1
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
2
|
Mons C, Botzanowski T, Nikolaev A, Hellwig P, Cianférani S, Lescop E, Bouton C, Golinelli-Cohen MP. The H2O2-Resistant Fe–S Redox Switch MitoNEET Acts as a pH Sensor To Repair Stress-Damaged Fe–S Protein. Biochemistry 2018; 57:5616-5628. [DOI: 10.1021/acs.biochem.8b00777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Cécile Mons
- Institut de Chimie
des Substances Naturelles, CNRS UPR 2301, Univ Paris-Sud, Université
Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Thomas Botzanowski
- Laboratoire de
Spectrométrie de Masse BioOrganique, Université de Strasbourg,
CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Anton Nikolaev
- Laboratoire de Bioélectrochimie
et Spectroscopie, UMR 7140, Chimie de la Matière Complexe,
Université de Strasbourg-CNRS, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie
et Spectroscopie, UMR 7140, Chimie de la Matière Complexe,
Université de Strasbourg-CNRS, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de
Spectrométrie de Masse BioOrganique, Université de Strasbourg,
CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Ewen Lescop
- Institut de Chimie
des Substances Naturelles, CNRS UPR 2301, Univ Paris-Sud, Université
Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Cécile Bouton
- Institut de Chimie
des Substances Naturelles, CNRS UPR 2301, Univ Paris-Sud, Université
Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Marie-Pierre Golinelli-Cohen
- Institut de Chimie
des Substances Naturelles, CNRS UPR 2301, Univ Paris-Sud, Université
Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
3
|
Protein Structural Analysis via Mass Spectrometry-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:397-431. [PMID: 27975228 DOI: 10.1007/978-3-319-41448-5_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: (1) hydrogen/deuterium exchange (HDX), (2) limited proteolysis, and (3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides. Structural information on surface exposed, flexible or disordered linker regions of proteins can be achieved through limited proteolysis, using a variety of proteases and only small extents of digestion. CX refers to the covalent coupling of distinct chemical species and has been used to analyze the structure, function and interactions of proteins by identifying crosslinking sites that are formed by small multi-functional reagents, termed crosslinkers. Each of these MS applications is capable of revealing structural information for proteins when used either with or without other typical high resolution techniques, including NMR and X-ray crystallography.
Collapse
|
4
|
Sheriff FA, Consta S. Charge-induced instabilities of droplets containing macromolecular complexes. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solvated macromolecular complexes are ubiquitous in nature, notably in biological systems containing proteins and nucleic acids. Studies of the interactions within a macromolecular complex and between the complex and the solvent in droplet environments are critical for understanding the stability of macromolecular complexes in electrospray ionization (ESI) and nanofluidic experiments. In this study, two distinct cases of macromolecular complexes in aqueous nanodrops are examined by using molecular dynamics simulations: (i) a pair of sodiated poly(ethylene) glycol (PEG) macroions and (ii) a double-stranded DNA (dsDNA). PEG represents a case in which the surface energy of the aqueous droplet is larger than the solvent–macromolecule energy. Conversely, in a droplet solvating dsDNA, the solvent–macromolecule interaction energy overcomes the solvent interaction energy. We report that charge-induced instabilities previously identified for single macroions also appear in the case of complexes, but with a higher level of complexity. In the case of a pair of PEG macroions, we found that their conformations on the surface of a droplet “sense” each other. The charged PEGs are each released from a droplet at different times through contiguous extrusion or drying-out mechanisms. In the case of the DNA, the charge-induced instability manifests as a spine droplet morphology. Narrow regions of the spines promote break down of the hydrogen bonds that hold the dsDNA together. The dsDNA separates into two single strands as it is increasingly exposed to vacuum. These findings elucidate charge-induced instabilities of macromolecular complexes in droplets, which are critical intermediates in ESI and nanofluidic experiments.
Collapse
Affiliation(s)
- Falana Aziza Sheriff
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
5
|
Schermann SM, Simmons DA, Konermann L. Mass spectrometry-based approaches to protein–ligand interactions. Expert Rev Proteomics 2014; 2:475-85. [PMID: 16097882 DOI: 10.1586/14789450.2.4.475] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the greatest current challenges in proteomics is to develop an understanding of cellular communication and regulation processes, most of which involve noncovalent interactions of proteins with various binding partners. Mass spectrometry plays an important role in all aspects of these research efforts. This article provides a survey of mass spectrometry-based approaches for exploring protein-ligand interactions. A wide array of techniques is available, and the choice of method depends on the specific problem at hand. For example, the high-throughput screening of compound libraries for binding to a specific receptor requires different approaches than structural studies on multiprotein complexes. This review is directed to readers wishing to obtain a concise yet comprehensive overview of existing experimental techniques. Specific emphasis is placed on emerging methods that have been developed within the last few years.
Collapse
Affiliation(s)
- Sonya M Schermann
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | | | | |
Collapse
|
6
|
Holding AN, Lamers MH, Stephens E, Skehel JM. Hekate: software suite for the mass spectrometric analysis and three-dimensional visualization of cross-linked protein samples. J Proteome Res 2013; 12:5923-33. [PMID: 24010795 PMCID: PMC3859183 DOI: 10.1021/pr4003867] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Chemical cross-linking
of proteins combined with mass spectrometry
provides an attractive and novel method for the analysis of native
protein structures and protein complexes. Analysis of the data however
is complex. Only a small number of cross-linked peptides are produced
during sample preparation and must be identified against a background
of more abundant native peptides. To facilitate the search and identification
of cross-linked peptides, we have developed a novel software suite,
named Hekate. Hekate is a suite of tools that address the challenges
involved in analyzing protein cross-linking experiments when combined
with mass spectrometry. The software is an integrated pipeline for
the automation of the data analysis workflow and provides a novel
scoring system based on principles of linear peptide analysis. In
addition, it provides a tool for the visualization of identified cross-links
using three-dimensional models, which is particularly useful when
combining chemical cross-linking with other structural techniques.
Hekate was validated by the comparative analysis of cytochrome c (bovine heart) against previously reported data.1 Further validation was carried out on known structural
elements of DNA polymerase III, the catalytic α-subunit of the Escherichia coli DNA replisome along with new insight
into the previously uncharacterized C-terminal domain of the protein.
Collapse
Affiliation(s)
- Andrew N Holding
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | | | | | | |
Collapse
|
7
|
Parkhouse R, Ebong IO, Robinson CV, Monie TP. The N-terminal region of the human autophagy protein ATG16L1 contains a domain that folds into a helical structure consistent with formation of a coiled-coil. PLoS One 2013; 8:e76237. [PMID: 24086718 PMCID: PMC3782427 DOI: 10.1371/journal.pone.0076237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
Autophagy is a fundamental cellular process required for organelle degradation and removal of invasive pathogens. Autophagosome formation involves the recruitment of, and interaction between, multiple proteins produced from autophagy-related (ATG) genes. One of the key complexes in autophagosome formation is the ATG12-ATG5-ATG16L1 complex. ATG16L1 functions as a molecular scaffold mediating protein-protein interactions necessary for formation of the autophagosome in response to both classical and pathogen-related autophagy stimuli. The coiled-coil domain of the yeast ortholog, ATG16, exists as a homodimer both in solution and in the crystal form. The yeast and human orthologs show poor sequence identity. Here we have sought to determine the minimal boundaries of the human ATG16L1 coiled-coil domain and ascertain its oligomeric status in solution. Using a range of biochemical and biophysical techniques we show that the secondary structure of the human ATG16L1 coiled-coil has the expected helical composition and that the domain forms a homodimer in solution. We also observe extensive sequence conservation across vertebrates providing strong support for the crucial functional role of the ATG16L1 coiled-coil.
Collapse
Affiliation(s)
- Rhiannon Parkhouse
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ima-Obong Ebong
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Tom P. Monie
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Atmanene C, Wagner-Rousset E, Corvaïa N, Van Dorsselaer A, Beck A, Sanglier-Cianférani S. Noncovalent mass spectrometry for the characterization of antibody/antigen complexes. Methods Mol Biol 2013; 988:243-268. [PMID: 23475725 DOI: 10.1007/978-1-62703-327-5_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Monoclonal antibodies (mAbs) have taken on an increasing importance for the treatment of various diseases including cancers, immunological disorders, and other pathologies. These large biomolecules display specific structural features, which affect their efficiency and need therefore to be extensively characterized using sensitive and orthogonal analytical techniques. Among them, mass spectrometry (MS) has become the method of choice to study mAb amino acid sequences as well as their posttranslational modifications with the aim of reducing their chemistry, manufacturing, and control liabilities. This chapter will provide the reader with a description of the general approach allowing antibody/antigen systems to be characterized by noncovalent MS. In the present chapter, we describe how recent noncovalent MS technologies are used to characterize immune complexes involving both murine and humanized mAb 6F4 directed against human JAM-A, a newly identified antigenic protein (Ag) over-expressed in tumor cells. We will detail experimental conditions (sample preparation, optimization of instrumental parameters, etc.) required for the detection of noncovalent antibody/antigen complexes by MS. We will then focus on the type and the reliability of the information that we get from noncovalent MS data, with emphasis on the determination of the stoichiometry of antibody/antigen systems. Noncovalent MS appears as an additional supporting technique for therapeutic mAbs lead characterization and development.
Collapse
Affiliation(s)
- Cédric Atmanene
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, CNRS, UMR7178, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
9
|
Ramisetty SR, Washburn MP. Unraveling the dynamics of protein interactions with quantitative mass spectrometry. Crit Rev Biochem Mol Biol 2011; 46:216-28. [PMID: 21438726 DOI: 10.3109/10409238.2011.567244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Knowledge of structure and dynamics of proteins and protein complexes is important to unveil the molecular basis and mechanisms involved in most biological processes. Protein complex dynamics can be defined as the changes in the composition of a protein complex during a cellular process. Protein dynamics can be defined as conformational changes in a protein during enzyme activation, for example, when a protein binds to a ligand or when a protein binds to another protein. Mass spectrometry (MS) combined with affinity purification has become the analytical tool of choice for mapping protein-protein interaction networks and the recent developments in the quantitative proteomics field has made it possible to identify dynamically interacting proteins. Furthermore, hydrogen/deuterium exchange MS is emerging as a powerful technique to study structure and conformational dynamics of proteins or protein assemblies in solution. Methods have been developed and applied for the identification of transient and/or weak dynamic interaction partners and for the analysis of conformational dynamics of proteins or protein complexes. This review is an overview of existing and recent developments in studying the overall dynamics of in vivo protein interaction networks and protein complexes using MS-based methods.
Collapse
|
10
|
Park AY, Jergic S, Politis A, Ruotolo BT, Hirshberg D, Jessop LL, Beck JL, Barsky D, O'Donnell M, Dixon NE, Robinson CV. A single subunit directs the assembly of the Escherichia coli DNA sliding clamp loader. Structure 2010; 18:285-92. [PMID: 20223211 DOI: 10.1016/j.str.2010.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/19/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
Multi-protein clamp loader complexes are required to load sliding clamps onto DNA. In Escherichia coli the clamp loader contains three DnaX (tau/gamma) proteins, delta, and delta', which together form an asymmetric pentameric ring that also interacts with psichi. Here we used mass spectrometry to examine the assembly and dynamics of the clamp loader complex. We find that gamma exists exclusively as a stable homotetramer, while tau is in a monomer-dimer-trimer-tetramer equilibrium. delta' plays a direct role in the assembly as a tau/gamma oligomer breaker, thereby facilitating incorporation of lower oligomers. With delta', both delta and psichi stabilize the trimeric form of DnaX, thus completing the assembly. When tau and gamma are present simultaneously, mimicking the situation in vivo, subunit exchange between tau and gamma tetramers occurs rapidly to form heterocomplexes but is retarded when deltadelta' is present. The implications for intracellular assembly of the DNA polymerase III holoenzyme are discussed.
Collapse
Affiliation(s)
- Ah Young Park
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li Z, Song F, Zhuang Z, Dunaway-Mariano D, Anderson KS. Monitoring enzyme catalysis in the multimeric state: direct observation of Arthrobacter 4-hydroxybenzoyl-coenzyme A thioesterase catalytic complexes using time-resolved electrospray ionization mass spectrometry. Anal Biochem 2009; 394:209-16. [PMID: 19635449 PMCID: PMC2743789 DOI: 10.1016/j.ab.2009.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/06/2009] [Accepted: 07/20/2009] [Indexed: 11/19/2022]
Abstract
The ability to examine real-time reaction kinetics for multimeric enzymes in their native state may offer unique insights into understanding the catalytic mechanism and its interplay with three-dimensional structure. In this study, we have used a time-resolved electrospray mass spectrometry approach to probe the kinetic mechanism of 4-hydroxybenzoyl-coenzyme A (4-HBA-CoA) thioesterase from Arthrobacter sp. strain SU in the millisecond time domain. Intact tetrameric complexes of 4-HBA-CoA thioesterase with up to four natural substrate (4-HBA-CoA) molecules bound were detected at times as early as 6 ms using an online rapid-mixing device directly coupled to an electrospray ionization time-of-flight mass spectrometer. Species corresponding to the formation of a folded tetramer of the thioesterase at charge states 16+, 17+, 18+, and 19+ around m/z 3800 were observed and assigned as individual tetramers of thioesterase and noncovalent complexes of the tetramers with up to four substrate and/or product molecules. Real-time evaluation of the reaction kinetics was accomplished by monitoring change in peak intensity corresponding to the substrate and product complexes of the tetrameric protein. The mass spectral data suggest that product 4-HBA is released from the active site of the enzyme prior to the release of product CoA following catalytic turnover. This study demonstrates the utility of this technique to provide additional molecular details for an understanding of the individual enzyme states during the thioesterase catalysis and ability to observe real-time interactions between enzyme and substrates and/or products in the millisecond time range.
Collapse
Affiliation(s)
- Zhili Li
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Feng Song
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Zhihao Zhuang
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Debra Dunaway-Mariano
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Karen S. Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
12
|
An Atomistic View to the Gas Phase Proteome. Structure 2009; 17:88-95. [DOI: 10.1016/j.str.2008.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 10/14/2008] [Accepted: 11/06/2008] [Indexed: 11/22/2022]
|
13
|
Sanders WS, Bridges SM, McCarthy FM, Nanduri B, Burgess SC. Prediction of peptides observable by mass spectrometry applied at the experimental set level. BMC Bioinformatics 2007; 8 Suppl 7:S23. [PMID: 18047723 PMCID: PMC2099492 DOI: 10.1186/1471-2105-8-s7-s23] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background When proteins are subjected to proteolytic digestion and analyzed by mass spectrometry using a method such as 2D LC MS/MS, only a portion of the proteotypic peptides associated with each protein will be observed. The ability to predict which peptides can and cannot potentially be observed for a particular experimental dataset has several important applications in proteomics research including calculation of peptide coverage in terms of potentially detectable peptides, systems biology analysis of data sets, and protein quantification. Results We have developed a methodology for constructing artificial neural networks that can be used to predict which peptides are potentially observable for a given set of experimental, instrumental, and analytical conditions for 2D LC MS/MS (a.k.a Multidimensional Protein Identification Technology [MudPIT]) datasets. Neural network classifiers constructed using this procedure for two MudPIT datasets exhibit 10-fold cross validation accuracy of about 80%. We show that a classifier constructed for one dataset has poor predictive performance with the other dataset, thus demonstrating the need for dataset specific classifiers. Classification results with each dataset are used to compute informative percent amino acid coverage statistics for each protein in terms of the predicted detectable peptides in addition to the percent coverage of the complete sequence. We also demonstrate the utility of predicted peptide observability for systems analysis to help determine if proteins that were expected but not observed generate sufficient peptides for detection. Conclusion Classifiers that accurately predict the likelihood of detecting proteotypic peptides by mass spectrometry provide proteomics researchers with powerful new approaches for data analysis. We demonstrate that the procedure we have developed for building a classifier based on an individual experimental data set results in classifiers with accuracy comparable to those reported in the literature based on large training sets collected from multiple experiments. Our approach allows the researcher to construct a classifier that is specific for the experimental, instrument, and analytical conditions of a single experiment and amenable to local, condition-specific, implementation. The resulting classifiers have application in a number of areas such as determination of peptide coverage for protein identification, pathway analysis, and protein quantification.
Collapse
Affiliation(s)
- William S Sanders
- Department of Biochemistry & Molecular Biology, Mississippi State University, MS, USA.
| | | | | | | | | |
Collapse
|
14
|
Benesch JLP, Ruotolo BT, Simmons DA, Robinson CV. Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem Rev 2007; 107:3544-67. [PMID: 17649985 DOI: 10.1021/cr068289b] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justin L P Benesch
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
15
|
Abstract
The fact that ions of macromolecular complexes produced by electrospray ionization can be maintained intact in a mass spectrometer has stimulated exciting new lines of research. In this review we chart the progress of this research from the observation of simple homo-oligomers to complex heterogeneous macromolecular assemblies of mega-Dalton proportions. The applications described herein not only confirm the status of mass spectrometry (MS) as a structural biology approach to complement X-ray analysis or electron microscopy, but also highlight unique attributes of the methodology. This is exemplified in studies of the biogenesis of macromolecular complexes and in the exchange of subunits between macromolecular complexes. Moreover, recent successes in revealing the overall subunit architecture of complexes are set to promote MS from a complementary approach to a structural biology tool in its own right.
Collapse
Affiliation(s)
- Michal Sharon
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
| | | |
Collapse
|
16
|
van den Berg BHJ, Harris T, McCarthy FM, Lamont SJ, Burgess SC. Non-electrophoretic differential detergent fractionation proteomics using frozen whole organs. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:3905-3909. [PMID: 17990261 DOI: 10.1002/rcm.3287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Non-electrophoretic methods based on two-dimensional liquid chromatography followed directly by tandem mass spectrometry (2D-LC/MS(2)) have become the preferred method for high-throughput expression proteomics and are widely applied to fresh tissues. Pre-fractionation techniques are also used in combination with 2D-LC/MS(2) to both increase the proteome size and to assign cellular locations. Data from such experiments have become central to systems biology analyses. Here we apply a differential detergent (pre)fractionation (DDF) followed by 2D-LC/MS(2) to frozen archival tissues. Our results show that by using frozen archival tissues, we do not lose proteome coverage or the ability to assign proteins to cellular compartments. In addition, we were able to assign 'biological process' Gene Ontology (GO) annotations, which will facilitate systems biological modeling of our proteomics data.
Collapse
Affiliation(s)
- Bart H J van den Berg
- College of Veterinary Medicine, PO Box 6100, Mississippi State University, MS 39762-6100, USA.
| | | | | | | | | |
Collapse
|
17
|
Craig TA, Benson LM, Bergen HR, Venyaminov SY, Salisbury JL, Ryan ZC, Thompson JR, Sperry J, Gross ML, Kumar R. Metal-binding properties of human centrin-2 determined by micro-electrospray ionization mass spectrometry and UV spectroscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1158-71. [PMID: 16750384 DOI: 10.1016/j.jasms.2006.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/03/2006] [Accepted: 04/13/2006] [Indexed: 05/10/2023]
Abstract
We analyzed the metal-binding properties of human centrin-2 (HsCen-2) and followed the changes in HsCen-2 structure upon metal-binding using micro-electrospray ionization mass spectrometry (muESI-MS). Apo-HsCen-2 is mostly monomeric. The ESI spectra of HsCen-2 show two charge-state distributions, representing two conformations of the protein. HsCen-2 binds four moles calcium/mol protein: one mol of calcium with high affinity, one additional mol of calcium with lower affinity, and two moles of calcium at low affinity sites. HsCen-2 binds four moles of magnesium/mol protein. The conformation giving the lower charge-state HsCen-2 by ESI, binds calcium and magnesium more readily than does the higher charge-state HsCen-2. Both conformations of HsCen-2 bind calcium more readily than magnesium. Calcium was more effective in displacing magnesium bound to HsCen-2 than vice versa. Binding of a peptide from a known binding partner, the xeroderma pigmentosum complementation group protein C (XPC), to apo-HsCen-2, occurs in the presence or the absence of calcium. Near and far-UV CD spectra of HsCen-2 show little difference with addition of calcium or magnesium. Minor changes in secondary structure are noted. Melting curves derived from temperature dependence of molar ellipticity at 222 nm for HsCen-2 show that calcium increases protein stability whereas magnesium does not. Delta 25 HsCen-2 behaves similarly to HsCen-2. We conclude that HsCen-2 binds calcium and magnesium and that calcium modulates HsCen-2 structure and function by increasing its stability without undergoing significant changes in secondary or tertiary structure.
Collapse
Affiliation(s)
- Theodore A Craig
- Department of Medicine, Mayo Clinic College of Medicine and Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Synowsky SA, van den Heuvel RHH, Mohammed S, Pijnappel PWWM, Heck AJR. Probing genuine strong interactions and post-translational modifications in the heterogeneous yeast exosome protein complex. Mol Cell Proteomics 2006; 5:1581-92. [PMID: 16829593 DOI: 10.1074/mcp.m600043-mcp200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The characterization of heterogeneous multicomponent protein complexes, which goes beyond identification of protein subunits, is a challenging task. Here we describe and apply a comprehensive method that combines a mild affinity purification procedure with a multiplexed mass spectrometry approach for the in-depth characterization of the exosome complex from Saccharomyces cerevisiae expressed at physiologically relevant levels. The exosome is an ensemble of primarily 3' --> 5' exoribonucleases and plays a major role in RNA metabolism. The complex has been reported to consist of 11 proteins in molecular mass ranging from 20 to 120 kDa. By using native macromolecular mass spectrometry we measured accurate masses (around 400 kDa) of several (sub)exosome complexes. Combination of these data with proteolytic peptide LC tandem mass spectrometry using a linear ion trap coupled to a FT-ICR mass spectrometer and intact protein LC mass spectrometry provided us with the identity of the different exosome components and (sub)complexes, including the subunit stoichiometry. We hypothesize that the observed complexes provide information about strongly and weakly interacting exosome-associated proteins. In our analysis we also identified for the first time phosphorylation sites in seven different exosome subunits. The phosphorylation site in the Rrp4 subunit is fully conserved in the human homologue of Rrp4, which is the only previously reported phosphorylation site in any of the human exosome proteins. The described multiplexed mass spectrometry-based procedure is generic and thus applicable to many different types of cellular molecular machineries even if they are expressed at endogenous levels.
Collapse
Affiliation(s)
- Silvia A Synowsky
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Zwergal A, Quirling M, Saugel B, Huth KC, Sydlik C, Poli V, Neumeier D, Ziegler-Heitbrock HWL, Brand K. C/EBPβ Blocks p65 Phosphorylation and Thereby NF-κB-Mediated Transcription in TNF-Tolerant Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:665-72. [PMID: 16785565 DOI: 10.4049/jimmunol.177.1.665] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TNF is a major mediator of inflammation, immunity, and apoptosis. Pre-exposure to TNF reduces sensitivity to restimulation, a phenomenon known as tolerance, considered as protective in sepsis, but also as a paradigm for immunoparalysis. Earlier experiments in TNF-tolerant cells display inhibition of NF-kappaB-dependent IL-8 gene expression at the transcriptional level with potential involvement of C/EBPbeta. In this study, we have shown that a kappaB motive was sufficient to mediate transcriptional inhibition under TNF tolerance conditions in monocytic cells. Furthermore, in tolerant cells, TNF-induced NF-kappaB p65 phosphorylation was markedly decreased, which was accompanied by the formation of C/EBPbeta-p65 complexes. Remarkably, in C/EBPbeta(-/-) cells incubated under the conditions of TNF tolerance, neither impairment of transcription nor inhibition of p65 phosphorylation was observed. Finally, we showed that C/EBPbeta overexpression reduced p65-mediated transactivation and that association of C/EBPbeta with p65 specifically prevented p65 phosphorylation. Our data demonstrate that C/EBPbeta is an essential signaling component for inhibition of NF-kappaB-mediated transcription in TNF-tolerant cells and suggest that this is caused by blockade of p65 phosphorylation. These results define a new molecular mechanism responsible for TNF tolerance in monocytic cells that may contribute to the unresponsiveness seen in patients with sepsis.
Collapse
Affiliation(s)
- Andreas Zwergal
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fu CY, Prevelige PE. Dynamic motions of free and bound O29 scaffolding protein identified by hydrogen deuterium exchange mass spectrometry. Protein Sci 2006; 15:731-43. [PMID: 16522798 PMCID: PMC2242489 DOI: 10.1110/ps.051921606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the double-stranded DNA containing bacteriophages, hundreds of copies of capsid protein subunits polymerize to form icosahedral shells, called procapsids, into which the viral genome is subsequently packaged to form infectious virions. High assembly fidelity requires the assistance of scaffolding protein molecules, which interact with the capsid proteins to insure proper geometrical incorporation of subunits into the growing icosahedral lattices. The interactions between the scaffolding and capsid proteins are transient and are subsequently disrupted during DNA packaging. Removal of scaffolding protein is achieved either by proteolysis or alternatively by some form of conformational switch that allows it to dissociate from the capsid. To identify the switch controlling scaffolding protein association and release, hydrogen deuterium exchange was applied to Bacillus subtilis phage Ø29 scaffolding protein gp7 in both free and procapsid-bound forms. The H/D exchange experiments revealed highly dynamic and cooperative opening motions of scaffolding molecules in the N-terminal helix-loop-helix (H-L-H) region. The motions can be promoted by destabilizing the hydrophobic contact between two helices. At low temperature where high energy motions were damped, or in a mutant in which the helices were tethered through the introduction of a disulfide bond, this region displayed restricted cooperative opening motions as demonstrated by a switch in the exchange kinetics from correlated EX1 exchange to uncorrelated EX2 exchange. The cooperative opening rate was increased in the procapsid-bound form, suggesting this region might interact with the capsid protein. Its dynamic nature might play a role in the assembly and release mechanism.
Collapse
Affiliation(s)
- Chi-Yu Fu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
21
|
Monie TP, Hernandez H, Robinson CV, Simpson P, Matthews S, Curry S. The polypyrimidine tract binding protein is a monomer. RNA (NEW YORK, N.Y.) 2005; 11:1803-8. [PMID: 16314454 PMCID: PMC1370869 DOI: 10.1261/rna.2214405] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 09/21/2005] [Indexed: 05/05/2023]
Abstract
The polypyrimidine tract binding (PTB) protein is a potent regulator of alternative mRNA splicing. It also participates in other essential cellular functions, including translation initiation and polyadenylation. Several published reports have suggested that the protein forms a dimer in solution, a feature that has been widely incorporated into mechanistic models of protein function. However, recent studies have provided indications that full-length PTB is a monomer. Here we present new biophysical and biochemical evidence supporting the monomeric status of the protein. By use of blue-native polyacrylamide gel electrophoresis and size-exclusion chromatography, PTB was observed as a single molecular species under native reducing environments, though in oxidizing conditions, a larger protein species was also detected. Further analyses of wild-type and mutant PTB molecules with SDS-PAGE and time-of-flight electrospray ionization mass spectroscopy confirmed these observations. They also identified the single reduced species as monomeric PTB and the higher-molecular-weight nonreduced species as disulphide-linked PTB dimer mediated by Cys23. Our results indicate that the use of oxidizing environments in previous studies is likely to have contributed to the mis-assignment of PTB as a dimer. Although purified PTB may form disulphide-linked dimers under these conditions, in the reducing intracellular environment the protein will be monomeric. These findings have implications for the construction of models of PTB function in regulating mRNA metabolism.
Collapse
Affiliation(s)
- Tom P Monie
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
van Duijn E, Bakkes PJ, Heeren RMA, van den Heuvel RHH, van Heerikhuizen H, van der Vies SM, Heck AJR. Monitoring macromolecular complexes involved in the chaperonin-assisted protein folding cycle by mass spectrometry. Nat Methods 2005; 2:371-6. [PMID: 15846365 DOI: 10.1038/nmeth753] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 03/18/2005] [Indexed: 11/08/2022]
Abstract
We have used native mass spectrometry to analyze macromolecular complexes involved in the chaperonin-assisted refolding of gp23, the major capsid protein of bacteriophage T4. Adapting the instrumental methods allowed us to monitor all intermediate complexes involved in the chaperonin folding cycle. We found that GroEL can bind up to two unfolded gp23 substrate molecules. Notably, when GroEL is in complex with the cochaperonin gp31, it binds exclusively one gp23. We also demonstrated that the folding and assembly of gp23 into 336-kDa hexamers by GroEL-gp31 can be monitored directly by electrospray ionization mass spectrometry (ESI-MS). These data reinforce the great potential of ESI-MS as a technique to investigate structure-function relationships of protein assemblies in general and the chaperonin-protein folding machinery in particular. A major advantage of native mass spectrometry is that, given sufficient resolution, it allows the analysis at the picomole level of sensitivity of heterogeneous protein complexes with molecular masses up to several million daltons.
Collapse
Affiliation(s)
- Esther van Duijn
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Limited proteolysis combined with isotope labeling and quantitative LC-MALDI MS for monitoring protein conformational changes: a study on calcium-binding sites of cardiac Troponin C. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2004.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Donald LJ, Stokell DJ, Holliday NJ, Ens W, Standing KG, Duckworth HW. Multiple equilibria of the Escherichia coli chaperonin GroES revealed by mass spectrometry. Protein Sci 2005; 14:1375-9. [PMID: 15802642 PMCID: PMC2253275 DOI: 10.1110/ps.041164305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nanospray time-of-flight mass spectrometry has been used to study the assembly of the heptamer of the Escherichia coli cochaperonin protein GroES, a system previously described as a monomer-heptamer equilibrium. In addition to the monomers and heptamers, we have found measurable amounts of dimers and hexamers, the presence of which suggests the following mechanism for heptamer assembly: 2 Monomers <--> Dimer; 3 Dimers <--> Hexamer; Hexamer + Monomer <--> Heptamer. Equilibrium constants for each of these steps, and an overall constant for the Monomer <--> Heptamer equilibrium, have been estimated from the data. These constants imply a standard free-energy change, DeltaG(0), of about 9 kcal/mol for each contact surface formed between GroES subunits, except for the addition of the last subunit, where DeltaG(0) = 6 kcal/mol. This lower value probably reflects the loss of entropy when the heptamer ring is formed. These experiments illustrate the advantages of electrospray mass spectrometry as a method of measuring all components of a multiple equilibrium system.
Collapse
Affiliation(s)
- Lynda J Donald
- Department of Chemistry, 507 Parker Building, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | | | | | | | | | | |
Collapse
|
25
|
Wiseman JM, Takáts Z, Gologan B, Davisson VJ, Cooks RG. Direct Characterization of Enzyme-Substrate Complexes by Using Electrosonic Spray Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2004; 44:913-6. [PMID: 15624227 DOI: 10.1002/anie.200461672] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Justin M Wiseman
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
26
|
Wiseman JM, Takáts Z, Gologan B, Davisson VJ, Cooks RG. Direct Characterization of Enzyme-Substrate Complexes by Using Electrosonic Spray Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200461672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Abstract
With the amount of genetic information available, a lot of attention has focused on systems biology, in particular biomolecular interactions. Considering the huge number of such interactions, and their often weak and transient nature, conventional experimental methods such as X-ray crystallography and NMR spectroscopy are not sufficient to gain structural insight into these. A wealth of biochemical and/or biophysical data can, however, readily be obtained for biomolecular complexes. Combining these data with docking (the process of modeling the 3D structure of a complex from its known constituents) should provide valuable structural information and complement the classical structural methods. In this review we discuss and illustrate the various sources of data that can be used to map interactions and their combination with docking methods to generate structural models of the complexes. Finally a perspective on the future of this kind of approach is given.
Collapse
Affiliation(s)
- Aalt D J van Dijk
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584CH, Utrecht, the Netherlands
| | | | | |
Collapse
|
28
|
Abstract
The minutiae of subtle changes that occur in response to ligand binding in multiprotein complexes are often difficult to assess without resource to high resolution X-ray analysis. Recent developments in mass spectrometry, however, are providing insight into dynamic changes within components. In this article we review recent applications of MS for selection of ligands and definition of their binding characteristics for individual protein targets through to macromolecular complexes such as ribosomes.
Collapse
Affiliation(s)
- Margaret G McCammon
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
29
|
Heck AJR, Van Den Heuvel RHH. Investigation of intact protein complexes by mass spectrometry. MASS SPECTROMETRY REVIEWS 2004; 23:368-89. [PMID: 15264235 DOI: 10.1002/mas.10081] [Citation(s) in RCA: 448] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mass spectrometry has grown in recent years to a well-accepted and increasingly important complementary technique in structural biology. Especially electrospray ionization mass spectrometry is well suited for the detection of non-covalent protein complexes and their interactions with DNA, RNA, ligands, and cofactors. Over the last decade, significant advances have been made in the ionization and mass analysis techniques, which makes the investigation of even larger and more heterogeneous intact assemblies feasible. These technological developments have paved the way to study intact non-covalent protein-protein interactions, assembly and disassembly in real time, subunit exchange, cooperativity effects, and effects of cofactors, allowing us a better understanding of proteins in cellular processes. In this review, we describe some of the latest developments and several highlights.
Collapse
Affiliation(s)
- Albert J R Heck
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | | |
Collapse
|
30
|
Lentze N, Aquilina JA, Lindbauer M, Robinson CV, Narberhaus F. Temperature and concentration-controlled dynamics of rhizobial small heat shock proteins. ACTA ACUST UNITED AC 2004; 271:2494-503. [PMID: 15182365 DOI: 10.1111/j.1432-1033.2004.04180.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A hallmark of alpha-crystallin-type small heat shock proteins (sHsps) is their highly dynamic oligomeric structure which promotes intermolecular interactions involved in subunit exchange and substrate binding (chaperone-like activity). We studied the oligomeric features of two classes of bacterial sHsps by size exclusion chromatography and nanoelectrospray mass spectrometry. Proteins of both classes formed large complexes that rapidly dissociated upon dilution and at physiologically relevant heat shock temperatures. As the secondary structure was not perturbed, temperature- and concentration-dependent dissociations were fully reversible. Complexes formed between sHsps and the model substrate citrate synthase were stable and exceeded the size of sHsp oligomers. Small Hsps, mutated in a highly conserved glycine residue at the C-terminal end of the alpha-crystallin domain, formed labile complexes that disassembled more readily than the corresponding wild-type proteins. Reduced complex stability coincided with reduced chaperone activity.
Collapse
Affiliation(s)
- Nicolas Lentze
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
31
|
van den Bremer ETJ, Keeble AH, Jiskoot W, Spelbrink REJ, Maier CS, van Hoek A, Visser AJWG, James R, Moore GR, Kleanthous C, Heck AJR. Distinct conformational stability and functional activity of four highly homologous endonuclease colicins. Protein Sci 2004; 13:1391-401. [PMID: 15096639 PMCID: PMC2286750 DOI: 10.1110/ps.03508204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 01/30/2004] [Accepted: 02/09/2004] [Indexed: 10/26/2022]
Abstract
The family of conserved colicin DNases E2, E7, E8, and E9 are microbial toxins that kill bacteria through random degradation of the chromosomal DNA. In the present work, we compare side by side the conformational stabilities of these four highly homologous colicin DNases. Our results indicate that the apo-forms of these colicins are at room temperature and neutral pH in a dynamic conformational equilibrium between at least two quite distinct conformers. We show that the thermal stabilities of the apo-proteins differ by up to 20 degrees C. The observed differences correlate with the observed conformational behavior, that is, the tendency of the protein to form either an open, less stable or closed, more stable conformation in solution, as deduced by both tryptophan accessibility studies and electrospray ionization mass spectrometry. Given these surprising structural differences, we next probed the catalytic activity of the four DNases and also observed a significant variation in relative activities. However, no unequivocal link between the activity of the protein and its thermal and structural stability could easily be made. The observed differences in conformational and functional properties of the four colicin DNases are surprising given that they are a closely related (> or =65% identity) family of enzymes containing a highly conserved (betabetaalpha-Me) active site motif. The different behavior of the apo-enzymes must therefore most likely depend on more subtle changes in amino acid sequences, most likely in the exosite region (residues 72-98) that is required for specific high-affinity binding of the cognate immunity protein.
Collapse
Affiliation(s)
- Ewald T J van den Bremer
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research & Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CA Utrecht, The Netherlands. e.t.j.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schlosser G, Takáts Z, Vékey K. Formation of solvated ions in the atmospheric interface of an electrospray ionization triple-quadrupole mass spectrometer. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:1245-1251. [PMID: 14696203 DOI: 10.1002/jms.555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A simple method capable of generating and investigating various solvent clusters and solvated ions was developed. The technique opens a door to studying these complexes on commercially available instruments. Formation of the desired solvated ion in the gas phase was achieved by introducing the appropriate volatile solvent vapour into the curtain gas stream. Capabilities of the technique are illustrated by generating alkali, alkaline earth and transition metal cations solvated by various volatile compounds such as water, methanol and acetonitrile. Depending on the ligands and on the experimental conditions, clusters of 2-100 molecules may be observed. Isotope labelling suggests that these are formed by a re-solvation process in the curtain gas region.
Collapse
Affiliation(s)
- Gitta Schlosser
- Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary
| | | | | |
Collapse
|
33
|
Aquilina JA, Benesch JLP, Bateman OA, Slingsby C, Robinson CV. Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in alphaB-crystallin. Proc Natl Acad Sci U S A 2003; 100:10611-6. [PMID: 12947045 PMCID: PMC196852 DOI: 10.1073/pnas.1932958100] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The quaternary structure of the polydisperse mammalian chaperone alphaB-crystallin, a member of the small heat-shock protein family, has been investigated by using electrospray mass spectrometry. The intact assemblies give rise to mass spectra that are complicated by the overlapping of charge states from the different constituent oligomers. Therefore, to determine which oligomers are formed by this protein, tandem mass spectrometry experiments were performed. The spectra reveal a distribution, primarily of oligomers containing 24-33 subunits, the relative populations of which were quantified, to reveal a dominant species being composed of 28 subunits. Additionally, low levels of oligomers as small as 10-mers and as large as 40-mers were observed. Interpretation of the tandem mass spectral data was confirmed by simulating and summing spectra arising from the major individual oligomers. The ability of mass spectrometry to quantify the relative populations of particular oligomeric states also revealed that, contrary to the dimeric associations observed in other small heat-shock proteins, there is no evidence for any stable substructures of bovine alphaB-crystallin isolated from the lens.
Collapse
Affiliation(s)
- J Andrew Aquilina
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Back JW, de Jong L, Muijsers AO, de Koster CG. Chemical cross-linking and mass spectrometry for protein structural modeling. J Mol Biol 2003; 331:303-13. [PMID: 12888339 DOI: 10.1016/s0022-2836(03)00721-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The growth of gene and protein sequence information is currently so rapid that three-dimensional structural information is lacking for the overwhelming majority of known proteins. In this review, efforts towards rapid and sensitive methods for protein structural characterization are described, complementing existing technologies. Based on chemical cross-linking and offering the analytical speed and sensitivity of mass spectrometry these methodologies are thought to contribute valuable tools towards future high throughput protein structure elucidation.
Collapse
Affiliation(s)
- Jaap Willem Back
- Swammerdam Institute for Life Sciences (SILS), Mass Spectrometry group, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Clark SM, Konermann L. Diffusion measurements by electrospray mass spectrometry for studying solution-phase noncovalent interactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:430-441. [PMID: 12745212 DOI: 10.1016/s1044-0305(03)00123-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study describes a novel approach for monitoring noncovalent interactions in solution by electrospray mass spectrometry (ESI-MS). The technique is based on measurements of analyte diffusion in solution. Diffusion coefficients of a target macromolecule and a potential low molecular weight binding partner are determined by measuring the spread of an initially sharp boundary between two solutions of different concentration in a laminar flow tube (Taylor dispersion), as described in Rapid Commun. Mass Spectrom. 2002, 16, 1454-1462. In the absence of noncovalent interactions, the measured ESI-MS dispersion profiles are expected to show a gradual transition for the macromolecule and a steep transition for the low molecular weight compound. However, if the two analytes form a noncovalent complex in solution the dispersion profiles of the two species will be very similar, since the translational diffusion of the small compound is determined by the slow Brownian motion of the macromolecule. In contrast to conventional ESI-MS-based techniques for studying noncovalent complexes, this approach does not rely on the preservation of solution-phase interactions in the gas phase. On the contrary, "harsh" conditions at the ion source are required to disrupt any potential gas- phase interactions between the two species, such that their dispersion profiles can be monitored separately. The viability of this technique is demonstrated in studies on noncovalent heme-protein interactions in myoglobin. Tight noncovalent binding is observed in solutions of pH 10, both in the absence and in the presence of 30% acetonitrile. In contrast, a significant disruption of the noncovalent interactions is seen at an acetonitrile content of 50%. Under these conditions, the diffusion coefficient of heme in the presence of myoglobin is only slightly lower than that of heme in a protein-free solution. A breakdown of the noncovalent interactions is also observed in aqueous solution of pH 2.4, where myoglobin is known to adopt an acid-unfolded conformation.
Collapse
Affiliation(s)
- Sonya M Clark
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
36
|
Kheterpal I, Wetzel R, Cook KD. Enhanced correction methods for hydrogen exchange-mass spectrometric studies of amyloid fibrils. Protein Sci 2003; 12:635-43. [PMID: 12592034 PMCID: PMC2312450 DOI: 10.1110/ps.0225703] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We describe methods for minimization of and correction for artifactual forward and backward exchange occurring during hydrogen exchange-mass spectrometric (HX-MS) studies of amyloid fibrils of the Abeta(1-40) peptide. The quality of the corrected data obtained using published and new correction algorithms is evaluated quantitatively. Using the new correction methods, we have determined that 20.1 +/- 1.4 of the 39 backbone amide hydrogens in Abeta(1-40) exchange with deuteriums in 100 h when amyloid fibrils of this peptide are suspended in D(2)O. These data reinforce our previous conclusions based on uncorrected data that amyloid fibrils contain a rigid protective core structure that involves only about half of the Abeta backbone amides. The methods developed here should be of general value for HX-MS studies of amyloid fibrils and other protein aggregates.
Collapse
Affiliation(s)
- Indu Kheterpal
- Graduate School of Medicine, University of Tennessee Medical Center, University of Tennessee, Knoxville, Tennessee 37996-1600, USA
| | | | | |
Collapse
|
37
|
Kamadurai HB, Subramaniam S, Jones RB, Green-Church KB, Foster MP. Protein folding coupled to DNA binding in the catalytic domain of bacteriophage lambda integrase detected by mass spectrometry. Protein Sci 2003; 12:620-6. [PMID: 12592032 PMCID: PMC2312437 DOI: 10.1110/ps.0234303] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacteriophage lambda integrase (lambda-Int) is the prototypical member of a large family of enzymes that catalyze site-specific DNA recombination via single-strand cleavage and the formation of a Holliday junction intermediate. Crystallographic and biochemical evidence indicate that substantial conformational change (i.e., folding) in the catalytic domain of the protein is required for substrate recognition and catalysis. We have examined the solution conformation of the catalytic domain (C170) in the absence and presence of a cognate "half-site" DNA oligonucleotide by electrospray ionization mass spectrometry, and circular dichroism and fluorescence spectroscopy. The distribution of ions in the positive ion electrospray mass spectrum of the free protein reveals the presence of three distinct species in solution, one corresponding to the folded protein, one to the unfolded protein, and one to a dimer. In the presence of DNA, ions are observed only for the protein-DNA complex and the folded form of the free protein. We therefore conclude that DNA binding stabilizes the global fold of the protein in a manner that is consistent with folding-coupled target recognition as a mechanism to control site-specific recombination. Furthermore, we find that inspection of the charge state distribution of ions in electrospray mass spectra provides a quick and effective means to identify conformational heterogeneity of proteins in solution and to investigate dynamic protein-nucleic acid interactions.
Collapse
Affiliation(s)
- Hari B Kamadurai
- Department of Biochemistry and Biophysics Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
38
|
Schlosser G, Pocsfalvi G, Malorni A, Puerta A, de Frutos M, Vékey K. Detection of immune complexes by matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:2741-2747. [PMID: 14673821 DOI: 10.1002/rcm.1239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to detect an immune complex formed between beta-lactoglobulin and polyclonal anti-beta-lactoglobulin antibody in the gas phase. The most important experimental parameters to detect such a specific antibody-antigen complex by MALDI were the use of solutions at near-neutral pH and of sinapinic acid matrix prepared by the dried-droplet method. Under such conditions, predominantly one but also two molecules of antigen protein were complexed by the antibody. Specific formation of the antibody-antigen complex was confirmed by performing competitive reactions. Addition of antibody to a 1:1 mixture of beta-lactoglobulin and one control protein resulted not only in the appearance of the expected antibody-antigen complex, but also in a strong decrease in the free beta-lactoglobulin signal, while the abundance of the control protein was not influenced.
Collapse
Affiliation(s)
- Gitta Schlosser
- Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
39
|
Hansen RK, Broadhurst RW, Skelton PC, Arkin IT. Hydrogen/deuterium exchange of hydrophobic peptides in model membranes by electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2002; 13:1376-1387. [PMID: 12484457 DOI: 10.1016/s1044-0305(02)00702-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We demonstrate here that the hydrogen/deuterium solvent exchange (HDX) properties of the transmembrane fragment of the M2 protein of Influenza A (M2-TM) incorporated into lipid vesicles or detergent micelles can be studied with straightforward electrospray (ESI) and nanospray mass spectrometry (MS) configurations provided that key factors, including sample preparation techniques, are optimized. Small unilamellar vesicle preparations were obtained by solubilizing dimyristoyl phosphatidylcholine (DMPC) and the M2-TM peptide in aqueous solution with n-octyl-beta-D-glycopyranoside, followed by dialysis to remove the detergent. Electron microscopy experiments revealed that subsequent concentration by centrifugation introduced large multilamellar aggregates that were not compatible with ESI-MS. By contrast, a lyophilization-based concentration procedure, followed by thawing above the liquid crystal transition temperature of the lipid component, maintained the liposome size profile and yielded excellent ion fluxes in both ESI-MS and nano-ESI-MS. Using these methods the global HDX profile of M2-TM in aqueous DMPC vesicles was compared with that in methanol, demonstrating that several amide sites were protected from exchange by the lipid membrane. We also show that hydrophobic peptides can be detected by ESI-MS in the presence of a large molar excess of the detergent Triton X-100. The rate of HDX of M2-TM in Triton X-100 micelles was faster than that in DMPC vesicles but slower than when the peptide had been denatured in methanol. These results indicate that the accessibility of backbone amide sites to the solvent can be profoundly affected by membrane protein structure and dynamics, as well as the properties of model bilayer systems.
Collapse
Affiliation(s)
- Raino K Hansen
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
40
|
Sobott F, Benesch JLP, Vierling E, Robinson CV. Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. J Biol Chem 2002; 277:38921-9. [PMID: 12138169 DOI: 10.1074/jbc.m206060200] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The subunit exchange of the small heat shock proteins (sHSPs) PsHSP18.1 from pea and TaHSP16.9 from wheat has been monitored in real-time using nanoelectrospray mass spectrometry. By preserving the noncovalent interactions between subunits in the mass spectrometer, we show that these proteins are dodecameric. After mixing PsHSP18.1 and TaHSP16.9, a distribution of heterododecamers is formed. A comparison with spectra obtained from statistical modeling demonstrates that after equilibration the distribution of these heterocomplexes is governed by the starting ratio of the two components rather than an inherent preference for certain stoichiometries. This finding suggests that the two different sHSP subunits interact in a very similar manner. Following the kinetics of this reaction by mass spectrometry reveals that exchange proceeds via sequential incorporation of subunits with dimeric species being the principal units of exchange. Therefore, we conclude that sHSP complexes are in rapid dissociation/reassociation equilibria with suboligomeric forms. More generally, these experiments illustrate a powerful approach for the real-time analysis of the evolution of transient species and their relative populations during the subunit exchange of multimeric protein complexes.
Collapse
Affiliation(s)
- Frank Sobott
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | |
Collapse
|
41
|
Wigger M, Eyler JR, Benner SA, Li W, Marshall AG. Fourier transform-ion cyclotron resonance mass spectrometric resolution, identification, and screening of non-covalent complexes of Hck Src homology 2 domain receptor and ligands from a 324-member peptide combinatorial library. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2002; 13:1162-1169. [PMID: 12387321 DOI: 10.1016/s1044-0305(02)00439-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The preferred ligands for the Hck Src homology 2 domain among a combinatorial library containing 324 different peptides were determined in a single experiment involving Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS), electrospray ionization (ESI), stored-waveform inverse Fourier transformation (SWIFT), and infrared multiphoton laser disassociation (IRMPD). These were compared with the results obtained by conventional screening of the peptide library in solution using affinity chromatography. The results reported here show that by combining ESI, FT-ICR MS, SWIFT, and IRMPD, ligands likely to bind under physiological conditions are rapidly and efficiently identified, even from complex library mixtures. In the gas phase some discrimination against hydrophobic ligands could be observed. However, the illustrated feasibility of identifying high affinity ligand via gas-phase screening of complex library mixtures should lead to broad applications in the development of ligands for proteins with interesting biological activity, the first step that must be taken to develop a therapeutic agent.
Collapse
|
42
|
Benson LM, Vaughn JL, Strauch MA, Bobay BG, Thompson R, Naylor S, Cavanagh J. Macromolecular assembly of the transition state regulator AbrB in its unbound and complexed states probed by microelectrospray ionization mass spectrometry. Anal Biochem 2002; 306:222-7. [PMID: 12123659 DOI: 10.1006/abio.2002.5704] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Bacillus subtilis global transition-state regulator AbrB specifically recognizes over 60 different DNA regulatory regions of genes expressed during cellular response to suboptimal environments. Most interestingly the DNA regions recognized by AbrB share no obvious consensus base sequence. To more clearly understand the functional aspects of AbrB activity, microelectrospray ionization mass spectrometry has been employed to resolve the macromolecular assembly of unbound and DNA-bound AbrB. Analysis of the N-terminal DNA binding domain of AbrB (AbrBN53, residues 1-53) demonstrates that AbrBN53 is a stable dimer, showing no apparent exchange with a monomeric form as a function of pH, ionic strength, solvent, or protein concentration. AbrBN53 demonstrates a capacity for DNA binding, underscoring the role of the N-terminal domain in both DNA recognition and dimerization. Full-length AbrB is shown to exist as a homotetramer. An investigation of the binding of AbrBN53 and AbrB to the natural DNA target element sinIR shows that AbrBN53 binds as a dimer and AbrB binds as a tetramer. This study represents the first detailed characterization of the stoichiometry of a transition-state regulator binding to one of its target promoters.
Collapse
Affiliation(s)
- Linda M Benson
- Biomedical Mass Spectrometry & Functional Proteomics Facility, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Siemann S, Brewer D, Clarke AJ, Dmitrienko GI, Lajoie G, Viswanatha T. IMP-1 metallo-beta-lactamase: effect of chelators and assessment of metal requirement by electrospray mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1571:190-200. [PMID: 12090933 DOI: 10.1016/s0304-4165(02)00258-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Metallo-beta-lactamases have attracted considerable attention due to their role in microbial resistance to beta-lactam antibiotics. IMP-1, the binuclear Zn-dependent beta-lactamase produced by Pseudomonas aeruginosa and other microorganisms, is of particular interest in view of its increasing prevalence. An examination of the susceptibility of IMP-1 to inactivation by six different divalent metal ion chelators has revealed that all except Zincon cause inhibition by forming a complex with the holoenzyme. Exposure of the enzyme to dipicolinic acid (DPA), the most potent inhibitor, results in the production of the mononuclear Zn form of the protein as determined by electrospray ionization mass spectrometry (ESI-MS) under nondenaturing conditions. This mononuclear Zn species was found to be catalytically competent. Studies with the chromophoric chelator 4-(2-pyridylazo)resorcinol (PAR) show that the two zinc centers in IMP-1 differ in their accessibility, a feature that could be overcome in the presence of guanidine hydrochloride (GdnHCl, 1.5 M).
Collapse
Affiliation(s)
- Stefan Siemann
- Department of Chemistry, University of Waterloo, 200 University Ave. W, Waterloo, ON, Canada N2L 3G1
| | | | | | | | | | | |
Collapse
|
44
|
Neet KE, Lee JC. Biophysical characterization of proteins in the post-genomic era of proteomics. Mol Cell Proteomics 2002; 1:415-20. [PMID: 12169682 DOI: 10.1074/mcp.r200003-mcp200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteomics focuses on the high throughput study of the expression, structure, interactions, and, to some extent, function of large numbers of proteins. A true understanding of the functioning of a living cell also requires a quantitative description of the stoichiometry, kinetics, and energetics of each protein complex in a cellular pathway. Classical molecular biophysical studies contribute to understanding of these detailed properties of proteins on a smaller scale than does proteomics in that individual proteins are usually studied. This perspective article deals with the role of biophysical methods in the study of proteins in the proteomic era. Several important physical biochemical methods are discussed briefly and critiqued from the standpoint of information content and data acquisition. The focus is on conformational changes and macromolecular assembly, the utility of dynamic and static structural data, and the necessity to combine experimental approaches to obtain a full functional description. The conclusions are that biophysical information on proteins is a useful adjunct to "standard" proteomic methods, that data can be obtained by high throughput technology in some instances, but that hypothesis-driven experimentation may frequently be required.
Collapse
Affiliation(s)
- Kenneth E Neet
- Department of Biochemistry and Molecular Biology, Finch University of Health Sciences/Chicago Medical School, North Chicago, Illinois 60064, USA.
| | | |
Collapse
|
45
|
Abstract
Proteomic tools measure gene expression, protein activity and interactions of biological events at the protein level. Proteins are the major catalysts of biological functions and contain several dimensions of information that collectively indicate the actual rather than the potential functional state as indicated by mRNA analysis. Measurements can be made in terms of protein quantity, location, and time-point. For the future we see a further integration of existing and new technologies for proteomics from a wide range of areas of biochemistry, chemistry, physics, computing science and molecular biology. This will further advance our knowledge of how biological systems are built up and what mechanisms control these systems. However, the potential of proteomics to comprehensively answer all biological questions is limited as only protein activity is measured. A unification of genomics, proteomics, and other technologies is needed if we are to start to understand the complexity of biological function in the context of disease and health.
Collapse
Affiliation(s)
- Valerie C Wasinger
- Mass Spectrometry and Protein Analysis Laboratory, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
46
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:443-453. [PMID: 11948851 DOI: 10.1002/jms.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
47
|
|