in the ICM and TE of parthenotes, respectively. Relative to the decrease of H3R26Me2, we also observed decreased expression of coactivator-associated arginine methyltransferase 1 methyltransferase and increased expression of the Wnt effector transcription factor 7L2 and miR-181c microRNA in parthenotes. Furthermore, relative to the decrease in H3K27Me3 and H2AK119u1, we found increased phosphorylation of Akt1 and enhancer of zeste homolog 2 in parthenogenetic TE. Therefore, our findings that histone signatures are impaired in parthenotes provide a mechanistic explanation for aberrant lineage segregation and TE defects.
Collapse
Affiliation(s)
- Yi-Hui Chen
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Taipei, Taiwan
| | | |
Collapse
|
26
|
Wang T, Liu H, Ning Y, Xu Q. The histone acetyltransferase p300 regulates the expression of pluripotency factors and odontogenic differentiation of human dental pulp cells. PLoS One 2014; 9:e102117. [PMID: 25007265 PMCID: PMC4090168 DOI: 10.1371/journal.pone.0102117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 06/15/2014] [Indexed: 12/22/2022] Open
Abstract
p300 is a well-known histone acetyltransferase (HAT) and coactivator that plays vital roles in many physiological processes. Despite extensive research on the involvement of p300 in the regulation of transcription in numerous cell lines, the roles of this protein in regulating pluripotency genes and odontogenic differentiation in human dental pulp cells (HDPCs) are poorly understood. To address this issue, we investigated the expression of OCT4, NANOG and SOX2 and the proliferation and odontogenic differentiation capacity of HDPCs following p300 overexpression. We found that p300 overexpression did not overtly affect the ability of HDPCs to proliferate. The overexpression of p300 upregulated the promoter activity and the mRNA and protein expression of NANOG and SOX2. The HAT activity of p300 appeared to partially mediate the regulation of these factors; indeed, when a mutant form of p300 lacking the HAT domain was overexpressed, the promoter activity and expression of NANOG and SOX2 decreased relative to p300 overexpression but was greater than in the control. Furthermore, we demonstrated that the mRNA levels of the odontogenic marker genes dentine matrix protein-1 (DMP-1), dentin sialophosphoprotein (DSPP), dentin sialoprotein (DSP), osteopontin (OPN) and osteocalcin (OCN) were significantly decreased in HDPCs overexpressing p300 cultured under normal culture conditions and increased in HDPCs inducted to undergo odontogenic differentiation. This finding was further confirmed by measuring levels of alkaline phosphatase (ALP) activity and assessing the formation of mineralized nodules. The HAT activity of p300 had no significant effect on odontogenic differentiation. p300 was recruited to the promoter regions of OCN and DSPP and might be acting as a coactivator to increase the acetylation of lysine 9 of histone H3 of OCN and DSPP. Collectively, our results show that p300 plays an important role in regulating the expression of key pluripotency genes in HDPCs and modifying odontogenic differentiation.
Collapse
Affiliation(s)
- Tong Wang
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Hefei Stomatological Hospital, Hefei, China
| | - Huijuan Liu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yanyang Ning
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qiong Xu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
27
|
Sharov AA, Nishiyama A, Qian Y, Dudekula DB, Longo DL, Schlessinger D, Ko MSH. Chromatin properties of regulatory DNA probed by manipulation of transcription factors. J Comput Biol 2014; 21:569-77. [PMID: 24918633 DOI: 10.1089/cmb.2013.0126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcription factors (TFs) bind to DNA and regulate the transcription of nearby genes. However, only a small fraction of TF binding sites have such regulatory effects. Here we search for the predictors of functional binding sites by carrying out a systematic computational screening of a variety of contextual factors (histone modifications, nuclear lamin-bindings, and cofactor bindings). We used regression analysis to test if contextual factors are associated with upregulation or downregulation of neighboring genes following the induction or knockdown of the 9 TFs in mouse embryonic stem (ES) cells. Functional TF binding sites appeared to be either active (i.e., bound by P300, CHD7, mediator, cohesin, and SWI/SNF) or repressed (i.e., with H3K27me3 histone marks and bound by Polycomb factors). Active binding sites mediated the downregulation of nearby genes upon knocking down the activating TFs or inducing repressors. Repressed TF binding sites mediated the upregulation of nearby genes (e.g., poised developmental regulators) upon inducing TFs. In addition, repressed binding sites mediated repressive effects of TFs, identified by the downregulation of target genes after the induction of TFs or by the upregulation of target genes after the knockdown of TFs. The contextual factors associated with functions of DNA-bound TFs were used to improve the identification of candidate target genes regulated by TFs.
Collapse
Affiliation(s)
- Alexei A Sharov
- 1 National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
28
|
Ravens S, Fournier M, Ye T, Stierle M, Dembele D, Chavant V, Tora L. Mof-associated complexes have overlapping and unique roles in regulating pluripotency in embryonic stem cells and during differentiation. eLife 2014; 3. [PMID: 24898753 PMCID: PMC4059888 DOI: 10.7554/elife.02104] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/03/2014] [Indexed: 12/11/2022] Open
Abstract
The histone acetyltransferase (HAT) Mof is essential for mouse embryonic stem cell (mESC) pluripotency and early development. Mof is the enzymatic subunit of two different HAT complexes, MSL and NSL. The individual contribution of MSL and NSL to transcription regulation in mESCs is not well understood. Our genome-wide analysis show that i) MSL and NSL bind to specific and common sets of expressed genes, ii) NSL binds exclusively at promoters, iii) while MSL binds in gene bodies. Nsl1 regulates proliferation and cellular homeostasis of mESCs. MSL is the main HAT acetylating H4K16 in mESCs, is enriched at many mESC-specific and bivalent genes. MSL is important to keep a subset of bivalent genes silent in mESCs, while developmental genes require MSL for expression during differentiation. Thus, NSL and MSL HAT complexes differentially regulate specific sets of expressed genes in mESCs and during differentiation. DOI:http://dx.doi.org/10.7554/eLife.02104.001 Embryonic stem cells are special cells that have the ability to become many different types of cells, such as skin, muscle, or neuronal cells. This process is called differentiation. They can also undergo a process called self-renewal to produce more embryonic stem cells. These processes are controlled by a complex network of enzymes, and the production of these enzymes depends on various genes within the organism being expressed as proteins. The DNA that holds the genetic information inside cells spends most of its time wrapped around proteins called histones: this allows the DNA molecules—which can be up to several metres long in some species—to fit inside the cell nucleus; it also protects the DNA molecules, which are quite fragile, from damage. Enzymes that attach chemical groups called acetyl groups to histones have a central role in controlling the self-renewal and differentiation of embryonic stem cells. Mof is an enzyme that attaches an acetyl group to a specific position in a particular histone. It is a subunit within two larger protein complexes that were originally identified in flies: the male-specific lethal (MSL) complex, which is only found in male flies, and the non-specific lethal (NSL) complex, which is found in both male and female flies. These complexes have been widely studied in flies, and the role of the Mof enzyme is also reasonably well understood in mammals. However, the roles of the MSL and NSL protein complexes in mammals are not fully understood. Ravens et al. have now used a combination of a technique called ChIP-seq (which can identify binding sites anywhere in the genome) and genetic ‘knock down’ experiments to explore the roles of these two complexes in mouse embryonic stem cells and neuronal progenitor cells. There is some overlap between the genes that the complexes act on. However, NSL acts on some genes than MSL does not act on, and vice versa. NSL mostly acts on genes that have ‘housekeeping’ functions and are expressed in many different cell types. MSL binds more to genes that are specific to embryonic stem cells, and acts on genes required for the development of neuronal progenitor cells. This means that NSL regulates the growth of embryonic stem cells, whereas MSL controls their development and differentiation. DOI:http://dx.doi.org/10.7554/eLife.02104.002
Collapse
Affiliation(s)
- Sarina Ravens
- Cellular signaling and nuclear dynamics program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| | - Marjorie Fournier
- Cellular signaling and nuclear dynamics program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| | - Tao Ye
- Microarrays and deep sequencing platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| | - Matthieu Stierle
- Cellular signaling and nuclear dynamics program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| | - Doulaye Dembele
- Microarrays and deep sequencing platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| | - Virginie Chavant
- Proteomics platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| | - Làszlò Tora
- Cellular signaling and nuclear dynamics program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
29
|
Chen T, He S, Zhang Z, Gao W, Yu L, Tan Y. Foxa1 contributes to the repression of Nanog expression by recruiting Grg3 during the differentiation of pluripotent P19 embryonal carcinoma cells. Exp Cell Res 2014; 326:326-35. [PMID: 24803390 DOI: 10.1016/j.yexcr.2014.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
Transcription factor Foxa1 plays a critical role during neural differentiation and is induced immediately after retinoic acid (RA)-initiated differentiation of pluripotent P19 embryonal carcinoma cells, correlated with the downregulated expression of pluripotency-related genes such as Nanog. To study whether Foxa1 participates in the repression of pluripotency factors, we expressed Foxa1 ectopically in P19 cells and identified that Nanog was repressed directly by Foxa1. We confirmed that Foxa1 was able to interact with Grg3, which is a transcriptional corepressor that expresses in P19 cells as well as during RA-induced P19 cell differentiation. Knockdown of Foxa1 or Grg3 delayed the downregulation of Nanog expression during RA-induced P19 cell differentiation. Furthermore, we found that Foxa1 recruited Grg3 to the Nanog promoter -2kb upstream region and switched the promoter to an inactive chromatin status represented by typical modifications in histone H3. Together, our results suggested a critical involvement of Foxa1 in the negative regulation of Nanog expression during the differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Tuanhui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Hunan, China
| | - Sijia He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Hunan, China
| | - Zhen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Hunan, China
| | - Wei Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Hunan, China
| | - Li Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Hunan, China.
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Hunan, China.
| |
Collapse
|
30
|
Zhang X, Ouyang S, Kong X, Liang Z, Lu J, Zhu K, Zhao D, Zheng M, Jiang H, Liu X, Marmorstein R, Luo C. Catalytic mechanism of histone acetyltransferase p300: from the proton transfer to acetylation reaction. J Phys Chem B 2014; 118:2009-19. [PMID: 24521098 DOI: 10.1021/jp409778e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The transcriptional coactivator and histone acetyltransferase (HAT) p300 acetylates the four core histones and other transcription factors to regulate a plethora of fundamental biological processes including cell growth, development, oncogenesis and apoptosis. Recent structural and biochemical studies on the p300 HAT domain revealed a Theorell-Chance, or "hit-and-run", catalytic mechanism. Nonetheless, the chemical mechanism of the entire reaction process including the proton transfer (PT) scheme and consequent acetylation reaction route remains unclear. In this study, a combined computational strategy consisting of molecular modeling, molecular dynamic (MD) simulation, and quantum mechanics/molecular mechanics (QM/MM) simulation was applied to elucidate these important issues. An initial p300/H3/Ac-CoA complex structure was modeled and optimized using a 100 ns MD simulation. Residues that play important roles in substrate binding and the acetylation reaction were comprehensively investigated. For the first time, these studies reveal a plausible PT scheme consisting of Y1394, D1507, and a conserved crystallographic water molecule, with all components of the scheme being stable during the MD simulation and the energy barrier low for PT to occur. The two-dimensional potential energy surface for the nucleophilic attack process was also calculated. The comparison of potential energies for two possible elimination half-reaction mechanisms revealed that Y1467 reprotonates the coenzyme-A leaving group to form product. This study provides new insights into the detailed catalytic mechanism of p300 and has important implications for the discovery of novel small molecule regulators for p300.
Collapse
Affiliation(s)
- Xinlei Zhang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University , Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
YE B, Dai Z, Liu B, Wang R, Li C, Huang G, Wang S, Xia P, Yang X, Kuwahara K, Sakaguchi N, Fan Z. Pcid2 Inactivates Developmental Genes in Human and Mouse Embryonic Stem Cells to Sustain Their Pluripotency by Modulation of EID1 Stability. Stem Cells 2014; 32:623-35. [DOI: 10.1002/stem.1580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Buqing YE
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Zhonghua Dai
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Benyu Liu
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Rui Wang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Chong Li
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Guanling Huang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Pengyan Xia
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Xuan Yang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Kazuhiko Kuwahara
- Department of Immunology; Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Nobuo Sakaguchi
- Department of Immunology; Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| |
Collapse
|
32
|
Regulation and function of histone acetyltransferase MOF. Front Med 2014; 8:79-83. [PMID: 24452550 DOI: 10.1007/s11684-014-0314-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
Abstract
The mammalian MOF (male absent on the first), a member of the MYST (MOZ, YBF2, SAS2, and Tip60) family of histone acetyltransferases (HATs), is the major enzyme that catalyzes the acetylation of histone H4 on lysine 16. Acetylation of K16 is a prevalent mark associated with chromatin decondensation. MOF has recently been shown to play an essential role in maintaining normal cell functions. In this study, we discuss the important roles of MOF in DNA damage repair, apoptosis, and tumorigenesis. We also analyze the role of MOF as a key regulator of the core transcriptional network of embryonic stem cells.
Collapse
|
33
|
Kraushaar DC, Zhao K. The epigenomics of embryonic stem cell differentiation. Int J Biol Sci 2013; 9:1134-44. [PMID: 24339734 PMCID: PMC3858586 DOI: 10.7150/ijbs.7998] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem cells (ESCs) possess an open and highly dynamic chromatin landscape, which underlies their plasticity and ultimately maintains ESC pluripotency. The ESC epigenome must not only maintain the transcription of pluripotency-associated genes but must also, through gene priming, facilitate rapid and cell type-specific activation of developmental genes upon lineage commitment. Trans-generational inheritance ensures that the ESC chromatin state is stably transmitted from one generation to the next; yet at the same time, epigenetic marks are highly dynamic, reversible and responsive to extracellular cues. Once committed to differentiation, the ESC epigenome is remodeled and resolves into a more compact chromatin state. A thorough understanding of the role of chromatin modifiers in ESC fate and differentiation will be important if they are to be used for therapeutic purposes. Recent technical advances, particularly in next-generation sequencing technologies, have provided a genome-scale view of epigenetic marks and chromatin modifiers. More affordable and faster sequencing platforms have led to a comprehensive characterization of the ESC epigenome and epigenomes of differentiated cell types. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone modifications, histone variants, DNA methylation and chromatin modifiers in ESC pluripotency and ESC fate. We provide a detailed and comprehensive discussion of genome-wide studies that are pertinent to our understanding of mammalian development.
Collapse
Affiliation(s)
- Daniel C Kraushaar
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | | |
Collapse
|
34
|
Li Q, Hakimi P, Liu X, Yu WM, Ye F, Fujioka H, Raza S, Shankar E, Tang F, Dunwoodie SL, Danielpour D, Hoppel CL, Ramírez-Bergeron DL, Qu CK, Hanson RW, Yang YC. Cited2, a transcriptional modulator protein, regulates metabolism in murine embryonic stem cells. J Biol Chem 2013; 289:251-63. [PMID: 24265312 DOI: 10.1074/jbc.m113.497594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CREB-binding protein (CBP)/p300 interacting transactivator with glutamic acid (Glu) and aspartic acid (Asp)-tail 2 (Cited2) was recently shown to be essential for gluconeogenesis in the adult mouse. The metabolic function of Cited2 in mouse embryonic stem cells (mESCs) remains elusive. In the current study, the metabolism of glucose was investigated in mESCs, which contained a deletion in the gene for Cited2 (Cited2(Δ/-)). Compared with its parental wild type counterpart, Cited2(Δ/-) ESCs have enhanced glycolysis, alternations in mitochondria morphology, reduced glucose oxidation, and decreased ATP content. Cited2 is recruited to the hexokinase 1 (HK1) gene promoter to regulate transcription of HK1, which coordinates glucose metabolism in wild type ESCs. Reduced glucose oxidation and enhanced glycolytic activity in Cited2(Δ/-) ESCs correlates with defective differentiation during hypoxia, which is reflected in an increased expression of pluripotency marker (Oct4) and epiblast marker (Fgf5) and decreased expression of lineage specification markers (T, Gata-6, and Cdx2). Knockdown of hypoxia inducible factor-1α in Cited2(Δ/-) ESCs re-initiates the expression of differentiation markers T and Gata-6. Taken together, a deletion of Cited2 in mESCs results in abnormal mitochondrial morphology and impaired glucose metabolism, which correlates with a defective cell fate decision.
Collapse
Affiliation(s)
- Qiang Li
- From the Departments of Biochemistry
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Post-translational modifications (PTMs) are known to be essential mechanisms used by eukaryotic cells to diversify their protein functions and dynamically coordinate their signaling networks. Defects in PTMs have been linked to numerous developmental disorders and human diseases, highlighting the importance of PTMs in maintaining normal cellular states. Human pluripotent stem cells (hPSCs), including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), are capable of self-renewal and differentiation into a variety of functional somatic cells; these cells hold a great promise for the advancement of biomedical research and clinical therapy. The mechanisms underlying cellular pluripotency in human cells have been extensively explored in the past decade. In addition to the vast amount of knowledge obtained from the genetic and transcriptional research in hPSCs, there is a rapidly growing interest in the stem cell biology field to examine pluripotency at the protein and PTM level. This review addresses recent progress toward understanding the role of PTMs (glycosylation, phosphorylation, acetylation and methylation) in the regulation of cellular pluripotency.
Collapse
|
36
|
Carey TS, Choi I, Wilson CA, Floer M, Knott JG. Transcriptional reprogramming and chromatin remodeling accompanies Oct4 and Nanog silencing in mouse trophoblast lineage. Stem Cells Dev 2013; 23:219-29. [PMID: 24059348 DOI: 10.1089/scd.2013.0328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mouse blastocysts, CDX2 plays a key role in silencing Oct4 and Nanog expression in the trophectoderm (TE) lineage. However, the underlying transcriptional and chromatin-based changes that are associated with CDX2-mediated repression are poorly understood. To address this, a Cdx2-inducible mouse embryonic stem (ES) cell line was utilized as a model system. Induction of Cdx2 expression resulted in a decrease in Oct4/Nanog expression, an increase in TE markers, and differentiation into trophoblast-like stem (TS-like) cells within 48 to 120 h. Consistent with the down-regulation of Oct4 and Nanog transcripts, a time-dependent increase in CDX2 binding and a decrease in RNA polymerase II (RNAPII) and OCT4 binding was observed within 48 h (P<0.05). To test whether transcriptionally active epigenetic marks were erased during differentiation, histone H3K9/14 acetylation and two of its epigenetic modifiers were evaluated. Accordingly, a significant decrease in histone H3K9/14 acetylation and loss of p300 and HDAC1 binding at the Oct4 and Nanog regulatory elements was observed by 48 h. Accompanying these changes, there was a significant increase in total histone H3 and a loss of chromatin accessibility at both the Oct4 and Nanog regulatory elements (P<0.05), indicative of chromatin remodeling. Lastly, DNA methylation analysis revealed that methylation did not occur at Oct4 and Nanog until 96 to 120 h after induction of CDX2. In conclusion, our results show that silencing of Oct4 and Nanog is facilitated by sequential changes in transcription factor binding, histone acetylation, chromatin remodeling, and DNA methylation at core regulatory elements.
Collapse
Affiliation(s)
- Timothy S Carey
- 1 Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University , East Lansing, Michigan
| | | | | | | | | |
Collapse
|
37
|
Taylor GCA, Eskeland R, Hekimoglu-Balkan B, Pradeepa MM, Bickmore WA. H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction. Genome Res 2013; 23:2053-65. [PMID: 23990607 PMCID: PMC3847775 DOI: 10.1101/gr.155028.113] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Compared with histone H3, acetylation of H4 tails has not been well studied, especially in mammalian cells. Yet, H4K16 acetylation is of particular interest because of its ability to decompact nucleosomes in vitro and its involvement in dosage compensation in flies. Here we show that, surprisingly, loss of H4K16 acetylation does not alter higher-order chromatin compaction in vivo in mouse embryonic stem cells (ESCs). As well as peaks of acetylated H4K16 and KAT8 histone acetyltransferase at the transcription start sites of expressed genes, we report that acetylation of H4K16 is a new marker of active enhancers in ESCs and that some enhancers are marked by H3K4me1, KAT8, and H4K16ac, but not by acetylated H3K27 or EP300, suggesting that they are novel EP300 independent regulatory elements. Our data suggest a broad role for different histone acetylation marks and for different histone acetyltransferases in long-range gene regulation.
Collapse
Affiliation(s)
- Gillian C A Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Li X, Li L, Pandey R, Byun JS, Gardner K, Qin Z, Dou Y. The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network. Cell Stem Cell 2013; 11:163-78. [PMID: 22862943 DOI: 10.1016/j.stem.2012.04.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 01/07/2012] [Accepted: 04/18/2012] [Indexed: 02/01/2023]
Abstract
Pluripotent embryonic stem cells (ESCs) maintain self-renewal and the potential for rapid response to differentiation cues. Both ESC features are subject to epigenetic regulation. Here we show that the histone acetyltransferase Mof plays an essential role in the maintenance of ESC self-renewal and pluripotency. ESCs with Mof deletion lose characteristic morphology, alkaline phosphatase (AP) staining, and differentiation potential. They also have aberrant expression of the core transcription factors Nanog, Oct4, and Sox2. Importantly, the phenotypes of Mof null ESCs can be partially suppressed by Nanog overexpression, supporting the idea that Mof functions as an upstream regulator of Nanog in ESCs. Genome-wide ChIP-sequencing and transcriptome analyses further demonstrate that Mof is an integral component of the ESC core transcriptional network and that Mof primes genes for diverse developmental programs. Mof is also required for Wdr5 recruitment and H3K4 methylation at key regulatory loci, highlighting the complexity and interconnectivity of various chromatin regulators in ESCs.
Collapse
Affiliation(s)
- Xiangzhi Li
- Institute of Cell Biology, School of Medicine, Shandong University, Shandong 250100, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang WP, Tzeng TY, Wang JY, Lee DC, Lin YH, Wu PC, Chen YP, Chiu IM, Chi YH. The EP300, KDM5A, KDM6A and KDM6B chromatin regulators cooperate with KLF4 in the transcriptional activation of POU5F1. PLoS One 2012; 7:e52556. [PMID: 23272250 PMCID: PMC3525641 DOI: 10.1371/journal.pone.0052556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/15/2012] [Indexed: 01/19/2023] Open
Abstract
POU5F1 is essential for maintaining pluripotency in embryonic stem cells (ESCs). It has been reported that the constitutive activation of POU5F1 is sustained by the core transcriptional regulatory circuitry in ESCs; however, the means by which POU5F1 is epigenetically regulated remains enigmatic. In this study a fluorescence-based reporter system was used to monitor the interplay of 5 reprogramming-associated TFs and 17 chromatin regulators in the transcription of POU5F1. We show the existence of a stoichiometric effect for SOX2, POU5F1, NANOG, MYC and KLF4, in regulating POU5F1 transcription. Chromatin regulators EP300, KDM5A, KDM6A and KDM6B cooperate with KLF4 in promoting the transcription of POU5F1. Moreover, inhibiting HDAC activities induced the expression of Pou5f1 in mouse neural stem cells (NSCs) in a spatial- and temporal- dependent manner. Quantitative chromatin immunoprecipitation-PCR (ChIP-qPCR) shows that treatment with valproic acid (VPA) increases the recruitment of Kdm5a and Kdm6a to proximal promoter (PP) and proximal enhancer (PE) of Pou5f1 whereas enrichment of Ep300 and Kdm6b was seen in PP but not PE of Pou5f1 promoter. These findings reveal the interplay between the chromatin regulators and histone modifications in the expression of POU5F1.
Collapse
Affiliation(s)
- Wan-Ping Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Tsai-Yu Tzeng
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jing-Ya Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Don-Ching Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Hsiang Lin
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chun Wu
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Po Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ing-Ming Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ya-Hui Chi
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
40
|
Abstract
Cellular reprogramming involves the artificial dedifferentiation of somatic cells to a pluripotent state. When affected by overexpressing specific transcription factors, the process is highly inefficient, as only 0.1-1% of cells typically undergo the transformation. This low efficiency has been attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors, histone modifications and DNA methylation.
Collapse
|
41
|
Abstract
Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases.
Collapse
|
42
|
Li Q, Ramírez-Bergeron DL, Dunwoodie SL, Yang YC. Cited2 gene controls pluripotency and cardiomyocyte differentiation of murine embryonic stem cells through Oct4 gene. J Biol Chem 2012; 287:29088-100. [PMID: 22761414 DOI: 10.1074/jbc.m112.378034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cited2 (CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail 2) is a transcriptional modulator critical for the development of multiple organs. Although many Cited2-mediated phenotypes and molecular events have been well characterized using in vivo genetic murine models, Cited2-directed cell fate decision in embryonic stem cells (ESCs) remains elusive. In this study, we examined the role of Cited2 in the maintenance of stemness and pluripotency of murine ESCs by a gene-targeting approach. Cited2 knock-out (Cited2(Δ/-), KO) ESCs display defective differentiation. Loss of Cited2 in differentiating ESCs results in delayed silencing of the genes involved in the maintenance of pluripotency and self-renewal of stem cells (Oct4, Klf4, Sox2, and c-Myc) and the disturbance in cardiomyocyte, hematopoietic, and neuronal differentiation. In addition, Cited2 KO ESCs experience a delayed induction of cardiomyocyte differentiation-associated proteins, NFAT3 (along with the reduced expression of NFAT3 target genes, Nkx2.5 and β-MHC), N-cadherin, and smooth muscle actin. CITED2 is recruited to the Oct4 promoter to regulate its expression during early ESC differentiation. This is the first demonstration that Cited2 controls ESC pluripotency and differentiation via direct regulation of Oct4 gene expression.
Collapse
Affiliation(s)
- Qiang Li
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
43
|
Guenther MG. Transcriptional control of embryonic and induced pluripotent stem cells. Epigenomics 2012; 3:323-43. [PMID: 22122341 DOI: 10.2217/epi.11.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Embryonic stem cells (ESCs) have the potential to generate virtually any cell type or tissue type in the body. This remarkable plasticity has yielded great interest in using these cells to understand early development and in treating human disease. In an effort to understand the basis of ESC pluripotency, genetic and genomic studies have revealed transcriptional regulatory circuitry that maintains the pluripotent cell state and poises the genome for downstream activation. Critical components of this circuitry include ESC transcription factors, chromatin regulators, histone modifications, signaling molecules and regulatory RNAs. This article will focus on our current understanding of these components and how they influence ESC and induced pluripotent stem cell states. Emerging themes include regulation of the pluripotent genome by a core set of transcription factors, transcriptional poising of developmental genes by chromatin regulatory complexes and the establishment of multiple layers of repression at key genomic loci.
Collapse
|
44
|
Abstract
Sirtuin 1 acts in various cell processes, deacetylating both chromatin and non-histone proteins, and its role in cancer and aging has long been studied and debated. Here we discuss another aspect of SirT1 biology, its function as a stem cell pluripotency and differentiation regulator. We evaluate the implications of these findings in sirtuin inhibition-based cancer treatment and in the application of sirtuin activation for anti-aging therapy.
Collapse
Affiliation(s)
- Vincenzo Calvanese
- Department of Immunology and Oncology, Centro Nacional Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
45
|
Young RA. Control of the embryonic stem cell state. Cell 2011; 144:940-54. [PMID: 21414485 DOI: 10.1016/j.cell.2011.01.032] [Citation(s) in RCA: 900] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/23/2010] [Accepted: 01/03/2011] [Indexed: 12/25/2022]
Abstract
Embryonic stem cells and induced pluripotent stem cells hold great promise for regenerative medicine. These cells can be propagated in culture in an undifferentiated state but can be induced to differentiate into specialized cell types. Moreover, these cells provide a powerful model system for studies of cellular identity and early mammalian development. Recent studies have provided insights into the transcriptional control of embryonic stem cell state, including the regulatory circuitry underlying pluripotency. These studies have, as a consequence, uncovered fundamental mechanisms that control mammalian gene expression, connect gene expression to chromosome structure, and contribute to human disease.
Collapse
Affiliation(s)
- Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
46
|
Abstract
ES cells (embryonic stem cells) derived from the ICM (inner cell mass) of blastocysts are pluripotent and are capable of giving rise to most cell types. The ES cell identity is mainly maintained by the Oct4 (octamer-binding transcription factor 4) and Nanog transcriptional networks. Recently, a tremendous amount of work has focused on deciphering how ES cell identity is regulated epigenetically. It has been shown that histone methylation/demethylation, histone acetylation/deacetylation, histone variants and chromatin remodelling play crucial roles in ES cell maintenance and differentiation. Moreover, perturbation of those chromatin regulators results in loss of ES cell identity or aberrant differentiation. Therefore, it is important to fully understand the chromatin regulation landscape of ES cells. The knowledge gained will help us to harness the unique characteristics of ES cells for stem cell-related therapy and regenerative medicine. In the present review, we will discuss recent proceedings that provide novel insights into chromatin regulation of ES cell identity.
Collapse
|
47
|
Illi B, Colussi C, Rosati J, Spallotta F, Nanni S, Farsetti A, Capogrossi MC, Gaetano C. NO points to epigenetics in vascular development. Cardiovasc Res 2011; 90:447-56. [PMID: 21345806 DOI: 10.1093/cvr/cvr056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our understanding of epigenetic mechanisms important for embryonic vascular development and cardiovascular differentiation is still in its infancy. Although molecular analyses, including massive genome sequencing and/or in vitro/in vivo targeting of specific gene sets, has led to the identification of multiple factors involved in stemness maintenance or in the early processes of embryonic layers specification, very little is known about the epigenetic commitment to cardiovascular lineages. The object of this review will be to outline the state of the art in this field and trace the perspective therapeutic consequences of studies aimed at elucidating fundamental epigenetic networks. Special attention will be paid to the emerging role of nitric oxide in this field.
Collapse
Affiliation(s)
- Barbara Illi
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
KANG H, ROH S. Extended Exposure to Trichostatin A after Activation Alters the Expression of Genes Important for Early Development in Nuclear Transfer Murine Embryos. J Vet Med Sci 2011; 73:623-31. [DOI: 10.1292/jvms.10-0492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hoin KANG
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS 21, Seoul National University School of Dentistry
| | - Sangho ROH
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS 21, Seoul National University School of Dentistry
| |
Collapse
|
49
|
Abstract
Stem cells of all types are characterized by a stable, heritable state permissive of multiple developmental pathways. The past five years have seen remarkable advances in understanding these heritable states and the ways that they are initiated or terminated. Transcription factors that bind directly to DNA and have sufficiency roles have been most easy to investigate and, perhaps for this reason, are most solidly implicated in pluripotency. In addition, large complexes of ATP-dependent chromatin-remodeling and histone-modification enzymes that have specialized functions have also been implicated by genetic studies in initiating and/or maintaining pluripotency or multipotency. Several of these ATP-dependent remodeling complexes play non-redundant roles, and the esBAF complex facilitates reprogramming of induced pluripotent stem cells. The recent finding that virtually all histone modifications can be rapidly reversed and are often highly dynamic has raised new questions about how histone modifications come to play a role in the steady state of pluripotency. Another surprise from genetic studies has been the frequency with which the global effects of mutations in chromatin regulators can be largely reversed by a single target gene. These genetic studies help define the arena for future mechanistic studies that might be helpful to harness pluripotency for therapeutic goals.
Collapse
Affiliation(s)
- Julie A Lessard
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal H3C 3J7, Quebec, Canada.
| | | |
Collapse
|
50
|
Godmann M, May E, Kimmins S. Epigenetic mechanisms regulate stem cell expressed genes Pou5f1 and Gfra1 in a male germ cell line. PLoS One 2010; 5:e12727. [PMID: 20856864 PMCID: PMC2939054 DOI: 10.1371/journal.pone.0012727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/19/2010] [Indexed: 01/15/2023] Open
Abstract
Male fertility is declining and an underlying cause may be due to environment-epigenetic interactions in developing sperm, yet nothing is known of how the epigenome controls gene expression in sperm development. Histone methylation and acetylation are dynamically regulated in spermatogenesis and are sensitive to the environment. Our objectives were to determine how histone H3 methylation and acetylation contribute to the regulation of key genes in spermatogenesis. A germ cell line, GC-1, was exposed to either the control, or the chromatin modifying drugs tranylcypromine (T), an inhibitor of the histone H3 demethylase KDM1 (lysine specific demethylase 1), or trichostatin (TSA), an inhibitor of histone deacetylases, (HDAC). Quantitative PCR (qPCR) was used to identify genes that were sensitive to treatment. As a control for specificity the Myod1 (myogenic differentiation 1) gene was analyzed. Chromatin immunoprecipitation (ChIP) followed by qPCR was used to measure histone H3 methylation and acetylation at the promoters of target genes and the control, Myod1. Remarkably, the chromatin modifying treatment specifically induced the expression of spermatogonia expressed genes Pou5f1 and Gfra1. ChIP-qPCR revealed that induction of gene expression was associated with a gain in gene activating histone H3 methylation and acetylation in Pou5f1 and Gfra1 promoters, whereas CpG DNA methylation was not affected. Our data implicate a critical role for histone H3 methylation and acetylation in the regulation of genes expressed by spermatogonia – here, predominantly mediated by HDAC-containing protein complexes.
Collapse
Affiliation(s)
- Maren Godmann
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Erin May
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Sarah Kimmins
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|