1
|
Better J, Estiri M, Wetstein M, Pervizaj-Oruqaj L, Malainou C, Ogungbemi-Alt V, Ferrero MR, Langelage M, Kuznetsova I, Vazquez-Armendariz AI, Kimmig L, Pak O, Mansouri S, Savai R, Wilhelm J, Alexopoulos I, Sommer N, Herold S, Matt U. Cell type-specific efferocytosis determines functional plasticity of alveolar macrophages. Sci Immunol 2025; 10:eadl3852. [PMID: 40315300 DOI: 10.1126/sciimmunol.adl3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2024] [Accepted: 04/09/2025] [Indexed: 05/04/2025]
Abstract
Resolution of lung injuries is vital to maintain gas exchange, but there is an increased risk of secondary bacterial infections during this stage. Alveolar macrophages (AMs) are crucial to clear bacteria and control the resolution of inflammation, but environmental cues that switch functional phenotypes of AMs remain incompletely understood. Here, we found that AMs lack the capacity to mount an effective immune response against bacteria during resolution of inflammation. Neutrophil (PMN)-derived myeloperoxidase (MPO) fueled canonical glutaminolysis via the mitochondrial membrane transporter uncoupling protein-2 (UCP2), resulting in decreased mtROS-dependent killing of bacteria and secretion of pro-inflammatory cytokines. MPO-enhanced UCP2 expression inhibited mitochondrial hyperpolarization and boosted efferocytosis irrespective of the presence of bacterial pathogens. Conversely, efferocytosis of other cell types resulted in a distinct anti-inflammatory AM phenotype while maintaining antibacterial phenotypic plasticity. Overall, our findings indicate that the uptake of apoptotic PMNs or MPO switches AMs to prioritize resolution of inflammation over antibacterial responses, a feature that is conserved in murine extrapulmonary macrophages and human AMs.
Collapse
Affiliation(s)
- Julian Better
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Mohammad Estiri
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Michael Wetstein
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Learta Pervizaj-Oruqaj
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Christina Malainou
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Victoria Ogungbemi-Alt
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Maximiliano Ruben Ferrero
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Biomedicine Research Institute of Buenos Aires - CONICET-Partner Institute of the Max Planck Society (IBioBA-MPSP), Buenos Aires, Argentina
| | - Martin Langelage
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Irina Kuznetsova
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Lucas Kimmig
- University of Chicago Medicine, Chicago, IL, USA
| | - Oleg Pak
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Siavash Mansouri
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rajkumar Savai
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jochen Wilhelm
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Natascha Sommer
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Susanne Herold
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ulrich Matt
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
2
|
Li K, Song Y, Fan Y, Zhang H, Chu M, Liu Y. Transcriptome integration analysis revealed that miR-103-3p regulates goat myoblast proliferation by targeting FGF18. BMC Genomics 2025; 26:16. [PMID: 39773020 PMCID: PMC11706129 DOI: 10.1186/s12864-024-11183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Myoblasts serve as the fundamental building blocks of muscle fibers, and there is a positive correlation between the diameter of myofibers during the juvenile phase and the rate of muscle growth, which does not change in adulthood. However, the molecular mechanisms governing myofiber diameter across various developmental stages in goats remain largely unclear. RESULTS In this study, we examined miRNA expression in the longissimus dorsi muscle tissue of goats at two distinct ages: one month, a period characterized by robust muscle growth, and nine months, when muscle development plateaus in adulthood. A total of 408 known miRNAs and 86 novel miRNAs were identified, with 32 miRNAs exhibiting differential expression between the two groups. A functional enrichment analysis of these targeted genes revealed significant enrichment in pathways closely correlated with skeletal muscle growth, development, and senescence. Notably, chi-miR-103-3p was identified among the DE miRNAs and appeared to play an important role in skeletal myoblast proliferation. Bioinformatics analysis, complemented by dual luciferase activity assays revealed that chi-miR-103-3p specifically targets the 3'UTR of FGF18. Subsequent cell transfection experiments demonstrated that chi-miR-103-3p suppresses the expression of FGF18 in goat myoblasts, thereby inhibiting cell proliferation. Moreover, FGF18 was observed to enhance the proliferation of goat myoblasts. CONCLUSIONS Collectively, our data indicated that the elevated expression of chi-miR-103-3p in adult goat myoblasts significantly repressed FGF18 expression, thereby limiting rapid muscle growth. Proliferation and differentiation of myoblasts can affect myofiber number and cell volume expansion. These findings lay the foundation for further elucidation of the molecular mechanisms underlying muscle growth and development across different life stages of goats. Additionally, it could be a potential molecular marker for improving muscle production in goats.
Collapse
Affiliation(s)
- Kunyu Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yize Song
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yekai Fan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Wang K, Zhang L, Deng B, Zhao K, Chen C, Wang W. Mitochondrial uncoupling protein 2: a central player in pancreatic disease pathophysiology. Mol Med 2024; 30:259. [PMID: 39707176 DOI: 10.1186/s10020-024-01027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
Pancreatic diseases pose considerable health challenges due to their complex etiology and limited therapeutic options. Mitochondrial uncoupling protein 2 (UCP2), highly expressed in pancreatic tissue, participates in numerous physiological processes and signaling pathways, indicating its potential relevance in these diseases. Despite this, UCP2's role in acute pancreatitis (AP) remains underexplored, and its functions in chronic pancreatitis (CP) and pancreatic steatosis are largely unknown. Additionally, the mechanisms connecting various pancreatic diseases are intricate and not yet fully elucidated. Given UCP2's diverse functionality, broad expression in pancreatic tissue, and the distinct pathophysiological features of pancreatic diseases, this review offers a comprehensive analysis of current findings on UCP2's involvement in these conditions. We discuss recent insights into UCP2's complex regulatory mechanisms, propose that UCP2 may serve as a central regulatory factor in pancreatic disease progression, and hypothesize that UCP2 dysfunction could significantly contribute to disease pathogenesis. Understanding UCP2's role and mechanisms in pancreatic diseases may pave the way for innovative therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kailiang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
D’Amico G, Carista A, Manna OM, Paladino L, Picone D, Sarullo S, Sausa M, Cappello F, Vitale AM, Caruso Bavisotto C. Brain-Periphery Axes: The Potential Role of Extracellular Vesicles-Delivered miRNAs. BIOLOGY 2024; 13:1056. [PMID: 39765723 PMCID: PMC11673379 DOI: 10.3390/biology13121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Bidirectional communication between the central nervous system (CNS) and peripheral organs and tissue has been widely documented in physiological and pathological conditions. This communication relies on the bilateral transmission of signaling molecules and substances that circulate throughout the body and reach their target site(s) via the blood and other biological fluids (e.g., the cerebrospinal fluid, the lymph). One of the mechanisms by which these molecular messengers are exchanged is through the secretion of extracellular vesicles (EVs). EVs are known to mediate cell-to-cell communication by delivering biological molecules, including nucleic acids, proteins, lipids, and various other bioactive regulators. Moreover, EVs can cross the blood-brain barrier (BBB), enabling direct communication between the periphery and the brain. In particular, the delivery of microRNAs (miRNAs) can modulate the expression profiles of recipient cells, thereby influencing their functions. This review synthesizes current findings about the brain-periphery cross-talk mediated by EVs-delivered miRNAs. Although this mechanism has been definitively shown in a few cases, much evidence indirectly indicates that it could mediate brain-peripherical organs/tissue communication, especially in pathological conditions. Therefore, understanding this process could provide valuable insights for the treatment and management of neurological and systemic diseases.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Adelaide Carista
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Olga Maria Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia 20, 90139 Palermo, Italy
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Domiziana Picone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Silvia Sarullo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia 20, 90139 Palermo, Italy
| | - Martina Sausa
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy;
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia 20, 90139 Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia 20, 90139 Palermo, Italy
| |
Collapse
|
5
|
Caggiano EG, Taniguchi CM. UCP2 and pancreatic cancer: conscious uncoupling for therapeutic effect. Cancer Metastasis Rev 2024; 43:777-794. [PMID: 38194152 PMCID: PMC11156755 DOI: 10.1007/s10555-023-10157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mitochondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Emily G Caggiano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|
7
|
Adil Ali M, Garabuczi É, Tarban N, Sarang Z. All-trans retinoic acid and dexamethasone regulate phagocytosis-related gene expression and enhance dead cell uptake in C2C12 myoblast cells. Sci Rep 2023; 13:21001. [PMID: 38017321 PMCID: PMC10684882 DOI: 10.1038/s41598-023-48492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
Extensive mechanical stress frequently causes micro-traumas in skeletal muscle, followed by a regeneration period. The effective removal of dead myofibers is a prerequisite for proper regeneration, and several cell types, including professional phagocytes, were reported to be active in this process. Myoblasts express several molecules of the phagocytic machinery, such as BAI1, stabilin-2, and TAM (Tyro3, Axl, Mertk) tyrosine kinase receptors, but these molecules were reported to serve primarily cell fusion and survival, and their role in the phagocytosis was not investigated. Therefore, we aimed to investigate the in vitro phagocytic capacity of the C2C12 mouse myoblast cell line. RNA sequencing data were analyzed to determine the level and changes of phagocytosis-related gene expression during the differentiation process of C2C12 cells. To study the phagocytic capacity of myoblasts and the effect of dexamethasone, all-trans retinoic acid, hemin, and TAM kinase inhibitor treatments on phagocytosis, C2C12 cells were fed dead thymocytes, and their phagocytic capacity was determined by flow cytometry. The effect of dexamethasone and all-trans retinoic acid on phagocytosis-related gene expression was determined by quantitative PCR. Both undifferentiated and differentiated cells engulfed dead cells being the undifferentiated cells more effective. In line with this, we observed that the expression of several phagocytosis-related genes was downregulated during the differentiation process. The phagocytosis could be increased by dexamethasone and all-trans retinoic acid and decreased by hemin and TAM kinase inhibitor treatments. Our results indicate that myoblasts not only express phagocytic machinery genes but are capable of efficient dead cell clearance as well, and this is regulated similarly, as reported in professional phagocytes.
Collapse
Affiliation(s)
- Maysaa Adil Ali
- Faculty of Medicine, Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Éva Garabuczi
- Department of Integrative Health Science, Faculty of Health Science, Institute of Health Science, University of Debrecen, Debrecen, Hungary
| | - Nastaran Tarban
- Faculty of Medicine, Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
8
|
Yun Y, Wu R, He X, Qin X, Chen L, Sha L, Yun X, Nishiumi T, Borjigin G. Integrated Transcriptome Analysis of miRNAs and mRNAs in the Skeletal Muscle of Wuranke Sheep. Genes (Basel) 2023; 14:2034. [PMID: 38002977 PMCID: PMC10671749 DOI: 10.3390/genes14112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are regarded as important regulators in skeletal muscle development. To reveal the regulatory roles of miRNAs and their target mRNAs underlying the skeletal muscle development of Wuranke sheep, we investigated the miRNA and mRNA expression profiles in the biceps femoris of these sheep at the fetal (3 months of gestation) and 3- and 15-month-old postnatal stages. Consequently, a total of 1195 miRNAs and 24,959 genes were identified. Furthermore, 474, 461, and 54 differentially expressed miRNAs (DEMs) and 6783, 7407, and 78 differentially expressed genes (DEGs) were detected among three comparative groups. Functional analysis demonstrated that the target mRNAs of the DEMs were enriched in multiple pathways related to muscle development. Moreover, the interactions among several predicted miRNA-mRNA pairs (oar-miR-133-HDAC1, oar-miR-1185-5p-MYH1/HADHA/OXCT1, and PC-5p-3703_578-INSR/ACTG1) that potentially affect skeletal muscle development were verified using dual-luciferase reporter assays. In this study, we identified the miRNA and mRNA differences in the skeletal muscle of Wuranke sheep at different developmental stages and revealed that a series of candidate miRNA-mRNA pairs may act as modulators of muscle development. These results will contribute to future studies on the function of miRNAs and their target mRNAs during skeletal muscle development in Wuranke sheep.
Collapse
Affiliation(s)
- Yueying Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Rihan Wu
- College of Biochemistry and Engineering, Hohhot Vocational College, Hohhot 010051, China;
| | - Xige He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Xia Qin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Lu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Lina Sha
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Tadayuki Nishiumi
- Division of Life and Food Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| |
Collapse
|
9
|
Lauria G, Curcio R, Lunetti P, Tiziani S, Coppola V, Dolce V, Fiermonte G, Ahmed A. Role of Mitochondrial Transporters on Metabolic Rewiring of Pancreatic Adenocarcinoma: A Comprehensive Review. Cancers (Basel) 2023; 15:411. [PMID: 36672360 PMCID: PMC9857038 DOI: 10.3390/cancers15020411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer is among the deadliest cancers worldwide and commonly presents as pancreatic ductal adenocarcinoma (PDAC). Metabolic reprogramming is a hallmark of PDAC. Glucose and glutamine metabolism are extensively rewired in order to fulfil both energetic and synthetic demands of this aggressive tumour and maintain favorable redox homeostasis. The mitochondrial pyruvate carrier (MPC), the glutamine carrier (SLC1A5_Var), the glutamate carrier (GC), the aspartate/glutamate carrier (AGC), and the uncoupling protein 2 (UCP2) have all been shown to influence PDAC cell growth and progression. The expression of MPC is downregulated in PDAC and its overexpression reduces cell growth rate, whereas the other four transporters are usually overexpressed and the loss of one or more of them renders PDAC cells unable to grow and proliferate by altering the levels of crucial metabolites such as aspartate. The aim of this review is to comprehensively evaluate the current experimental evidence about the function of these carriers in PDAC metabolic rewiring. Dissecting the precise role of these transporters in the context of the tumour microenvironment is necessary for targeted drug development.
Collapse
Affiliation(s)
- Graziantonio Lauria
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Paola Lunetti
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
- Department of Oncology, Dell Medical School, LiveSTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| |
Collapse
|
10
|
Kolodziej F, McDonagh B, Burns N, Goljanek-Whysall K. MicroRNAs as the Sentinels of Redox and Hypertrophic Signalling. Int J Mol Sci 2022; 23:ijms232314716. [PMID: 36499053 PMCID: PMC9737617 DOI: 10.3390/ijms232314716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress and inflammation are associated with skeletal muscle function decline with ageing or disease or inadequate exercise and/or poor diet. Paradoxically, reactive oxygen species and inflammatory cytokines are key for mounting the muscular and systemic adaptive responses to endurance and resistance exercise. Both ageing and lifestyle-related metabolic dysfunction are strongly linked to exercise redox and hypertrophic insensitivity. The adaptive inability and consequent exercise intolerance may discourage people from physical training resulting in a vicious cycle of under-exercising, energy surplus, chronic mitochondrial stress, accelerated functional decline and increased susceptibility to serious diseases. Skeletal muscles are malleable and dynamic organs, rewiring their metabolism depending on the metabolic or mechanical stress resulting in a specific phenotype. Endogenous RNA silencing molecules, microRNAs, are regulators of these metabolic/phenotypic shifts in skeletal muscles. Skeletal muscle microRNA profiles at baseline and in response to exercise have been observed to differ between adult and older people, as well as trained vs. sedentary individuals. Likewise, the circulating microRNA blueprint varies based on age and training status. Therefore, microRNAs emerge as key regulators of metabolic health/capacity and hormetic adaptability. In this narrative review, we summarise the literature exploring the links between microRNAs and skeletal muscle, as well as systemic adaptation to exercise. We expand a mathematical model of microRNA burst during adaptation to exercise through supporting data from the literature. We describe a potential link between the microRNA-dependent regulation of redox-signalling sensitivity and the ability to mount a hypertrophic response to exercise or nutritional cues. We propose a hypothetical model of endurance exercise-induced microRNA "memory cloud" responsible for establishing a landscape conducive to aerobic as well as anabolic adaptation. We suggest that regular aerobic exercise, complimented by a healthy diet, in addition to promoting mitochondrial health and hypertrophic/insulin sensitivity, may also suppress the glycolytic phenotype and mTOR signalling through miRNAs which in turn promote systemic metabolic health.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Brian McDonagh
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Nicole Burns
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
- Institute of Life Course and Medical Science, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
11
|
Vann CG, Zhang X, Khodabukus A, Orenduff MC, Chen YH, Corcoran DL, Truskey GA, Bursac N, Kraus VB. Differential microRNA profiles of intramuscular and secreted extracellular vesicles in human tissue-engineered muscle. Front Physiol 2022; 13:937899. [PMID: 36091396 PMCID: PMC9452896 DOI: 10.3389/fphys.2022.937899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise affects the expression of microRNAs (miR/s) and muscle-derived extracellular vesicles (EVs). To evaluate sarcoplasmic and secreted miR expression in human skeletal muscle in response to exercise-mimetic contractile activity, we utilized a three-dimensional tissue-engineered model of human skeletal muscle ("myobundles"). Myobundles were subjected to three culture conditions: no electrical stimulation (CTL), chronic low frequency stimulation (CLFS), or intermittent high frequency stimulation (IHFS) for 7 days. RNA was isolated from myobundles and from extracellular vesicles (EVs) secreted by myobundles into culture media; miR abundance was analyzed by miRNA-sequencing. We used edgeR and a within-sample design to evaluate differential miR expression and Pearson correlation to evaluate correlations between myobundle and EV populations within treatments with statistical significance set at p < 0.05. Numerous miRs were differentially expressed between myobundles and EVs; 116 miRs were differentially expressed within CTL, 3 within CLFS, and 2 within IHFS. Additionally, 25 miRs were significantly correlated (18 in CTL, 5 in CLFS, 2 in IHFS) between myobundles and EVs. Electrical stimulation resulted in differential expression of 8 miRs in myobundles and only 1 miR in EVs. Several KEGG pathways, known to play a role in regulation of skeletal muscle, were enriched, with differentially overrepresented miRs between myobundle and EV populations identified using miEAA. Together, these results demonstrate that in vitro exercise-mimetic contractile activity of human engineered muscle affects both their expression of miRs and number of secreted EVs. These results also identify novel miRs of interest for future studies of the role of exercise in organ-organ interactions in vivo.
Collapse
Affiliation(s)
- Christopher G Vann
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Melissa C. Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Yu-Hsiu Chen
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - David L. Corcoran
- Department of Genetics, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - George A. Truskey
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
12
|
Lv C, Sun Y, Zhang ZY, Aboelela Z, Qiu X, Meng ZX. β-cell dynamics in type 2 diabetes and in dietary and exercise interventions. J Mol Cell Biol 2022; 14:6656373. [PMID: 35929791 PMCID: PMC9710517 DOI: 10.1093/jmcb/mjac046] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023] Open
Abstract
Pancreatic β-cell dysfunction and insulin resistance are two of the major causes of type 2 diabetes (T2D). Recent clinical and experimental studies have suggested that the functional capacity of β-cells, particularly in the first phase of insulin secretion, is a primary contributor to the progression of T2D and its associated complications. Pancreatic β-cells undergo dynamic compensation and decompensation processes during the development of T2D, in which metabolic stresses such as endoplasmic reticulum stress, oxidative stress, and inflammatory signals are key regulators of β-cell dynamics. Dietary and exercise interventions have been shown to be effective approaches for the treatment of obesity and T2D, especially in the early stages. Whilst the targeted tissues and underlying mechanisms of dietary and exercise interventions remain somewhat vague, accumulating evidence has implicated the improvement of β-cell functional capacity. In this review, we summarize recent advances in the understanding of the dynamic adaptations of β-cell function in T2D progression and clarify the effects and mechanisms of dietary and exercise interventions on β-cell dysfunction in T2D. This review provides molecular insights into the therapeutic effects of dietary and exercise interventions on T2D, and more importantly, it paves the way for future research on the related underlying mechanisms for developing precision prevention and treatment of T2D.
Collapse
Affiliation(s)
- Chengan Lv
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuchen Sun
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University, Haining 314400, China
| | - Zhe Yu Zhang
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zeyad Aboelela
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Bachelors of Surgery, Bachelors of Medicine (MBBS), Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | |
Collapse
|
13
|
Kutsche HS, Schreckenberg R, Schlüter KD. Uncoupling Proteins in Striated Muscle Tissue: Known Facts and Open Questions. Antioxid Redox Signal 2022; 37:324-335. [PMID: 35044239 DOI: 10.1089/ars.2021.0258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Uncoupling proteins (UCPs) are a family of proteins that allow proton leakage across the inner mitochondrial membrane. Although UCP1, also known as thermogenin, is well known and important for heat generation in brown adipose tissue, striated muscles express two distinct members of UCP, namely UCP2 and UCP3. Unlike UCP1, the main function of UCP2 and UCP3 does not appear to be heat production. Recent Advances: Interestingly, UCP2 is the main isoform expressed in cardiac tissues, whereas UCP3 is the dominant isoform in skeletal muscles. In the past years, researchers have started to investigate the regulation of UCP2 and UCP3 expression in striated muscles. Furthermore, concepts about the proposed functions of UCP2 and UCP3 in striated muscles are developed but are still a matter of debate. Critical Issues: Potential functions of UCP2 and UCP3 in striated muscles include a role in protection against mitochondria-dependent oxidative stress, as transporter for pyruvate, fatty acids, and protons into and out of the mitochondria, and in metabolic sensing. In this context, the different isoform expression of UCP2 and UCP3 in the skeletal and cardiac muscle may be related to different metabolic requirements of the two organs. Future Directions: The level of expression of UCP2 and UCP3 in striated muscles changes in different disease stages. This suggests that UCPs may become drug targets for therapy in the future. Antioxid. Redox Signal. 37, 324-335.
Collapse
Affiliation(s)
| | - Rolf Schreckenberg
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
14
|
Glutamine-Derived Aspartate Biosynthesis in Cancer Cells: Role of Mitochondrial Transporters and New Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14010245. [PMID: 35008407 PMCID: PMC8750728 DOI: 10.3390/cancers14010245] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In recent years, aspartate has been increasingly acknowledged as a critical player in the metabolism of cancer cells which use this metabolite for nucleotide and protein synthesis and for redox homeostasis. Most intracellular aspartate derives from the mitochondrial catabolism of glutamine. To date at least four mitochondrial transporters have been involved in this metabolic pathway. Their involvement appears to be cancer type-specific and dependent on glutamine availability. Targeting these mitochondrial transporters may represent a new attractive strategy to fight cancer. The aim of this review is to dissect the role of each of these transporters in relation to the type of cancer and the availability of nutrients in the tumoral microenvironment. Abstract Aspartate has a central role in cancer cell metabolism. Aspartate cytosolic availability is crucial for protein and nucleotide biosynthesis as well as for redox homeostasis. Since tumor cells display poor aspartate uptake from the external environment, most of the cellular pool of aspartate derives from mitochondrial catabolism of glutamine. At least four transporters are involved in this metabolic pathway: the glutamine (SLC1A5_var), the aspartate/glutamate (AGC), the aspartate/phosphate (uncoupling protein 2, UCP2), and the glutamate (GC) carriers, the last three belonging to the mitochondrial carrier family (MCF). The loss of one of these transporters causes a paucity of cytosolic aspartate and an arrest of cell proliferation in many different cancer types. The aim of this review is to clarify why different cancers have varying dependencies on metabolite transporters to support cytosolic glutamine-derived aspartate availability. Dissecting the precise metabolic routes that glutamine undergoes in specific tumor types is of upmost importance as it promises to unveil the best metabolic target for therapeutic intervention.
Collapse
|
15
|
Putative role of uncoupling proteins in mitochondria-nucleus communications and DNA damage response. J Biosci 2021. [DOI: 10.1007/s12038-021-00224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Mitochondrial Uncoupling Proteins (UCPs) as Key Modulators of ROS Homeostasis: A Crosstalk between Diabesity and Male Infertility? Antioxidants (Basel) 2021; 10:antiox10111746. [PMID: 34829617 PMCID: PMC8614977 DOI: 10.3390/antiox10111746] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Uncoupling proteins (UCPs) are transmembrane proteins members of the mitochondrial anion transporter family present in the mitochondrial inner membrane. Currently, six homologs have been identified (UCP1-6) in mammals, with ubiquitous tissue distribution and multiple physiological functions. UCPs are regulators of key events for cellular bioenergetic metabolism, such as membrane potential, metabolic efficiency, and energy dissipation also functioning as pivotal modulators of ROS production and general cellular redox state. UCPs can act as proton channels, leading to proton re-entry the mitochondrial matrix from the intermembrane space and thus collapsing the proton gradient and decreasing the membrane potential. Each homolog exhibits its specific functions, from thermogenesis to regulation of ROS production. The expression and function of UCPs are intimately linked to diabesity, with their dysregulation/dysfunction not only associated to diabesity onset, but also by exacerbating oxidative stress-related damage. Male infertility is one of the most overlooked diabesity-related comorbidities, where high oxidative stress takes a major role. In this review, we discuss in detail the expression and function of the different UCP homologs. In addition, the role of UCPs as key regulators of ROS production and redox homeostasis, as well as their influence on the pathophysiology of diabesity and potential role on diabesity-induced male infertility is debated.
Collapse
|
17
|
Romero A, Eckel J. Organ Crosstalk and the Modulation of Insulin Signaling. Cells 2021; 10:cells10082082. [PMID: 34440850 PMCID: PMC8394808 DOI: 10.3390/cells10082082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
A highly complex network of organ communication plays a key role in regulating metabolic homeostasis, specifically due to the modulation of the insulin signaling machinery. As a paradigm, the role of adipose tissue in organ crosstalk has been extensively investigated, but tissues such as muscles and the liver are equally important players in this scenario. Perturbation of organ crosstalk is a hallmark of insulin resistance, emphasizing the importance of crosstalk molecules in the modulation of insulin signaling, potentially leading to defects in insulin action. Classically secreted proteins are major crosstalk molecules and are able to affect insulin signaling in both directions. In this review, we aim to focus on some crosstalk mediators with an impact on the early steps of insulin signaling. In addition, we also summarize the current knowledge on the role of extracellular vesicles in relation to insulin signaling, a more recently discovered additional component of organ crosstalk. Finally, an attempt will be made to identify inter-connections between these two pathways of organ crosstalk and the potential impact on the insulin signaling network.
Collapse
|
18
|
da Paixão AO, Bolin AP, Silvestre JG, Rodrigues AC. Palmitic Acid Impairs Myogenesis and Alters Temporal Expression of miR-133a and miR-206 in C2C12 Myoblasts. Int J Mol Sci 2021; 22:ijms22052748. [PMID: 33803124 PMCID: PMC7963199 DOI: 10.3390/ijms22052748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
Palmitic acid (PA), a saturated fatty acid enriched in high-fat diet, has been implicated in the development of sarcopenic obesity. Herein, we chose two non-cytotoxic concentrations to better understand how excess PA could impact myotube formation or diameter without inducing cell death. Forty-eight hours of 100 µM PA induced a reduction of myotube diameter and increased the number of type I fibers, which was associated with increased miR-206 expression. Next, C2C12 myotube growth in the presence of PA was evaluated. Compared to control cells, 150 µM PA reduces myoblast proliferation and the expression of MyoD and miR-206 and miR-133a expression, leading to a reduced number and diameter of myotubes. PA (100 µM), despite not affecting proliferation, impairs myotube formation by reducing the expression of Myf5 and miR-206 and decreasing protein synthesis. Interestingly, 100 and 150 µM PA-treated myotubes had a higher number of type II fibers than control cells. In conclusion, PA affects negatively myotube diameter, fusion, and metabolism, which may be related to myomiRs. By providing new insights into the mechanisms by which PA affects negatively skeletal muscle, our data may help in the discovery of new targets to treat sarcopenic obesity.
Collapse
Affiliation(s)
- Ailma O. da Paixão
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (A.O.d.P.); (A.P.B.)
| | - Anaysa Paola Bolin
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (A.O.d.P.); (A.P.B.)
| | - João G. Silvestre
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Alice Cristina Rodrigues
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (A.O.d.P.); (A.P.B.)
- Correspondence: ; Tel.: +55-11-3091-7406
| |
Collapse
|
19
|
Weskamp K, Olwin BB, Parker R. Post-Transcriptional Regulation in Skeletal Muscle Development, Repair, and Disease. Trends Mol Med 2020; 27:469-481. [PMID: 33384234 DOI: 10.1016/j.molmed.2020.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
Skeletal muscle formation is a complex process that requires tight spatiotemporal control of key myogenic factors. Emerging evidence suggests that RNA processing is crucial for the regulation of these factors, and that multiple post-transcriptional regulatory pathways work dependently and independently of one another to enable precise control of transcripts throughout muscle development and repair. Moreover, disruption of these pathways is implicated in neuromuscular disease, and the recent development of RNA-mediated therapies shows enormous promise in the treatment of these disorders. We discuss the overlapping post-transcriptional regulatory pathways that mediate muscle development, how these pathways are disrupted in neuromuscular disorders, and advances in RNA-mediated therapies that present a novel approach to the treatment of these diseases.
Collapse
Affiliation(s)
- Kaitlin Weskamp
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| | - Bradley B Olwin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
20
|
Marceca GP, Nigita G, Calore F, Croce CM. MicroRNAs in Skeletal Muscle and Hints on Their Potential Role in Muscle Wasting During Cancer Cachexia. Front Oncol 2020; 10:607196. [PMID: 33330108 PMCID: PMC7732629 DOI: 10.3389/fonc.2020.607196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated cachexia is a heterogeneous, multifactorial syndrome characterized by systemic inflammation, unintentional weight loss, and profound alteration in body composition. The main feature of cancer cachexia is represented by the loss of skeletal muscle tissue, which may or may not be accompanied by significant adipose tissue wasting. Such phenotypic alteration occurs as the result of concomitant increased myofibril breakdown and reduced muscle protein synthesis, actively contributing to fatigue, worsening of quality of life, and refractoriness to chemotherapy. According to the classical view, this condition is primarily triggered by interactions between specific tumor-induced pro-inflammatory cytokines and their cognate receptors expressed on the myocyte membrane. This causes a shift in gene expression of muscle cells, eventually leading to a pronounced catabolic condition and cell death. More recent studies, however, have shown the involvement of regulatory non-coding RNAs in the outbreak of cancer cachexia. In particular, the role exerted by microRNAs is being widely addressed, and several mechanistic studies are in progress. In this review, we discuss the most recent findings concerning the role of microRNAs in triggering or exacerbating muscle wasting in cancer cachexia, while mentioning about possible roles played by long non-coding RNAs and ADAR-mediated miRNA modifications.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Singh GB, Cowan DB, Wang DZ. Tiny Regulators of Massive Tissue: MicroRNAs in Skeletal Muscle Development, Myopathies, and Cancer Cachexia. Front Oncol 2020; 10:598964. [PMID: 33330096 PMCID: PMC7719840 DOI: 10.3389/fonc.2020.598964] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscles are the largest tissues in our body and the physiological function of muscle is essential to every aspect of life. The regulation of development, homeostasis, and metabolism is critical for the proper functioning of skeletal muscle. Consequently, understanding the processes involved in the regulation of myogenesis is of great interest. Non-coding RNAs especially microRNAs (miRNAs) are important regulators of gene expression and function. MiRNAs are small (~22 nucleotides long) noncoding RNAs known to negatively regulate target gene expression post-transcriptionally and are abundantly expressed in skeletal muscle. Gain- and loss-of function studies have revealed important roles of this class of small molecules in muscle biology and disease. In this review, we summarize the latest research that explores the role of miRNAs in skeletal muscle development, gene expression, and function as well as in muscle disorders like sarcopenia and Duchenne muscular dystrophy (DMD). Continuing with the theme of the current review series, we also briefly discuss the role of miRNAs in cancer cachexia.
Collapse
Affiliation(s)
- Gurinder Bir Singh
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Kim DH, Sadakane H, Nishikiori Y, Matsumura M, Ikeda M, Diao Z, Jha R, Murakami M, Matsui T, Funaba M. Factors affecting expression and transcription of uncoupling protein 2 gene. J Vet Med Sci 2020; 82:1734-1741. [PMID: 33162463 PMCID: PMC7804038 DOI: 10.1292/jvms.20-0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies suggest a negative relationship between hepatic oxidative stress and productivity in beef cattle. Uncoupling protein 2 (UCP2) is involved in the disappearance of reactive oxygen species, suggesting the defensive role of UCP2 against oxidative stress. The present study examined the relationship between oxidative stress and expression levels of UCP2/Ucp2 in cultured human and mouse liver-derived cells. We also explored factors regulating bovine Ucp2 transcription. As oxidative stress inducers, hydrogen peroxide, ethanol, and cumene hydroperoxide (CmHP) were used. Expression levels of hemoxygenase 1 (HMOX1), a representative gene induced by oxidative stress, were not affected by any oxidative stress inducers in HepG2 human liver-derived cells. The levels of UCP2 mRNA were also unaffected by the oxidative stress inducers. Treatment with CmHP increased expression of Hmox1 in Hepa1-6 mouse liver-derived cells, but Ucp2 expression was not changed. Stimulus screening for regulator of transcription (SSRT) revealed that expression of p50 or p65, transcription factors conferring response to oxidative stress, did not stimulate bovine Ucp2 transcrition in HepG2 cells. SSRT also showed 11 molecules that induced Ucp2 transcription more than 4-fold; among them, endoplasmic reticulum (ER) stress-related transcription factors such as XBP1, c-JUN, JUNB, and C/EBPβ were identified. However, treatment with ER stress inducers did not increase Ucp2 expression in HepG2 and Hepa1-6 cells. The present results suggest that 1) neither oxidative stress nor ER stress induces Ucp2 expression in liver-derived cells, and 2) Ucp2 transcription is stimulated by several transcription factors.
Collapse
Affiliation(s)
- Doo Hyun Kim
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.,FARMSCO, Gyeonggi 17599, Republic of Korea
| | - Hiroyuki Sadakane
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuka Nishikiori
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Manami Matsumura
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Mayuko Ikeda
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Zhicheng Diao
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Rajesh Jha
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.,Department of Human Nutrition Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, HI 96822, USA
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Kanagawa 252-5201, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
23
|
Oliveira MS, Rheinheimer J, Moehlecke M, Rodrigues M, Assmann TS, Leitão CB, Trindade MRM, Crispim D, de Souza BM. UCP2, IL18, and miR-133a-3p are dysregulated in subcutaneous adipose tissue of patients with obesity. Mol Cell Endocrinol 2020; 509:110805. [PMID: 32251712 DOI: 10.1016/j.mce.2020.110805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 01/12/2023]
Abstract
The aim of this study was to compare the expression of UCP2, NLRP3, IL1B, IL18, and miR-133a-3p in subcutaneous adipose tissue (SAT) of 61 patients divided according to BMI: Group 1 (n = 8; BMI<25.0 kg/m2), Group 2 (n = 24; BMI 30.0-39.9 kg/m2), and Group 3 (n = 29; BMI≥40.0 kg/m2). SAT biopsies were obtained from individuals who underwent bariatric surgery or elective abdominal surgery. Gene expressions were quantified using qPCR. Bioinformatics analyses were employed to investigate target genes and pathways related to miR-133a-3p. UCP2 and miR-133a-3p expressions were decreased in SAT of Groups 2 and 3 while IL18 was increased compared to Group 1. NLRP3 and IL1B expressions did not differ between groups; however, NLRP3 was positively correlated with waist circumference and excess weight. Bioinformatics analysis demonstrated that UCP2 and NLRP3 are targets of miR-133a-3p. In conclusion, UCP2 and miR-133a-3p expressions are downregulated in patients with obesity, while IL18 is upregulated. NRLP3 is correlated with waist circumference and weight excess.
Collapse
Affiliation(s)
- Mayara S Oliveira
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Jakeline Rheinheimer
- Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Milene Moehlecke
- Department of Endocrinology, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | - Michelle Rodrigues
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Taís S Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Cristiane B Leitão
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Manoel R M Trindade
- Digestive Surgery Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Bianca M de Souza
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil.
| |
Collapse
|
24
|
Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet 2020; 11:95. [PMID: 32180794 PMCID: PMC7059738 DOI: 10.3389/fgene.2020.00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
The regulation of mitochondrial proteome is unique in that its components have origins in both mitochondria and nucleus. With the development of OMICS technologies, emerging evidence indicates an interaction between mitochondria and nucleus based not only on the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large parts of the non‐coding genome are transcribed into various ncRNA species. Although their characterization has been a hot topic in recent years, the function of the majority remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore, reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly regulating mitochondrial gene expression suggest the import of RNA to mitochondria, but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been also shown to hide small open reading frames (sORFs) encoding for small functional peptides termed micropeptides, with several examples reported with a role in mitochondria. In this review, we provide a literature overview on ncRNAs and micropeptides found to be associated with mitochondrial biology in the context of both health and disease. Although reported, small study overlap and rare replications by other groups make the presence, transport, and role of ncRNA in mitochondria an attractive, but still challenging subject. Finally, we touch the topic of their potential as prognosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
25
|
Altered miRNA and mRNA Expression in Sika Deer Skeletal Muscle with Age. Genes (Basel) 2020; 11:genes11020172. [PMID: 32041309 PMCID: PMC7073773 DOI: 10.3390/genes11020172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Studies of the gene and miRNA expression profiles associated with the postnatal late growth, development, and aging of skeletal muscle are lacking in sika deer. To understand the molecular mechanisms of the growth and development of sika deer skeletal muscle, we used de novo RNA sequencing (RNA-seq) and microRNA sequencing (miRNA-seq) analyses to determine the differentially expressed (DE) unigenes and miRNAs from skeletal muscle tissues at 1, 3, 5, and 10 years in sika deer. A total of 51,716 unigenes, 171 known miRNAs, and 60 novel miRNAs were identified based on four mRNA and small RNA libraries. A total of 2,044 unigenes and 11 miRNAs were differentially expressed between adolescence and juvenile sika deer, 1,946 unigenes and 4 miRNAs were differentially expressed between adult and adolescent sika deer, and 2,209 unigenes and 1 miRNAs were differentially expressed between aged and adult sika deer. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that DE unigenes and miRNA were mainly related to energy and substance metabolism, processes that are closely associate with the growth, development, and aging of skeletal muscle. We also constructed mRNA–mRNA and miRNA–mRNA interaction networks related to the growth, development, and aging of skeletal muscle. The results show that mRNA (Myh1, Myh2, Myh7, ACTN3, etc.) and miRNAs (miR-133a, miR-133c, miR-192, miR-151-3p, etc.) may play important roles in muscle growth and development, and mRNA (WWP1, DEK, UCP3, FUS, etc.) and miRNAs (miR-17-5p, miR-378b, miR-199a-5p, miR-7, etc.) may have key roles in muscle aging. In this study, we determined the dynamic miRNA and unigenes transcriptome in muscle tissue for the first time in sika deer. The age-dependent miRNAs and unigenes identified will offer insights into the molecular mechanism underlying muscle development, growth, and maintenance and will also provide valuable information for sika deer genetic breeding.
Collapse
|
26
|
Zamani P, Oskuee RK, Atkin SL, Navashenaq JG, Sahebkar A. MicroRNAs as important regulators of the NLRP3 inflammasome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 150:50-61. [PMID: 31100298 DOI: 10.1016/j.pbiomolbio.2019.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
Inflammasomes are a group of cytosolic multi-protein signaling complexes that regulate maturation of the interleukin (IL)-1 family cytokines IL-1β and IL-18 through activation of inflammatory caspase-1. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is the best characterized and consists of several key components that are assembled and activated in response to different endogenous and exogenous signals. The NLRP3 inflammasome is common to a number of human inflammatory diseases and its targeting may lead to novel anti-inflammatory therapy. NLRP3 inflammasome activation is tightly regulated by different mechanisms especially post-transcriptional modulation via microRNAs (miRNA). MicroRNAs are small endogenous noncoding RNAs that are 21-23 nucleotides in length and control the expression of various genes through binding to the 3'-untranslated regions of the respective mRNA and subsequent post-transcriptional regulation. MicroRNAs have recently been recognized as crucial regulators of the NLRP3 inflammasome. In this review, we summarize the current understanding of the role of miRNAs in the regulation of NLRP3 inflammasome complexes and their impact on the pathogenesis of inflammatory disease processes.
Collapse
Affiliation(s)
- Parvin Zamani
- Nanotechnology Research Center, Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Xu M, Chen X, Chen D, Yu B, Li M, He J, Huang Z. Regulation of skeletal myogenesis by microRNAs. J Cell Physiol 2019; 235:87-104. [DOI: 10.1002/jcp.28986] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Meng Xu
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Daiwen Chen
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Bing Yu
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology Sichuan Agricultural University Chengdu Sichuan China
| | - Jun He
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease‐Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition Sichuan Agricultural University Chengdu Sichuan China
| |
Collapse
|
28
|
Sun L, Lu S, Bai M, Xiang L, Li J, Jia C, Jiang H. Integrative microRNA-mRNA Analysis of Muscle Tissues in Qianhua Mutton Merino and Small Tail Han Sheep Reveals Key Roles for oar-miR-655-3p and oar-miR-381-5p. DNA Cell Biol 2019; 38:423-435. [PMID: 30864845 DOI: 10.1089/dna.2018.4408] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Qianhua Mutton Merino (QHMM) is a new variety of sheep (Ovis aries) with improved meat performance compared with the traditional Small Tail Han (STH) sheep variety. We recently reported the transcriptome profiling of longissimus muscle tissues between QHMM and STH sheep. In the present study, we aimed to evaluate key micro (mi)RNA-mRNA networks associated with sheep muscle growth and development. We used miRNA sequencing to obtain longissimus muscle miRNA profiles from QHMM and STH sheep. We identified a total of 153 known sheep miRNAs, of which 4 were differentially expressed (DE) between the 2 sheep varieties. We combined these results with mRNA library data to build an miRNA-mRNA network, including 26 target genes of the 4 DE miRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that 26 target genes were significantly enriched in 86 biological processes, including muscle organogenesis, myoblast migration, cell proliferation, and adipose tissue development, and in 9 metabolic pathways, including carbohydrate, nucleotide, and amino acid metabolic pathways. oar-miR-655-3p and its target gene ACSM3 and oar-miR-381-5p and its target gene ABAT were selected for subsequent analysis based on GO and KEGG analyses. The binding sites of oar-miR-655-3p with ACSM3 and oar-miR-381-5p with ABAT were validated by a dual-luciferase reporter gene detection system. This represents the first integrative analysis of miRNA-mRNA networks in QHMM and STH muscles and suggests that DE miRNAs, especially oar-miR-655-3p and oar-miR-381-5p, play crucial roles in muscle growth and development.
Collapse
Affiliation(s)
- Limin Sun
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Songyan Lu
- 2 Jilin Animal Disease Control Center, Changchun, China
| | - Man Bai
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Lujie Xiang
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jiarong Li
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chao Jia
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huaizhi Jiang
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
29
|
Wang R, Li J, Yin C, Zhao D, Yin L. Identification of differentially expressed genes and typical fusion genes associated with three subtypes of breast cancer. Breast Cancer 2018; 26:305-316. [PMID: 30446971 DOI: 10.1007/s12282-018-0924-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND This study aimed to identify the differentially expressed genes (DEGs) and the typical fusion genes in different types of breast cancers using RNA-seq. METHODS GSE52643 was downloaded from Gene Expression Omnibus, which included 1 normal sample (MCF10A) and 7 breast cancer samples (BT-474, BT-20, MCF7, MDA-MB-231, MDA-MB-468, T47D, and ZR-75-1). The transcript abundance and the DEGs screening were performed by Cufflinks. The functional and pathway enrichment was analyzed by Gostats. SnowShoes-FTD was applied to identify the fusion genes. RESULTS We screened 430, 445, 397, 417, 369, 557, and 375 DEGs in BT-474, BT-20, MCF7, DA-MB-231, MDA-MB-468, T47D, and ZR-75-1, respectively, compared with MCF10A. DEGs in each comparison group (such as CD40 and CDH1) were significantly enriched in the functions of cell adhesion and extracellular matrix organization and pathways of CAMs and ECM receptor interaction. UCP2 was a common DEG in the 7 comparison groups. SFRP1 and MMP7 were significantly enriched in wnt/-catenin signaling pathway in MDA-MB-231. FAS was significantly enriched in autoimmune thyroid disease pathway in BT-474. Besides, we screened 96 fusion genes, such as ESR1-C6orf97 in ZR-75-1, COBRA1-C9orf167 in BT-20, and VAPB-IKZF3 and ACACA-STAC2 in BT-474. CONCLUSIONS The DEGs such as SFRP1, MMP7, CDH1, FAS, and UCP2 might be the potential biomarkers in breast cancer. Furthermore, some pivotal fusion genes like ESR1-C6orf97 with COBRA1-C9orf167 and VAPB-IKZF3 with ACACA-STAC2 were found in Luminal A and Luminal B breast cancer, respectively.
Collapse
Affiliation(s)
- Rong Wang
- National Research Institute for Health and Family Planning, Beijing, 100081, China
| | - Jinbin Li
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Chunyu Yin
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Di Zhao
- Dermatological of Department, The 309 Hospital of Chinese PLA, Beijing, 100091, China
| | - Ling Yin
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
30
|
Yan L, Ma J, Wang Y, Zan J, Wang Z, Zhu Y, Zhu Y, Ling L, Cao L, Liu X, Li S, Xu L, Qi Z, Nie L, Zhang Y. miR-21-5p induces cell proliferation by targeting TGFBI in non-small cell lung cancer cells. Exp Ther Med 2018; 16:4655-4663. [PMID: 30542417 PMCID: PMC6257667 DOI: 10.3892/etm.2018.6752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
The mortality rate of non-small cell lung cancer (NSCLC) remains high worldwide. miR-21-5p plays an important part in many cancer types, including NSCLC. However, the effect of miR-21-5p in NSCLC tumorigenesis remains poorly understood. The present study investigated whether miR-21-5p promoted NSCLC cell proliferation in vitro. In order to study the molecular mechanism by which miR-21-5p contributes to NSCLC progression, three bioinformatics algorithms were used to predict the genes which miR-21-5p targeted. TGFBI was identfieid as a putative direct target in NSCLC cells via the luciferase reporter assay. Furthermore, miR-21-5p downregulated TGFBI protein expression by a post-transcriptional mechanism via western blotting and a reverse transcription-quantitative polymerase chain reaction analysis. Finally, TGFBI exhibited opposing effects to those of miR-21-5p on NSCLC cells, suggesting that miR-21-5p may promote cell proliferation by negative regulation of TGFBI. These results suggest miR-21-5p promote the proliferation of NSCLC cells via inhibiting TGFBI expression.
Collapse
Affiliation(s)
- Liang Yan
- Department of Biopharmaceuticals, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241002, P.R. China.,Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Jinzhu Ma
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yi Wang
- Department of Clinical Teaching, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Jiawei Zan
- Department of Biopharmaceuticals, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241002, P.R. China
| | - Zhen Wang
- Department of Chemistry, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yu Zhu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yiping Zhu
- Department of Chemistry, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Liefeng Ling
- Department of Biopharmaceuticals, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241002, P.R. China
| | - Long Cao
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Xin Liu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Shu Li
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Lei Xu
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Zhilin Qi
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Liuwang Nie
- Department of Biopharmaceuticals, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241002, P.R. China
| | - Yao Zhang
- Department of Biochemistry, Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
31
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|
32
|
Yan L, Yu M, Gao G, Liang H, Zhou X, Zhu Z, Zhang C, Wang Y, Chen X. MiR‐125a‐5p functions as a tumour suppressor in breast cancer by downregulating BAP1. J Cell Biochem 2018; 119:8773-8783. [DOI: 10.1002/jcb.27124] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/07/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Liang Yan
- State Key Laboratory of Pharmaceutical Biotechnology NJU Advanced Institute of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University Nanjing China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College Wuhu China
| | - Meng‐Chao Yu
- State Key Laboratory of Pharmaceutical Biotechnology NJU Advanced Institute of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University Nanjing China
| | - Guang‐Lei Gao
- Galactophore Department Linyi City Yishui Center Hospital Yishui China
| | - Hong‐Wei Liang
- State Key Laboratory of Pharmaceutical Biotechnology NJU Advanced Institute of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University Nanjing China
| | - Xin‐Yan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology NJU Advanced Institute of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University Nanjing China
| | - Zhou‐Ting Zhu
- Department of General Surgery The Affiliated Drum Tower Hospital of Medical School of Nanjing University and Nanjing Multi‐center Biobank Nanjing China
| | - Chen‐Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology NJU Advanced Institute of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University Nanjing China
| | - Ya‐Bing Wang
- The First Affiliated Hospital of Wannan Medical College Wuhu China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology NJU Advanced Institute of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University Nanjing China
| |
Collapse
|
33
|
Tian XY, Ma S, Tse G, Wong WT, Huang Y. Uncoupling Protein 2 in Cardiovascular Health and Disease. Front Physiol 2018; 9:1060. [PMID: 30116205 PMCID: PMC6082951 DOI: 10.3389/fphys.2018.01060] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022] Open
Abstract
Uncoupling protein 2 (UCP2) belongs to the family of mitochondrial anion carrier proteins. It uncouples oxygen consumption from ATP synthesis. UCP2 is ubiquitously expressed in most cell types to reduce oxidative stress. It is tightly regulated at the transcriptional, translational, and post-translational levels. UCP2 in the cardiovascular system is being increasingly recognized as an important molecule to defend against various stress signals such as oxidative stress in the pathology of vascular dysfunction, atherosclerosis, hypertension, and cardiac injuries. UCP2 protects against cellular dysfunction through reducing mitochondrial oxidative stress and modulation of mitochondrial function. In view of the different functions of UCP2 in various cell types that contribute to whole body homeostasis, cell type-specific modification of UCP2 expression may offer a better approach to help understanding how UCP2 governs mitochondrial function, reactive oxygen species production and transmembrane proton leak and how dysfunction of UCP2 participates in the development of cardiovascular diseases. This review article provided an update on the physiological regulation of UCP2 in the cardiovascular system, and also discussed the involvement of UCP2 deficiency and associated oxidative stress in the pathogenesis of several common cardiovascular diseases. Drugs targeting UCP2 expression and activity might serve another effective strategy to ameliorate cardiovascular dysfunction. However, more detailed mechanistic study will be needed to dissect the role of UCP2, the regulation of UCP2 expression, and the cellular responses to the changes of UCP2 expression in normal and stressed situations at different stages of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao Yu Tian
- School of Biomedical Sciences, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Gary Tse
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- School of Biomedical Sciences, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Differential expression of microRNAs and other small RNAs in muscle tissue of patients with ALS and healthy age-matched controls. Sci Rep 2018; 8:5609. [PMID: 29618798 PMCID: PMC5884852 DOI: 10.1038/s41598-018-23139-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/05/2018] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis is a late-onset disorder primarily affecting motor neurons and leading to progressive and lethal skeletal muscle atrophy. Small RNAs, including microRNAs (miRNAs), can serve as important regulators of gene expression and can act both globally and in a tissue-/cell-type-specific manner. In muscle, miRNAs called myomiRs govern important processes and are deregulated in various disorders. Several myomiRs have shown promise for therapeutic use in cellular and animal models of ALS; however, the exact miRNA species differentially expressed in muscle tissue of ALS patients remain unknown. Following small RNA-Seq, we compared the expression of small RNAs in muscle tissue of ALS patients and healthy age-matched controls. The identified snoRNAs, mtRNAs and other small RNAs provide possible molecular links between insulin signaling and ALS. Furthermore, the identified miRNAs are predicted to target proteins that are involved in both normal processes and various muscle disorders and indicate muscle tissue is undergoing active reinnervation/compensatory attempts thus providing targets for further research and therapy development in ALS.
Collapse
|
35
|
Yan L, Ma J, Zhu Y, Zan J, Wang Z, Ling L, Li Q, Lv J, Qi S, Cao Y, Liu Y, Cao L, Zhang Y, Qi Z, Nie L. miR‐24‐3p promotes cell migration and proliferation in lung cancer by targeting SOX7. J Cell Biochem 2018; 119:3989-3998. [DOI: 10.1002/jcb.26553] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Liang Yan
- School of Life Sciences, The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in AnhuiAnhui Normal UniversityWuhuAnhuiChina
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Jinzhu Ma
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Yiping Zhu
- The First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Jiawei Zan
- School of Life Sciences, The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in AnhuiAnhui Normal UniversityWuhuAnhuiChina
| | - Zhen Wang
- The First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Liefeng Ling
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Qiang Li
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Jun Lv
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Shimei Qi
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Yingya Cao
- The First Affiliated Hospital of Wannan Medical CollegeWuhuAnhuiChina
| | - Ying Liu
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Long Cao
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Yao Zhang
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Zhilin Qi
- Provincial Key Laboratory of Biological Macro‐molecules ResearchWannan Medical CollegeWuhuAnhuiChina
| | - Liuwang Nie
- School of Life Sciences, The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in AnhuiAnhui Normal UniversityWuhuAnhuiChina
| |
Collapse
|
36
|
Ni S, Yan Y, Cui H, Yu Y, Huang Y, Qin Q. Fish miR-146a promotes Singapore grouper iridovirus infection by regulating cell apoptosis and NF-κB activation. J Gen Virol 2017; 98:1489-1499. [DOI: 10.1099/jgv.0.000811] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yang Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huachun Cui
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China
| |
Collapse
|
37
|
Geiger J, Dalgaard LT. Interplay of mitochondrial metabolism and microRNAs. Cell Mol Life Sci 2017; 74:631-646. [PMID: 27563705 PMCID: PMC11107739 DOI: 10.1007/s00018-016-2342-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria are important organelles in cellular metabolism. Several crucial metabolic pathways such as the energy producing electron transport chain or the tricarboxylic acid cycle are hosted inside the mitochondria. The proper function of mitochondria depends on the import of proteins, which are encoded in the nucleus and synthesized in the cytosol. Micro-ribonucleic acids (miRNAs) are short non-coding ribonucleic acid (RNA) molecules with the ability to prevent messenger RNA (mRNA)-translation or to induce the degradation of mRNA-transcripts. Although miRNAs are mainly located in the cytosol or the nucleus, a subset of ~150 different miRNAs, called mitomiRs, has also been found localized to mitochondrial fractions of cells and tissues together with the subunits of the RNA-induced silencing complex (RISC); the protein complex through which miRNAs normally act to prevent translation of their mRNA-targets. The focus of this review is on miRNAs and mitomiRs with influence on mitochondrial metabolism and their possible pathophysiological impact.
Collapse
Affiliation(s)
- Julian Geiger
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark.
| |
Collapse
|
38
|
Jin X, Chen D, Zheng RH, Zhang H, Chen YP, Xiang Z. miRNA-133a-UCP2 pathway regulates inflammatory bowel disease progress by influencing inflammation, oxidative stress and energy metabolism. World J Gastroenterol 2017; 23:76-86. [PMID: 28104982 PMCID: PMC5221288 DOI: 10.3748/wjg.v23.i1.76] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/09/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of the miR-133a-UCP2 pathway in the pathogenesis of inflammatory bowel disease (IBD) and to explore the potential downstream mechanisms with respect to inflammation, oxidative stress and energy metabolism. METHODS C57BL/6 mice were fed dextran sulfate sodium (DSS) liquid for 7 consecutive days, followed by the administration of saline to the DSS group, UCP2 siRNA to the UCP2 group and a miR-133a mimic to the miR-133a group on days 8 and 11. Body weight, stool consistency and rectal bleeding were recorded daily, and these composed the disease activity index (DAI) score for the assessment of disease severity. After cervical dislocation was performed on day 14, the length of the colon in each mouse was measured, and colonic tissue was collected for further study, which included the following: haematoxylin and eosin staining, UCP2 and miR-133a detection by immunohistochemical staining, western blot and quantitative real-time PCR, measurement of apoptosis by TUNEL assay, and the assessment of inflammation (TNF-α, IL-1β, IL-6 and MCP1), oxidative stress (H2O2 and MDA) and metabolic parameters (ATP) by ELISA and colorimetric methods. RESULTS An animal model of IBD was successfully established, as shown by an increased DAI score, shortened colon length and specific pathologic changes, along with significantly increased UCP2 and decreased miR-133a levels. Compared with the DSS group, the severity of IBD was alleviated in the UCP2 and the miR-133a groups after successful UCP2 knockdown and miR-133a overexpression. The extent of apoptosis, as well as the levels of TNF-α, IL-1β, MDA and ATP, were significantly increased in both the UCP2 and miR-133a groups compared with the DSS group. CONCLUSION The miR-133a-UCP2 pathway participates in IBD by altering downstream inflammation, oxidative stress and markers of energy metabolism, which provides novel clues and potential therapeutic targets for IBD.
Collapse
|
39
|
Yang R, Liu M, Liang H, Guo S, Guo X, Yuan M, Lian H, Yan X, Zhang S, Chen X, Fang F, Guo H, Zhang C. miR-138-5p contributes to cell proliferation and invasion by targeting Survivin in bladder cancer cells. Mol Cancer 2016; 15:82. [PMID: 27978829 PMCID: PMC5159976 DOI: 10.1186/s12943-016-0569-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023] Open
Abstract
Background Survivin (encoded by the gene BIRC5) plays an important role in the carcinogenesis of bladder cancer. Identifying miRNAs that target Survivin in the setting of bladder cancer will help to develop Survivin-based therapies for bladder cancer. Methods The expression levels of miR-138-5p and Survivin protein were measured in 12 resected bladder cancer specimens. The correlation between miR-138-5p and Survivin was further examined by evaluating Survivin expression in human bladder cancer cell lines that either overexpressed or knocked down miR-138-5p. A luciferase reporter assay was performed to test the direct binding of miR-138-5p to the target gene BIRC5. We also investigated the biological role of miR-138-5p targeting to Survivin in bladder cancer cell lines both in vivo and in vitro. Results In this study, we found that the Survivin protein was either absent or weakly expressed in normal adjacent tissues and consistently up-regulated in bladder cancer tissues; however, the mRNA levels did not vary as much, suggesting that a post-transcriptional mechanism was involved. Because microRNAs are powerful post-transcriptional regulators of gene expression, we used bioinformatic analyses to search for microRNAs that could potentially target BIRC5 in the setting of bladder cancer. We identified 2 specific targeting sites for miR-138-5p in the 3′ untranslated region (3′-UTR) of BIRC5. We further identified an inverse correlation between miR-138-5p and Survivin protein levels in bladder cancer tissue samples. By overexpressing or knocking down miR-138-5p in bladder cancer cells, we experimentally confirmed that miR-138-5p directly recognizes the 3′-UTR of the BIRC5 transcript and regulates Survivin expression. Furthermore, the biological consequences of the targeting of BIRC5 by miR-138-5p were examined in vitro via cell proliferation and invasion assays and in vivo using a mouse xenograft tumor model. We demonstrated that BIRC5 repression by miR-138-5p suppressed the proliferative and invasive characteristics of bladder cancer cells and that miR-138-5p exerted an anti-tumor effect by negatively regulating BIRC5 in a xenograft mouse model. Conclusions Taken together, our findings provide the first clues regarding the role of miR-138-5p as a tumor suppressor in bladder cancer by inhibiting BIRC5 translation. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0569-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong Yang
- Department of Urology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Minghui Liu
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Hongwei Liang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Suhan Guo
- School of Public Health, Nanjing Medical University, 101 longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Xu Guo
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Min Yuan
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Huibo Lian
- Department of Urology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Xiang Yan
- Department of Urology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Shiwei Zhang
- Department of Urology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Xi Chen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Feng Fang
- Department of Pharmacology, Nanjing Medical University, 101 longmian Avenue, Nanjing, Jiangsu, 211166, China.
| | - Hongqian Guo
- Department of Urology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.
| | - Chenyu Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
40
|
Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle. PLoS One 2016; 11:e0155349. [PMID: 27159388 PMCID: PMC4861269 DOI: 10.1371/journal.pone.0155349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/27/2016] [Indexed: 12/19/2022] Open
Abstract
Global inactivation of Trbp, a regulator of miRNA pathways, resulted in developmental defects and postnatal lethality in mice. Recently, we showed that cardiac-specific deletion of Trbp caused heart failure. However, its functional role(s) in skeletal muscle has not been characterized. Using a conditional knockout model, we generated mice lacking Trbp in the skeletal muscle. Unexpectedly, skeletal muscle specific Trbp mutant mice appear to be phenotypically normal under normal physiological conditions. However, these mice exhibited impaired muscle regeneration and increased fibrosis in response to cardiotoxin-induced muscle injury, suggesting that Trbp is required for muscle repair. Using cultured myoblast cells we further showed that inhibition of Trbp repressed myoblast differentiation in vitro. The impaired myogenesis is associated with reduced expression of muscle-specific miRNAs, miR-1a and miR-133a. Together, our study demonstrated that Trbp participates in the regulation of muscle differentiation and regeneration.
Collapse
|
41
|
Osmai M, Osmai Y, Bang-Berthelsen CH, Pallesen EMH, Vestergaard AL, Novotny GW, Pociot F, Mandrup-Poulsen T. MicroRNAs as regulators of beta-cell function and dysfunction. Diabetes Metab Res Rev 2016; 32:334-49. [PMID: 26418758 DOI: 10.1002/dmrr.2719] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/21/2015] [Accepted: 08/13/2015] [Indexed: 12/14/2022]
Abstract
In the last decade, there has been an explosion in both the number of and knowledge about miRNAs associated with both type 1 and type 2 diabetes. Even though we are presently in the initial stages of understanding how this novel class of posttranscriptional regulators are involved in diabetes, recent studies have demonstrated that miRNAs are important regulators of the islet transcriptome, controlling apoptosis, differentiation and proliferation, as well as regulating unique islet and beta-cell functions and pathways such as insulin expression, processing and secretion. Furthermore, a large number of miRNAs have been linked to diabetogenic processes induced by elevated levels of glucose, free fatty acids and inflammatory cytokines. Thus, miRNAs are novel therapeutic targets with the potential of protecting the beta-cell, and there is proof of principle that miRNA antagonists, so-called antagomirs, are effective in vivo for other disorders. miRNAs are exported out of cells in exosomes, raising the intriguing possibility of cell-to-cell communication between distant tissues via miRNAs and that miRNAs can be used as biomarkers of beta-cell function, mass and survival. The purpose of this review is to provide a status on how miRNAs control beta-cell function and viability in health and disease.
Collapse
Affiliation(s)
- Mirwais Osmai
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yama Osmai
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Claus H Bang-Berthelsen
- Department of Pediatrics and Center for Non-Coding RNA in Technology and Health, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Diabetes NBEs and Obesity Biology, Novo Nordisk A/S, Måløv, Denmark
| | - Emil M H Pallesen
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anna L Vestergaard
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Guy W Novotny
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Department of Pediatrics and Center for Non-Coding RNA in Technology and Health, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Gerö D, Szabo C. Glucocorticoids Suppress Mitochondrial Oxidant Production via Upregulation of Uncoupling Protein 2 in Hyperglycemic Endothelial Cells. PLoS One 2016; 11:e0154813. [PMID: 27128320 PMCID: PMC4851329 DOI: 10.1371/journal.pone.0154813] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022] Open
Abstract
Diabetic complications are the leading cause of morbidity and mortality in diabetic patients. Elevated blood glucose contributes to the development of endothelial and vascular dysfunction, and, consequently, to diabetic micro- and macrovascular complications, because it increases the mitochondrial proton gradient and mitochondrial oxidant production. Therapeutic approaches designed to counteract glucose-induced mitochondrial reactive oxygen species (ROS) production in the vasculature are expected to show efficacy against all diabetic complications, but direct pharmacological targeting (scavenging) of mitochondrial oxidants remains challenging due to the high reactivity of some of these oxidant species. In a recent study, we have conducted a medium-throughput cell-based screening of a focused library of well-annotated pharmacologically active compounds and identified glucocorticoids as inhibitors of mitochondrial superoxide production in microvascular endothelial cells exposed to elevated extracellular glucose. The goal of the current study was to investigate the mechanism of glucocorticoids' action. Our findings show that glucocorticoids induce the expression of the mitochondrial UCP2 protein and decrease the mitochondrial potential. UCP2 silencing prevents the protective effect of the glucocorticoids on ROS production. UCP2 induction also increases the oxygen consumption and the "proton leak" in microvascular endothelial cells. Furthermore, glutamine supplementation augments the effect of glucocorticoids via further enhancing the expression of UCP2 at the translational level. We conclude that UCP2 induction represents a novel experimental therapeutic intervention in diabetic vascular complications. While direct repurposing of glucocorticoids may not be possible for the therapy of diabetic complications due to their significant side effects that develop during chronic administration, the UCP2 pathway may be therapeutically targetable by other, glucocorticoid-independent pharmacological means.
Collapse
Affiliation(s)
- Domokos Gerö
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- University of Exeter Medical School, Exeter, United Kingdom
- * E-mail:
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
43
|
Yu M, Liang H, Fu Z, Wang X, Liao Z, Zhou Y, Liu Y, Wang Y, Hong Y, Zhou X, Yan X, Yu M, Ma M, Zhang W, Guo B, Zhang J, Zen K, Zhang CY, Wang T, Zhang Q, Chen X. BAP1 suppresses lung cancer progression and is inhibited by miR-31. Oncotarget 2016; 7:13742-13753. [PMID: 26885612 PMCID: PMC4924675 DOI: 10.18632/oncotarget.7328] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
BRCA1-associated protein-1 (BAP1) is an important nuclear-localized deubiquitinating enzyme that serves as a tumor suppressor in lung cancer; however, its function and its regulation are largely unknown. In this study, we found that BAP1 protein levels were dramatically diminished in lung cancer tissues while its mRNA levels did not differ significantly, suggesting that a post-transcriptional mechanism was involved in BAP1 regulation. Because microRNAs (miRNAs) are powerful post-transcriptional regulators of gene expression, we used bioinformatic analyses to search for miRNAs that could potentially bind BAP1. We predicted and experimentally validated miR-31 as a direct regulator of BAP1. Moreover, we showed that miR-31 promoted proliferation and suppressed apoptosis in lung cancer cells and accelerated the development of tumor growth in xenograft mice by inhibiting BAP1. Taken together, this study highlights an important role for miR-31 in the suppression of BAP1 in lung cancer cells and may provide insights into the molecular mechanisms of lung carcinogenesis.
Collapse
Affiliation(s)
- Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zheng Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xueliang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhicong Liao
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University and Nanjing Multi-Center Biobank, Nanjing, Jiangsu, China
| | - Yong Zhou
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University and Nanjing Multi-Center Biobank, Nanjing, Jiangsu, China
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yeting Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xinyan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Yan
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Min Yu
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Miao Ma
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Weijie Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Baoliang Guo
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Wang
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University and Nanjing Multi-Center Biobank, Nanjing, Jiangsu, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Law IKM, Jensen D, Bunnett NW, Pothoulakis C. Neurotensin-induced miR-133α expression regulates neurotensin receptor 1 recycling through its downstream target aftiphilin. Sci Rep 2016; 6:22195. [PMID: 26902265 PMCID: PMC4763298 DOI: 10.1038/srep22195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/09/2016] [Indexed: 01/05/2023] Open
Abstract
Neurotensin (NT) triggers signaling in human colonic epithelial cells by activating the G protein-coupled receptor, the neurotensin receptor 1 (NTR1). Activated NTR1 traffics from the plasma membrane to early endosomes, and then recycles. Although sustained NT/NTR1 signaling requires efficient NTR1 recycling, little is known about the regulation of NTR1 recycling. We recently showed that NT/NTR1 signaling increases expression of miR-133α. Herein, we studied the mechanism of NT-regulated miR-133α expression and examined the role of miR-133α in intracellular NTR1 trafficking in human NCM460 colonocytes. We found that NT-induced miR-133α upregulation involves the negative transcription regulator, zinc finger E-box binding homeobox 1. Silencing of miR-133α or overexpression of aftiphilin (AFTPH), a binding target of miR-133α, attenuated NTR1 trafficking to plasma membrane in human colonocytes, without affecting NTR1 internalization. We localized AFTPH to early endosomes and the trans-Golgi network (TGN) in unstimulated human colonic epithelial cells. AFTPH overexpression reduced NTR1 localization in early endosomes and increased expression of proteins related to endosomes and the TGN trafficking pathway. AFTPH overexpression and de-acidification of intracellular vesicles increased NTR1 expression. Our results suggest a novel mechanism of GPCR trafficking in human colonic epithelial cells by which a microRNA, miR-133α regulates NTR1 trafficking through its downstream target AFTPH.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, California, USA
| | - Dane Jensen
- Monash Institute of Pharmaceutical Sciences, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Parkville, Monash University, Australia
- Department of Anesthesia and Peri-operative Medicine, Monash University, Australia
| | - Nigel W. Bunnett
- Monash Institute of Pharmaceutical Sciences, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Parkville, Monash University, Australia
- Department of Anesthesia and Peri-operative Medicine, Monash University, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Australia
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, California, USA
| |
Collapse
|
45
|
Muscle-specific microRNAs in skeletal muscle development. Dev Biol 2016; 410:1-13. [DOI: 10.1016/j.ydbio.2015.12.013] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/19/2023]
|
46
|
Ahmadzadeh-Amiri A, Ahmadzadeh-Amiri A. Epigenetic Diabetic Vascular Complications. JOURNAL OF PEDIATRICS REVIEW 2016. [DOI: 10.17795/jpr-3375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
47
|
Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem 2015; 6:162-208. [PMID: 26322174 PMCID: PMC4549760 DOI: 10.4331/wjbc.v6.i3.162] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 03/13/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of miRNAs is an important factor in the development and progression of disease. The canonical myomiRs (miR-1, -133 and -206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomiR expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomiRs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development.
Collapse
|
48
|
Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:676575. [PMID: 26258142 PMCID: PMC4516831 DOI: 10.1155/2015/676575] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 02/07/2023]
Abstract
A healthy and independent life requires skeletal muscles to maintain optimal function throughout the lifespan, which is in turn dependent on efficient activation of processes that regulate muscle development, homeostasis, and metabolism. Thus, identifying mechanisms that modulate these processes is of crucial priority. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have emerged as a class of previously unrecognized transcripts whose importance in a wide range of biological processes and human disease is only starting to be appreciated. In this review, we summarize the roles of recently identified miRNAs and lncRNAs during skeletal muscle development and pathophysiology. We also discuss several molecular mechanisms of these noncoding RNAs. Undoubtedly, further systematic understanding of these noncoding RNAs' functions and mechanisms will not only greatly expand our knowledge of basic skeletal muscle biology, but also significantly facilitate the development of therapies for various muscle diseases, such as muscular dystrophies, cachexia, and sarcopenia.
Collapse
|
49
|
Law IKM, Bakirtzi K, Polytarchou C, Oikonomopoulos A, Hommes D, Iliopoulos D, Pothoulakis C. Neurotensin--regulated miR-133α is involved in proinflammatory signalling in human colonic epithelial cells and in experimental colitis. Gut 2015; 64:1095-104. [PMID: 25112884 PMCID: PMC4422787 DOI: 10.1136/gutjnl-2014-307329] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Neurotensin (NT) mediates colonic inflammation through its receptor neurotensin receptor 1 (NTR1). NT stimulates miR-133α expression in colonic epithelial cells. We investigated the role of miR-133α in NT-associated colonic inflammation in vitro and in vivo. DESIGN miR-133α and aftiphilin (AFTPH) levels were measured by quantitative PCR. Antisense (as)-miR-133α was administrated intracolonicaly prior to induction of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis and dextran sodium sulfate (DSS)-induced colitis. The effect of AFTPH was examined by gene silencing in vitro. RESULTS NT increased miR-133α levels in NCM-460 overexpressing NTR1 (NCM460-NTR1) and HCT-116 cells. NT-induced p38, ERK1/2, c-Jun, and NF-κB activation, as well as IL-6, IL-8 and IL-1β messenger RNA (mRNA) expression in NCM-460-NTR1 cells were reduced in miR-133α-silenced cells, while overexpression of miR-133α reversed these effects. MiR-133α levels were increased in TNBS (2 day) and DSS (5 day) colitis, while NTR1 deficient DSS-exposed mice had reduced miR-133α levels, compared to wild-type colitic mice. Intracolonic as-miR-133α attenuated several parameters of colitis as well expression of proinflammatory mediators in the colonic mucosa. In silico search coupled with qPCR identified AFTPH as a downstream target of miR-133α, while NT decreased AFTPH expression in NCM-460-NTR1 colonocytes. Gene silencing of AFTPH enhanced NT-induced proinflammatory responses and AFTPH levels were downregulated in experimental colitis. Levels of miR-133α were significantly upregulated, while AFTPH levels were downregulated in colonic biopsies of patients with ulcerative colitis compared to controls. CONCLUSIONS NT-associated colitis and inflammatory signalling are regulated by miR-133α-AFTPH interactions. Targeting of miR-133α or AFTPH may represent a novel therapeutic approach in inflammatory bowel disease.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Christos Polytarchou
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Angelos Oikonomopoulos
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Daniel Hommes
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
50
|
MiR-133a Is Functionally Involved in Doxorubicin-Resistance in Breast Cancer Cells MCF-7 via Its Regulation of the Expression of Uncoupling Protein 2. PLoS One 2015; 10:e0129843. [PMID: 26107945 PMCID: PMC4481265 DOI: 10.1371/journal.pone.0129843] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
The development of novel targeted therapies holds promise for conquering chemotherapy resistance, which is one of the major hurdles in current breast cancer treatment. Previous studies indicate that mitochondria uncoupling protein 2 (UCP-2) is involved in the development of chemotherapy resistance in colon cancer and lung cancer cells. In the present study we found that lower level of miR133a is accompanied by increased expression of UCP-2 in Doxorubicin-resistant breast cancer cell cline MCF-7/Dox as compared with its parental cell line MCF-7. We postulated that miR133a might play a functional role in the development of Doxorubicin-resistant in breast cancer cells. In this study we showed that: 1) exogenous expression of miR133a in MCF-7/Dox cells can sensitize their reaction to the treatment of Doxorubicin, which is coincided with reduced expression of UCP-2; 2) knockdown of UCP-2 in MCF-7/Dox cells can also sensitize their reaction to the treatment of Doxorubicin; 3) intratumoral delivering of miR133a can restore Doxorubicin treatment response in Doxorubicin-resistant xenografts in vivo, which is concomitant with the decreased expression of UCP-2. These findings provided direct evidences that the miR133a/UCP-2 axis might play an essential role in the development of Doxorubicin-resistance in breast cancer cells, suggesting that the miR133a/UCP-2 signaling cohort could be served as a novel therapeutic target for the treatment of chemotherapy resistant in breast cancer.
Collapse
|