1
|
Morici L, Allémann E, Jordan O, Nikolić I. Promising LOX proteins for cartilage-targeting osteoarthritis therapy. Pharmacol Res 2025; 212:107627. [PMID: 39875019 DOI: 10.1016/j.phrs.2025.107627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Osteoarthritis (OA) is the most affected joint disease worldwide, touching millions of people every year. It is caused by a progressive degeneration of articular cartilage, causing pain and limited mobility. Among the pathways involved in cartilage homeostasis, "LOX" proteins (referring to three distinct protein families, very often confused in the literature) play a prominent role. The lipoxygenase enzyme family is involved in the inflammatory process of OA by inducing the production of several pro-inflammatory leukotrienes. Lectin-like oxidized low-density lipoprotein family are receptors located at the surface of chondrocytes, which interact with their ligand, ox-LDL, activating several catabolic pathways involved in OA pathophysiology. Finally, lysyl oxidase and lysyl oxidase-like are enzymes expressed intracellularly (in chondrocytes' cytoplasm) involved in elastin biosynthesis and collagen cross-linking in cartilage extracellular matrix. EMA and FDA have not yet approved any drug targeting the LOX proteins. In particular, today lysyl oxidase-like 2 is considered as a new promising target for OA modifying therapy. This review clarifies the main roles of different LOX proteins involved in the progression of OA. Potential LOX inhibitoion strategies for drug development in advanced OA therapy, particularly for local intraarticular delivery, were listed and discussed for each target type. This review, therefore, proposes promising strategies for future drug development in OA treatment.
Collapse
Affiliation(s)
- Luca Morici
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva 4, 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, Geneva 4, 1211, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva 4, 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, Geneva 4, 1211, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva 4, 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, Geneva 4, 1211, Switzerland
| | - Ines Nikolić
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva 4, 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, Geneva 4, 1211, Switzerland.
| |
Collapse
|
2
|
Liu Y, Zhang Z, Fang Y, Liu C, Zhang H. Ferroptosis in Osteoarthritis: Current Understanding. J Inflamm Res 2024; 17:8471-8486. [PMID: 39529997 PMCID: PMC11552513 DOI: 10.2147/jir.s493001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease in elderly people that is characterized by cartilage loss and abrasion, leading to joint pain and dysfunction. The aetiology of OA is complicated and includes abnormal mechanical stress, a mild inflammatory environment, chondrocyte senescence and apoptosis, and changes in chondrocyte metabolism. Ferroptosis is a regulated cell death modality characterized by the excessive accumulation of lipid peroxidation and mitochondrial dysfunction. The role of ferroptosis in OA pathogenesis has aroused researchers' attention in the past two years, and there is mounting evidence indicating that ferroptosis is destructive. However, the impact of ferroptosis on OA and how the regulators of ferroptosis affect OA development are unclear. Here, we reviewed the current understanding of ferroptosis in OA pathogenesis and summarized several drugs and compounds targeting ferroptosis in OA treatment. The accumulation of intracellular iron, the trigger of Fenton reaction, the excessive production of ROS, the peroxidation of PUFA-PLs, and mitochondrial and membrane damage are involved in chondrocyte ferroptosis. System Xc - and GPX4 are the most important regulators that control ferroptosis. Several compounds, such as DFO and Fer-1, have been proven effective in preventing ferroptosis and slowing OA progression on animal models. Collectively, targeting ferroptosis shows great potential in treating OA.
Collapse
Affiliation(s)
- Yikai Liu
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People’s Republic of China
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Zian Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Yuan Fang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Chang Liu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Haining Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| |
Collapse
|
3
|
Dhanabalan KM, Padhan B, Dravid AA, Agarwal S, Pancheri NM, Lin A, Willet NJ, Padmanabhan AK, Agarwal R. Nordihydroguaiaretic acid microparticles are effective in the treatment of osteoarthritis. J Mater Chem B 2024; 12:11172-11186. [PMID: 39356214 DOI: 10.1039/d4tb01342e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Several disease-modifying osteoarthritis (OA) drugs have emerged, but none have been approved for clinical use due to their systemic side effects, short half-life, and rapid clearance from the joints. Nordihydroguaiaretic acid (NDGA), a reactive oxygen species (ROS) scavenger and autophagy inducer, could be a potential treatment for OA. In this report, we show for the first time that sustained delivery of NDGA through polymeric microparticles maintains therapeutic concentrations of drug in the joint and ameliorates post-traumatic OA (PTOA) in a mouse model. In vitro treatment of oxidatively stressed primary chondrocytes from OA patients using NDGA-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles (NDGA-MP) inhibited 15-lipoxygenase, induced autophagy, prevented chondrosenescence, and sustained matrix production. In vivo intra-articular delivery of NDGA-MP was non-toxic and had prolonged retention time (up to 35 days) in murine knee joints. Intra-articular therapy using NDGA-MP effectively reduced cartilage damage and reduced pain in the surgery-induced PTOA mouse model. Our studies open new avenues to modulate the immune environment and treat post-traumatic OA using ROS quenchers and autophagy inducers.
Collapse
Affiliation(s)
- Kaamini M Dhanabalan
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| | - Bhagyashree Padhan
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| | - Ameya A Dravid
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| | - Smriti Agarwal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| | - Nicholas M Pancheri
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Department of Bioengineering, University of Oregon, Eugene, OR, USA, 97403
| | - Angela Lin
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Department of Bioengineering, University of Oregon, Eugene, OR, USA, 97403
| | - Nick J Willet
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Department of Bioengineering, University of Oregon, Eugene, OR, USA, 97403
| | | | - Rachit Agarwal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India, 560012.
| |
Collapse
|
4
|
Guo Z, Chi R, Peng Y, Sun K, Liu H, Guo F, Guo J. The Role and Interactive Mechanism of Endoplasmic Reticulum Stress and Ferroptosis in Musculoskeletal Disorders. Biomolecules 2024; 14:1369. [PMID: 39595546 PMCID: PMC11591632 DOI: 10.3390/biom14111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is a cellular phenomenon that arises in response to the accumulation of misfolded proteins within the ER. This process triggers the activation of a signalling pathway known as the unfolded protein response (UPR), which aims to restore ER homeostasis by reducing protein synthesis, increasing protein degradation, and promoting proper protein folding. However, excessive ER stress can perturb regular cellular function and contribute to the development of diverse pathological conditions. As is well known, ferroptosis is a kind of programmed cell death characterized by the accumulation of lipid peroxides and iron-dependent reactive oxygen species (ROS), resulting in oxidative harm to cellular structures. In recent years, there has been increasing evidence indicating that ferroptosis occurs in musculoskeletal disorders (MSDs), with emerging recognition of the complex relationship between ER stress and ferroptosis. This review presents a summary of ER stress and the ferroptosis pathway. Most importantly, it delves into the significance of ER stress in the ferroptosis process within diverse skeletal or muscle cell types. Furthermore, we highlight the potential benefits of targeting the correlation between ER stress and ferroptosis in treating degenerative MSDs.
Collapse
Affiliation(s)
- Zhou Guo
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.G.); (K.S.); (H.L.)
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yawen Peng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kai Sun
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.G.); (K.S.); (H.L.)
| | - Haigang Liu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.G.); (K.S.); (H.L.)
| | - Fengjing Guo
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.G.); (K.S.); (H.L.)
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Hines MR, Gomez-Contreras PC, Liman S, Wilson AM, Lu KJ, O'Neill JA, Fisher JS, Fredericks DC, Wagner BA, Buettner GR, Van Remmen H, Coleman MC. A reciprocal relationship between mitochondria and lipid peroxidation determines the chondrocyte intracellular redox environment. Redox Biol 2024; 75:103306. [PMID: 39133964 PMCID: PMC11366903 DOI: 10.1016/j.redox.2024.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
In orthopedic research, many studies have applied vitamin E as a protective antioxidant or used tert-butyl hydroperoxide to induce oxidative injury to chondrocytes. These studies often support the hypothesis that joint pathology causes oxidative stress and increased lipid peroxidation that might be prevented with lipid antioxidants to improve cell survival or function and joint health; however, lipid antioxidant supplementation was ineffective against osteoarthritis in clinical trials and animal data have been equivocal. Moreover, increased circulating vitamin E is associated with increased rates of osteoarthritis. This disconnect between benchtop and clinical results led us to hypothesize that oxidative stress-driven paradigms of chondrocyte redox function do not capture the metabolic and physiologic effects of lipid antioxidants and prooxidants on articular chondrocytes. We used ex vivo and in vivo cartilage models to investigate the effect of lipid antioxidants on healthy, primary, articular chondrocytes and applied immuno-spin trapping techniques to provide a broad indicator of high levels of oxidative stress independent of specific reactive oxygen species. Key findings demonstrate lipid antioxidants were pro-mitochondrial while lipid prooxidants decreased mitochondrial measures. In the absence of injury, radical formation was increased by lipid antioxidants; however, in the presence of injury, radical formation was decreased. In unstressed conditions, this relationship between chondrocyte mitochondria and redox regulation was reproduced in vivo with overexpression of glutathione peroxidase 4. In mice aged 18 months or more, overexpression of glutathione peroxidase 4 significantly decreased the presence of pro-mitochondrial peroxisome proliferation activated receptor gamma and deranged the relationship between mitochondria and the redox environment. This complex interaction suggests strategies targeting articular cartilage may benefit from adopting more nuanced paradigms of articular chondrocyte redox metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Kevin J Lu
- The University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Cui A, Xiao P, Wang P, Wang H, Cong Y, Fan Z, Wei X, Zhuang Y. No genetic causal association between circulating alpha-tocopherol levels and osteoarthritis, a two-sample Mendelian randomization analysis. Sci Rep 2024; 14:10099. [PMID: 38698019 PMCID: PMC11066079 DOI: 10.1038/s41598-024-60676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
The causal association between vitamin E status and osteoarthritis (OA) remains controversial in previous epidemiological studies. We employed a Mendelian randomization (MR) analysis to explore the causal relationship between circulating alpha-tocopherol levels (main forms of vitamin E in our body) and OA. The instrumental variables (IVs) of circulating alpha-tocopherol levels were obtained from a Genome-wide association study (GWAS) dataset of 7781 individuals of European descent. The outcome of OA was derived from the UK biobank. Two-sample MR analysis was used to estimate the causal relationship between circulating alpha-tocopherol levels and OA. The inverse-variance weighted (IVW) method was the primary analysis in this analysis. We used the MR-Egger method to determine horizontal pleiotropic in this work. The heterogeneity effect of instrumental IVs was detected by MR-Egger and IVW analyses. Sensitivity analysis was performed by removing single nucleotide polymorphism (SNP) one by one. Three SNPs (rs964184, rs2108622, and rs11057830) (P < 5E-8) strongly associated with circulating alpha-tocopherol levels were used in this analysis. The IVW-random effect indicated no causal relationship between circulating alpha-tocopherol levels and clinically diagnosed OA (OR = 0.880, 95% CI 0.626, 1.236, P = 0.461). Similarly, IVW analysis showed no causal association between circulating alpha-tocopherol levels and self-reported OA (OR = 0.980, 95% CI 0.954, 1.006, P = 0.139). Other methods of MR analyses and sensitivity analyses revealed consistent findings. MR-Egger and IVW methods indicated no significant heterogeneity between IVs. The MR-Egger intercept showed no horizontal pleiotropic. The results of this linear Mendelian randomization study indicate no causal association between genetically predicted alpha-tocopherol levels and the progression of OA. Alpha-tocopherol may not provide beneficial and more favorable outcomes for the progression of OA. Further MR analysis based on updated GWASs with more IVs is required to verify the results of our study.
Collapse
Affiliation(s)
- Aiyong Cui
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Peilun Xiao
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Pengfei Wang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Hu Wang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Yuxuan Cong
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Zhiqiang Fan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Xing Wei
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Yan Zhuang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| |
Collapse
|
7
|
Ma Y, Liu Y, Luo D, Guo Z, Xiang H, Chen B, Wu X. Identification of biomarkers and immune infiltration characterization of lipid metabolism-associated genes in osteoarthritis based on machine learning algorithms. Aging (Albany NY) 2024; 16:7043-7059. [PMID: 38637111 PMCID: PMC11087088 DOI: 10.18632/aging.205740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Osteoarthritis (OA) is a prevalent degenerative condition commonly observed in the elderly, leading to consequential disability. Despite notable advancements made in clinical strategies for OA, its pathogenesis remains uncertain. The intricate association between OA and metabolic processes has yet to receive comprehensive exploration. In our investigation, we leveraged public databases and applied machine learning algorithms, including WGCNA, LASSO, RF, immune infiltration analysis, and pathway enrichment analysis, to scrutinize the role of lipid metabolism-associated genes (LAGs) in the OA. Our findings identified three distinct biomarkers, and evaluated their expression to assess their diagnostic value in the OA patients. The exploration of immune infiltration in these patients revealed an intricate relationship between immune cells and the identified biomarkers. In addition, in vitro experiments, including qRT-PCR, Western blot, chondrocyte lipid droplets detection and mitochondrial fatty acid oxidation measurement, further verified abnormal expressions of selected LAGs in OA cartilage and confirmed the correlation between lipid metabolism and OA.
Collapse
Affiliation(s)
- Yuanye Ma
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yang Liu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Dan Luo
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Zhu Guo
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Hongfei Xiang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Bohua Chen
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| |
Collapse
|
8
|
Assies M, Berger B, Stegen B, Rohwedder T, Doherr M, Böttcher P. Evaluation of the Effects of an Undenatured Collagen Type-2-Based Nutraceutical (ARTHROSHINE ® HA²) on Recovery Time after TPLO in Dogs: A Prospective, Randomized Study with Objective Gait Analysis as the Primary Outcome Measure. Animals (Basel) 2024; 14:298. [PMID: 38254467 PMCID: PMC10812682 DOI: 10.3390/ani14020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
This randomized, prospective clinical trial investigates the impact of a novel undenatured collagen type 2 (T2NDC)-based nutraceutical, ARTHROSHINE® HA² (AS), on postoperative rehabilitation following Tibial Plateau Leveling Osteotomy (TPLO) in 50 dogs with unilateral cranial cruciate ligament rupture (CCLR). The patients were randomly allocated to either group A, receiving AS once daily for 24 weeks post-TPLO surgery, or group B, without any supplementation. Frequency matching was applied to enhance group comparability. Assessment of outcomes included computerized gait analysis and a validated owner questionnaire. AS supplementation was well received, without any reported side effect. Consistently, patients in group A exhibited significantly higher peak vertical force values during all follow-up assessments. By the 12-week mark, gait analysis indicated a return to a physiological gait pattern in group A, while group B achieved this normalization only by the 24-week point. The administration of AS post-TPLO surgery demonstrates promise in enhancing limb function, leading to faster restoration of a physiological gait pattern. The inclusion of AS, a T2NDC-based nutraceutical, in the post-TPLO rehabilitation protocol may contribute to improved limb function and an expedited recovery, potentially facilitating a quicker return to normalcy. It is noteworthy that subjective owner perceptions did not differ between the two groups.
Collapse
Affiliation(s)
- Maria Assies
- Fachtierärztliches Zentrum Dr. Berger, 26892 Heede, Germany; (B.B.)
| | - Björn Berger
- Fachtierärztliches Zentrum Dr. Berger, 26892 Heede, Germany; (B.B.)
| | - Bente Stegen
- Fachtierärztliches Zentrum Dr. Berger, 26892 Heede, Germany; (B.B.)
| | - Thomas Rohwedder
- Small Animal Clinic, Free University of Berlin, 14163 Berlin, Germany; (T.R.); (P.B.)
| | - Marcus Doherr
- Institute for Veterinary Epidemiology and Biostatistics, Free University of Berlin, 14163 Berlin, Germany;
| | - Peter Böttcher
- Small Animal Clinic, Free University of Berlin, 14163 Berlin, Germany; (T.R.); (P.B.)
| |
Collapse
|
9
|
Son SM, Okada R, Fresquez Z, Formanek B, Mertz K, Wang JC, Buser Z. The Effect of Hyperlipidemia as a Risk Factor on Postoperative Complications in Patients Undergoing Anterior Cervical Discectomy and Fusion. Clin Spine Surg 2023; 36:E530-E535. [PMID: 37651576 DOI: 10.1097/bsd.0000000000001513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/19/2023] [Indexed: 09/02/2023]
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVE To analyze the effect of hyperlipidemia (HLD) on postoperative complications in patients who underwent anterior cervical discectomy and fusion (ACDF). SUMMARY OF BACKGROUND DATA ACDF represents the standard procedure performed for focal anterior nerve root or spinal cord compression with low complication rates. HLD is well known as a risk factor for major complications after vascular and transplant surgery, and orthopedic surgery. To date, there have been no studies on HLD as a risk factor for cervical spine surgery. PATIENTS AND METHODS Patients who underwent ACDF from 2010 through quarter 3 of 2020 were enrolled using the MSpine subset of the PearlDiver Patient Record Database. The patients were divided into single-level ACDF and multilevel ACDF groups. In addition, each group was divided into subgroups according to the presence or absence of HLD. The incidence of surgical and medical complications was queried using relevant International Classification of Disease and Current Procedural Terminology codes. Charlson Comorbidity Index was used as a broad measure of comorbidity. χ 2 analysis, with populations matched for age, sex, and Charlson Comorbidity Index, was performed. RESULTS A total of 24,936 patients who underwent single-level ACDF and 26,921 patients who underwent multilevel ACDF were included. In the multilevel ACDF group, wound complications were significantly higher in the patients with HLD. Among medical complications, myocardial infarction, renal failure, and urinary tract infection/urinary incontinence were significantly higher in the patients with HLD in both groups. Revision surgery and readmission were significantly higher in the patients with HLD who underwent multilevel ACDF. CONCLUSIONS In patients who underwent ACDF, several surgical and medical complications were found to be higher in patients with HLD than in patients without HLD. Preoperative serum lipid concentration levels and management of HLD should be considered during preoperative planning to prevent postoperative complications in patients undergoing ACDF.
Collapse
Affiliation(s)
- Seung Min Son
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Orthopedic Surgery, Medical Research Institute, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Rintaro Okada
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Orthopedic Surgery, Spine Surgery, Toyonaka Municipal Hospital, Osaka, Japan
| | - Zoe Fresquez
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Blake Formanek
- University of Queensland School of Medicine, Ochsner Clinical School, Queensland, Australia
| | - Kevin Mertz
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jeffrey C Wang
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Zorica Buser
- Department of Orthopedic Surgery, Grossman School of Medicine, New York University, New York, NY
| |
Collapse
|
10
|
Shen Q, Huang W, Qiu Y, Wang S, Zhang B, Sun N, Zhou Q. Bergapten exerts a chondroprotective effect in temporomandibular joint osteoarthritis by combining intestinal flora alteration and reactive oxygen species reduction. Biomed Pharmacother 2023; 167:115525. [PMID: 37748407 DOI: 10.1016/j.biopha.2023.115525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Bergapten, a furanocoumarin naturally occurring in bergamot essential oil, has been demonstrated to have the potential to alleviate osteoarthritis-related symptoms via its anti-inflammatory activity. Although its systemic bioavailability is limited, its precise mechanisms of action and effects on temporomandibular joint osteoarthritis (TMJOA) and its relationship with the intestinal flora remain unclear. Here, we explored the anti-TMJOA effect of BGT combined with the interleukin-1β-induced inflammatory response of chondrocytes in a monosodium iodoacetate (MIA)-induced TMJOA rat model. It was confirmed that BGT effectively reduced proinflammatory mediators and increased type II collagen, bone volume, and trabecular number of condyles in TMJOA rats. Importantly, the oral administration of BGT altered the intestinal flora of rats by increasing the relative abundances of nine prebiotic species and decreasing the relative abundance of one potential species. In addition, BGT considerably reduced reactive oxygen species (ROS) levels by suppressing glutathione, oxidized glutathione, and superoxide dismutase in the serum and malondialdehyde in urine. These results suggest that BGT exerts a chondroprotective effect, most likely by improving the intestinal flora and reducing ROS production associated with TMJOA in rats. This finding indicates a novel beneficial effect of BGT on the prevention and treatment of TMJOA.
Collapse
Affiliation(s)
- Qingxia Shen
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wanyi Huang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yueyang Qiu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Shuze Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Bin Zhang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ningning Sun
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| | - Qing Zhou
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
11
|
Lee AJ, Gangi LR, Zandkarimi F, Stockwell BR, Hung CT. Red blood cell exposure increases chondrocyte susceptibility to oxidative stress following hemarthrosis. Osteoarthritis Cartilage 2023; 31:1365-1376. [PMID: 37364817 PMCID: PMC10529126 DOI: 10.1016/j.joca.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/11/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE The detrimental effects of blood exposure on articular tissues are well characterized, but the individual contributions of specific whole blood components are yet to be fully elucidated. Better understanding of mechanisms that drive cell and tissue damage in hemophilic arthropathy will inform novel therapeutic strategies. The studies here aimed to identify the specific contributions of intact and lysed red blood cells (RBCs) on cartilage and the therapeutic potential of Ferrostatin-1 in the context of lipid changes, oxidative stress, and ferroptosis. METHODS Changes to biochemical and mechanical properties following intact RBC treatment were assessed in human chondrocyte-based tissue-engineered cartilage constructs and validated against human cartilage explants. Chondrocyte monolayers were assayed for changes to intracellular lipid profiles and the presence of oxidative and ferroptotic mechanisms. RESULTS Markers of tissue breakdown were observed in cartilage constructs without parallel losses in DNA (control: 786.3 (102.2) ng/mg; RBCINT: 751 (126.4) ng/mg; P = 0.6279), implicating nonlethal chondrocyte responses to intact RBCs. Dose-dependent loss of viability in response to intact and lysed RBCs was observed in chondrocyte monolayers, with greater toxicity observed with lysates. Intact RBCs induced changes to chondrocyte lipid profiles, upregulating highly oxidizable fatty acids (e.g., FA 18:2) and matrix disrupting ceramides. RBC lysates induced cell death via oxidative mechanisms that resemble ferroptosis. CONCLUSIONS Intact RBCs induce intracellular phenotypic changes to chondrocytes that increase vulnerability to tissue damage while lysed RBCs have a more direct influence on chondrocyte death by mechanisms that are representative of ferroptosis.
Collapse
Affiliation(s)
- Andy J Lee
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, USA.
| | - Lianna R Gangi
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, USA.
| | - Fereshteh Zandkarimi
- Department of Chemistry, Columbia University, 216 Havemeyer Hall, 3000 Broadway, Mail Code 3183, New York, NY, USA.
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, 216 Havemeyer Hall, 3000 Broadway, Mail Code 3183, New York, NY, USA; Department of Biological Sciences, Columbia University, 1208 NWC Building, 550 West 120th St. M.C. 4846, New York, NY, USA.
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY, USA; Department of Orthopaedic Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Zielinska D, Yosef HK, Zollitsch T, Kern J, Jakob Y, Gvaramia D, Rotter N, Pontiggia L, Moehrlen U, Biedermann T, Klar AS. Characterization of Distinct Chondrogenic Cell Populations of Patients Suffering from Microtia Using Single-Cell Micro-Raman Spectroscopy. Biomedicines 2023; 11:2588. [PMID: 37761029 PMCID: PMC10526501 DOI: 10.3390/biomedicines11092588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Microtia is a congenital condition of abnormal development of the outer ear. Tissue engineering of the ear is an alternative treatment option for microtia patients. However, for this approach, the identification of high regenerative cartilage progenitor cells is of vital importance. Raman analysis provides a novel, non-invasive, label-free diagnostic tool to detect distinctive biochemical features of single cells or tissues. Using micro-Raman spectroscopy, we were able to distinguish and characterize the particular molecular fingerprints of differentiated chondrocytes and perichondrocytes and their respective progenitors isolated from healthy individuals and microtia patients. We found that microtia chondrocytes exhibited lower lipid concentrations in comparison to healthy cells, thus indicating the importance of fat storage. Moreover, we suggest that collagen is a useful biomarker for distinguishing between populations obtained from the cartilage and perichondrium because of the higher spectral contributions of collagen in the chondrocytes compared to perichondrocytes from healthy individuals and microtia patients. Our results represent a contribution to the identification of cell markers that may allow the selection of specific cell populations for cartilage tissue engineering. Moreover, the observed differences between microtia and healthy cells are essential for gaining better knowledge of the cause of microtia. It can be useful for designing novel treatment options based on further investigations of the discovered biochemical substrate alterations.
Collapse
Affiliation(s)
- Dominika Zielinska
- Tissue Biology Research Unit, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Hesham K. Yosef
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- microphotonXGmbH, 82327 Tutzing, Germany
| | | | - Johann Kern
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Yvonne Jakob
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - David Gvaramia
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Luca Pontiggia
- Tissue Biology Research Unit, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- Department of Surgery, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Agnes S. Klar
- Tissue Biology Research Unit, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
13
|
Zhang X, Hou L, Guo Z, Wang G, Xu J, Zheng Z, Sun K, Guo F. Lipid peroxidation in osteoarthritis: focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis. Cell Death Discov 2023; 9:320. [PMID: 37644030 PMCID: PMC10465515 DOI: 10.1038/s41420-023-01613-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial and increasingly prevalent degenerative disease that affects the whole joint. The pathogenesis of OA is poorly understood and there is a lack of therapeutic interventions to reverse the pathological process of this disease. Accumulating studies have shown that the overproduction of reactive oxygen species (ROS) and ROS-induced lipid peroxidation are involved in the pathogenesis of OA. 4-Hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) have received considerable attention for their role in cartilage degeneration and subchondral bone remodeling during OA development. Ferroptosis is a form of cell death characterized by a lack of control of membrane lipid peroxidation and recent studies have suggested that chondrocyte ferroptosis contributes to OA progression. In this review, we aim to discuss lipid peroxidation-derived 4-HNE and MDA in the progression of OA. In addition, the therapeutic potential for OA by controlling the accumulation of lipid peroxidation and inhibiting chondrocyte ferroptosis are discussed.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
14
|
Warmink K, Rios JL, van Valkengoed DR, Vinod P, Korthagen NM, Weinans H. Effects of different obesogenic diets on joint integrity, inflammation and intermediate monocyte levels in a rat groove model of osteoarthritis. Front Physiol 2023; 14:1211972. [PMID: 37520829 PMCID: PMC10372350 DOI: 10.3389/fphys.2023.1211972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: Obesogenic diets aggravate osteoarthritis (OA) by inducing low-grade systemic inflammation, and diet composition may affect OA severity. Here, we investigated the effect of diet on joint damage and inflammation in an OA rat model. Methods: Wistar-Han rats (n = 24) were fed a chow, a high-fat (HF) diet, or a high-fat/high-sucrose (HFS) for 24 weeks. OA was induced unilaterally 12 weeks after the diet onset by groove surgery, and compared to sham surgery or no surgical intervention (contralateral limb). Knee OA severity was determined by OARSI histopathology scoring system. At several timepoints monocyte populations were measured using flow cytometry, and joint macrophage response was determined via CD68 immunohistochemistry staining. Results: Groove surgery combined with HF or HFS diet resulted in higher OARSI scores, and both HF and HFS diet showed increased circulating intermediate monocytes compared to chow fed rats. Additionally, in the HFS group, minimal damage by sham surgery resulted in an increased OARSI score. HFS diet resulted in the largest metabolic dysregulation, synovial inflammation and increased CD68 staining in tibia epiphysis bone marrow. Conclusion: Obesogenic diets resulted in aggravated OA development, even with very minimal joint damage when combined with the sucrose/fat-rich diet. We hypothesize that diet-induced low-grade inflammation primes monocytes and macrophages in the blood, bone marrow, and synovium, resulting in joint damage when triggered by groove OA inducing surgery. When the metabolic dysregulation is larger, as observed here for the HFS diet, the surgical trigger required to induce joint damage may be smaller, or even redundant.
Collapse
Affiliation(s)
- K. Warmink
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - J. L. Rios
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - D. R. van Valkengoed
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - P. Vinod
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - N. M. Korthagen
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Equine Sciences, Utrecht University, Utrecht, Netherlands
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Biomechanical Engineering, TU Delft, Delft, Netherlands
| |
Collapse
|
15
|
Gu JY, Han F, Chen SY, Zhang Q. Research progress and hot spot analysis related to oxidative stress and osteoarthritis: a bibliometric analysis. BMC Musculoskelet Disord 2023; 24:411. [PMID: 37221510 DOI: 10.1186/s12891-023-06324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/14/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Osteoarthritis, a common degenerative osteochondral disease, has a close relationship between its mechanism of occurrence and oxidative stress. However, there are relatively few relevant studies in this field, and a more mature research system has not yet been formed. METHODS By searching the Web of Science (WOS) database, we obtained 1 412 publications in the field of osteoarthritis and oxidative stress. The search results were then analyzed bibliometrically using Citespace and VOSviewer, including a study of publication trends in the field, analysis of core authors, analysis of countries and institutions with high contributions, analysis of core journals, and to identify research trends and hot spots in the field, we performed keyword clustering. RESULTS We collected 1 412 publications on the field of osteoarthritis and oxidative stress from 1998-2022. By analyzing the publication trends in the field, we noted an exponential increase in the number of publications per year since 2014. We then identified the core authors in the field (Blanco, Francisco J., Loeser, Richard F., Vaamonde-garcia, et.al) as well as the countries (China, USA, Italy et.al) and institutions (Xi An Jiao Tong Univ, Wenzhou Med Univ, Zhejiang Univ et.al). The OSTEOARTHRITIS AND CARTILAGE and INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES contain a large number of research papers in this field, and through keyword co-occurrence analysis, we counted 3 227 keywords appearing in the field of osteoarthritis and oxidative stress. These keywords were clustered into 9 groups, representing 9 different research hotspots. CONCLUSIONS Research in the field of osteoarthritis and oxidative stress has been developing since 1998 and is now maturing, but there is an urgent need to strengthen international academic exchanges and discuss the future focus of research development in the field of osteoarthritis and oxidative stress.
Collapse
Affiliation(s)
- Jin-Yu Gu
- Department of Orthopaedic, The Hospital of Wang Jing, China Academy of Chinese Medical Sciences, Huajiadi Street, Chao Yang District, Beijing, 100102, China
| | - Fei Han
- Department of Orthopaedic, The Hospital of Guang An Men, China Academy of Chinese Medical Sciences, Beixian Ge Street,Xicheng District, Beijing, 100053, China
| | - Si-Yu Chen
- Department of Orthopaedic, The Hospital of Guang An Men, China Academy of Chinese Medical Sciences, Beixian Ge Street,Xicheng District, Beijing, 100053, China
| | - Qing Zhang
- Department of Orthopaedic, The Hospital of Wang Jing, China Academy of Chinese Medical Sciences, Huajiadi Street, Chao Yang District, Beijing, 100102, China.
| |
Collapse
|
16
|
Liu H, Witzigreuter L, Sathiaseelan R, Agbaga MP, Brush RS, Stout MB, Zhu S. Obesity promotes lipid accumulation in mouse cartilage-A potential role of acetyl-CoA carboxylase (ACC) mediated chondrocyte de novo lipogenesis. J Orthop Res 2022; 40:2771-2779. [PMID: 35279877 PMCID: PMC9647658 DOI: 10.1002/jor.25322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Obesity promotes the development of osteoarthritis (OA). It is also well-established that obesity leads to excessive lipid deposition in nonadipose tissues, which often induces lipotoxicity. The objective of this study was to investigate changes in the levels of various lipids in mouse cartilage in the context of obesity and determine if chondrocyte de novo lipogenesis is altered. We used Oil Red O to determine the accumulation of lipid droplets in cartilage from mice fed high-fat diet (HFD) or low-fat diet (LFD). We further used mass spectrometry-based lipidomic analyses to quantify levels of different lipid species. Expression of genes involving in fatty acid (FA) uptake, synthesis, elongation, and desaturation were examined using quantitative polymerase chain reaction. To further study the potential mechanisms, we cultured primary mouse chondrocytes under high-glucose and high-insulin conditions to mimic the local microenvironment associated with obesity and subsequently examined the abundance of cellular lipid droplets. The acetyl-CoA carboxylase (ACC) inhibitor, ND-630, was added to the culture medium to examine the effect of inhibiting de novo lipogenesis on lipid accumulation in chondrocytes. When compared to the mice receiving LFD, the HFD group displayed more chondrocytes with visible intracellular lipid droplets. Significantly higher amounts of total FAs were also detected in the HFD group. Five out of six significantly upregulated FAs were ω-6 FAs, while the two significantly downregulated FAs were ω-3 FAs. Consequently, the HFD group displayed a significantly higher ω-6/ω-3 FA ratio. Ether linked phosphatidylcholine was also found to be higher in the HFD group. Fatty acid desaturase (Fad1-3), fatty acid-binding protein 4 (Fabp4), and fatty acid synthase (Fasn) transcripts were not found to be different between the treatment groups and fatty acid elongase (Elovl1-7) transcripts were undetectable in cartilage. Ceramide synthase 2 (Cers-2), the only transcript found to be changed in these studies, was significantly upregulated in the HFD group. In vitro, chondrocytes upregulated de novo lipogenesis when cultured under high-glucose, high-insulin conditions, and this observation was associated with the activation of ACC, which was attenuated by the addition of ND-630. This study provides the first evidence that lipid deposition is increased in cartilage with obesity and that this is associated with the upregulation of ACC-mediated de novo lipogenesis. This was supported by our observation that ACC inhibition ameliorated lipid accumulation in chondrocytes, thereby suggesting that ACC could potentially be targeted to treat obesity-associated OA.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Biomedical Sciences, Ohio University, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, OH, 45701, USA
| | - Luke Witzigreuter
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, OK, 73117, USA
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, OK, 73104, USA
- Dean A. McGee Eye Institute, OK, 73104, USA
| | - Richard S. Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, OK, 73104, USA
- Dean A. McGee Eye Institute, OK, 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Shouan Zhu
- Department of Biomedical Sciences, Ohio University, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, OH, 45701, USA
| |
Collapse
|
17
|
Toropitsyn E, Pravda M, Rebenda D, Ščigalková I, Vrbka M, Velebný V. A composite device for viscosupplementation treatment resistant to degradation by reactive oxygen species and hyaluronidase. J Biomed Mater Res B Appl Biomater 2022; 110:2595-2611. [PMID: 35727166 DOI: 10.1002/jbm.b.35114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is one of the most common musculoskeletal disorders in the world. OA is often associated with the loss of viscoelastic and tribological properties of synovial fluid (SF) due to degradation of hyaluronic acid (HA) by reactive oxygen species (ROS) and hyaluronidases. Viscosupplementation is one of the ways how to effectively restore SF functions. However, current viscosupplementation products provide only temporal therapeutic effect because of short biological half-life. In this article we describe a novel device for viscosupplementation (NV) based on the cross-linked tyramine derivative of HA, chondroitin sulfate (CS), and high molecular weight HA by online determination of viscoelastic properties loss during degradation by ROS and hyaluronidase. Rheological and tribological properties of developed viscosupplement were compared with HA solutions with different molecular weights in the range 500-2000 kDa, which are currently commonly used as medical devices for viscosupplementation treatment. Moreover, based on clinical practice and scientific literature all samples were also diluted by model OA SF in the ratio 1:1 (vol/vol) to better predict final properties after injection to the joint. The observed results confirmed that NV exhibits appropriate rheological properties (viscosity, elastic, and viscous moduli) comparable with healthy SF and maintain them during degradation for a significantly longer time than HA solutions with molecular weight in the range 500-2000 kDa and cross-linked material without CS.
Collapse
Affiliation(s)
- Evgeniy Toropitsyn
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Biocev, First Faculty of Medicine Charles University, Vestec, Czech Republic
| | | | - David Rebenda
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | | | - Martin Vrbka
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | | |
Collapse
|
18
|
ROS-responsive PPGF nanofiber membrane as a drug delivery system for long-term drug release in attenuation of osteoarthritis. NPJ Regen Med 2022; 7:66. [PMID: 36323709 PMCID: PMC9630282 DOI: 10.1038/s41536-022-00254-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Excessive reactive oxygen species (ROS) are one of the leading mechanisms in the initiation and development of osteoarthritis (OA). However, conventional injection of ROS-responsive drug delivery systems (DDSs) such as nanoparticles and hydrogels usually cannot provide effective treatment due to rapid clearance and degradation or low bioavailability. In this study, a ROS-responsive nanofiber membrane named PLA/PEGDA-EDT@rGO-Fucoxanthin (PPGF) is fabricated by electrospinning, wherein PEGDA-EDT served as the ROS-responsive motif, reduced graphene oxide (rGO) as the drug carrier and fucoxanthin (Fx) as the antioxidative and anti-inflammatory agent. The results demonstrated that the PPGF nanofiber membrane exhibited sustained and long-term Fx release behavior (at least 66 days) in response to hydrogen peroxide (H2O2) in vitro. With low cytotoxicity and smart ROS responsiveness, PPGF showed excellent anti-inflammatory and antioxidative effects on IL-1β-induced chondrocytes by potent ROS scavenging potential and upregulation of antioxidative enzymes. It also demonstrated the attenuation of OA progression with the reduced Osteoarthritis Research Society International (OARSI) score by 93.17% in 8 weeks. The smart ROS-responsive, biodegradable and biocompatible nanofiber membranes possess great potential for OA therapy under arthroscopy.
Collapse
|
19
|
Ajmal I, Farooq MA, Abbas SQ, Shah J, Majid M, Jiang W. Isoprenaline and salbutamol inhibit pyroptosis and promote mitochondrial biogenesis in arthritic chondrocytes by downregulating β-arrestin and GRK2. Front Pharmacol 2022; 13:996321. [PMID: 36188601 PMCID: PMC9519065 DOI: 10.3389/fphar.2022.996321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis and osteoarthritis overlap many molecular mechanisms of cartilage destruction. Wear and tear in cartilage is chondrocyte-mediated, where chondrocytes act both as effector and target cells. In current study, role of β2-AR was studied in chondrocytes both in vitro and in vivo. High grade inflammation in vitro and in vivo disease models led to decline in anti-inflammatory β2-AR signaling and use of β2-AR agonist attenuated arthritis symptoms. Detailed analysis in chondrocytes revealed that Isoprenaline (ISO) and Salbutamol (SBT) increased cell viability and relative Bcl-2 expression, meanwhile, decreased proteins levels of TNF-α, IL-6 and IL-8 in arthritic chondrocytes when compared with control, respectively. SBT preserved physiological concentration of antioxidant enzymes (CAT, POD, SOD and GSH) in cartilage homogenates and ISO inhibited IL-1β-mediated genotoxicity in arthritic chondrocytes. Moreover, β2-AR agonist increased mitochondrial biogenesis and proteoglycan biosynthesis by upregulating the gene expression of PGC1-α, NRF2 and COL2A1, Acan, respectively. ISO and SBT inhibited extracellular matrix (ECM) degradation by downregulating the gene expression of MMP1, MMP3, MMP9 and ADAMTS5 in vitro and in vivo study. In mechanism, β2-AR agonists decreased β-arrestin and GRK2 pathway, and as a result mice receiving SBT did not exhibit severe disease. Hence our data suggest β2-AR agonist administered at disease onset can inhibit receptor internalization by downregulating the expression of β-arrestin and GRK2 in chondrocytes.
Collapse
Affiliation(s)
- Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar, Pakistan
| | - Jaffer Shah
- Department of Health, New York, NY, United States
- *Correspondence: Jaffer Shah, ; Muhammad Majid, ; Wenzheng Jiang,
| | - Muhammad Majid
- Faculty of Pharmacy, Capital University of Science and Technology Islamabad, Islamabad, Pakistan
- *Correspondence: Jaffer Shah, ; Muhammad Majid, ; Wenzheng Jiang,
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Jaffer Shah, ; Muhammad Majid, ; Wenzheng Jiang,
| |
Collapse
|
20
|
The Role Played by Ferroptosis in Osteoarthritis: Evidence Based on Iron Dyshomeostasis and Lipid Peroxidation. Antioxidants (Basel) 2022; 11:antiox11091668. [PMID: 36139742 PMCID: PMC9495695 DOI: 10.3390/antiox11091668] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis, a recently discovered regulated cell death modality, is characterised by iron-dependent accumulation of lipid hydroperoxides, which can reach lethal levels but can be specifically reversed by ferroptosis inhibitors. Osteoarthritis (OA), the most common degenerative joint disease, is characterised by a complex pathogenesis involving mechanical overload, increased inflammatory mediator levels, metabolic alterations, and cell senescence and death. Since iron accumulation and oxidative stress are the universal pathological features of OA, the role played by ferroptosis in OA has been extensively explored. Increasing evidence has shown that iron dyshomeostasis and lipid peroxidation are closely associated with OA pathogenesis. Therefore, in this review, we summarize recent evidence by focusing on ferroptotic mechanisms and the role played by ferroptosis in OA pathogenesis from the perspectives of clinical findings, animal models, and cell research. By summarizing recent research advances that characterize the relationship between ferroptosis and OA, we highlight avenues for further research and potential therapeutic targets.
Collapse
|
21
|
Zhao W, Yu Y, Zhang Z, He D, Zhang H. Bioinspired Nanospheres as Anti-inflammation and Antisenescence Interfacial Biolubricant for Treating Temporomandibular Joint Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35409-35422. [PMID: 35894784 DOI: 10.1021/acsami.2c09120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of temporomandibular joint (TMJ) osteoarthritis is highly associated with mechanical overloading, which can result in accelerated cartilage degradation and damage due to increased interfacial friction and the release of inflammatory factors and catabolic enzymes. In the present study, we for the first time developed self-assembled drug-free nanospheres with pharmaceutical-active functions, which could be used as an intra-articularly injected biolubricant for the treatment of TMJ osteoarthritis based on a synergistic therapy of enhanced lubrication, anti-inflammation, and antisenescence. The nanospheres possessed the hydrophobic core of dopamine methacrylamide and the hydrophilic shell of sulfobetaine methacrylate, which formed into spherical aggregates in aqueous solution by specific interactions following reversible addition-fragmentation chain transfer polymerization. The biodegradation test, tribological test, and free radical scavenging test showed that the nanospheres were endowed with physiological stability, lubrication enhancement, and free radical scavenging capability. In addition, the in vitro cell test revealed that the nanospheres alleviated inflammatory and senescent phenotype for inflammation and oxidative stress stimulated chondrocytes. Furthermore, the in vivo animal test indicated that the nanospheres, after intra-articular injection into TMJ with an osteoarthritis environment, effectively protected condylar cartilage and subchondral bone from structural damage and attenuated cartilage matrix degradation and aging. In summary, the self-assembled nanospheres might be used as a promising biolubricant for achieving anti-inflammatory and antisenescent treatment of TMJ osteoarthritis.
Collapse
Affiliation(s)
- Weiwei Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yeke Yu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Zhiyuan Zhang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Dongmei He
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
|
23
|
Wang J, Fan Q, Yu T, Zhang Y. Identifying the hub genes and immune cell infiltration in synovial tissue between osteoarthritic and rheumatoid arthritic patients by bioinformatic approach. Curr Pharm Des 2021; 28:497-509. [PMID: 34736376 DOI: 10.2174/1381612827666211104154459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common diseases that result in limb disability and a decrease in quality of life. The major symptoms of OA and RA are pain, swelling, stiffness, and malformation of joints, and each disease also has unique characteristics. OBJECTIVE To compare the pathological mechanisms of OA and RA via weighted correlation network analysis (WGCNA) and immune infiltration analysis and find potential diagnostic and pharmaceutical targets for the treatment of OA and RA. METHODS The gene expression profiles of ten OA and ten RA synovial tissue samples were downloaded from the Gene Expression Omnibus (GEO) database (GSE55235). After obtaining differentially expressed genes (DEGs) via GEO2R, WGCNA was conducted using an R package, and modules and genes that were highly correlated with OA and RA were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network analyses were also conducted. Hub genes were identified using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. Immune infiltration analysis was conducted using the Perl program and CIBERSORT software. RESULTS Two hundred ninety-nine DEGs, 24 modules, 16 GO enrichment terms, 6 KEGG pathway enrichment terms, 10 hub genes (CXCL9, CXCL10, CXCR4, CD27, CD69, CD3D, IL7R, STAT1, RGS1, and ISG20), and 8 kinds of different infiltrating immune cells (plasma cells, CD8 T cells, activated memory CD4 T cells, T helper follicular cells, M1 macrophages, Tregs, resting mast cells, and neutrophils) were found to be involved in the different pathological mechanisms of OA and RA. CONCLUSION Inflammation-associated genes were the top differentially expressed hub genes between OA and RA, and their expression was downregulated in OA. Genes associated with lipid metabolism may have upregulated expression in OA. In addition, immune cells that participate in the adaptive immune response play an important role in RA. OA mainly involves immune cells that are associated with the innate immune response.
Collapse
Affiliation(s)
- Junjie Wang
- Qingdao University, Qingdao, Shandong 266000. China
| | - Qin Fan
- Qingdao University, Qingdao, Shandong 266000. China
| | - Tengbo Yu
- Qingdao University, Qingdao, Shandong 266000. China
| | - Yingze Zhang
- Qingdao University, Qingdao, Shandong 266000. China
| |
Collapse
|
24
|
Destouni A, Tsolis KC, Economou A, Papathanasiou I, Balis C, Mourmoura E, Tsezou A. Chondrocyte protein co-synthesis network analysis links ECM mechanosensing to metabolic adaptation in osteoarthritis. Expert Rev Proteomics 2021; 18:623-635. [PMID: 34348542 DOI: 10.1080/14789450.2021.1962299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Knee osteoarthritis (OA) is one of the most common structural OA disorders globally. Incomplete understanding of the fundamental biological aspects of osteoarthritis underlies the current lack of effective treatment or disease modifying drugs. RESEARCH DESIGN AND METHODS We implemented a systems approach by making use of the statistical network concepts in Weighted Gene Co-expression Analysis to reconstruct the organization of the core proteome network in chondrocytes obtained from OA patients and healthy individuals. Protein modules reflect groups of tightly co-ordinated changes in protein abundance across healthy and OA chondrocytes. RESULTS The unbiased systems analysis identified extracellular matrix (ECM) mechanosensing and glycolysis as two modules that are most highly correlated with ΟΑ. The ECM module was enriched in the OA genetic risk factors tenascin-C (TNC) and collagen 11A1 (COL11A1), as well as in cartilage oligomeric matrix protein (COMP), a biomarker associated with cartilage integrity. Mapping proteins that are unique to OA or healthy chondrocytes onto the core interactome, which connects microenvironment sensing and regulation of glycolysis, identified differences in metabolic and anti-inflammatory adaptation. CONCLUSION The interconnection between cartilage ECM remodeling and metabolism is indicative of the dynamic chondrocyte states and their significance in osteoarthritis.
Collapse
Affiliation(s)
- Aspasia Destouni
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantinos C Tsolis
- KULeuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium
| | - Anastassios Economou
- KULeuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Leuven, Belgium
| | - Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Charalampos Balis
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Evanthia Mourmoura
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
25
|
Kabalyk MA, Nevzorova VA. Molecular and Cellular Mechanisms of Osteoarthritis in Experimental Arterial Hypertension and Hyperlipidemia. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021020065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Redox Status in Women with Rheumathoid Arthritis. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2018-0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
The aim of this study was to assess oxidative status and to set baseline characteristics for female population with established rheumatoid arthritis. Total of 42 patients with rheumatoid arthritis and 48 age- and sex-matched controls were included in the study. Clinical examination was performed and assessed disease activity. Peripheral blood samples were used for all the assays. The markers of oxidative stress were assessed, including plasma levels of index of lipid peroxidation – thiobarbituric acid reactive substances, hydrogen peroxide, superoxide anion radical, nitrites and activity of superoxide dismutase, catalase and reduced glutathione levels as anti-oxidant parameters. In the patients group, levels of hydrogen peroxide and index of lipid peroxidation were higher than in controls. Patients with rheumatoid arthritis had decreased su-peroxide dismutase and catalase activity compared to healthy subjects. Interestingly, controls had higher levels of nitrites compared to patients. Patients showed a marked increase in reactive oxygen species formation and lipid peroxidation as well as decrease in the activity of antioxidant defense system leading to oxidative stress which may contribute to tissue and cartilage damage and hence to the chronicity of the disease.
Collapse
|
27
|
Elmazoglu Z, Aydın Bek Z, Saribas SG, Özoğul C, Goker B, Bitik B, Aktekin CN, Karasu Ç. S-Allylcysteine Inhibits Chondrocyte Inflammation to Reduce Human Osteoarthritis via Targeting RAGE, TLR4, JNK and Nrf2 Signaling: Comparison with Colchicine. Biochem Cell Biol 2021; 99:645-654. [PMID: 33930279 DOI: 10.1139/bcb-2021-0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Discovery of new pharmacological agents is needed to control the progression of osteoarthritis (OA) characterized by progressive joint cartilage damage. Human OA chondrocyte cultures (OAC) were either applied to S-Allyl cysteine (SAC), a sulfur-containing amino acid derivative, or colchicine, an ancient anti-inflammatory therapeutic, for 24 hours. SAC or colchicine did not change viability at 1 nM-10 µM but inhibited p-JNK/pan-JNK. While SAC seems to be more effective, both agents inhibited reactive oxygen species (ROS), 3-nitrotyrosine (3-NT), lipid-hydroperoxides (LPO), advanced lipoxidation end-products (ALEs as 4-hydroxy-2-nonenal, HNE) and advanced glycation end-products (AGEs), and increased glutathione-peroxidase (GPx) and type-II-collagen (COL2). IL-1β, IL-6 and osteopontin (OPN) were more strongly inhibited by SAC than in colchicine. In contrast, TNF-α was inhibited only by SAC, and COX2 only by colchicine. Casp-1/ICE, GM-CSF, receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLR4) were inhibited by both agents, but bone morphogenetic protein 7 (BMP7) was partially inhibited by SAC while induced by colchicine. The nuclear factor erythroid 2-related factor 2 (Nrf2) was induced by SAC; in contrast it was inhibited by colchicine. Although exerting opposite effects on TNF-α, COX2, BMP7 and Nrf2, SAC and colchicine exhibit anti-osteoarthritic properties in OAC by modulating redox sensitive inflammatory signaling.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Gazi University Faculty of Medicine, 64001, Medical Pharmacology, Ankara, BEŞEVLER, Turkey;
| | - Zehra Aydın Bek
- Gazi University Faculty of Medicine, 64001, Medical Pharmacology, Ankara, BEŞEVLER, Turkey;
| | - Sanem Gulistan Saribas
- Kirsehir Ahi Evran University, 187470, Faculty of Medicine, Department of Histology and Embryology, Kirsehir, Kırşehir, Turkey;
| | - Candan Özoğul
- University of Kyrenia, 530180, Faculty of Medicine, Department of Histology and Embryology, Girne, Girne, Cyprus;
| | - Berna Goker
- Gazi University Faculty of Medicine, 64001, Department of Rheumatology, Ankara, BEŞEVLER, Turkey;
| | - Berivan Bitik
- Ankara Training and Research Hospital, 162301, Ankara, Ankara, Turkey;
| | - Cem Nuri Aktekin
- Yildirim Beyazit University Faculty of Medicine, 442146, Department of Orthopedics and Traumatology, Ankara, Ankara, Turkey;
| | - Çimen Karasu
- Gazi University Faculty of Medicine, 64001, Medical Pharmacology, GAZI UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF MEDICAL PHARMACOLOGY, ANKARA, Ankara, BEŞEVLER, Turkey, 06500;
| |
Collapse
|
28
|
Hashimoto K, Akagi M. The role of oxidation of low-density lipids in pathogenesis of osteoarthritis: A narrative review. J Int Med Res 2021; 48:300060520931609. [PMID: 32552129 PMCID: PMC7303502 DOI: 10.1177/0300060520931609] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a chronic joint disorder that causes degeneration of
cartilage, synovial inflammation, and formation of osteophytes. Aging, obesity,
and sex are considered the main risk factors of OA. Recent studies have
suggested that metabolic syndrome (MetS) disorders, such as hypertension,
hyperlipidemia, diabetes mellitus, and obesity, may be involved in the
pathogenesis and progression of OA. MetS disorders are common diseases that also
result in atherosclerosis. Researchers believe that OA and atherosclerosis have
underlying similar molecular mechanisms because the prevalence of both diseases
increases with age. Oxidation of low-density lipoprotein (ox-LDL) is believed to
play a role in the pathogenesis of atherosclerosis. Recent reports have shown
that ox-LDL and low-density lipoprotein receptor 1 (LOX-1) are involved in the
pathogenesis of OA. The purpose of this narrative review is to summarize the
current understanding of the role of the LOX-1/ox-LDL system in the pathogenesis
of OA and to reveal common underlying molecular pathways that are shared by MetS
in OA and the LOX-1/ox-LDL system.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Orthopaedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka, Japan
| | - Masao Akagi
- Department of Orthopaedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka, Japan
| |
Collapse
|
29
|
Preparation and characterization of amnion hydrogel and its synergistic effect with adipose derived stem cells towards IL1β activated chondrocytes. Sci Rep 2020; 10:18751. [PMID: 33127964 PMCID: PMC7603317 DOI: 10.1038/s41598-020-75921-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
Inflammation leads to chondrocyte senescence and cartilage degeneration, resulting in osteoarthritis (OA). Adipose‐derived stem cells (ADSCs) exert paracrine effects protecting chondrocytes from degenerative changes. However, the lack of optimum delivery systems for ADSCs limits its use in the clinic. The use of extracellular matrix based injectable hydrogels has gained increased attention due to their unique properties. In the present study, we developed hydrogels from amnion tissue as a delivery system for ADSCs. We investigated the potential of amnion hydrogel to maintain ADSC functions, the synergistic effect of AM with ADSC in preventing the catabolic responses of inflammation in stimulated chondrocytes. We also investigated the role of Wnt/β-catenin signaling pathway in IL-1β induced inflammation in chondrocytes and the ability of AM-ADSC to inhibit Wnt/β-catenin signaling. Our results showed that AM hydrogels supported cell viability, proliferation, and stemness. ADSCs, AM hydrogels and AM-ADSCs inhibited the catabolic responses of IL-1β and inhibited the Wnt/β-catenin signaling pathway, indicating possible involvement of Wnt/β-catenin signaling pathways in IL-1β induced inflammation. The results also showed that the synergistic effect of AM-ADSCs was more pronounced in preventing catabolic responses in activated chondrocytes. In conclusion, we showed that AM hydrogels can be used as a potential carrier for ADSCs, and can be developed as a potential therapeutic agent for treating OA.
Collapse
|
30
|
Wang CC, Wang CT, Chou WC, Kao CL, Tsai KL. Hyaluronic acid injection reduces inflammatory and apoptotic markers through modulation of AKT by repressing the oxidative status of neutrophils from osteoarthritic synovial fluid. Int J Biol Macromol 2020; 165:2765-2772. [PMID: 33736281 DOI: 10.1016/j.ijbiomac.2020.10.154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Hyaluronic acid (HA) injection into the osteoarthritis (OA) knee is one of the most popular treatment methods. The study aimed to determine whether HA exhibits antioxidant and antiapoptotic functions in the treatment of OA. Sixty-two outpatient patients with a diagnosis of knee OA were recruited. All patients received (HA) injections twice at a 2-week interval. Synovial fluid through sono-guided aspiration was collected for neutrophils isolation. Oxidative stress, apoptotic markers and related pathways in neutrophils were investigated. Among the oxidative stress markers, 4-hydroxynonenal (4-HNE) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) significantly decreased after HA injection, while superoxide dismutase (SOD) and catalase did not change, which indicated that HA injection had an antioxidant effect that was not through activation of antioxidant enzymes. In addition, we found that HA injection decreased p-AKT levels and decreased p-p53 and p-p38 but not p-GSK-3β. Moreover, we confirmed that HA injection reduced proapoptotic markers through a mitochondria-dependent pathway and proinflammatory events. In vitro investigations also confirmed that HA reduced TNF-α-caused apoptosis in chondrocytes, however, this phenomenon was vanished by AKT inhibitor. Taken together, HA injection into human OA knees resulted antioxidant and antiapoptotic functions, as well as reduced inflammation, through modulation of the AKT pathway.
Collapse
Affiliation(s)
- Chien-Chih Wang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital Yuli Branch, Hualien, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Tien Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Lan Kao
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices, National Chiao-Tung University, Hsinchu, Taiwan.
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
31
|
Yagi H, Ulici V, Tuan RS. Polyphenols suppress inducible oxidative stress in human osteoarthritic and bovine chondrocytes. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100064. [PMID: 36474689 PMCID: PMC9718082 DOI: 10.1016/j.ocarto.2020.100064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) have been implicated in chondrocyte senescence and cartilage aging, pathogenesis of osteoarthritis (OA), and rheumatoid arthritis. Naturally occurring polyphenolic compounds (PPCs), such as curcumin (turmeric), resveratrol (grape), and epigallocatechin-3-gallate (EGCG) (green tea), have been known for their anti-inflammatory and chondroprotective effects. However, the potential protective effects of these PPCs against oxidative stress in chondrocytes are unclear. To investigate this, bovine articular chondrocytes and human osteoarthritic chondrocytes were pre-treated with PPCs at varying concentrations, and then exposed to hydrogen peroxide (H2O2) as an ROS inducer or S-nitroso-N-acetylpenicillamine (SNAP) as a NO donor. Alternatively, chondrocytes were co-treated with polyphenols and H2O2. Intracellular ROS/NO were measured using a fluorescent dye technique (H2DCF-DA for ROS; DAF-FM for NO). Our findings showed that PPC pre-/co-treatment inhibited both H2O2-induced ROS and SNAP-induced NO at different concentrations in both bovine chondrocytes and human osteoarthritic chondrocytes. Curcumin also increased glutathione peroxidase activity in the presence of H2O2 in bovine chondrocytes. Taken together, these findings indicate that PPCs are capable of suppressing oxidative stress- induced responses in chondrocytes, which may have potential therapeutic value for OA clinical application.
Collapse
Key Words
- Chondrocytes
- DAF-FM, 4-amino-5-methylamino-2′,7′-difluorofluorescein
- DMEM, Dulbecco's Modified Eagle's Medium
- DMOADs, disease modifying osteoarthritis drugs
- DMSO, dimethyl sulfoxide
- EDTA, ethylenediaminetetraacetic acid
- EGCG, epigallocatechin-3-gallate
- FBS, fetal bovine serum
- GPx, glutathione peroxidase
- H2DCF-DA, 2′,7′-dichlorodihydrofluorescein diacetate
- H2O2, hydrogen peroxide
- NAC, N-acetyl-l-cysteine
- NO, nitric oxide
- Oxidative stress
- PBS, phosphate-buffered saline
- Polyphenols
- ROS, reactive oxygen species
- Reactive oxygen species
- SNAP, S-nitroso-N-acetylpenicillamine
- l-NAME, Nω-nitro-l-arginine methyl ester hydrochloride
Collapse
Affiliation(s)
- Haruyo Yagi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | | | - Rocky S. Tuan
- Corresponding author. Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
32
|
Kang D, Shin J, Cho Y, Kim HS, Gu YR, Kim H, You KT, Chang MJ, Chang CB, Kang SB, Kim JS, Kim VN, Kim JH. Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development. Sci Transl Med 2020; 11:11/486/eaar6659. [PMID: 30944169 DOI: 10.1126/scitranslmed.aar6659] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/14/2018] [Accepted: 02/22/2019] [Indexed: 12/17/2022]
Abstract
A progressive loss of cartilage matrix leads to the development of osteoarthritis (OA). Matrix homeostasis is disturbed in OA cartilage as the result of reduced production of cartilage-specific matrix and increased secretion of catabolic mediators by chondrocytes. Chondrocyte senescence is a crucial cellular event contributing to such imbalance in matrix metabolism during OA development. Here, we identify miR-204 as a markedly up-regulated microRNA in OA cartilage. miR-204 is induced by transcription factors GATA4 and NF-κB in response to senescence signals. Up-regulated miR-204 simultaneously targets multiple components of the sulfated proteoglycan (PG) biosynthesis pathway, effectively shutting down PG anabolism. Ectopic expression of miR-204 in joints triggers spontaneous cartilage loss and OA development, whereas miR-204 inhibition ameliorates experimental OA, with concomitant recovery of PG synthesis and suppression of inflammatory senescence-associated secretory phenotype (SASP) factors in cartilage. Collectively, we unravel a stress-activated senescence pathway that underlies disrupted matrix homeostasis in OA cartilage.
Collapse
Affiliation(s)
- Donghyun Kang
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Jungkwon Shin
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Yongsik Cho
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Hyeon-Seop Kim
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Young-Ran Gu
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Haedong Kim
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Kwon Tae You
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Moon Jong Chang
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Boramae Hospital, 07061 Seoul, South Korea
| | - Chong Bum Chang
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Boramae Hospital, 07061 Seoul, South Korea
| | - Seung-Baik Kang
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Boramae Hospital, 07061 Seoul, South Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Jin-Hong Kim
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea. .,Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, 08826 Seoul, South Korea
| |
Collapse
|
33
|
The Protective Effect of New Carnosine-Hyaluronic Acid Conjugate on the Inflammation and Cartilage Degradation in the Experimental Model of Osteoarthritis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Osteoarthritis (OA) is a disease that currently has no cure. There are numerous studies showing that carnosine and hyaluronic acid (HA) have a positive pharmacological action during joint inflammation. For this reason, the goal of this research was to discover the protective effect of a new carnosine conjugate with hyaluronic acid (FidHycarn) on the inflammatory response and on the cartilage degradation in an in vivo experimental model of OA. This model was induced by a single intra-articular (i.ar.) injection of 25 µL of normal saline with 1 mg of monosodium iodoacetate solution (MIA) in the knee joint of rats. MIA injection caused histological alterations and degradation of the cartilage, as well as behavioral changes. Oral treatment with FidHycarn ameliorated the macroscopic signs, improved thermal hyperalgesia and the weight distribution of the hind paw, and decreased histological and radiographic alterations. The oxidative damage was analyzed by evaluating the levels of nitrotyrosine and inducible nitric oxide synthase (iNOS) that were significantly reduced in FidHycarn rats. Moreover, the levels of pro-inflammatory cytokines and chemokines were also significantly reduced by FidHycarn. Therefore, for the first time, the effectiveness of oral administration of FidHycarn has been demonstrated in an osteoarthritis model. In conclusion, the new FidHycarn could represent an interesting therapeutic strategy to combat osteoarthritis.
Collapse
|
34
|
Ren Y, Wang ZY, Wei X, Xu L, Gul RM, Huang SS, Xu JZ, Li ZM. Insights into Oxidation of the Ultrahigh Molecular Weight Polyethylene Artificial Joint Related to Lipid Peroxidation. ACS APPLIED BIO MATERIALS 2019; 3:547-553. [PMID: 35019398 DOI: 10.1021/acsabm.9b00960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yue Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Zi-Yang Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Xin Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Lu Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201899 Shanghai, China
| | - Rizwan M. Gul
- Department of Mechanical Engineering, University of Engineering and Technology, 25120 Peshawar, Pakistan
| | - Shi-Shu Huang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China
| |
Collapse
|
35
|
Kabalyk MA, Nevzorova VA, Kovalenko TS, Sukhanova GI. Endothelium-dependent molecular mechanisms of articular cartilage and subchondral bone remodeling in conditions of cardiovascular comorbidity. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2019. [DOI: 10.15829/1728-8800-2019-5-102-107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
36
|
Ashraf S, Kim BJ, Park S, Park H, Lee SH. RHEB gene therapy maintains the chondrogenic characteristics and protects cartilage tissue from degenerative damage during experimental murine osteoarthritis. Osteoarthritis Cartilage 2019; 27:1508-1517. [PMID: 31229684 DOI: 10.1016/j.joca.2019.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is characterized by cartilage degeneration resulting from hypertrophic changes in chondrocytes caused by altered gene expression. The involvement of Ras homolog enriched in brain (RHEB) in OA regulation is unclear. METHODS Human knee articular cartilage samples - were analyzed for structural and biological changes by histology, immunohistochemistry, real time PCR and western blotting. OA-mouse model developed by surgical destabilization of the medial meniscus (DMM) were treated with adenovirus harboring Rheb gene to analyze onset and progression of OA. Histological scoring, immunohistochemistry, and TUNEL assay was performed to assess cartilage damage across the entire joint. RESULTS Human and mouse OA cartilage is degenerated and has markedly reduced levels of RHEB. Human OA-degenerated chondrocytes (DC) exhibited a fibroblastic phenotype and 80 % of degenerative cartilage were senescent, with higher levels of reactive oxygen species (ROS). Gene expression analysis of DC revealed almost no COL2A1 expression and reduced SOX9 and RHEB expression. Transient transfection of RHEB rescued the DC phenotype and reduced senescence and ROS levels markedly. RHEB overexpression also increased COL2A1 and SOX9 expression. In an OA-mouse model, the Rheb protein level decreased as the severity of OA increased. Ectopic expression of Rheb using adenovirus in mouse-OA cartilage suppressed surgically-induced OA pathogenesis accompanied by modulation of Adamts5, Mmp 13, Col 10, and Col2a1 expression. Rheb induction significantly reduced apoptosis in OA-cartilage. CONCLUSION RHEB plays an important role in maintaining the chondrogenic characteristics of chondrocytes, and has potential in preventing progression of OA in the destabilize the medial meniscus (DMM) mouse model of OA.
Collapse
Affiliation(s)
- S Ashraf
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - B J Kim
- Department of Medical Biotechnology, Dongguk University, Seoul, Republic of Korea
| | - S Park
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea
| | - H Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - S-H Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Yen YW, Lai YJ, Kong ZL. Dietary Supplements of Shiikuwasha Extract Attenuates Osteoarthritis Progression in Meniscal/ligamentous Injury and Obese Rats. Nutrients 2019; 11:nu11061312. [PMID: 31212619 PMCID: PMC6628107 DOI: 10.3390/nu11061312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 01/02/2023] Open
Abstract
Osteoarthritis (OA), also called degenerative joint disease, is characterized by joint cartilage loss and is strongly linked to obesity. Medicine to alleviate pain is currently the only treatment. Shiikuwasha extract (SE) has been reported to possess valuable bioactive substances exhibiting anti-inflammatory, antiobesity, and anticancer effects. Research is limited to the use of SE in the treatment of OA and obesity. We performed both anterior cruciate ligament transections and medial meniscectomies to induce OA on Sprague–Dawley rats after 11 weeks of a high fat diet followed by 9 weeks of oral SE administration (300, 600, and 1500 mg/kg). This study showed that SE treatment could reduce weight gain and joint pain. Additionally, SE significantly decreased triglycerides and total cholesterol in plasma of the S1500 group but increased high-density lipoprotein cholesterol in the plasma of the S600 group. Meanwhile, plasma levels of tumor necrosis factor alpha (TNF-α) was significantly reduced in the S1500 groups. Histopathological findings confirmed administration of SE attenuated cartilage degeneration. Immunohistochemistry examination demonstrated that caspase 3 and phospho-Janus kinase 2 (p-JAK2) expression levels on chondrocytes were downregulated by SE treatment. Our findings demonstrate that SE can alleviate OA progression by improving obesity.
Collapse
Affiliation(s)
- Yu-Wen Yen
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Ying-Jiun Lai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
38
|
Luzardo-Álvarez A, Lamela-Gómez I, Otero-Espinar F, Blanco-Méndez J. Development, Characterization, and In Vitro Evaluation of Resveratrol-Loaded Poly-(ε-caprolactone) Microcapsules Prepared by Ultrasonic Atomization for Intra-Articular Administration. Pharmaceutics 2019; 11:E249. [PMID: 31141945 PMCID: PMC6631008 DOI: 10.3390/pharmaceutics11060249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
: Intra-articular administration of drugs to the joint in the treatment of joint disease has the potential to minimize the systemic bioavailability and the usual side-effects associated with oral drug administration. In this work, a drug delivery system is proposed to achieve an anti-inflammatory local effect using resveratrol (RSV). This study aims to develop microcapsules made of poly-(ε-caprolactone) (PCL) by ultrasonic atomization to preserve the antioxidant activity of RSV, to prevent its degradation and to suppress the inflammatory response in activated RAW 264.7 macrophages. An experimental design was performed to build a mathematical model that could estimate the effect of nozzle power and polymer concentration on particle size and encapsulation efficiency. RSV-loaded microcapsules showed adequate morphology, particle size, and loading efficiency properties. RSV formulations exhibited negligible cytotoxicity and an efficient amelioration of inflammatory responses, in terms of Nitric Oxide (NO), ROS (Reactive Oxygen Species), and lipid peroxidation in macrophages. Thus, RSV-loaded microcapsules merit consideration as a drug delivery system suitable for intra-articular administration in inflammatory disorders affecting the joint.
Collapse
Affiliation(s)
- Asteria Luzardo-Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain.
| | - Iván Lamela-Gómez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain.
| | - Francisco Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus de Santiago de Compostela, University of Santiago de Compostela, Santiago de Compostela 14875, Spain.
| | - José Blanco-Méndez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus de Santiago de Compostela, University of Santiago de Compostela, Santiago de Compostela 14875, Spain.
| |
Collapse
|
39
|
Lepetsos P, Papavassiliou KA, Papavassiliou AG. Redox and NF-κB signaling in osteoarthritis. Free Radic Biol Med 2019; 132:90-100. [PMID: 30236789 DOI: 10.1016/j.freeradbiomed.2018.09.025] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023]
Abstract
Human cells have to deal with the constant production of reactive oxygen species (ROS). Although ROS overproduction might be harmful to cell biology, there are plenty of data showing that moderate levels of ROS control gene expression by maintaining redox signaling. Osteoarthritis (OA) is the most common joint disorder with a multi-factorial etiology including overproduction of ROS. ROS overproduction in OA modifies intracellular signaling, chondrocyte life cycle, metabolism of cartilage matrix and contributes to synovial inflammation and dysfunction of the subchondral bone. In arthritic tissues, the NF-κB signaling pathway can be activated by pro-inflammatory cytokines, mechanical stress, and extracellular matrix degradation products. This activation results in regulation of expression of many cytokines, inflammatory mediators, transcription factors, and several matrix-degrading enzymes. Overall, NF-κB signaling affects cartilage matrix remodeling, chondrocyte apoptosis, synovial inflammation, and has indirect stimulatory effects on downstream regulators of terminal chondrocyte differentiation. Interaction between redox signaling and NF-κB transcription factors seems to play a distinctive role in OA pathogenesis.
Collapse
Affiliation(s)
- Panagiotis Lepetsos
- Fourth Department of Orthopaedics & Trauma, 'KAT' General Hospital, Kifissia, 14561 Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece.
| |
Collapse
|
40
|
Yao Y, Zhang H, Wang Z, Ding J, Wang S, Huang B, Ke S, Gao C. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration. J Mater Chem B 2019; 7:5019-5037. [DOI: 10.1039/c9tb00847k] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ROS-responsive biomaterials alleviate the oxidative stress in tissue microenvironments, promoting tissue regeneration and disease therapy.
Collapse
Affiliation(s)
- Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Baiqiang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Shifeng Ke
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
41
|
Rieder B, Weihs AM, Weidinger A, Szwarc D, Nürnberger S, Redl H, Rünzler D, Huber-Gries C, Teuschl AH. Hydrostatic pressure-generated reactive oxygen species induce osteoarthritic conditions in cartilage pellet cultures. Sci Rep 2018; 8:17010. [PMID: 30451865 PMCID: PMC6242959 DOI: 10.1038/s41598-018-34718-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/22/2018] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common causes of disability and represents a major socio-economic burden. Despite intensive research, the molecular mechanisms responsible for the initiation and progression of OA remain inconclusive. In recent years experimental findings revealed elevated levels of reactive oxygen species (ROS) as a major factor contributing to the onset and progression of OA. Hence, we designed a hydrostatic pressure bioreactor system that is capable of stimulating cartilage cell cultures with elevated ROS levels. Increased ROS levels in the media did not only lead to an inhibition of glycosaminoglycans and collagen II formation but also to a reduction of already formed glycosaminoglycans and collagen II in chondrogenic mesenchymal stem cell pellet cultures. These effects were associated with the elevated activity of matrix metalloproteinases as well as the increased expression of several inflammatory cytokines. ROS activated different signaling pathways including PI3K/Akt and MAPK/ERK which are known to be involved in OA initiation and progression. Utilizing the presented bioreactor system, an OA in vitro model based on the generation of ROS was developed that enables the further investigation of ROS effects on cartilage degradation but can also be used as a versatile tool for anti-oxidative drug testing.
Collapse
Affiliation(s)
- Bernhard Rieder
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Anna M Weihs
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Dorota Szwarc
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Sylvia Nürnberger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200, Vienna, Austria.,Department of Orthopedics and Trauma-Surgery, Division of Trauma-Surgery, Medical University of Vienna, 1090, Vienna, Austria.,University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Dominik Rünzler
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Carina Huber-Gries
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria
| | - Andreas H Teuschl
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
42
|
Deng ZH, Li YS, Gao X, Lei GH, Huard J. Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis Cartilage 2018; 26:1153-1161. [PMID: 29580979 DOI: 10.1016/j.joca.2018.03.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/18/2018] [Accepted: 03/19/2018] [Indexed: 02/02/2023]
Abstract
Degeneration of articular cartilage (AC) tissue is the most common cause of osteoarthritis (OA) and rheumatoid arthritis. Bone morphogenetic proteins (BMPs) play important roles in bone and cartilage formation. This article reviews the experimental and clinical applications of BMPs in cartilage regeneration. Experimental evidence indicates that BMPs play an important role in protection against cartilage damage caused by inflammation or trauma, by binding to different receptor combinations and, consequently, activating different intracellular signaling pathways. Loss of function of BMP-related receptors contributes to the decreased intrinsic repair capacity of damaged cartilage and, thus, the multifunctional effects of BMPs make them attractive tools for the treatment of cartilage damage in patients with degenerative diseases. However, the development of BMP therapy as a treatment modality for cartilage regeneration has been hampered by certain factors, such as the eligibility of participants in clinical trials, financial support, drug delivery carrier safety, availabilities of effective scaffolds, appropriate selection of optimal dose and timing of administration, and side effects. Further research is needed to overcome these issues for future routine clinical applications. Research and development leading to the successful application of BMPs can initiate a new era in the treatment of cartilage degenerative diseases like OA.
Collapse
Affiliation(s)
- Z H Deng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Department of Orthopaedic Surgery, Center for Tissue Engineering and Aging Research, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong Province, China
| | - Y S Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - X Gao
- Department of Orthopaedic Surgery, Center for Tissue Engineering and Aging Research, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; The Steadman Philippon Research Institute, Vail, CO, USA
| | - G H Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - J Huard
- Department of Orthopaedic Surgery, Center for Tissue Engineering and Aging Research, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; The Steadman Philippon Research Institute, Vail, CO, USA.
| |
Collapse
|
43
|
Synergistic effect of glucosamine and vitamin E against experimental rheumatoid arthritis in neonatal rats. Biomed Pharmacother 2018; 105:835-840. [DOI: 10.1016/j.biopha.2018.05.136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 11/18/2022] Open
|
44
|
Chin KY, Ima-Nirwana S. The Role of Vitamin E in Preventing and Treating Osteoarthritis - A Review of the Current Evidence. Front Pharmacol 2018; 9:946. [PMID: 30186176 PMCID: PMC6113565 DOI: 10.3389/fphar.2018.00946] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
Osteoarthritis is a debilitating disease of the joint involving cartilage degeneration and chondrocytes apoptosis. Oxidative stress is one of the many proposed mechanisms underpinning joint degeneration in osteoarthritis. The current pharmacotherapies emphasize pain and symptomatic management of the patients but do not alter the biological processes underlying the cartilage degeneration. Vitamin E is a potential agent to prevent or treat osteoarthritis due to its antioxidant and anti-inflammatory effects. This review aims to summarize the current evidence on the relationship between vitamin E and osteoarthritis derived from preclinical and human studies. Cellular studies showed that vitamin E mitigated oxidative stress in cartilage explants or chondrocyte culture invoked by mechanical stress or free radicals. Animal studies suggested that vitamin E treatment prevented cartilage degeneration and improve oxidative status in animal models of osteoarthritis. Low circulating or synovial vitamin E was observed in human osteoarthritic patients compared to healthy controls. Observational studies also demonstrated that vitamin E was related to induction or progression of osteoarthritis in the general population. Vitamin E supplementation might improve the outcomes in patients with osteoarthritis, but negative results were also reported. Different isomers of vitamin E might possess distinct anti-osteoarthritic effects. As a conclusion, vitamin E may retard the progression of osteoarthritis by ameliorating oxidative stress and inflammation of the joint. Further studies are warranted to develop vitamin E as an anti-osteoarthritis agent to reduce the global burden of this disease.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Notoginseng Radix and Rehmanniae Radix Preparata Extract Combination (YH23537) Reduces Pain and Cartilage Degeneration in Rats with Monosodium Iodoacetate-Induced Osteoarthritis. J Med Food 2018; 21:745-754. [DOI: 10.1089/jmf.2017.4041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
46
|
Jobelyn® attenuates inflammatory responses and neurobehavioural deficits associated with complete Freund-adjuvant-induced arthritis in mice. Biomed Pharmacother 2018; 98:585-593. [DOI: 10.1016/j.biopha.2017.12.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 01/14/2023] Open
|
47
|
Phull AR, Nasir B, Haq IU, Kim SJ. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem Biol Interact 2018; 281:121-136. [PMID: 29258867 DOI: 10.1016/j.cbi.2017.12.024] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
There are numerous extra- and intra-cellular processes involved in the production of reactive oxygen species (ROS). Augmented ROS generation can cause the damage of biomolecules such as proteins, nucleic acid and lipids. ROS act as an intracellular signaling component and is associated with various inflammatory responses, chronic arthropathies, including rheumatoid arthritis (RA). It is well documented that ROS can activate different signaling pathways having a vital importance in the patho-physiology of RA. Hence, understanding of the molecular pathways and their interaction might be advantageous in the development of novel therapeutic approaches for RA.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongju Daehak-Ro, Gongju-Si, Chungnam, 32588, Republic of Korea
| | - Bakht Nasir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongju Daehak-Ro, Gongju-Si, Chungnam, 32588, Republic of Korea.
| |
Collapse
|
48
|
The cross-sectional and longitudinal effect of hyperlipidemia on knee osteoarthritis: Results from the Dongfeng-Tongji cohort in China. Sci Rep 2017; 7:9739. [PMID: 28852192 PMCID: PMC5575029 DOI: 10.1038/s41598-017-10158-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/04/2017] [Indexed: 01/15/2023] Open
Abstract
To quantify the cross-sectional and longitudinal effects of hyperlipidemia on knee osteoarthritis (KOA), we studied 13,906 middle-aged or older participants from the Dongfeng-Tongji cohort. Physical examinations were performed at baseline and follow-up. Knee pain was diagnosed by self-reported pain or stiffness. Clinical KOA was diagnosed from knee pain complains and clinical X-ray radiographs. The prevalence of knee pain and clinical KOA was 39.0% and 6.7% at baseline, respectively. Hyperlipidemia was associated with knee pain (OR 1.34, 1.23–1.45) and clinical KOA (1.34, 1.15–1.55). Compared with the participants without hyperlipidemia or use of lipid-lowering drugs, those with hyperlipidemia but no use of lipid-lowering drugs had higher risks of knee pain (1.28, 1.15–1.43) and clinical KOA (1.20, 0.97–1.48), those with hyperlipidemia and use of lipid-lowering drugs had the highest risks of knee pain (1.40, 1.26–1.56) and clinical KOA (1.45, 1.21–1.75). The risks were not elevated among participants without hyperlipidemia but using lipid-lowering drugs for prevention of other diseases. Furthermore, each 1-unit increase in triglyceride was associated with 9% and 5% increases in the risk of clinical KOA prevalence and clinical KOA onset, respectively. In conclusion, hyperlipidemia is associated with elevated risks of knee pain and clinical KOA among middle-aged or older adults.
Collapse
|
49
|
Is there a relationship between serum ox-LDL, oxidative stress, and PON1 in knee osteoarthritis? Clin Rheumatol 2017. [DOI: 10.1007/s10067-017-3732-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Medina-Luna D, Santamaría-Olmedo MG, Zamudio-Cuevas Y, Martínez-Flores K, Fernández-Torres J, Martínez-Nava GA, Clavijo-Cornejo D, Hernández-Díaz C, Olivos-Meza A, Gomez-Quiroz LE, Gutiérrez-Ruiz MC, Pineda C, Blanco F, Reginato AM, López-Reyes A. Hyperlipidemic microenvironment conditionates damage mechanisms in human chondrocytes by oxidative stress. Lipids Health Dis 2017; 16:114. [PMID: 28606092 PMCID: PMC5468939 DOI: 10.1186/s12944-017-0510-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/01/2017] [Indexed: 11/30/2022] Open
Abstract
Background Currently, two pathogenic pathways describe the role of obesity in osteoarthritis (OA); one through biomechanical stress, and the other by the contribution of systemic inflammation. The aim of this study was to evaluate the effect of free fatty acids (FFA) in human chondrocytes (HC) expression of proinflammatory factors and reactive oxygen species (ROS). Methods HC were exposed to two different concentrations of FFA in order to evaluate the secretion of adipokines through cytokines immunoassays panel, quantify the protein secretion of FFA-treated chondrocytes, and fluorescent cytometry assays were performed to evaluate the reactive oxygen species (ROS) production. Results HC injury was observed at 48 h of treatment with FFA. In the FFA-treated HC the production of reactive oxygen species such as superoxide radical, hydrogen peroxide, and the reactive nitrogen species increased significantly in a at the two-dose tested (250 and 500 μM). In addition, we found an increase in the cytokine secretion of IL-6 and chemokine IL-8 in FFA-treated HC in comparison to the untreated HC. Conclusion In our in vitro model of HC, a hyperlipidemia microenvironment induces an oxidative stress state that enhances the inflammatory process mediated by adipokines secretion in HC.
Collapse
Affiliation(s)
- Daniel Medina-Luna
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Calzada México Xochimilco 289, 14389, Mexico City, Mexico
| | - Mónica Guadalupe Santamaría-Olmedo
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Calzada México Xochimilco 289, 14389, Mexico City, Mexico
| | - Yessica Zamudio-Cuevas
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Calzada México Xochimilco 289, 14389, Mexico City, Mexico
| | - Karina Martínez-Flores
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Calzada México Xochimilco 289, 14389, Mexico City, Mexico
| | - Javier Fernández-Torres
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Calzada México Xochimilco 289, 14389, Mexico City, Mexico.,Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Avenida San Rafael Atlixco 186, Iztapalapa, 09340, Mexico City, Mexico
| | - Gabriela Angélica Martínez-Nava
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Calzada México Xochimilco 289, 14389, Mexico City, Mexico
| | - Denise Clavijo-Cornejo
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Calzada México Xochimilco 289, 14389, Mexico City, Mexico
| | - Cristina Hernández-Díaz
- Musculoeskeletal and Articular Ultrasound Laboratory, Calzada Mexico-Xochimilco 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico D.F, Mexico
| | - Anell Olivos-Meza
- Arthroscopy Service; Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Secretaría de Salud, Calzada Mexico-Xochimilco 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico D.F, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Avenida San Rafael Atlixco 186, Iztapalapa, 09340, Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Avenida San Rafael Atlixco 186, Iztapalapa, 09340, Mexico City, Mexico
| | - Carlos Pineda
- Musculoeskeletal and Articular Ultrasound Laboratory, Calzada Mexico-Xochimilco 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico D.F, Mexico
| | - Francisco Blanco
- Rheumatology Division, ProteoRed/ISC III Proteomics Group, INBIC, A Coruña, Spain
| | - Anthony M Reginato
- Division of Rheumatology, Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Alberto López-Reyes
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Calzada México Xochimilco 289, 14389, Mexico City, Mexico.
| |
Collapse
|