1
|
Kraus S, Benard O, Naor Z, Seger R. C-Src is Activated by the EGF Receptor in a Pathway that Mediates JNK and ERK Activation by Gonadotropin-Releasing Hormone in COS7 Cells. Int J Mol Sci 2020; 21:ijms21228575. [PMID: 33202981 PMCID: PMC7697137 DOI: 10.3390/ijms21228575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022] Open
Abstract
The key participants in G-protein-coupled receptor (GPCR) signaling are the mitogen-activated protein kinase (MAPK) signaling cascades. The mechanisms involved in the activation of the above cascades by GPCRs are not fully elucidated. The prototypical GPCR is the receptor for gonadotropin-releasing hormone (GnRHR), which serves as a key regulator of the reproductive system. Here, we expressed GnRHR in COS7 cells and found that GnRHR transmits its signals to MAPKs mainly via Gαi and the EGF receptor, without the involvement of Hb-EGF or PKCs. The main pathway that leads to JNK activation downstream of the EGF receptor involves a sequential activation of c-Src and PI3K. ERK activation by GnRHR is mediated by the EGF receptor, which activates Ras either directly or via c-Src. Beside the main pathway, the dissociated Gβγ and β-arrestin may initiate additional (albeit minor) pathways that lead to MAPK activation in the transfected COS7 cells. The pathways detected are significantly different from those in other GnRHR-bearing cells, indicating that GnRH can utilize various signaling mechanisms for MAPK activation. The unique pathway elucidated here, in which c-Src and PI3K are sequentially activated downstream of the EGF receptor, may serve as a prototype of signaling mechanisms by GnRHR and additional GPCRs in various cell types.
Collapse
Affiliation(s)
- Sarah Kraus
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel; (S.K.); (O.B.)
| | - Outhiriaradjou Benard
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel; (S.K.); (O.B.)
| | - Zvi Naor
- Department of Biochemistry, Tel Aviv University, Ramat Aviv 69978, Israel;
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel; (S.K.); (O.B.)
- Correspondence: ; Tel.: +972-8-9343602
| |
Collapse
|
2
|
Xu H, Sun B, Liao Z, Pribytkova E, Zhang Q, Wei Y, Liang M. Possible involvement of PKC/MAPK pathway in the regulation of GnRH by dietary arachidonic acid in the brain of male tongue sole
Cynoglossus semilaevis. AQUACULTURE RESEARCH 2019; 50:3528-3538. [DOI: 10.1111/are.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2025]
Affiliation(s)
- Houguo Xu
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Bo Sun
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
| | - Zhangbin Liao
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
| | - Elena Pribytkova
- N. Laverov Federal Center for Integrated Arctic Research Russian Academy of Sciences Arkhangelsk Russia
| | - Qinggong Zhang
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
3
|
Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: Tales of mice and men. Metabolism 2018; 86:3-17. [PMID: 29223677 DOI: 10.1016/j.metabol.2017.11.018] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Reproduction is controlled by the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons play a central role in this axis through production of GnRH, which binds to a membrane receptor on pituitary gonadotrophs and stimulates the biosynthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Multiple factors affect GnRH neuron migration, GnRH gene expression, GnRH pulse generator, GnRH secretion, GnRH receptor expression, and gonadotropin synthesis and release. Among them anosmin is involved in the guidance of the GnRH neuron migration, and a loss-of-function mutation in its gene leads to a failure of their migration from the olfactory placode to the hypothalamus, with consequent anosmic hypogonadotropic hypogonadism (Kallmann syndrome). There are also cases of hypogonadotropic hypogonadim with normal sense of smell, due to mutations of other genes. Another protein, kisspeptin plays a crucial role in the regulation of GnRH pulse generator and the pubertal development. GnRH is the main hypothalamic regulator of the release of gonadotropins. Finally, FSH and LH are the essential hormonal regulators of testicular functions, acting through their receptors in Sertoli and Leydig cells, respectively. The main features of the male HPG axis will be described in this review.
Collapse
Affiliation(s)
- Athina Kaprara
- Unit of Reproductive Endocrinology, Medical School, Aristotle University of Thessaloniki, Greece.
| | | |
Collapse
|
4
|
Kahnamouyi S, Nouri M, Farzadi L, Darabi M, Hosseini V, Mehdizadeh A. The role of mitogen-activated protein kinase-extracellular receptor kinase pathway in female fertility outcomes: a focus on pituitary gonadotropins regulation. Ther Adv Endocrinol Metab 2018; 9:209-215. [PMID: 29977499 PMCID: PMC6022971 DOI: 10.1177/2042018818772775] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/30/2018] [Indexed: 11/16/2022] Open
Abstract
Mammalian reproduction systems are largely regulated by the secretion of two gonadotropins, that is, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The main action of LH and FSH on the ovary is to stimulate secretion of estradiol and progesterone, which play an important role in the ovarian function and reproductive cycle control. FSH and LH secretions are strictly controlled by the gonadotropin-releasing hormone (GnRH), which is secreted from the hypothalamus into the pituitary vascular system. Maintaining normal secretion of LH and FSH is dependent on pulsatile secretion of GnRH. Extracellular signal-regulated kinase (ERK) proteins, as the main components of mitogen-activated protein kinase (MAPK) signaling pathways, are involved in the primary regulation of GnRH-stimulated transcription of the gonadotropins' α subunit in the pituitary cells. However, GnRH-stimulated expression of the β subunit has not yet been reported. Furthermore, GnRH-mediated stimulation of ERK1 and ERK2 leads to several important events such as cell proliferation and differentiation. In this review, we briefly introduce the relationship between ERK signaling and gonadotropin secretion, and its importance in female infertility.
Collapse
Affiliation(s)
- Samira Kahnamouyi
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Laya Farzadi
- Women Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Wang W, Chen ZX, Guo DY, Tao YX. Regulation of prostate cancer by hormone-responsive G protein-coupled receptors. Pharmacol Ther 2018; 191:135-147. [PMID: 29909235 DOI: 10.1016/j.pharmthera.2018.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/01/2018] [Indexed: 11/27/2022]
Abstract
Regulation of prostate cancer by androgen and androgen receptor (AR), and blockade of AR signaling by AR antagonists and steroidogenic enzyme inhibitors have been extensively studied. G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate almost all physiological processes. Nearly 40% of FDA-approved drugs in the market target GPCRs. A variety of GPCRs that mediate reproductive function have been demonstrated to be involved in the regulation of prostate cancer. These GPCRs include gonadotropin-releasing hormone receptor, luteinizing hormone receptor, follicle-stimulating hormone receptor, relaxin receptor, ghrelin receptor, and kisspeptin receptor. We highlight here GPCR regulation of prostate cancer by these GPCRs. Further therapeutic approaches targeting these GPCRs for the treatment of prostate cancer are summarized.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Zhao-Xia Chen
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
6
|
Mugami S, Dobkin-Bekman M, Rahamim-Ben Navi L, Naor Z. Differential roles of PKC isoforms (PKCs) in GnRH stimulation of MAPK phosphorylation in gonadotrope derived cells. Mol Cell Endocrinol 2018; 463:97-105. [PMID: 28392410 DOI: 10.1016/j.mce.2017.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/30/2022]
Abstract
The role of protein kinase C (PKC) isoforms (PKCs) in GnRH-stimulated MAPK [ERK1/2, JNK1/2 and p38) phosphorylation was examined in gonadotrope derived cells. GnRH induced a protracted activation of ERK1/2 and a slower and more transient activation of JNK1/2 and p38MAPK. Gonadotropes express conventional PKCα and PKCβII, novel PKCδ, PKCε and PKCθ, and atypical PKC-ι/λ. The use of green fluorescent protein (GFP)-PKCs constructs revealed that GnRH induced rapid translocation of PKCα and PKCβII to the plasma membrane, followed by their redistribution to the cytosol. PKCδ and PKCε localized to the cytoplasm and Golgi, followed by the rapid redistribution by GnRH of PKCδ to the perinuclear zone and of PKCε to the plasma membrane. The use of dominant negatives for PKCs and peptide inhibitors for the receptors for activated C kinase (RACKs) has revealed differential role for PKCα, PKCβII, PKCδ and PKCε in ERK1/2, JNK1/2 and p38MAPK phosphorylation in a ligand-and cell context-dependent manner. The paradoxical findings that PKCs activated by GnRH and PMA play a differential role in MAPKs phosphorylation may be explained by persistent vs. transient redistribution of selected PKCs or redistribution of a given PKC to the perinuclear zone vs. the plasma membrane. Thus, we have identified the PKCs involved in GnRH stimulated MAPKs phosphorylation in gonadotrope derived cells. Once activated, the MAPKs will mediate the transcription of the gonadotropin subunits and GnRH receptor genes.
Collapse
Affiliation(s)
- Shany Mugami
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Masha Dobkin-Bekman
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Liat Rahamim-Ben Navi
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
7
|
Rahamim-Ben Navi L, Tsukerman A, Feldman A, Melamed P, Tomić M, Stojilkovic SS, Boehm U, Seger R, Naor Z. GnRH Induces ERK-Dependent Bleb Formation in Gonadotrope Cells, Involving Recruitment of Members of a GnRH Receptor-Associated Signalosome to the Blebs. Front Endocrinol (Lausanne) 2017; 8:113. [PMID: 28626446 PMCID: PMC5454083 DOI: 10.3389/fendo.2017.00113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have previously described a signaling complex (signalosome) associated with the GnRH receptor (GnRHR). We now report that GnRH induces bleb formation in the gonadotrope-derived LβT2 cells. The blebs appear within ~2 min at a turnover rate of ~2-3 blebs/min and last for at least 90 min. Formation of the blebs requires active ERK1/2 and RhoA-ROCK but not active c-Src. Although the following ligands stimulate ERK1/2 in LβT2 cells: EGF > GnRH > PMA > cyclic adenosine monophosphate (cAMP), they produced little or no effect on bleb formation as compared to the robust effect of GnRH (GnRH > PMA > cAMP > EGF), indicating that ERK1/2 is required but not sufficient for bleb formation possibly due to compartmentalization. Members of the above mentioned signalosome are recruited to the blebs, some during bleb formation (GnRHR, c-Src, ERK1/2, focal adhesion kinase, paxillin, and tubulin), and some during bleb retraction (vinculin), while F-actin decorates the blebs during retraction. Fluorescence intensity measurements for the above proteins across the cells showed higher intensity in the blebs vs. intracellular area. Moreover, GnRH induces blebs in primary cultures of rat pituitary cells and isolated mouse gonadotropes in an ERK1/2-dependent manner. The novel signalosome-bleb pathway suggests that as with the signalosome, the blebs are apparently involved in cell migration. Hence, we have extended the potential candidates which are involved in the blebs life cycle in general and for the GnRHR in particular.
Collapse
Affiliation(s)
- Liat Rahamim-Ben Navi
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Tsukerman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alona Feldman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Melanija Tomić
- National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Zvi Naor,
| |
Collapse
|
8
|
Perrett RM, McArdle CA. Molecular mechanisms of gonadotropin-releasing hormone signaling: integrating cyclic nucleotides into the network. Front Endocrinol (Lausanne) 2013; 4:180. [PMID: 24312080 PMCID: PMC3834291 DOI: 10.3389/fendo.2013.00180] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian reproductive function in both males and females. It acts via G-protein coupled receptors on gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteinizing hormone and follicle-stimulating hormone. These receptors couple primarily via G-proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl cyclases that generate cGMP. Here we provide an overview of these pathways. We emphasize mechanisms underpinning pulsatile hormone signaling and the possible interplay of GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide signaling.
Collapse
Affiliation(s)
- Rebecca M. Perrett
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Craig A. McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
- *Correspondence: Craig A. McArdle, Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, 1 Whitson Street, Bristol BS1 3NY, UK e-mail:
| |
Collapse
|
9
|
Pemberton JG, Orr ME, Booth M, Chang JP. MEK1/2 differentially participates in GnRH actions on goldfish LH and GH secretion and hormone protein availability: acute and long-term effects, in vitro. Gen Comp Endocrinol 2013; 192:149-58. [PMID: 23557646 DOI: 10.1016/j.ygcen.2013.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
Two endogenous gonadotropin-releasing hormones (GnRHs), sGnRH and cGnRH-II, stimulate LH and GH release via protein kinase C (PKC) signaling in goldfish. In this study, extracellular signal-regulated kinase kinase 1 and 2 (MEK1/2) involvement in acute and prolonged GnRH effects on goldfish gonadotrope and somatotrope functions, as well as potential interactions with PKC in the control of LH and GH release from goldfish pituitary cells was investigated. MEK1/2 inhibitors U0126 and PD098059 significantly decreased sGnRH but not cGnRH-II-stimulated GH release from perifused goldfish pituitary cells and U0126 significantly reduced the GH, but not the LH, release responses to synthetic PKC activators. In long-term static incubations (up to 24h) with goldfish pituitary cells, U0126 generally did not affect basal LH release but attenuated sGnRH- and cGnRH-II-induced LH release, as well as the time-dependent effects of sGnRH and/or cGnRH-II to elevate total LH availability (sum of release and cell content). sGnRH and cGnRH-II reduced cellular GH content and/or total GH availability at 2, 6, and 12h while static incubation with U0126 alone generally increased basal GH release but reduced cellular GH content and/or the total amount of GH available. U0126 also selectively reduced the sGnRH-induced GH release responses at 6 and 24h but paradoxically inhibited cGnRH-II-stimulated GH secretion while enhancing sGnRH-elicited GH release at 2h. Taken together, this study reveals the complexity of GnRH-stimulated MEK1/2 signaling and adds to our understanding of cell-type- and GnRH-isoform-selective signal transduction in the regulation of pituitary cell hormone release and production.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
10
|
Chung-Davidson YW, Wang H, Bryan MB, Wu H, Johnson NS, Li W. An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus). Gen Comp Endocrinol 2013; 189:24-31. [PMID: 23644156 DOI: 10.1016/j.ygcen.2013.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 11/27/2022]
Abstract
Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1h exposure. After 2h exposure, 3kACA increased lGnRH-I and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
11
|
Andrade J, Quinn J, Becker RZ, Shupnik MA. AMP-activated protein kinase is a key intermediary in GnRH-stimulated LHβ gene transcription. Mol Endocrinol 2013; 27:828-39. [PMID: 23518923 DOI: 10.1210/me.2012-1323] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GnRH regulation of pituitary gonadotropin gene transcription is critical for fertility, and metabolic dysregulation is associated with reproductive disorders and altered hypothalamic-pituitary responses. Here, we examined signaling pathways in gonadotropes through which GnRH modulates gonadotropin levels, and potential common signaling pathways with insulin. Using LβT2 cells, we show that GnRH rapidly (5 minutes) triggers activating phosphorylation of AMP-activated protein kinase (AMPK) up to 5-fold; this stimulation is enhanced by insulin through increased total AMPKα levels and activity. GnRH also stimulated c-Jun N-terminal kinase (JNK) and ERK activation, whereas insulin alone stimulated Akt. Inhibition of AMPK activity by compound C, or diminishing AMPK levels by small interfering RNA against AMPKα, prevented GnRH-stimulated transcription of the endogenous LHβ gene and transfected LHβ promoter. Egr-1 (early growth response-1), a transcription factor required for LHβ expression, is synthesized in response to GnRH, and compound C prevents this induction. However, overexpression of Egr-1 in the presence of compound C did not restore GnRH stimulation of LHβ, suggesting that AMPK stimulation of transcription also occurs through additional mechanisms or signaling pathways. One such pathway may be JNK activation, because GnRH stimulation of JNK activity and LHβ transcription occurs more slowly than stimulation of AMPK activity, and AMPK inhibition by compound C or small interfering RNA also prevented GnRH-stimulated JNK phosphorylation. Finally, in primary mouse pituitary cells, GnRH also stimulates AMPK, and AMPK inhibition suppresses GnRH-stimulated LHβ transcription. These studies indicate a novel role for AMPK in GnRH-stimulated transcription in pituitary gonadotropes and a potential common mechanism for GnRH and metabolic modulation of fertility.
Collapse
Affiliation(s)
- Josefa Andrade
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | | | | | | |
Collapse
|
12
|
Thompson IR, Ciccone NA, Xu S, Zaytseva S, Carroll RS, Kaiser UB. GnRH pulse frequency-dependent stimulation of FSHβ transcription is mediated via activation of PKA and CREB. Mol Endocrinol 2013; 27:606-18. [PMID: 23393127 DOI: 10.1210/me.2012-1281] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Expression of pituitary FSH and LH, under the control of pulsatile GnRH, is essential for fertility. cAMP response element-binding protein (CREB) has been implicated in the regulation of FSHβ gene expression, but the molecular mechanisms by which pulsatile GnRH regulates CREB activation remain poorly understood. We hypothesized that CREB is activated by a distinct signaling pathway in response to pulsatile GnRH in a frequency-dependent manner to dictate the FSHβ transcriptional response. GnRH stimulation of CREB phosphorylation (pCREB) in the gonadotrope-derived LβT2 cell line was attenuated by a protein kinase A (PKA) inhibitor, H89. A dominant negative PKA (DNPKA) reduced GnRH-stimulated pCREB and markedly decreased GnRH stimulation of FSHβ mRNA and FSHβLUC activity, but had little effect on LHβLUC activity, indicating relative specificity of this pathway. In perifusion studies, FSHβ mRNA levels and FSHβLUC activities were increased by pulsatile GnRH, with significantly greater increases at low compared with high pulse frequencies. DNPKA markedly reduced these GnRH-stimulated FSHβ responses at both low and high pulse frequencies. Correlating with FSHβ activation, both PKA activity and levels of pCREB were increased to a greater extent by low compared with high GnRH pulse frequencies, and the induction of pCREB was also attenuated by overexpression of DNPKA at both low and high pulse frequencies. Taken together, these data indicate that a PKA-mediated signaling pathway mediates GnRH activation of CREB at low-pulse frequencies, playing a significant role in the decoding of the hypothalamic GnRH signal to result in frequency-dependent FSHβ activation.
Collapse
Affiliation(s)
- Iain R Thompson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
13
|
Chung-Davidson YW, Wang H, Siefkes MJ, Bryan MB, Wu H, Johnson NS, Li W. Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey. BMC Neurosci 2013; 14:11. [PMID: 23331321 PMCID: PMC3599739 DOI: 10.1186/1471-2202-14-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vertebrate pheromones are known to prime the endocrine system, especially the hypothalamic-pituitary-gonadal (HPG) axis. However, no known pheromone molecule has been shown to modulate directly the synthesis or release of gonadotropin releasing hormone (GnRH), the main regulator of the HPG axis. We selected sea lamprey (Petromyzon marinus) as a model system to determine whether a single pheromone component alters the output of GnRH.Sea lamprey male sex pheromones contain a main component, 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate or 3kPZS), which has been shown to modulate behaviors of mature females. Through a series of experiments, we tested the hypothesis that 3kPZS modulates both synthesis and release of GnRH, and subsequently, HPG output in immature sea lamprey. RESULTS The results showed that natural male pheromone mixtures induced differential steroid responses but facilitated sexual maturation in both sexes of immature animals (χ(2) = 5.042, dF = 1, p < 0.05). Exposure to 3kPZS increased plasma 15α-hydroxyprogesterone (15α-P) concentrations (one-way ANOVA, p < 0.05) and brain gene expressions (genes examined: three lamprey (l) GnRH-I transcripts, lGnRH-III, Jun and Jun N-terminal kinase (JNK); one-way ANOVA, p < 0.05), but did not alter the number of GnRH neurons in the hypothalamus in immature animals. In addition, 3kPZS treatments increased lGnRH peptide concentrations in the forebrain and modulated their levels in plasma. Overall, 3kPZS modulation of HPG axis is more pronounced in immature males than in females. CONCLUSIONS We conclude that a single male pheromone component primes the HPG axis in immature sea lamprey in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
| | - Huiyong Wang
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
| | - Michael J Siefkes
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
- Present address: Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, MI, 48105, USA
| | - Mara B Bryan
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
- Present address: Energy Biosciences Institute, University of California, 130 Calvin Laboratory, MC 5230, Berkeley, CA, 94720, USA
| | - Hong Wu
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
- Present address: Department of Microbiology & Immunology, School of Medicine, Emory University, Rollins Research Center G214, 201 Dowman Drive, Atlanta, Georgia, 30322, USA
| | - Nicholas S Johnson
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
- Present address: USGS, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI, 49759, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
| |
Collapse
|
14
|
Limonta P, Montagnani Marelli M, Mai S, Motta M, Martini L, Moretti RM. GnRH receptors in cancer: from cell biology to novel targeted therapeutic strategies. Endocr Rev 2012; 33:784-811. [PMID: 22778172 DOI: 10.1210/er.2012-1014] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The crucial role of pituitary GnRH receptors (GnRH-R) in the control of reproductive functions is well established. These receptors are the target of GnRH agonists (through receptor desensitization) and antagonists (through receptor blockade) for the treatment of steroid-dependent pathologies, including hormone-dependent tumors. It has also become increasingly clear that GnRH-R are expressed in cancer tissues, either related (i.e. prostate, breast, endometrial, and ovarian cancers) or unrelated (i.e. melanoma, glioblastoma, lung, and pancreatic cancers) to the reproductive system. In hormone-related tumors, GnRH-R appear to be expressed even when the tumor has escaped steroid dependence (such as castration-resistant prostate cancer). These receptors are coupled to a G(αi)-mediated intracellular signaling pathway. Activation of tumor GnRH-R by means of GnRH agonists elicits a strong antiproliferative, antimetastatic, and antiangiogenic (more recently demonstrated) activity. Interestingly, GnRH antagonists have also been shown to elicit a direct antitumor effect; thus, these compounds behave as antagonists of GnRH-R at the pituitary level and as agonists of the same receptors expressed in tumors. According to the ligand-induced selective-signaling theory, GnRH-R might assume various conformations, endowed with different activities for GnRH analogs and with different intracellular signaling pathways, according to the cell context. Based on these consistent experimental observations, tumor GnRH-R are now considered a very interesting candidate for novel molecular, GnRH analog-based, targeted strategies for the treatment of tumors expressing these receptors. These agents include GnRH agonists and antagonists, GnRH analog-based cytotoxic (i.e. doxorubicin) or nutraceutic (i.e. curcumin) hybrids, and GnRH-R-targeted nanoparticles delivering anticancer compounds.
Collapse
Affiliation(s)
- Patrizia Limonta
- Section of Biomedicine and Endocrinology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Breen KM, Thackray VG, Hsu T, Mak-McCully RA, Coss D, Mellon PL. Stress levels of glucocorticoids inhibit LHβ-subunit gene expression in gonadotrope cells. Mol Endocrinol 2012; 26:1716-31. [PMID: 22851703 DOI: 10.1210/me.2011-1327] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Increased glucocorticoid secretion is a common response to stress and has been implicated as a mediator of reproductive suppression upon the pituitary gland. We utilized complementary in vitro and in vivo approaches in the mouse to investigate the role of glucocorticoids as a stress-induced intermediate capable of gonadotrope suppression. Repeated daily restraint stress lengthened the ovulatory cycle of female mice and acutely reduced GnRH-induced LH secretion and synthesis of LH β-subunit (LHβ) mRNA, coincident with increased circulating glucocorticoids. Administration of a stress level of glucocorticoid, in the absence of stress, blunted LH secretion in ovariectomized female mice, demonstrating direct impairment of reproductive function by glucocorticoids. Supporting a pituitary action, glucocorticoid receptor (GR) is expressed in mouse gonadotropes and treatment with glucocorticoids reduces GnRH-induced LHβ expression in immortalized mouse gonadotrope cells. Analyses revealed that glucocorticoid repression localizes to a region of the LHβ proximal promoter, which contains early growth response factor 1 (Egr1) and steroidogenic factor 1 sites critical for GnRH induction. GR is recruited to this promoter region in the presence of GnRH, but not by dexamethasone alone, confirming the necessity of the GnRH response for GR repression. In lieu of GnRH, Egr1 induction is sufficient for glucocorticoid repression of LHβ expression, which occurs via GR acting in a DNA- and dimerization-independent manner. Collectively, these results expose the gonadotrope as an important neuroendocrine site impaired during stress, by revealing a molecular mechanism involving Egr1 as a critical integrator of complex formation on the LHβ promoter during GnRH induction and GR repression.
Collapse
Affiliation(s)
- Kellie M Breen
- Department of Reproductive Medicine/Neuroscience, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0674, USA
| | | | | | | | | | | |
Collapse
|
16
|
Binder AK, Grammer JC, Herndon MK, Stanton JD, Nilson JH. GnRH regulation of Jun and Atf3 requires calcium, calcineurin, and NFAT. Mol Endocrinol 2012; 26:873-86. [PMID: 22446101 DOI: 10.1210/me.2012-1045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
GnRH binds to its receptor on gonadotropes and activates multiple members of the MAPK signaling family that in turn regulates the expression of several immediate early genes (IEGs) including Jun, Fos, Atf3, and Egr1. These IEGs confer hormonal responsiveness to gonadotrope-specific genes including Gnrhr, Cga, Fshb, and Lhb. In this study we tested the hypothesis that GnRH specifically regulates the accumulation of Jun and Atf3 mRNA through a pathway that includes intracellular Ca²⁺, calcineurin, and nuclear factor of activated T cells (NFAT). Our results indicate that pretreatment of murine LβT2 cells with 1, 2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)-ester, a Ca²⁺ chelator, reduced the expression of all the IEGs to varying degrees, whereas treatment with thapsigargin, an intracellular Ca²⁺ protein pump inhibitor, increased the expression of the IEG. Furthermore, cyclosporin A, a calcineurin-specific inhibitor, reduced the ability of GnRH to regulate accumulation of Jun and Atf3 mRNA and to a lesser extent Fos. In contrast, Egr1 mRNA was unaffected. NFATs are transcription factors regulated by calcineurin and were detected in LβT2 cells. GnRH increased luciferase activity of an NFAT-dependent promoter reporter that was dependent on intracellular Ca²⁺ and calcineurin activity. Additionally, although small interfering RNA specific for Nfat4 only marginally reduced GnRH regulation of Jun, Fos, and Atf3 mRNA accumulation, activity of an activator protein-1-responsive reporter construct was reduced by 48%. Together these data suggest that calcineurin and NFAT are new members of the gonadotrope transcriptional network that confer hormonal responsiveness to several key genes required for gonadotropin synthesis and secretion.
Collapse
Affiliation(s)
- April K Binder
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, USA
| | | | | | | | | |
Collapse
|
17
|
Pascucci B, D'Errico M, Parlanti E, Giovannini S, Dogliotti E. Role of nucleotide excision repair proteins in oxidative DNA damage repair: an updating. BIOCHEMISTRY (MOSCOW) 2011; 76:4-15. [PMID: 21568835 DOI: 10.1134/s0006297911010032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA repair is a crucial factor in maintaining a low steady-state level of oxidative DNA damage. Base excision repair (BER) has an important role in preventing the deleterious effects of oxidative DNA damage, but recent evidence points to the involvement of several repair pathways in this process. Oxidative damage may arise from endogenous and exogenous sources and may target nuclear and mitochondrial DNA as well as RNA and proteins. The importance of preventing mutations associated with oxidative damage is shown by a direct association between defects in BER (i.e. MYH DNA glycosylase) and colorectal cancer, but it is becoming increasingly evident that damage by highly reactive oxygen species plays also central roles in aging and neurodegeneration. Mutations in genes of the nucleotide excision repair (NER) pathway are associated with diseases, such as xeroderma pigmentosum and Cockayne syndrome, that involve increased skin cancer and/or developmental and neurological symptoms. In this review we will provide an updating of the current evidence on the involvement of NER factors in the control of oxidative DNA damage and will attempt to address the issue of whether this unexpected role may unlock the difficult puzzle of the pathogenesis of these syndromes.
Collapse
Affiliation(s)
- B Pascucci
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, Rome, Italy.
| | | | | | | | | |
Collapse
|
18
|
Possible involvement of PACAP and PACAP type 1 receptor in GnRH-induced FSH β-subunit gene expression. ACTA ACUST UNITED AC 2011; 167:227-32. [PMID: 21329727 DOI: 10.1016/j.regpep.2011.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/04/2011] [Accepted: 02/08/2011] [Indexed: 11/23/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor, PACAP type 1 receptor (PAC1-R) play an important role in the induction of pituitary gonadotropins. In this present study, we examined whether the PAC1-R was involved in the action of gonadotropin-releasing hormone (GnRH) on gonadotropin FSHβ subunit expression. In a static culture, GnRH stimulation significantly increased PAC1-R expression as well as PACAP gene expression in the gonadotroph cell line, LβT2. Stimulation with low frequency GnRH pulses, which preferentially increase FSHβ, increased the expression of both the PAC1-R and the PACAP genes to a greater extent than did high frequency pulses. In the determination of transcriptional activity, the GnRH antagonist, cetrotide inhibited GnRH-induced FSHβ promoter activity completely, but PACAP6-38, a PACAP antagonist, had no effect on GnRH-induced FSHβ promoter activity. As expected, PACAP-induced FSHβ promoter activity was significantly prevented by PACAP6-38, but was not affected by cetrotide. PACAP6-38, however, significantly prevented GnRH-increased FSHβ mRNA expression. These observations suggest that GnRH-induced FSHβ gene expression is stimulated partially through PAC1-R by gonadotrophs producing PACAP or PAC1-R.
Collapse
|
19
|
Sharma S, Sharma PM, Mistry DS, Chang RJ, Olefsky JM, Mellon PL, Webster NJG. PPARG regulates gonadotropin-releasing hormone signaling in LbetaT2 cells in vitro and pituitary gonadotroph function in vivo in mice. Biol Reprod 2010; 84:466-75. [PMID: 21076077 DOI: 10.1095/biolreprod.110.088005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Peroxisome proliferators-activated receptor gamma (PPARG) ligands improve insulin sensitivity in type 2 diabetes and polycystic ovarian syndrome (PCOS). Despite clinical studies showing normalization of pituitary responsiveness to gonadotropin-releasing hormone (GnRH) in patients with PCOS, the precise role of PPARG in regulating the hypothalamic-pituitary-gonadal axis remains unclear. In the present study, we tested the hypothesis that the PPARG agonist rosiglitazone has a direct effect on the pituitary. In mouse LbetaT2 immortalized gonadotrophs, rosiglitazone treatment inhibited GnRH stimulation of the stress kinases p38MAPK and MAPKs/JNKs, but did not alter activation of ERKs, both in the presence and absence of activin. Furthermore, p38MAPK signaling was critical for both Lhb and Fshb promoter activity, and rosiglitazone suppressed the GnRH-mediated induction of Lhb and Fshb mRNA. Depletion of PPARG using a lentivirally encoded short hairpin RNA abolishes the effect of rosiglitazone to suppress activation of JNKs and induction of the transcription factors EGR1 and FOS as well as the gonadotropin genes Lhb and Fshb. Lastly, we show conditional knockout of Pparg in pituitary gonadotrophs caused an increase in luteinizing hormone levels in female mice, a decrease in follicle-stimulating hormone in male mice, and a fertility defect characterized by reduced litter size. Taken together, our data support a direct role for PPARG in modulating pituitary function in vitro and in vivo.
Collapse
Affiliation(s)
- Shweta Sharma
- Medical Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Dobkin-Bekman M, Rahamin-Ben Navi L, Shterntal B, Sviridonov L, Przedecki F, Naidich-Exler M, Brodie C, Seger R, Naor Z. Differential role of PKC isoforms in GnRH and phorbol 12-myristate 13-acetate activation of extracellular signal-regulated kinase and Jun N-terminal kinase. Endocrinology 2010; 151:4894-907. [PMID: 20810567 DOI: 10.1210/en.2010-0114] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH is the first key hormone of reproduction. The role of protein kinase C (PKC) isoforms in GnRH-stimulated MAPK [ERK and Jun N-terminal kinase (JNK)] was examined in the αT3-1 and LβT2 gonadotrope cells. Incubation of the cells with GnRH resulted in a protracted activation of ERK1/2 and a slower and more transient activation of JNK1/2. Gonadotropes express conventional PKCα and conventional PKCβII, novel PKCδ, novel PKCε, and novel PKCθ, and atypical PKC-ι/λ. The use of green fluorescent protein-PKC constructs revealed that GnRH induced rapid translocation of PKCα and PKCβII to the plasma membrane, followed by their redistribution to the cytosol. PKCδ and PKCε localized to the cytoplasm and Golgi, followed by the rapid redistribution by GnRH of PKCδ to the perinuclear zone and of PKCε to the plasma membrane. Interestingly, PKCα, PKCβII, and PKCε translocation to the plasma membrane was more pronounced and more prolonged in phorbol-12-myristate-13-acetate (PMA) than in GnRH-treated cells. The use of selective inhibitors and dominant-negative plasmids for the various PKCs has revealed that PKCβII, PKCδ, and PKCε mediate ERK2 activation by GnRH, whereas PKCα, PKCβII, PKCδ, and PKCε mediate ERK2 activation by PMA. Also, PKCα, PKCβII, PKCδ, and PKCε are involved in GnRH and PMA stimulation of JNK1 in a cell-context-dependent manner. We present preliminary evidence that persistent vs. transient redistribution of selected PKCs or redistribution of a given PKC to the perinuclear zone vs. the plasma membrane may dictate its selective role in ERK or JNK activation. Thus, we have described the contribution of selective PKCs to ERK and JNK activation by GnRH.
Collapse
Affiliation(s)
- Masha Dobkin-Bekman
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Purwana IN, Kanasaki H, Oride A, Mijiddorj T, Shintani N, Hashimoto H, Baba A, Miyazaki K. GnRH-induced PACAP and PAC1 receptor expression in pituitary gonadotrophs: a possible role in the regulation of gonadotropin subunit gene expression. Peptides 2010; 31:1748-55. [PMID: 20553777 DOI: 10.1016/j.peptides.2010.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/15/2010] [Accepted: 05/17/2010] [Indexed: 11/17/2022]
Abstract
We examined the expression of pituitary adenylate cyclase-activating polypeptide (PACAP) and the PACAP type 1 receptor (PAC1-R) mRNA following gonadotropin-releasing hormone (GnRH) stimulation using the gonadotroph cell line LbetaT2. GnRH stimulation increased PACAP and PAC1-R mRNA expression in a static culture. Increase in the cell surface density of the PAC1-R following transfection with PAC1-R expression vectors significantly increased gonadotropin LHbeta and FSHbeta subunit promoter activities following 100 nM PACAP stimulation. In addition, increasing concentrations of PACAP stimulation augmented the promoter activities for both LHbeta and FSHbeta in PAC-1R overexpressing cells. In the cells with PAC1-R, the effect of GnRH was further potentiated in the presence of PACAP from 5.31+/-0.93 to 9.89+/-0.38-fold for LHbeta and for FSHbeta subunit, respectively; from 2.58+/-0.31-fold by GnRH alone to 10.90+/-2.79-fold with PACAP. The combination treatment with GnRH and PACAP did not augment the ERK phosphorylation induced by GnRH alone. PACAP expectedly increased cAMP accumulation and this effect was significantly attenuated in the presence of GnRH. PACAP gene expression was more prominent following lower frequency GnRH pulses (every 120 min) in a perifused culture. Our results suggest that PACAP and PAC1-R are produced locally within the gonadotrophs following GnRH stimulation. They subsequently affect the gonadotrophs in an autocrine manner and modulate the GnRH pulse-dependent specific regulation of gonadotropin subunits.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Membrane/metabolism
- Cyclic AMP/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Follicle Stimulating Hormone, beta Subunit
- Gene Expression Regulation
- Genes, Reporter
- Gonadotrophs/metabolism
- Gonadotropin-Releasing Hormone/metabolism
- Gonadotropins, Pituitary/metabolism
- Luteinizing Hormone, beta Subunit
- Mice
- Phosphorylation
- Pituitary Adenylate Cyclase-Activating Polypeptide/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Promoter Regions, Genetic
- Protein Subunits/metabolism
- RNA, Messenger/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Surface Properties
- Time Factors
Collapse
Affiliation(s)
- Indri N Purwana
- Department of Obstetrics and Gynecology, Shimane University, School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Shimane Prefecture, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Thackray VG, Mellon PL, Coss D. Hormones in synergy: regulation of the pituitary gonadotropin genes. Mol Cell Endocrinol 2010; 314:192-203. [PMID: 19747958 PMCID: PMC2815122 DOI: 10.1016/j.mce.2009.09.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 11/23/2022]
Abstract
The precise interplay of hormonal influences that governs gonadotropin hormone production by the pituitary includes endocrine, paracrine and autocrine actions of hypothalamic gonadotropin-releasing hormone (GnRH), activin and steroids. However, most studies of hormonal regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the pituitary gonadotrope have been limited to analyses of the isolated actions of individual hormones. LHbeta and FSHbeta subunits have distinct patterns of expression during the menstrual/estrous cycle as a result of the integration of activin, GnRH, and steroid hormone action. In this review, we focus on studies that delineate the interplay among these hormones in the regulation of LHbeta and FSHbeta gene expression in gonadotrope cells and discuss how signaling cross-talk contributes to differential expression. We also discuss how recent technological advances will help identify additional factors involved in the differential hormonal regulation of LH and FSH.
Collapse
Affiliation(s)
| | | | - Djurdjica Coss
- To whom the correspondence should be addressed: Djurdjica Coss, Department of Reproductive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0674, Phone: (858) 534-1762, Fax: (858) 534-1438,
| |
Collapse
|
23
|
Purwana IN, Kanasaki H, Oride A, Miyazaki K. Induction of dual specificity phosphatase 1 (DUSP1) by gonadotropin-releasing hormone (GnRH) and the role for gonadotropin subunit gene expression in mouse pituitary gonadotroph L beta T2 cells. Biol Reprod 2009; 82:352-62. [PMID: 19846601 DOI: 10.1095/biolreprod.109.080440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We examined the expression of dual specificity phosphatase 1 (DUSP1) by gonadotropin-releasing hormone (GnRH) stimulation and investigated the role of DUSP1 on gonadotropin gene expression using LbetaT2 gonadotroph cell line. DUSP1 expression was markedly increased 60 min after GnRH stimulation, and mitogen-activated protein kinase 3/1 (MAPK3/1) activation was gradually decreased after 60 min. GnRH-induced MAPK3/1 activation was completely inhibited by U0126, a MEK inhibitor, whereas GnRH-induced DUSP1 expression was partially inhibited by U0126. GnRH-induced DUSP1 induction was inhibited by triptolide, a diterpenoid triepoxide. In contrast, this compound potentiated MAPK3/1 activation. U0126 prevented GnRH-stimulated gonadotropin subunit promoter activation dose dependently, and 10 muM of U0126 reduced the effects of GnRH on the Lhb and Fshb promoters to 79.15% and 55.66%, respectively. GnRH-stimulated activation of Lhb and Fshb promoters as well as serum response factor (Srf) promoters were almost completely inhibited by triptolide, suggesting that this component had a nonspecific effect to the cells. Dusp1 siRNA reduced the expression of DUSP1 and augmented MAPK3/1 phosphorylation, but it did not increase of gonadotropin promoters. By overexpression of DUSP1, both GnRH-stimulated Lhb and Fshb promoters were significantly reduced. We have previously shown that insulin-like growth factor 1 (IGF1) increases MAPK3/1 but does not activate gonadotropin subunit promoters. IGF1 failed to induce DUSP1 expression. In addition, under pulsatile GnRH stimulation, DUSP1 expression was observed following high-frequency GnRH pulses but not following low-frequency pulses. Our study demonstrated that DUSP1, induced by GnRH, functions not only as an MAPK3/1-inactivating phosphatase but also as an important mediator in gonadotropin subunit gene expression regulation.
Collapse
Affiliation(s)
- Indri N Purwana
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | | | | | | |
Collapse
|
24
|
Mutiara S, Kanasaki H, Oride A, Purwana IN, Shimasaki S, Yamamoto H, Miyazaki K. Follistatin gene expression by gonadotropin-releasing hormone: a role for cyclic AMP and mitogen-activated protein kinase signaling pathways in clonal gonadotroph LbetaT2 cells. Mol Cell Endocrinol 2009; 307:125-32. [PMID: 19533841 DOI: 10.1016/j.mce.2009.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The purpose of the present study was to examine the signal transduction pathways involved in follistatin gene expression induced by GnRH in the LbetaT2 cell line. The LHbeta-subunit was predominantly increased by high frequency GnRH pulses (30 min interval); whereas low frequency pulses (120 min) increased FSHbeta. In a static culture, follistatin expression was significantly increased at 12 h (2.35 +/- 0.80-fold) after the addition of GnRH. Following pulsatile stimulation, follistatin mRNA was increased by high frequency GnRH pulses, but not by low frequency pulses. In a static culture, GnRH maximally activated extracellular signal-regulated kinase (ERK) 10 min (3.2 +/- 0.55-fold) after treatment. In addition, intracellular cAMP accumulated up to 2.1 +/- 0.76-fold. Follistatin promoter activity was significantly increased following transfection with either a constitutively active cAMP dependent protein kinase (PKA) or a constitutively active MEK kinase (MEKK). The induction of follistatin gene expression by GnRH was completely inhibited by H89, a protein kinase A inhibitor, and U0126, a MEK inhibitor. Follistatin gene expression was also activated by both PACAP and CPT-cAMP under static culture conditions. Maximal ERK activation levels were nearly identical regardless of GnRH pulse frequency; however, high frequency GnRH pulses elevated both the intracellular cAMP level as well as cAMP-response element (Cre) promoter activity. These results suggest that both the PKA and ERK pathways are necessary for the induction of the follistatin promoter. Furthermore, the intracellular cAMP level, but not ERK activity, determined whether follistatin was induced following high frequency GnRH pulses.
Collapse
Affiliation(s)
- Sandra Mutiara
- Department of Obstetrics and Gynecology, Shimane University, School of Medicine, Izumo City, Shimane Prefecture, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Dobkin-Bekman M, Naidich M, Rahamim L, Przedecki F, Almog T, Lim S, Melamed P, Liu P, Wohland T, Yao Z, Seger R, Naor Z. A preformed signaling complex mediates GnRH-activated ERK phosphorylation of paxillin and FAK at focal adhesions in L beta T2 gonadotrope cells. Mol Endocrinol 2009; 23:1850-64. [PMID: 19628583 DOI: 10.1210/me.2008-0260] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most receptor tyrosine kinases and G protein-coupled receptors (GPCRs) operate via a limited number of MAPK cascades but still exert diverse functions, and therefore signal specificity remains an enigma. Also, most GPCR ligands utilize families of receptors for mediation of diverse biological actions; however, the mammalian type I GnRH receptor (GnRHR) seems to be the sole receptor mediating GnRH-induced gonadotropin synthesis and release. Signaling complexes associated with GPCRs may thus provide the means for signal specificity. Here we describe a signaling complex associated with the GnRHR, which is a unique GPCR lacking a C-terminal tail. Unlike other GPCRs, this signaling complex is preformed, and exposure of L beta T2 gonadotropes to GnRH induces its dynamic rearrangement. The signaling complex includes c-Src, protein kinase C delta, -epsilon, and -alpha, Ras, MAPK kinase 1/2, ERK1/2, tubulin, focal adhesion kinase (FAK), paxillin, vinculin, caveolin-1, kinase suppressor of Ras-1, and the GnRHR. Exposure to GnRH (5 min) causes MAPK kinase 1/2, ERK1/2, tubulin, vinculin, and the GnRHR to detach from c-Src, but they reassociate within 30 min. On the other hand, FAK, paxillin, the protein kinase Cs, and caveolin-1 stay bound to c-Src, whereas kinase suppressor of Ras-1 appears in the complex only 30 min after GnRH stimulation. GnRH was found to activate ERK1/2 in the complex in a c-Src-dependent manner, and the activated ERK1/2 subsequently phosphorylates FAK and paxillin. In parallel, caveolin-1, FAK, vinculin, and paxillin are phosphorylated on Tyr residues apparently by GnRH-activated c-Src. Receptor tyrosine kinases and GPCRs translocate ERK1/2 to the nucleus to phosphorylate and activate transcription factors. We therefore propose that the role of the multiprotein signaling complex is to sequester a cytosolic pool of activated ERK1/2 to phosphorylate FAK and paxillin at focal adhesions.
Collapse
Affiliation(s)
- Masha Dobkin-Bekman
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fortin J, Lamba P, Wang Y, Bernard DJ. Conservation of mechanisms mediating gonadotrophin-releasing hormone 1 stimulation of human luteinizing hormone beta subunit transcription. Mol Hum Reprod 2009; 15:77-87. [PMID: 19106114 PMCID: PMC2734162 DOI: 10.1093/molehr/gan079] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/09/2008] [Accepted: 12/17/2008] [Indexed: 11/12/2022] Open
Abstract
Gonadotrophin-releasing hormone (GNRH1) regulates pituitary luteinizing hormone (LH). Previous studies have delineated a mechanism for GNRH1-induced LHbeta subunit gene (Lhb) transcription, the rate-limiting step in LH production. GNRH1 induces expression of early growth response 1 (EGR1), which interacts with steroidogenic factor 1 (SF1) and paired-like homeodomain transcription factor 1 (PITX1) to regulate Lhb promoter activity. Though the cis-elements for these factors are conserved across species, regulation of human LHB transcription has not been thoroughly investigated. We therefore characterized LHB transcriptional regulation by GNRH1 using promoter-reporter analyses in LbetaT2 cells. GNRH1 stimulated LHB transcription via an extracellular signal-regulated kinase 1/2 pathway. EGR1 bound to two binding sites on the LHB promoter and this binding was increased by GNRH1. Mutation of either site or knockdown of endogenous EGR1 decreased basal and/or GNRH1-regulated promoter activity. The human LHB promoter also contains low and high affinity SF1 binding sites. Mutation of these elements or depletion of endogenous SF1 impaired basal and ligand-induced transcription. Knockdown of PITX1 or PITX2 isoforms impaired GNRH1 induction, and endogenous PITX1 bound to the candidate PITX binding site on the LHB promoter. Thus, the mechanism described for GNRH1 regulation of Lhb in other species is largely conserved for human LHB. We also uncover a previously unappreciated role for PITX2 isoforms in this process.
Collapse
Affiliation(s)
| | | | | | - Daniel J. Bernard
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir-William-Osler Montréal, QC, CanadaH3G 1Y6
| |
Collapse
|
27
|
Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrinol 2009; 30:10-29. [PMID: 18708085 DOI: 10.1016/j.yfrne.2008.07.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 04/28/2008] [Accepted: 07/21/2008] [Indexed: 01/22/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is the first key hormone of reproduction. GnRH analogs are extensively used in in vitro fertilization, and treatment of sex hormone-dependent cancers, due to their ability to bring about 'chemical castration'. The interaction of GnRH with its cognate type I receptor (GnRHR) in pituitary gonadotropes results in the activation of Gq/G(11), phospholipase Cbeta (PLCbetaI), PLA(2), and PLD. Sequential activation of the phospholipases generates the second messengers inositol 1, 4, 5-trisphosphate (IP(3)), diacylglycerol (DAG), and arachidonic acid (AA), which are required for Ca(2+) mobilization, the activation of various protein kinase C isoforms (PKCs), and the production of prostaglandin (PG) and other metabolites of AA, respectively. PKC isoforms are the major mediators of the downstream activation of a number of mitogen-activated protein kinase (MAPK) cascades by GnRH, namely: extracellular signal-regulated kinase (ERK), jun-N-terminal kinase (JNK), and p38MAPK. The activated MAPKs phosphorylate both cytosolic and nuclear proteins to initiate the transcriptional activation of the gonadotropin subunit genes and the GnRHR. While Ca(2+) mobilization has been found to initiate rapid gonadotropin secretion, Ca(2+), together with various PKC isoforms, MAPKs and AA metabolites also serve as key nodes, in the GnRH-stimulated signaling network that enables the gonadotropes to decode GnRH pulse frequencies and translating that into differential gonadotropin synthesis and release. Even though pulsatility of GnRH is recognized as a major determinant for differential gonadotropin subunit gene expression and gonadotropin secretion very little is yet known about the signaling circuits governing GnRH action at the 'Systems Biology' level. Direct apoptotic and metastatic effects of GnRH analogs in gonadal steroid-dependent cancers expressing the GnRHR also seem to be mediated by the activation of the PKC/MAPK pathways. However, the mechanisms dictating life (pituitary) vs. death (cancer) decisions made by the same GnRHR remain elusive. Understanding these molecular mechanisms triggered by the GnRHR through biochemical and 'Systems Biology' approaches would provide the basis for the construction of the dynamic connectivity maps, which operate in the various cell types (endocrine, cancer, and immune system) targeted by GnRH. The connectivity maps will open a new vista for exploring the direct effects of GnRH analogs in tumors and the design of novel combined therapies for fertility control, reproductive disorders and cancers.
Collapse
|
28
|
Kawaminami M, Uematsu N, Funahashi K, Kokubun R, Kurusu S. Gonadotropin releasing hormone (GnRH) enhances annexin A5 mRNA expression through mitogen activated protein kinase (MAPK) in LbetaT2 pituitary gonadotrope cells. Endocr J 2008; 55:1005-14. [PMID: 18703851 DOI: 10.1507/endocrj.k08e-131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The mechanism by which GnRH stimulates annexin A5 expression was examined with LbetaT2 gonadotrope cells. Continuous stimulation with GnRH analog (GnRHa, Des-Gly10 [Pro9]-GnRH ethylamide) transiently elevated LHbeta mRNA expression while maintaining annexin A5 mRNA at high levels for 24 h. GnRH antagonist blocked the effect of GnRHa on annexin A5. While 12-O-tetradecanoyl-phorbol-13 acetate, a protein kinase C activator, increased the expression of annexin A5 mRNA, bisindolylmaleimide, an inhibitor of protein kinase C, suppressed GnRHa-stimulated expression of annexin A5 and LHbeta mRNA. GnRHa stimulation of LHbeta mRNA was inhibited to a greater extent than annexin A5 by a calcium chelator BAPTA/AM. Although a calcium ionophore ionomycin stimulated the expression of both genes, only LHbeta was down-regulated. The MAPK kinase inhibitor PD98059 inhibited GnRHa induction of annexin A5 but not LHbeta mRNA. EGF stimulated the expression of annexin A5 mRNA but caused only a transient effect on LHbeta mRNA expression. These results indicate that GnRH stimulation of signaling pathway for annexin A5 mRNA expression is distinct from that of LHbeta mRNA and dependent more on MAPK.
Collapse
Affiliation(s)
- Mitsumori Kawaminami
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | | | | | | | | |
Collapse
|
29
|
So WK, Cheng JC, Poon SL, Leung PCK. Gonadotropin-releasing hormone and ovarian cancer: a functional and mechanistic overview. FEBS J 2008; 275:5496-511. [DOI: 10.1111/j.1742-4658.2008.06679.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Burger LL, Haisenleder DJ, Aylor KW, Marshall JC. Regulation of intracellular signaling cascades by GNRH pulse frequency in the rat pituitary: roles for CaMK II, ERK, and JNK activation. Biol Reprod 2008; 79:947-53. [PMID: 18716286 DOI: 10.1095/biolreprod.108.070987] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Pulsatile GnRH (GNRH) differentially regulates LH and FSH subunit genes, with faster frequencies favoring Lhb transcription and slower favoring Fshb. Various intracellular pathways mediate the effects of GNRH, including CaMK II (CAMK2), ERK, and JNK. We examined whether activation of these pathways is regulated by GNRH pulse frequency in vivo. GNRH-deficient rats received GNRH pulses (25 ng i.v. every 30 or 240 min for 8 h, vehicle to controls). Pituitaries were collected 5 min after the last pulse, bisected, and one half processed for RNA (to measure beta subunit primary transcripts [PTs]) and the other for protein. Phosphorylated CAMK2 (phospho-CAMK2), ERK (mitogen-activated protein kinase 1/3 [MAPK1/3], also known as p42 ERK2 and p44 ERK1, respectively), and JNK (MAPK8/9, also known as p46 JNK1 and p54 JNK2, respectively) were determined by Western blotting. The 30-min pulses maximally stimulated Lhb PT (8-fold), whereas 240 min was optimal for Fshb PT (3-fold increase). Both GNRH pulse frequencies increased phospho-CAMK2 4-fold. Activation of MAPK1/3 was stimulated by both 30- and 240-min pulses, but phosphorylation of MAPK3 was significantly greater following slower GNRH pulses (240 min: 4-fold, 30 min: 2-fold). MAPK8/9 activation was unchanged by pulsatile GNRH in this paradigm, but as previous results showed that GNRH-induced activation of MAPK8/9 is delayed, 5 min after GNRH may not be optimal to observe MAPK8/9 activation. These data show that CAMK2 is activated by GNRH, but not in a frequency-dependant manner, whereas MAPK3 is maximally stimulated by slow-frequency GNRH pulses. Thus, the ERK response to slow pulse frequency is part of the mechanisms mediating Fhb transcriptional responses to GNRH.
Collapse
Affiliation(s)
- Laura L Burger
- Division of Endocrinology and Metabolism, Department of Medicine, and the Center for Research in Reproduction, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
31
|
Klausen C, Booth M, Habibi HR, Chang JP. Extracellular signal-regulated kinase mediates gonadotropin subunit gene expression and LH release responses to endogenous gonadotropin-releasing hormones in goldfish. Gen Comp Endocrinol 2008; 158:36-46. [PMID: 18558406 DOI: 10.1016/j.ygcen.2008.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/11/2008] [Accepted: 05/02/2008] [Indexed: 11/20/2022]
Abstract
The possible involvement of extracellular signal-regulated kinase (ERK) in mediating the stimulatory actions of two endogenous goldfish gonadotropin-releasing hormones (salmon (s)GnRH and chicken (c)GnRH-II) on gonadotropin synthesis and secretion was examined. Western blot analysis revealed the presence of ERK and phosphorylated (p)ERK in goldfish brain, pituitary, liver, ovary, testis and muscle tissue extracts, as well as extracts of dispersed goldfish pituitary cells and HeLa cells. Interestingly, a third ERK-like immunoreactive band of higher molecular mass was detected in goldfish tissue and pituitary cell extracts in addition to the ERK1-p44- and ERK2-p42-like immunoreactive bands. Incubation of primary cultures of goldfish pituitary cells with either a PKC-activating 4beta-phorbol ester (TPA) or a synthetic diacylglycerol, but not a 4alpha-phorbol ester, elevated the ratio of pERK/total (t)ERK for all three ERK isoforms. The stimulatory effects of TPA were attenuated by the PKC inhibitor GF109203X and the MEK inhibitor PD98059. sGnRH and cGnRH-II also elevated the ratio of pERK/tERK for all three ERK isoforms, in a time-, dose- and PD98059-dependent manner. In addition, treatment with PD98059 reduced the sGnRH-, cGnRH-II- and TPA-induced increases in gonadotropin subunit mRNA levels in Northern blot studies and sGnRH- and cGnRH-II-elicited LH release in cell column perifusion studies with goldfish pituitary cells. These results indicate that GnRH and PKC can activate ERK through MEK in goldfish pituitary cells. More importantly, the present study suggests that GnRH-induced gonadotropin subunit gene expression and LH release involve MEK/ERK signaling in goldfish.
Collapse
Affiliation(s)
- Christian Klausen
- Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W., Calgary, Alta., Canada T2N 1N4
| | | | | | | |
Collapse
|
32
|
Haisenleder DJ, Burger LL, Walsh HE, Stevens J, Aylor KW, Shupnik MA, Marshall JC. Pulsatile gonadotropin-releasing hormone stimulation of gonadotropin subunit transcription in rat pituitaries: evidence for the involvement of Jun N-terminal kinase but not p38. Endocrinology 2008; 149:139-45. [PMID: 17932215 PMCID: PMC2194612 DOI: 10.1210/en.2007-1113] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated whether Jun N-terminal kinase (JNK) and p38 mediate gonadotropin subunit transcriptional responses to pulsatile GnRH in normal rat pituitaries. A single pulse of GnRH or vehicle was given to female rats in vivo, pituitaries collected, and phosphorylated JNK and p38 measured. GnRH stimulated an increase in JNK phosphorylation within 5 min, which peaked 15 min after GnRH (3-fold). GnRH also increased p38 phosphorylation 2.3-fold 15 min after stimulus. Rat pituitary cells were given 60-min pulses of GnRH or media plus the JNK inhibitor SP600125 (SP, 20 microM), p38 inhibitor SB203580 (20 microM), or vehicle. In vehicle-treated groups, GnRH pulses increased LHbeta and FSHbeta primary transcript (PT) levels 3-fold. SP suppressed both basal and GnRH-induced increases in FSHbeta PT by half, but the magnitude of responses to GnRH was unchanged. In contrast, SP had no effect on basal LHbeta PT but suppressed the stimulatory response to GnRH. SB203580 had no effect on the actions of GnRH on either LH or FSHbeta PTs. Lbeta-T2 cells were transfected with dominant/negative expression vectors for MAPK kinase (MKK)-4 and/or MKK-7 plus a rat LHbeta promoter-luciferase construct. GnRH stimulated a 50-fold increase in LHbeta promoter activity, and the combination of MKK-4 and -7 dominant/negatives suppressed the response by 80%. Thus, JNK (but not p38) regulates both LHbeta and FSHbeta transcription in a differential manner. For LHbeta, JNK is essential in mediating responses to pulsatile GnRH. JNK also regulates FSHbeta transcription (i.e. maintaining basal expression) but does not play a role in responses to GnRH.
Collapse
Affiliation(s)
- D J Haisenleder
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Harada T, Kanasaki H, Mutiara S, Oride A, Miyazaki K. Cyclic adenosine 3',5'monophosphate/protein kinase A and mitogen-activated protein kinase 3/1 pathways are involved in adenylate cyclase-activating polypeptide 1-induced common alpha-glycoprotein subunit gene (Cga) expression in mouse pituitary gonadotroph LbetaT2 cells. Biol Reprod 2007; 77:707-16. [PMID: 17596563 DOI: 10.1095/biolreprod.107.060327] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Adenylate cyclase-activating polypeptide 1 (ADCYAP1) binds both Gs- and Gq-coupled receptors and stimulates adenylate cyclase/cAMP and protein kinase C/mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathways in pituitary gonadotrophs. In this study, we investigated the cAMP and MAPK3/1 signaling pathways induced by ADCYAP1 stimulation and examined the effects of ADCYAP1 on the expression of gonadotropin subunit genes using a clonal gonadotroph cell line, LbetaT2. ADCYAP1 increased intracellular cAMP accumulation up to 19-fold in LbetaT2 cells. Common alpha-glycoprotein subunit gene (Cga) promoter activity was strongly activated by both ADCYAP1 and the cyclic-AMP analog, 8-(4-chlorophenylthio) adenosine 3',5'-cyclic monophosphate (CPT-cAMP). Both had little effect on luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) promoter activities. Cga promoter activity was significantly increased by transfection with constitutively active cAMP-dependent protein kinase (PKA). Activities of the Lhb and Fshb promoters were only modestly increased. Both ADCYAP1 and CPT-cAMP induced MAPK3/1 activation in LbetaT2 cells. The MEK inhibitor, U0126, and the PKA inhibitors, H89 and cAMP-dependent protein kinase peptide inhibitor (PKI), completely inhibited MAPK3/1 activation by either ADCYAP1 or CPT-cAMP. Using luciferase reporter constructs containing cis-elements, the cAMP response element (Cre) promoter was stimulated about 4-fold by ADCYAP1. ADCYAP1-induced Cre promoter activity was completely inhibited by H89, but not by U0126. ADCYAP1 also increased the activity of the serum response element (Sre) promoter, a target for MAPK3/1, and treatment of the cells with U0126 completely inhibited ADCYAP1-induced Sre promoter activity. ADCYAP1-increased Cga promoter activity was inhibited partially by both H89 and U0126. Although combining the inhibitors showed an additive inhibition effect, it did not result in complete inhibition. These results suggest that in LbetaT2 cells, ADCYAP1 mainly increases Cga through activation of PKA and MAPK3/1, as well as through an additional unknown pathway.
Collapse
Affiliation(s)
- Takashi Harada
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | | | | | | | | |
Collapse
|
34
|
Winters SJ, Ghooray D, Fujii Y, Moore JP, Nevitt JR, Kakar SS. Transcriptional regulation of follistatin expression by GnRH in mouse gonadotroph cell lines: evidence for a role for cAMP signaling. Mol Cell Endocrinol 2007; 271:45-54. [PMID: 17482756 DOI: 10.1016/j.mce.2007.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 01/08/2023]
Abstract
GnRH applied continuously or in pulses of high frequency increases follistatin, and thereby differentially regulates FSH and LH. This study was conducted in alphaT3-1 and LbetaT2 gonadotroph cells to begin to understand the signaling pathways through which GnRH stimulates follistatin synthesis. GnRH increased follistatin expression and stimulated a follistatin-LUC reporter in LbetaT2 cells, but was inactive in alphaT3-1 cells. GnRH also increased cAMP levels and stimulated a cAMP-responsive promoter only in LbetaT2 cells. Forskolin stimulated follistatin in both cell lines. GnRH activation of follistatin was blocked by the PKA inhibitor H89 and by over-expression of a dominant-negative inhibitor of CREB (A-CREB). Activation was also suppressed by PKC depletion, and was reduced by the PKC inhibitor bisindolylmaleimide. The MEK inhibitor PD98059 blocked activation by GnRH or forskolin implying that MAPK contributes to cAMP/PKA-mediated activation of follistatin. When LbetaT2 cells were transfected with follistatin-LUC together with A-CREB, and perifused with GnRH, activation was blocked during continuous GnRH, but stimulation by hourly GnRH pulses was unaffected. These experiments provide evidence that GnRH stimulates follistatin through multiple signaling pathways, and that cAMP-CREB activation is obligatory when GnRH is applied continuously. The finding that follistatin transcription was CREB-dependent with continuous but not pulsatile GnRH implies that the mode of ligand activation of GnRH receptors modifies the transcriptional response by changing the signaling network. These results provide a mechanism linking GnRH pulsatility to the differential control of FSH-beta and LH-beta gene expression through follistatin.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology & Metabolism, University of Louisville, Louisville, KY 40202, United States.
| | | | | | | | | | | |
Collapse
|
35
|
Maudsley S, Naor Z, Bonfil D, Davidson L, Karali D, Pawson AJ, Larder R, Pope C, Nelson N, Millar RP, Brown P. Proline-rich tyrosine kinase 2 mediates gonadotropin-releasing hormone signaling to a specific extracellularly regulated kinase-sensitive transcriptional locus in the luteinizing hormone beta-subunit gene. Mol Endocrinol 2007; 21:1216-33. [PMID: 17327421 PMCID: PMC1951533 DOI: 10.1210/me.2006-0053] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
G protein-coupled receptor regulation of gene transcription primarily occurs through the phosphorylation of transcription factors by MAPKs. This requires transduction of an activating signal via scaffold proteins that can ultimately determine the outcome by binding signaling kinases and adapter proteins with effects on the target transcription factor and locus of activation. By investigating these mechanisms, we have elucidated how pituitary gonadotrope cells decode an input GnRH signal into coherent transcriptional output from the LH beta-subunit gene promoter. We show that GnRH activates c-Src and multiple members of the MAPK family, c-Jun NH2-terminal kinase 1/2, p38MAPK, and ERK1/2. Using dominant-negative point mutations and chemical inhibitors, we identified that calcium-dependent proline-rich tyrosine kinase 2 specifically acts as a scaffold for a focal adhesion/cytoskeleton-dependent complex comprised of c-Src, Grb2, and mSos that translocates an ERK-activating signal to the nucleus. The locus of action of ERK was specifically mapped to early growth response-1 (Egr-1) DNA binding sites within the LH beta-subunit gene proximal promoter, which was also activated by p38MAPK, but not c-Jun NH2-terminal kinase 1/2. Egr-1 was confirmed as the transcription factor target of ERK and p38MAPK by blockade of protein expression, transcriptional activity, and DNA binding. We have identified a novel GnRH-activated proline-rich tyrosine kinase 2-dependent ERK-mediated signal transduction pathway that specifically regulates Egr-1 activation of the LH beta-subunit proximal gene promoter, and thus provide insight into the molecular mechanisms required for differential regulation of gonadotropin gene expression.
Collapse
Affiliation(s)
- Stuart Maudsley
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mutiara S, Kanasaki H, Harada T, Miyazaki K. Dopamine D(2) receptor expression and regulation of gonadotropin alpha-subunit gene in clonal gonadotroph LbetaT2 cells. Mol Cell Endocrinol 2006; 259:22-9. [PMID: 16959402 DOI: 10.1016/j.mce.2006.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 07/21/2006] [Accepted: 07/26/2006] [Indexed: 11/28/2022]
Abstract
This study investigated the role of dopamine on the regulation of gonadotropin secretion at the gonadotroph cell line. We examined the function of the dopamine D(2) receptor in the regulation of pituitary gonadotropin gene expression using LbetaT2 cells, a mature, well differentiated clonal gonadotroph cell line. The presence of the dopamine D(2) receptor in the LbetaT2 cells was confirmed by both RT-PCR and Western blot. Gonadotropin releasing hormone (GnRH) stimulation resulted in gonadotropin LHbeta, FSHbeta and alpha-subunit promoter activation, and none were inhibited by quinpirol, a specific dopamine D(2) receptor agonist. Pituitary adenylate cyclase-activating polypeptide (PACAP) increased gonadotropin alpha-subunit promoter activity, but not LHbeta and FSHbeta promoter activity. The activity of PACAP was significantly inhibited in the presence of quinpirol. The protein kinase A inhibitor, H89, also inhibited PACAP-induced alpha-subunit gene expression. PACAP increased intracellular cAMP more than GnRH did in LbetaT2 cells, and the elevation of cAMP was strongly inhibited in the presence of various dopamine D(2) agonists. These results suggest that in pituitary gonadotrophs, the dopamine D(2) receptor is a negative regulator of gonadotropin alpha-subunit gene expression which is induced by cAMP-elevating factors in a cAMP-dependent pathway.
Collapse
Affiliation(s)
- Sandra Mutiara
- Department of Obstetrics and Gynecology, Shimane University, School of Medicine, Enya Cho 89-1, Izumo 693-8501, Shimane Prefecture, Japan
| | | | | | | |
Collapse
|
37
|
Dobkin-Bekman M, Naidich M, Pawson AJ, Millar RP, Seger R, Naor Z. Activation of mitogen-activated protein kinase (MAPK) by GnRH is cell-context dependent. Mol Cell Endocrinol 2006; 252:184-90. [PMID: 16682115 DOI: 10.1016/j.mce.2006.03.035] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The interaction of GnRH with its cognate receptor (GnRHR) in pituitary gonadotropes includes activation of Gq/G11 and phospholipase Cbeta (PLCbeta), which generates the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which are required for Ca2+ mobilization and PKC isoforms activation. Activation of PKC in pituitary gonadotropes leads to the activation of the major members of the mitogen-activated protein kinase superfamily (MAPK), namely: extracellular signal-regulated kinase (ERK), jun-N-terminal Kinase (JNK) and p38MAPK. The above pathways mediate GnRH-induced gonadotropin release and synthesis. Here we summarise the diverse mechanisms utilized by GnRH to activate the MAPK members and show that they depend on "cell-context".
Collapse
Affiliation(s)
- Masha Dobkin-Bekman
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Klausen C, Severson DL, Chang JP, Habibi HR. Role of PKC in the regulation of gonadotropin subunit mRNA levels: interaction with two native forms of gonadotropin-releasing hormone. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1634-43. [PMID: 16002561 DOI: 10.1152/ajpregu.00186.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is an important regulator of reproduction in all vertebrates through its actions on the production and secretion of pituitary gonadotropin hormones (GtHs). Most vertebrate species express at least two GnRHs, including one form, designated chicken (c)GnRH-II or type II GnRH, which has been well conserved throughout evolution. The goldfish brain and pituitary contain salmon GnRH and cGnRH-II. In goldfish, GnRH-induced luteinizing hormone (LH) secretion involves PKC; however, whether PKC mediates GnRH stimulation of GtH subunit mRNA levels is unknown. In this study, we used inhibitors and activators of PKC to examine its possible involvement in GnRH-induced increases in GtH-α, follicle-stimulating hormone (FSH)-β and LH-β mRNA levels in primary cultures of dispersed goldfish pituitary cells. Treatment with PKC inhibitors calphostin C and GF109203X unmasked a basal repression of GtH subunit mRNA levels by PKC; both inhibitors increased GtH subunit mRNA levels in a dose-dependent manner. PKC activators, 12- O-tetradecanoylphorbol 13-acetate (TPA), and 1,2-dioctanoyl- sn-glycerol, stimulated GtH subunit mRNA levels, whereas an inactive phorbol ester (4-α-TPA) was without effect. Thus, a dual, inhibitory and stimulatory, influence for PKC in the regulation of GtH subunit mRNA levels is suggested. In contrast, PKC inhibitor- and activator-induced effects were, for the most part, additive to those of GnRH, suggesting that conventional and novel PKCs are unlikely to be involved in GnRH-stimulated increases in GtH subunit mRNA levels. Our data illustrate major differences in the signal transduction of GnRH effects on GtH secretion and gene expression in the goldfish pituitary.
Collapse
Affiliation(s)
- Christian Klausen
- Dept. of Biological Sciences, Univ. of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | | | | | | |
Collapse
|
39
|
Kanasaki H, Bedecarrats GY, Kam KY, Xu S, Kaiser UB. Gonadotropin-releasing hormone pulse frequency-dependent activation of extracellular signal-regulated kinase pathways in perifused LbetaT2 cells. Endocrinology 2005; 146:5503-13. [PMID: 16141398 DOI: 10.1210/en.2004-1317] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pattern of GnRH release is associated with differential synthesis and release of LH and FSH. Using a perifusion system, we previously reported that stimulation of the LbetaT2 cell line with varying GnRH pulse frequencies resulted in differential stimulation of LHbeta and FSHbeta gene transcription, analogous to previous observations in primary gonadotropes. In the present study, we investigated the patterns of MAPK activation by GnRH and the role of MAPK in mediating the frequency-dependent effects. In static culture, ERK activation in LbetaT2 cells stimulated with continuous GnRH (10 nM) was maximal by 10 min and persisted for up to 6 h, with a return to basal levels by 20 h. In contrast, stimulation with continuous GnRH (10 nM) in perifused cells resulted in a more sustained activation of ERK. To investigate the effects of GnRH pulse frequency on ERK activation, perifused LbetaT2 cells were stimulated with pulsatile GnRH at a frequency of one pulse every 30 min or one pulse every 2 h for 20 h (10 nM, 5 min/pulse). After the final GnRH pulse, cells were lysed at frequent intervals and levels of ERK phosphorylation were measured. Under high-frequency conditions, ERK activation was maximal 10 min after the GnRH pulse and returned to baseline levels by 20 min. In contrast, under lower GnRH pulse frequency conditions, ERK activation occurred more rapidly and activation was more sustained, with a slower rate of ERK dephosphorylation. These changes resulted in different levels of nuclear phosphorylated ERK. Blockade of ERK activation abolished GnRH-dependent activation of LHbeta and FSHbeta transcription at both high and low pulse frequencies. These results demonstrate that in perifused LbetaT2 cells, distinct patterns of ERK activation/inactivation are regulated by GnRH pulse frequency, and the difference in ERK activation may be important for GnRH pulse frequency-dependent differential stimulation of LHbeta and FSHbeta gene expression.
Collapse
Affiliation(s)
- Haruhiko Kanasaki
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
40
|
Roberson MS, Bliss SP, Xie J, Navratil AM, Farmerie TA, Wolfe MW, Clay CM. Gonadotropin-releasing hormone induction of extracellular-signal regulated kinase is blocked by inhibition of calmodulin. Mol Endocrinol 2005; 19:2412-23. [PMID: 15890671 DOI: 10.1210/me.2005-0094] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Our previous studies demonstrate that GnRH-induced ERK activation required influx of extracellular Ca2+ in alphaT3-1 and rat pituitary cells. In the present studies, we examined the hypothesis that calmodulin (Cam) plays a fundamental role in mediating the effects of Ca2+ on ERK activation. Cam inhibition using W7 was sufficient to block GnRH-induced reporter gene activity for the c-Fos, murine glycoprotein hormone alpha-subunit, and MAPK phosphatase (MKP)-2 promoters, all shown to require ERK activation. Inhibition of Cam (using a dominant negative) was sufficient to block GnRH-induced ERK but not c-Jun N-terminal kinase activity activation. The Cam-dependent protein kinase (CamK) II inhibitor KN62 did not recapitulate these findings. GnRH-induced phosphorylation of MAPK/ERK kinase 1 and c-Raf kinase was blocked by Cam inhibition, whereas activity of phospholipase C was unaffected, suggesting that Ca2+/Cam modulation of the ERK cascade potentially at the level of c-Raf kinase. Enrichment of Cam-interacting proteins using a Cam agarose column revealed that c-Raf kinase forms a complex with Cam. Reconstitution studies reveal that recombinant c-Raf kinase can associate directly with Cam in a Ca2+-dependent manner and this interaction is reduced in vitro by addition of W7. Cam was localized in lipid rafts consistent with the formation of a Ca2+-sensitive signaling platform including the GnRH receptor and c-Raf kinase. These data support the conclusion that Cam may have a critical role as a Ca2+ sensor in specifically linking Ca2+ flux with ERK activation within the GnRH signaling pathway.
Collapse
Affiliation(s)
- Mark S Roberson
- Department of Biomedical Sciences, Cornell University, T3-004d Veterinary Research Tower, Ithaca, New York 14853, usa.
| | | | | | | | | | | | | |
Collapse
|
41
|
Cheng CK, Leung PCK. Molecular biology of gonadotropin-releasing hormone (GnRH)-I, GnRH-II, and their receptors in humans. Endocr Rev 2005; 26:283-306. [PMID: 15561800 DOI: 10.1210/er.2003-0039] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In human beings, two forms of GnRH, termed GnRH-I and GnRH-II, encoded by separate genes have been identified. Although these hormones share comparable cDNA and genomic structures, their tissue distribution and regulation of gene expression are significantly dissimilar. The actions of GnRH are mediated by the GnRH receptor, which belongs to a member of the rhodopsin-like G protein-coupled receptor superfamily. However, to date, only one conventional GnRH receptor subtype (type I GnRH receptor) uniquely lacking a carboxyl-terminal tail has been found in the human body. Studies on the transcriptional regulation of the human GnRH receptor gene have indicated that tissue-specific gene expression is mediated by differential promoter usage in various cell types. Functionally, there is growing evidence showing that both GnRH-I and GnRH-II are potentially important autocrine and/or paracrine regulators in some extrapituitary compartments. Recent cloning of a second GnRH receptor subtype (type II GnRH receptor) in nonhuman primates revealed that it is structurally and functionally distinct from the mammalian type I receptor. However, the human type II receptor gene homolog carries a frameshift and a premature stop codon, suggesting that a full-length type II receptor does not exist in humans.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada V6H 3V5
| | | |
Collapse
|
42
|
Oishi A, Ohmichi M, Takahashi K, Takahashi T, Mori-Abe A, Kawagoe J, Otsu R, Mochizuki Y, Inaba N, Kurachi H. Medroxyprogesterone acetate attenuates estrogen-induced nitric oxide production in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2004; 324:193-8. [PMID: 15465001 DOI: 10.1016/j.bbrc.2004.09.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Indexed: 11/26/2022]
Abstract
We report the novel observation that medroxyprogesterone acetate (MPA) attenuates the induction by 17beta estradiol (E2) of both nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity in human umbilical vein endothelial cells. Although MPA had no effect on basal NO production or basal eNOS phosphorylation or activity, it attenuated the E2-induced NO production and eNOS phosphorylation and activity. Moreover, we examined the mechanism by which MPA attenuated the E2-induced NO production and eNOS phosphorylation. MPA attenuated the E2-induced phosphorylation of Akt, a kinase that phosphorylates eNOS. Treatment with pure progesterone receptor (PR) antagonist RU486 completely abolished the inhibitory effect of MPA on E2-induced Akt phosphorylation and eNOS phosphorylation. In addition, the effects of actinomycin D were tested to rule out the influence of genomic events mediated by nuclear PRs. Actinomycin D did not affect the inhibitory effect of MPA on E2-induced Akt phosphorylation. Furthermore, the potential roles of PRA and PRB were evaluated. In COS cells transfected with either PRA or PRB, MPA attenuated E2-induced Akt phosphorylation. These results indicate that MPA attenuated E2-induced NO production via an Akt cascade through PRA or PRB in a non-genomic manner.
Collapse
Affiliation(s)
- Akira Oishi
- Department of Obstetrics and Gynecology, Dokkyo University School of Medicine, 880, Kitakobayashi, Mibumachi, Shimotuga, Tochigi 321-0293, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jorgensen JS, Quirk CC, Nilson JH. Multiple and overlapping combinatorial codes orchestrate hormonal responsiveness and dictate cell-specific expression of the genes encoding luteinizing hormone. Endocr Rev 2004; 25:521-42. [PMID: 15294880 DOI: 10.1210/er.2003-0029] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Normal reproductive function in mammals requires precise control of LH synthesis and secretion by gonadotropes of the anterior pituitary. Synthesis of LH requires expression of two genes [alpha-glycoprotein subunit (alphaGSU) and LHbeta] located on different chromosomes. Hormones from the hypothalamus and gonads modulate transcription of both genes as well as secretion of the biologically active LH heterodimer. In males and females, the transcriptional tone of the genes encoding alphaGSU and LHbeta reflects dynamic integration of a positive signal provided by GnRH from hypothalamic neurons and negative signals emanating from gonadal steroids. Although alphaGSU and LHbeta genes respond transcriptionally in the same manner to changes in hormonal input, different combinations of regulatory elements orchestrate their response. These hormone-responsive regulatory elements are also integral members of much larger combinatorial codes responsible for targeting expression of alphaGSU and LHbeta genes to gonadotropes. In this review, we will profile the genomic landscape of the promoter-regulatory region of both genes, depicting elements and factors that contribute to gonadotrope-specific expression and hormonal regulation. Within this context, we will highlight the different combinatorial codes that control transcriptional responses, particularly those that mediate the opposing effects of GnRH and one of the sex steroids, androgens. We will use this framework to suggest that GnRH and androgens attain the same transcriptional endpoint through combinatorial codes unique to alphaGSU and LHbeta. This parallelism permits the dynamic and coordinate regulation of two genes that encode a single hormone.
Collapse
Affiliation(s)
- Joan S Jorgensen
- Department of Veterinary Biosciences, University of Illinois, Urbana 61802, USA
| | | | | |
Collapse
|
44
|
Larder R, Chang L, Clinton M, Brown P. Gonadotropin-releasing hormone regulates expression of the DNA damage repair gene, Fanconi anemia A, in pituitary gonadotroph cells. Biol Reprod 2004; 71:828-36. [PMID: 15128600 PMCID: PMC1950776 DOI: 10.1095/biolreprod.104.030569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse L beta T2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of L beta T2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature alpha T3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA.
Collapse
Affiliation(s)
- Rachel Larder
- Human Reproductive Sciences Unit, Centre for Reproductive Biology, The University of Edinburgh Chancellors Building, Edinburgh EH16 4SB, UK
| | | | | | | |
Collapse
|
45
|
Arimoto-Ishida E, Ohmichi M, Mabuchi S, Takahashi T, Ohshima C, Hayakawa J, Kimura A, Takahashi K, Nishio Y, Sakata M, Kurachi H, Tasaka K, Murata Y. Inhibition of phosphorylation of a forkhead transcription factor sensitizes human ovarian cancer cells to cisplatin. Endocrinology 2004; 145:2014-22. [PMID: 14701673 DOI: 10.1210/en.2003-1199] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Forkhead family transcription factor FKHRL1 is an inducer of apoptosis in its unphosphorylated form and was recently reported to be a substrate of Akt kinase. We studied the roles of FKHRL1 in both cisplatin-resistant Caov-3 (a papillary adenocarcinoma cell line) and cisplatin-sensitive A2780 human ovarian cancer cell lines. Treatment of Caov-3 cells but not A2780 cells with cisplatin transiently stimulated the phosphorylation of FKHRL1. Transfection experiments revealed that a kinase inactive-mutant of Akt or a triple mutant (TM) of FKHRL1, in which all three of the putative Akt phosphorylation sites were converted to alanine, was unable to phosphorylate the FKHRL1 protein in cells treated with cisplatin. Because the phosphorylated form of FKHRL1 is known to be localized in the cytoplasm, we examined whether cisplatin-induced phosphorylation of FKHRL1 might have an effect on the subcellular distribution of FKHRL1. Cisplatin induced the localization of FKHRL1 in the cytoplasm in Caov-3 cells but not in A2790 cells. Moreover, cisplatin induced the association of 14-3-3 protein with phosphorylated-FKHRL1 in Caov-3 cells but not in A2790 cells. Because the unphosphorylated form of FKHRL1 binds the Fas ligand promoter, thereby inducing apoptosis, we further examined the effect of the phosphorylation status of FKHRL1 on the activity of the Fas ligand promoter in the presence of cisplatin. Transfection with the kinase-inactive mutant of Akt or TM of FKHRL1 induced the activity of the Fas ligand promoter in Caov-3 cells. Moreover, exogenous expression of TM of FKHRL1 in Caov-3 cells decreased the cell viability after treatment with cisplatin. Our findings suggest that cisplatin causes the phosphorylation of FKHRL1 via a phosphatidylinositol 3-kinase/Akt cascade, and inhibition of this cascade sensitizes ovarian cancer cells to cisplatin.
Collapse
Affiliation(s)
- Emi Arimoto-Ishida
- Department of Obstetrics and Gynecology, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Maccario H, Junoy B, Poulin B, Boyer B, Enjalbert A, Drouva SV. Protein kinase Cdelta as gonadotropin-releasing hormone target isoenzyme in the alphaT3-1 gonadotrope cell line. Neuroendocrinology 2004; 79:204-20. [PMID: 15153754 DOI: 10.1159/000078102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 03/16/2004] [Indexed: 11/19/2022]
Abstract
We investigated the kinetics of gonadotropin-releasing hormone (GnRH)-induced activation of the protein kinase C (PKC) delta isoform in alphaT3-1 gonadotrope cells. Results were evaluated in subcellular fractions and whole-cell lysates using specific antibodies recognizing either non- or (trans- and auto-)phosphorylated forms of the kinase at Thr505 and Ser643 residues modulating stability and/or activation of the enzyme. Under basal conditions, and in contrast to PKC epsilon, PKC delta was mainly associated with the membrane compartment. GnRH (10(-7)M) elicited further and rapid membrane translocation and time-dependent phosphorylation at both sites of PKC delta. The neuropeptide's effects did not show a refractory period after short but successive GnRH stimulation and were abolished by the GnRH antagonist, antide. Sustained GnRH stimulation (2-6 h) provoked rapid down-regulation of PKC delta. Antide, by inhibiting the initial processes (translocation, phosphorylation), counteracted the degradation of the enzyme. Proteolytic processing of PKC delta was shown to mainly involve proteasome activity. Indeed, specific proteasome inhibitors prevented GnRH-elicited kinase depletion and induced membrane accumulation of the enzyme in a phosphorylated (Thr505, Ser643) form. Thus, GnRH may regulate time-dependent cell responses by modulating the phosphorylation/activation state of its signal transduction effector proteins, and by maintaining their appropriate expression balance via proteolytic processes involving the proteasome system.
Collapse
Affiliation(s)
- Hélène Maccario
- CNRS UMR 6544, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | | | | | | | | | | |
Collapse
|
47
|
Yamada Y, Yamamoto H, Yonehara T, Kanasaki H, Nakanishi H, Miyamoto E, Miyazaki K. Differential Activation of the Luteinizing Hormone β-Subunit Promoter by Activin and Gonadotropin-Releasing Hormone: A Role for the Mitogen-Activated Protein Kinase Signaling Pathway in LβT2 Gonadotrophs1. Biol Reprod 2004; 70:236-43. [PMID: 13679314 DOI: 10.1095/biolreprod.103.019588] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
LH consists of alpha- and beta-subunits, and synthesis of the beta-subunit has been reported to be the rate-limiting step in LH production. In this study, we found that activin A increased both the LHbeta mRNA level and LH content in cells of the gonadotroph cell line, LbetaT2. We next examined the effects of activin A and GnRH on LHbeta promoter activity by reporter gene assay and compared the signal transduction pathways. Activin A and GnRH activated the LHbeta promoter, and the response to a combination of activin A and GnRH was higher than that to activin A or GnRH alone. The effects of activin A and GnRH were specifically inhibited by inhibin-like peptide and antide, a GnRH antagonist, respectively. The activation of the LHbeta promoter by GnRH was inhibited by PD098059 and U0126, MAP kinase kinase (MEK) inhibitors. In contrast, these protein kinase inhibitors did not inhibit the activin A-induced activation. GnRH, but not activin A, activated MAP kinase in LbetaT2 cells. Overexpression of constitutively active MEK1 or MEK kinase activated both MAP kinase and the LHbeta promoter. Furthermore, GnRH, but not activin A, strongly induced SRE-mediated transcription, a known target of the MAP kinase pathway. These results suggest that GnRH activates the LHbeta promoter via the MAP kinase pathway and that activin A-induced activation of the LHbeta promoter is independent of the MAP kinase pathway.
Collapse
Affiliation(s)
- Yoko Yamada
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Kakar SS, Malik MT, Winters SJ, Mazhawidza W. Gonadotropin-releasing hormone receptors: structure, expression, and signaling transduction. VITAMINS AND HORMONES 2004; 69:151-207. [PMID: 15196882 DOI: 10.1016/s0083-6729(04)69006-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sham S Kakar
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
49
|
Yaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-Sivan B. Regulation of fish gonadotropins. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:131-85. [PMID: 12696592 DOI: 10.1016/s0074-7696(05)25004-0] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Neurohormones similar to those of mammals are carried in fish by hypothalamic nerve fibers to regulate directly follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin-releasing hormone (GnRH) stimulates the secretion of FSH and LH and the expression of the glycoprotein hormone alpha (GPalpha), FSHbeta, and LHbeta, as well as their secretion. Its signal transduction leading to LH release is similar to that in mammals although the involvement of cyclic AMP-protein kinase A (cAMP-PKA) cannot be ruled out. Dopamine (DA) acting through DA D2 type receptors may inhibit LH release, but not that of FSH, at sites distal to activation of protein kinase C (PKC) and PKA. GnRH increases the steady-state levels of GPalpha, LHbeta, and FSHbeta mRNAs. Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and neuropeptide Y (NPY) potentiate GnRH effect on gonadotropic cells, and also act directly on the pituitary cells. Whereas PACAP increases all three subunit mRNAs, NPY has no effect on that of FSHbeta. The effect of these peptides on the expression of the gonadotropin subunit genes is transduced differentially; GnRH regulates GPalpha and LHbeta via PKC-ERK and PKA-ERK cascades, while affecting the FSHbeta transcript through a PKA-dependent but ERK-independent cascade. The signals of both NPY and PACAP are transduced via PKC and PKA, each converging at the ERK level. NPY regulates only GPalpha- and LHbeta-subunit genes whereas PACAP regulates the FSHbeta subunit as well. Like those of the mammalian counterparts, the coho salmon LHbeta gene promoter is driven by a strong proximal tripartite element to which three different transcription factors bind. These include Sf-1 and Pitx-1 as in mammals, but the function of the Egr-1 appears to have been replaced by the estrogen receptor (ER). The GnRH responsive region in tilapia FSHbeta 5' flanking region spans the canonical AP1 and CRE motifs implicating both elements in conferring GnRH responsiveness. Generally, high levels of gonadal steroids are associated with high LHbeta transcript levels whereas those of FSHbeta are reduced when pituitary cells are exposed to high steroid levels. Gonadal or hypophyseal activin also participate in the regulation of FSHbeta and LHbeta mRNA levels. However, gonadal effects are dependent on the gender and stage of maturity of the fish.
Collapse
Affiliation(s)
- Zvi Yaron
- Department of Zoology, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Kraus S, Benard O, Naor Z, Seger R. c-Src is activated by the epidermal growth factor receptor in a pathway that mediates JNK and ERK activation by gonadotropin-releasing hormone in COS7 cells. J Biol Chem 2003; 278:32618-30. [PMID: 12750372 DOI: 10.1074/jbc.m303886200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Key participants in G protein-coupled receptor (GPCR) signaling are the mitogen-activated protein kinase (MAPK) signaling cascades. The mechanisms involved in the activation of the above cascades by GPCRs are not fully elucidated. A prototypic GPCR that has been widely used to study these signaling mechanisms is the receptor for gonadotropin-releasing hormone (GnRHR), which serves as a key regulator of the reproductive system. Here we expressed GnRHR in COS7 cells and found that GnRHR transmits its signals to MAPKs mainly via G alpha i, EGF receptor without the involvement of Hb-EGF, and c-Src, but independently of PKCs. The main pathway that leads to JNK activation downstream of the EGF receptor involves a sequential activation of c-Src and phosphatidylinositol 3-kinase (PI3K). ERK activation by GnRHR is mediated by the EGF receptor, which activates Ras either directly or via c-Src. Besides the main pathway, the dissociated G beta gamma and beta-arrestin may initiate additional, albeit minor, pathways that lead to MAPK activation in the transfected COS7 cells. The pathways detected are significantly different from those in other cell lines bearing GnRHR, indicating that GnRH can utilize various signaling mechanisms for the activation of MAPK cascades. The unique pathway elucidated here in which c-Src and PI3K are sequentially activated downstream of the EGF receptor may serve as a prototype of signaling mechanisms by GnRHR and by additional GPCRs in various cell types.
Collapse
Affiliation(s)
- Sarah Kraus
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|