1
|
Zheng X, Liu B, Ni P, Cai L, Shi X, Ke Z, Zhang S, Hu B, Yang B, Xu Y, Long W, Fang Z, Wang Y, Zhang W, Xu Y, Wang Z, Pan K, Zhou K, Wang H, Geng H, Hu H, Liu B. Development and application of an uncapped mRNA platform. Ann Med 2025; 57:2437046. [PMID: 39648715 PMCID: PMC11632943 DOI: 10.1080/07853890.2024.2437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 06/01/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND A novel uncapped mRNA platform was developed. METHODS Five lipid nanoparticle (LNP)-encapsulated mRNA constructs were made to evaluate several aspects of our platform, including transfection efficiency and durability in vitro and in vivo and the activation of humoral and cellular immunity in several animal models. The constructs were eGFP-mRNA-LNP (for enhanced green fluorescence mRNA), Fluc-mRNA-LNP (for firefly luciferase mRNA), SδT-mRNA-LNP (for Delta strain SARS-CoV-2 spike protein trimer mRNA), gDED-mRNA-LNP (for truncated glycoprotein D mRNA coding ectodomain from herpes simplex virus type 2 (HSV2)) and gDFR-mRNA-LNP (for truncated HSV2 glycoprotein D mRNA coding amino acids 1-400). RESULTS Quantifiable target protein expression was achieved in vitro and in vivo with eGFP- and Fluc-mRNA-LNP. SδT-mRNA-LNP, gDED-mRNA-LNP and gDFR-mRNA-LNP induced both humoral and cellular immune responses comparable to those obtained by previously reported capped mRNA-LNP constructs. Notably, SδT-mRNA-LNP elicited neutralizing antibodies in hamsters against the Omicron and Delta strains. Additionally, gDED-mRNA-LNP and gDFR-mRNA-LNP induced potent neutralizing antibodies in rabbits and mice. The mRNA constructs with uridine triphosphate (UTP) outperformed those with N1-methylpseudouridine triphosphate (N1mψTP) in the induction of antibodies via SδT-mRNA-LNP. CONCLUSIONS Our uncapped, process-simplified and economical mRNA platform may have broad utility in vaccines and protein replacement drugs.KEY MESSAGESThe mRNA platform described in our paper uses internal ribosome entry site (IRES) (Rapid, Amplified, Capless and Economical, RACE; Register as BH-RACE platform) instead of caps and uridine triphosphate (UTP) instead of N1-methylpseudouridine triphosphate (N1mψTP) to synthesize mRNA.Through the self-developed packaging instrument and lipid nanoparticle (LNP) delivery system, mRNA can be expressed in cells more efficiently, quickly and economically.Particularly exciting is that potent neutralizing antibodies against Delta and Omicron real viruses were induced with the new coronavirus S protein mRNA vaccine from the BH-RACE platform.
Collapse
Affiliation(s)
- Xiaodi Zheng
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Biao Liu
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Peng Ni
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Linkang Cai
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Xiaotai Shi
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Zonghuang Ke
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Siqi Zhang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Bing Hu
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Binfeng Yang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Yiyan Xu
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Wei Long
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Zhizheng Fang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Yang Wang
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Zhong Wang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Kai Pan
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Kangping Zhou
- Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Hanming Wang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Hui Geng
- School of Life Science, Huazhong Normal University, Wuhan, China
| | - Han Hu
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Binlei Liu
- College of Bioengineering, National ‘‘111’’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| |
Collapse
|
2
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Liu X, Wang S, Sun Y, Liao Y, Jiang G, Sun BY, Yu J, Zhao D. Unlocking the potential of circular RNA vaccines: a bioinformatics and computational biology perspective. EBioMedicine 2025; 114:105638. [PMID: 40112741 PMCID: PMC11979485 DOI: 10.1016/j.ebiom.2025.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Bioinformatics has significantly advanced RNA-based therapeutics, particularly circular RNAs (circRNAs), which outperform mRNA vaccines, by offering superior stability, sustained expression, and enhanced immunogenicity due to their covalently closed structure. This review highlights how bioinformatics and computational biology optimise circRNA vaccine design, elucidates internal ribosome entry sites (IRES) selection, open reading frame (ORF) optimisation, codon usage, RNA secondary structure prediction, and delivery system development. While circRNA vaccines may not always surpass traditional vaccines in stability, their production efficiency and therapeutic efficacy can be enhanced through computational strategies. The discussion also addresses challenges and future prospects, emphasizing the need for innovative solutions to overcome current limitations and advance circRNA vaccine applications.
Collapse
Affiliation(s)
- Xuyuan Liu
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Siqi Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yunan Sun
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yunxi Liao
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Guangzhen Jiang
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong 510005, China
| | - Bryan-Yu Sun
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jingyou Yu
- Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| |
Collapse
|
4
|
Koubek J, Kaur J, Bhandarkar S, Lewis CJT, Niederer RO, Stanciu A, Aitken CE, Gilbert WV. Cellular translational enhancer elements that recruit eukaryotic initiation factor 3. RNA (NEW YORK, N.Y.) 2025; 31:193-207. [PMID: 39626887 PMCID: PMC11789482 DOI: 10.1261/rna.080310.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
Translation initiation is a highly regulated process that broadly affects eukaryotic gene expression. Eukaryotic initiation factor 3 (eIF3) is a central player in canonical and alternative pathways for ribosome recruitment. Here, we have investigated how direct binding of eIF3 contributes to the large and regulated differences in protein output conferred by different 5'-untranslated regions (5' UTRs) of cellular mRNAs. Using an unbiased high-throughput approach to determine the affinity of budding yeast eIF3 for native 5' UTRs from 4252 genes, we demonstrate that eIF3 binds specifically to a subset of 5' UTRs that contain a short unstructured binding motif, AMAYAA. eIF3-binding mRNAs have higher ribosome density in growing cells and are preferentially translated under certain stress conditions, supporting the functional relevance of this interaction. Our results reveal a new class of translational enhancers and suggest a mechanism by which changes in core initiation factor activity enact mRNA-specific translation programs.
Collapse
Affiliation(s)
- Jiří Koubek
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jaswinder Kaur
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Shivani Bhandarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Cole J T Lewis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Rachel O Niederer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Andrei Stanciu
- Biology Department and Biochemistry Program, Vassar College, Poughkeepsie, New York 12604, USA
| | - Colin Echeverría Aitken
- Biology Department and Biochemistry Program, Vassar College, Poughkeepsie, New York 12604, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
5
|
Khan D, Fox PL. Host-like RNA Elements Regulate Virus Translation. Viruses 2024; 16:468. [PMID: 38543832 PMCID: PMC10976276 DOI: 10.3390/v16030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Viruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA termini, i.e., at the 5' or 3' ends, including the untranslated regions (UTRs). Translation of most eukaryotic mRNAs is initiated by 5' cap-dependent scanning. In contrast, many viruses initiate translation at internal RNA regions at internal ribosome entry sites (IRESs). Eukaryotic mRNAs often contain upstream open reading frames (uORFs) that permit condition-dependent control of downstream major ORFs. To offset genome compression and increase coding capacity, some viruses take advantage of out-of-frame overlapping uORFs (oORFs). Lacking the essential machinery of protein synthesis, for example, ribosomes and other translation factors, all viruses utilize the host apparatus to generate virus protein. In addition, some viruses exhibit RNA elements that bind host regulatory factors that are not essential components of the translation machinery. SARS-CoV-2 is a paradigm example of a virus taking advantage of multiple features of eukaryotic host translation control: the virus mimics the established human GAIT regulatory element and co-opts four host aminoacyl tRNA synthetases to form a stimulatory binding complex. Utilizing discontinuous transcription, the elements are present and identical in all SARS-CoV-2 subgenomic RNAs (and the genomic RNA). Thus, the virus exhibits a post-transcriptional regulon that improves upon analogous eukaryotic regulons, in which a family of functionally related mRNA targets contain elements that are structurally similar but lacking sequence identity. This "thrifty" virus strategy can be exploited against the virus since targeting the element can suppress the expression of all subgenomic RNAs as well as the genomic RNA. Other 3' end viral elements include 3'-cap-independent translation elements (3'-CITEs) and 3'-tRNA-like structures. Elucidation of virus translation control elements, their binding proteins, and their mechanisms can lead to novel therapeutic approaches to reduce virus replication and pathogenicity.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
6
|
Fan X, Yang Y, Chen C, Wang Z. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat Commun 2022; 13:3751. [PMID: 35768398 PMCID: PMC9242994 DOI: 10.1038/s41467-022-31327-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
Some circular RNAs (circRNAs) were found to be translated through IRES-driven mechanism, however the scope and functions of circRNA translation are unclear because endogenous IRESs are rare. To determine the prevalence and mechanism of circRNA translation, we develop a cell-based system to screen random sequences and identify 97 overrepresented hexamers that drive cap-independent circRNA translation. These IRES-like short elements are significantly enriched in endogenous circRNAs and sufficient to drive circRNA translation. We further identify multiple trans-acting factors that bind these IRES-like elements to initiate translation. Using mass-spectrometry data, hundreds of circRNA-coded peptides are identified, most of which have low abundance due to rapid degradation. As judged by mass-spectrometry, 50% of translatable endogenous circRNAs undergo rolling circle translation, several of which are experimentally validated. Consistently, mutations of the IRES-like element in one circRNA reduce its translation. Collectively, our findings suggest a pervasive translation of circRNAs, providing profound implications in translation control. Unbiased screen of random sequences identified many short IRES-like elements to drive circular RNA translation and hundreds of rolling circle translation events, suggesting a pervasive cap-independent translation in human transcriptome.
Collapse
Affiliation(s)
- Xiaojuan Fan
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yun Yang
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai, China.,CirCode BioMedicine, Pudong, Shanghai, China
| | - Chuyun Chen
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Zefeng Wang
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai, China. .,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Niederer RO, Rojas-Duran MF, Zinshteyn B, Gilbert WV. Direct analysis of ribosome targeting illuminates thousand-fold regulation of translation initiation. Cell Syst 2022; 13:256-264.e3. [PMID: 35041803 PMCID: PMC8930539 DOI: 10.1016/j.cels.2021.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
Translational control shapes the proteome in normal and pathophysiological conditions. Current high-throughput approaches reveal large differences in mRNA-specific translation activity but cannot identify the causative mRNA features. We developed direct analysis of ribosome targeting (DART) and used it to dissect regulatory elements within 5' untranslated regions that confer 1,000-fold differences in ribosome recruitment in biochemically accessible cell lysates. Using DART, we determined a functional role for most alternative 5' UTR isoforms expressed in yeast, revealed a general mode of increased translation via direct binding to a core translation factor, and identified numerous translational control elements including C-rich silencers that are sufficient to repress translation both in vitro and in vivo. DART enables systematic assessment of the translational regulatory potential of 5' UTR variants, whether native or disease-associated, and will facilitate engineering of mRNAs for optimized protein production in various systems.
Collapse
Affiliation(s)
- Rachel O Niederer
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Maria F Rojas-Duran
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Boris Zinshteyn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Hoque ME, Mahendran T, Basu S. Reversal of G-Quadruplexes' Role in Translation Control When Present in the Context of an IRES. Biomolecules 2022; 12:314. [PMID: 35204814 PMCID: PMC8869680 DOI: 10.3390/biom12020314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
G-quadruplexes (GQs) are secondary nucleic acid structures that play regulatory roles in various cellular processes. G-quadruplex-forming sequences present within the 5' UTR of mRNAs can function not only as repressors of translation but also as elements required for optimum function. Based upon previous reports, the majority of the 5' UTR GQ structures inhibit translation, presumably by blocking the ribosome scanning process that is essential for detection of the initiation codon. However, there are certain mRNAs containing GQs that have been identified as positive regulators of translation, as they are needed for translation initiation. While most cellular mRNAs utilize the 5' cap structure to undergo cap-dependent translation initiation, many rely on cap-independent translation under certain conditions in which the cap-dependent initiation mechanism is not viable or slowed down, for example, during development, under stress and in many diseases. Cap-independent translation mainly occurs via Internal Ribosomal Entry Sites (IRESs) that are located in the 5' UTR of mRNAs and are equipped with structural features that can recruit the ribosome or other factors to initiate translation without the need for a 5' cap. In this review, we will focus only on the role of RNA GQs present in the 5' UTR of mRNAs, where they play a critical role in translation initiation, and discuss the potential mechanism of this phenomenon, which is yet to be fully delineated.
Collapse
Affiliation(s)
| | | | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (M.E.H.); (T.M.)
| |
Collapse
|
9
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
10
|
Minnee E, Faller WJ. Translation initiation and its relevance in colorectal cancer. FEBS J 2021; 288:6635-6651. [PMID: 33382175 PMCID: PMC9291299 DOI: 10.1111/febs.15690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023]
Abstract
Protein synthesis is one of the most essential processes in every kingdom of life, and its dysregulation is a known driving force in cancer development. Multiple signaling pathways converge on the translation initiation machinery, and this plays a crucial role in regulating differential gene expression. In colorectal cancer, dysregulation of initiation results in translational reprogramming, which promotes the selective translation of mRNAs required for many oncogenic processes. The majority of upstream mutations found in colorectal cancer, including alterations in the WNT, MAPK, and PI3K\AKT pathways, have been demonstrated to play a significant role in translational reprogramming. Many translation initiation factors are also known to be dysregulated, resulting in translational reprogramming during tumor initiation and/or maintenance. In this review, we outline the role of translational reprogramming that occurs during colorectal cancer development and progression and highlight some of the most critical factors affecting the etiology of this disease.
Collapse
Affiliation(s)
- Emma Minnee
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - William James Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Nobuta R, Machida K, Sato M, Hashimoto S, Toriumi Y, Nakajima S, Suto D, Imataka H, Inada T. eIF4G-driven translation initiation of downstream ORFs in mammalian cells. Nucleic Acids Res 2020; 48:10441-10455. [PMID: 32941651 PMCID: PMC7544200 DOI: 10.1093/nar/gkaa728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Comprehensive genome-wide analysis has revealed the presence of translational elements in the 3′ untranslated regions (UTRs) of human transcripts. However, the mechanisms by which translation is initiated in 3′ UTRs and the physiological function of their products remain unclear. This study showed that eIF4G drives the translation of various downstream open reading frames (dORFs) in 3′ UTRs. The 3′ UTR of GCH1, which encodes GTP cyclohydrolase 1, contains an internal ribosome entry site (IRES) that initiates the translation of dORFs. An in vitro reconstituted translation system showed that the IRES in the 3′ UTR of GCH1 required eIF4G and conventional translation initiation factors, except eIF4E, for AUG-initiated translation of dORFs. The 3′ UTR of GCH1-mediated translation was resistant to the mTOR inhibitor Torin 1, which inhibits cap-dependent initiation by increasing eIF4E-unbound eIF4G. eIF4G was also required for the activity of various elements, including polyU and poliovirus type 2, a short element thought to recruit ribosomes by base-pairing with 18S rRNA. These findings indicate that eIF4G mediates translation initiation of various ORFs in mammalian cells, suggesting that the 3′ UTRs of mRNAs may encode various products.
Collapse
Affiliation(s)
- Risa Nobuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| | - Misaki Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yasuhito Toriumi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shizuka Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Daiki Suto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
12
|
Lyons SM, Kharel P, Akiyama Y, Ojha S, Dave D, Tsvetkov V, Merrick W, Ivanov P, Anderson P. eIF4G has intrinsic G-quadruplex binding activity that is required for tiRNA function. Nucleic Acids Res 2020; 48:6223-6233. [PMID: 32374873 PMCID: PMC7293036 DOI: 10.1093/nar/gkaa336] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
As cells encounter adverse environmental conditions, such as hypoxia, oxidative stress or nutrient deprivation, they trigger stress response pathways to protect themselves until transient stresses have passed. Inhibition of translation is a key component of such cellular stress responses and mounting evidence has revealed the importance of a class of tRNA-derived small RNAs called tiRNAs in this process. The most potent of these small RNAs are those with the capability of assembling into tetrameric G-quadruplex (G4) structures. However, the mechanism by which these small RNAs inhibit translation has yet to be elucidated. Here we show that eIF4G, the major scaffolding protein in the translation initiation complex, directly binds G4s and this activity is required for tiRNA-mediated translation repression. Targeting of eIF4G results in an impairment of 40S ribosome scanning on mRNAs leading to the formation of eIF2α-independent stress granules. Our data reveals the mechanism by which tiRNAs inhibit translation and demonstrates novel activity for eIF4G in the regulation of translation.
Collapse
Affiliation(s)
- Shawn M Lyons
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.,The Genome Science Institute, Boston University School of Medicine, Boston, MA, USA
| | - Prakash Kharel
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yasutoshi Akiyama
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.,The Genome Science Institute, Boston University School of Medicine, Boston, MA, USA
| | - Dhwani Dave
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Vladimir Tsvetkov
- Computational Oncology Group, I.M. Sechenov First Moscow State Medical University , Moscow, Russia.,Federal Research and Clinical Center forPhysical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.,A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
| | - William Merrick
- Department of Biochemistry, Case Western ReserveUniversity, Cleveland, OH, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Slobodin B, Dikstein R. So close, no matter how far: multiple paths connecting transcription to mRNA translation in eukaryotes. EMBO Rep 2020; 21:e50799. [PMID: 32803873 PMCID: PMC7507372 DOI: 10.15252/embr.202050799] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Transcription of DNA into mRNA and translation of mRNA into proteins are two major processes underlying gene expression. Due to the distinct molecular mechanisms, timings, and locales of action, these processes are mainly considered to be independent. During the last two decades, however, multiple factors and elements were shown to coordinate transcription and translation, suggesting an intricate level of synchronization. This review discusses the molecular mechanisms that impact both processes in eukaryotic cells of different origins. The emerging global picture suggests evolutionarily conserved regulation and coordination between transcription and mRNA translation, indicating the importance of this phenomenon for the fine-tuning of gene expression and the adjustment to constantly changing conditions.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | - Rivka Dikstein
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
14
|
Abstract
RNA-binding proteins are important regulators of RNA metabolism and are of critical importance in all steps of the gene expression cascade. The role of aberrantly expressed RBPs in human disease is an exciting research field and the potential application of RBPs as a therapeutic target or a diagnostic marker represents a fast-growing area of research.Aberrant overexpression of the human RNA-binding protein La has been found in various cancer entities including lung, cervical, head and neck, and chronic myelogenous leukaemia. Cancer-associated La protein supports tumour-promoting processes such as proliferation, mobility, invasiveness and tumour growth. Moreover, the La protein maintains the survival of cancer cells by supporting an anti-apoptotic state that may cause resistance to chemotherapeutic therapy.The human La protein represents a multifunctional post-translationally modified RNA-binding protein with RNA chaperone activity that promotes processing of non-coding precursor RNAs but also stimulates the translation of selective messenger RNAs encoding tumour-promoting and anti-apoptotic factors. In our model, La facilitates the expression of those factors and helps cancer cells to cope with cellular stress. In contrast to oncogenes, able to initiate tumorigenesis, we postulate that the aberrantly elevated expression of the human La protein contributes to the non-oncogenic addiction of cancer cells. In this review, we summarize the current understanding about the implications of the RNA-binding protein La in cancer progression and therapeutic resistance. The concept of exploiting the RBP La as a cancer drug target will be discussed.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Borden KLB, Volpon L. The diversity, plasticity, and adaptability of cap-dependent translation initiation and the associated machinery. RNA Biol 2020; 17:1239-1251. [PMID: 32496897 PMCID: PMC7549709 DOI: 10.1080/15476286.2020.1766179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Translation initiation is a critical facet of gene expression with important impacts that underlie cellular responses to stresses and environmental cues. Its dysregulation in many diseases position this process as an important area for the development of new therapeutics. The gateway translation factor eIF4E is typically considered responsible for ‘global’ or ‘canonical’ m7G cap-dependent translation. However, eIF4E impacts translation of specific transcripts rather than the entire translatome. There are many alternative cap-dependent translation mechanisms that also contribute to the translation capacity of the cell. We review the diversity of these, juxtaposing more recently identified mechanisms with eIF4E-dependent modalities. We also explore the multiplicity of functions played by translation factors, both within and outside protein synthesis, and discuss how these differentially contribute to their ultimate physiological impacts. For comparison, we discuss some modalities for cap-independent translation. In all, this review highlights the diverse mechanisms that engage and control translation in eukaryotes.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| | - Laurent Volpon
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| |
Collapse
|
16
|
LaFontaine E, Miller CM, Permaul N, Martin ET, Fuchs G. Ribosomal protein RACK1 enhances translation of poliovirus and other viral IRESs. Virology 2020; 545:53-62. [PMID: 32308198 DOI: 10.1016/j.virol.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/09/2023]
Abstract
Viruses have evolved strategies to ensure efficient translation using host cell ribosomes and translation factors. In addition to cleaving translation initiation factors required for host cell translation, poliovirus (PV) uses an internal ribosome entry site (IRES). Recent studies suggest that viruses exploit specific ribosomal proteins to enhance translation of their viral proteins. The ribosomal protein receptor for activated C kinase 1 (RACK1), a protein of the 40S ribosomal subunit, was previously shown to mediate translation from the 5' cricket paralysis virus and hepatitis C virus IRESs. Here we found that translation of a PV dual-luciferase reporter shows a moderate dependence on RACK1. However, in the context of a viral infection we observed significantly reduced poliovirus plaque size and titers and delayed host cell translational shut-off. Our findings further illustrate the involvement of the cellular translational machinery during PV infection and how viruses usurp the function of specific ribosomal proteins.
Collapse
Affiliation(s)
- Ethan LaFontaine
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Natasha Permaul
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Elliot T Martin
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA; The RNA Institute, University at Albany, NY, 12222, USA.
| |
Collapse
|
17
|
Affiliation(s)
- Colin Echeverría Aitken
- Biology Department and Biochemistry Program, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA.
| |
Collapse
|
18
|
Yang Y, Wang Z. IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol 2019; 11:911-919. [PMID: 31504667 PMCID: PMC6884710 DOI: 10.1093/jmcb/mjz091] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023] Open
Abstract
Most eukaryotic mRNAs are translated in a cap-dependent fashion; however, under stress conditions, the cap-independent translation driven by internal ribosomal entry sites (IRESs) can serve as an alternative mechanism for protein production. Many IRESs have been discovered from viral or cellular mRNAs to promote ribosome assembly and initiate translation by recruiting different trans-acting factors. Although the mechanisms of translation initiation driven by viral IRESs are relatively well understood, the existence of cellular IRESs is still under debate due to the limitations of translation reporter systems used to assay IRES activities. A recent screen identified > 1000 putative IRESs from viral and human mRNAs, expanding the scope and mechanism for cap-independent translation. Additionally, a large number of circular RNAs lacking free ends were identified in eukaryotic cells, many of which are found to be translated through IRESs. These findings suggest that IRESs may play a previously unappreciated role in driving translation of the new type of mRNA, implying a hidden proteome produced from cap-independent translation.
Collapse
Affiliation(s)
- Yun Yang
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
19
|
Janapala Y, Preiss T, Shirokikh NE. Control of Translation at the Initiation Phase During Glucose Starvation in Yeast. Int J Mol Sci 2019; 20:E4043. [PMID: 31430885 PMCID: PMC6720308 DOI: 10.3390/ijms20164043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Glucose is one of the most important sources of carbon across all life. Glucose starvation is a key stress relevant to all eukaryotic cells. Glucose starvation responses have important implications in diseases, such as diabetes and cancer. In yeast, glucose starvation causes rapid and dramatic effects on the synthesis of proteins (mRNA translation). Response to glucose deficiency targets the initiation phase of translation by different mechanisms and with diverse dynamics. Concomitantly, translationally repressed mRNAs and components of the protein synthesis machinery may enter a variety of cytoplasmic foci, which also form with variable kinetics and may store or degrade mRNA. Much progress has been made in understanding these processes in the last decade, including with the use of high-throughput/omics methods of RNA and RNA:protein detection. This review dissects the current knowledge of yeast reactions to glucose starvation systematized by the stage of translation initiation, with the focus on rapid responses. We provide parallels to mechanisms found in higher eukaryotes, such as metazoans, for the most critical responses, and point out major remaining gaps in knowledge and possible future directions of research on translational responses to glucose starvation.
Collapse
Affiliation(s)
- Yoshika Janapala
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | - Nikolay E Shirokikh
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
20
|
Schuster SL, Hsieh AC. The Untranslated Regions of mRNAs in Cancer. Trends Cancer 2019; 5:245-262. [PMID: 30961831 PMCID: PMC6465068 DOI: 10.1016/j.trecan.2019.02.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
The 5' and 3' untranslated regions (UTRs) regulate crucial aspects of post-transcriptional gene regulation that are necessary for the maintenance of cellular homeostasis. When these processes go awry through mutation or misexpression of certain regulatory elements, the subsequent deregulation of oncogenic gene expression can drive or enhance cancer pathogenesis. Although the number of known cancer-related mutations in UTR regulatory elements has recently increased markedly as a result of advances in whole-genome sequencing, little is known about how the majority of these genetic aberrations contribute functionally to disease. In this review we explore the regulatory functions of UTRs, how they are co-opted in cancer, new technologies to interrogate cancerous UTRs, and potential therapeutic opportunities stemming from these regions.
Collapse
Affiliation(s)
- Samantha L Schuster
- Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA; Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Andrew C Hsieh
- Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA; Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA; School of Medicine and Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
21
|
Magnesium-sensitive upstream ORF controls PRL phosphatase expression to mediate energy metabolism. Proc Natl Acad Sci U S A 2019; 116:2925-2934. [PMID: 30718434 DOI: 10.1073/pnas.1815361116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphatases of regenerating liver (PRL-1, PRL-2, and PRL-3, also known as PTP4A1, PTP4A2, and PTP4A3) control magnesium homeostasis through an association with the CNNM magnesium transport regulators. Although high PRL levels have been linked to cancer progression, regulation of their expression is poorly understood. Here we show that modulating intracellular magnesium levels correlates with a rapid change of PRL expression by a mechanism involving its 5'UTR mRNA region. Mutations or CRISPR-Cas9 targeting of the conserved upstream ORF present in the mRNA leader derepress PRL protein synthesis and attenuate the translational response to magnesium levels. Mechanistically, magnesium depletion reduces intracellular ATP but up-regulates PRL protein expression via activation of the AMPK/mTORC2 pathway, which controls cellular energy status. Hence, altered PRL-2 expression leads to metabolic reprogramming of the cells. These findings uncover a magnesium-sensitive mechanism controlling PRL expression, which plays a role in cellular bioenergetics.
Collapse
|
22
|
Keiper BD. Cap-Independent mRNA Translation in Germ Cells. Int J Mol Sci 2019; 20:ijms20010173. [PMID: 30621249 PMCID: PMC6337596 DOI: 10.3390/ijms20010173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular mRNAs in plants and animals have a 5'-cap structure that is accepted as the recognition point to initiate translation by ribosomes. Consequently, it was long assumed that the translation initiation apparatus was built solely for a cap-dependent (CD) mechanism. Exceptions that emerged invoke structural damage (proteolytic cleavage) to eukaryotic initiation factor 4 (eIF4) factors that disable cap recognition. The residual eIF4 complex is thought to be crippled, but capable of cap-independent (CI) translation to recruit viral or death-associated mRNAs begrudgingly when cells are in great distress. However, situations where CI translation coexists with CD translation are now known. In such cases, CI translation is still a minor mechanism in the major background of CD synthesis. In this review, I propose that germ cells do not fit this mold. Using observations from various animal models of oogenesis and spermatogenesis, I suggest that CI translation is a robust partner to CD translation to carry out the translational control that is so prevalent in germ cell development. Evidence suggests that CI translation provides surveillance of germ cell homeostasis, while CD translation governs the regulated protein synthesis that ushers these meiotic cells through the remarkable steps in sperm/oocyte differentiation.
Collapse
Affiliation(s)
- Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
23
|
Sriram A, Bohlen J, Teleman AA. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Rep 2018; 19:embr.201845947. [PMID: 30224410 DOI: 10.15252/embr.201845947] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Recent work has brought to light many different mechanisms of translation initiation that function in cells in parallel to canonical cap-dependent initiation. This has important implications for cancer. Canonical cap-dependent translation initiation is inhibited by many stresses such as hypoxia, nutrient limitation, proteotoxic stress, or genotoxic stress. Since cancer cells are often exposed to these stresses, they rely on alternate modes of translation initiation for protein synthesis and cell growth. Cancer mutations are now being identified in components of the translation machinery and in cis-regulatory elements of mRNAs, which both control translation of cancer-relevant genes. In this review, we provide an overview on the various modes of non-canonical translation initiation, such as leaky scanning, translation re-initiation, ribosome shunting, IRES-dependent translation, and m6A-dependent translation, and then discuss the influence of stress on these different modes of translation. Finally, we present examples of how these modes of translation are dysregulated in cancer cells, allowing them to grow, to proliferate, and to survive, thereby highlighting the importance of translational control in cancer.
Collapse
Affiliation(s)
- Ashwin Sriram
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Jonathan Bohlen
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany .,Heidelberg University, Heidelberg, Germany
| |
Collapse
|
24
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
25
|
Shatsky IN, Terenin IM, Smirnova VV, Andreev DE. Cap-Independent Translation: What's in a Name? Trends Biochem Sci 2018; 43:882-895. [PMID: 29789219 DOI: 10.1016/j.tibs.2018.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 02/05/2023]
Abstract
Eukaryotic translation initiation relies on the m7G cap present at the 5' end of all mRNAs. Some viral mRNAs employ alternative mechanisms of initiation based on internal ribosome entry. The 'IRES ideology' was adopted by researchers to explain the differential translation of cellular mRNAs when the cap recognition is suppressed. However, some cellular IRESs have already been challenged and others are awaiting their validation. As an alternative cap-independent mechanism, we propose adopting the concept of cap-independent translation enhancers (CITEs) for mammalian mRNAs. Unlike IRESs, CITEs can be located both within 5' and 3' UTRs and bind mRNA-recruiting translational components. The respective 5' UTRs are then inspected by the scanning machinery essentially in the same way as under cap-dependent translation.
Collapse
Affiliation(s)
- Ivan N Shatsky
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia.
| | - Ilya M Terenin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8-2, 119991, Moscow, Russia
| | - Victoria V Smirnova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| | - Dmitri E Andreev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| |
Collapse
|
26
|
Cate JHD. Human eIF3: from 'blobology' to biological insight. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0176. [PMID: 28138064 PMCID: PMC5311922 DOI: 10.1098/rstb.2016.0176] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
Translation in eukaryotes is highly regulated during initiation, a process impacted by numerous readouts of a cell's state. There are many cases in which cellular messenger RNAs likely do not follow the canonical ‘scanning’ mechanism of translation initiation, but the molecular mechanisms underlying these pathways are still being uncovered. Some RNA viruses such as the hepatitis C virus use highly structured RNA elements termed internal ribosome entry sites (IRESs) that commandeer eukaryotic translation initiation, by using specific interactions with the general eukaryotic translation initiation factor eIF3. Here, I present evidence that, in addition to its general role in translation, eIF3 in humans and likely in all multicellular eukaryotes also acts as a translational activator or repressor by binding RNA structures in the 5′-untranslated regions of specific mRNAs, analogous to the role of the mediator complex in transcription. Furthermore, eIF3 in multicellular eukaryotes also harbours a 5′ 7-methylguanosine cap-binding subunit—eIF3d—which replaces the general cap-binding initiation factor eIF4E in the translation of select mRNAs. Based on results from cell biological, biochemical and structural studies of eIF3, it is likely that human translation initiation proceeds through dozens of different molecular pathways, the vast majority of which remain to be explored. This article is part of the themed issue ‘Perspectives on the ribosome’.
Collapse
Affiliation(s)
- Jamie H D Cate
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, CA 94720-3220, USA .,Lawrence Berkeley National Laboratory, Division of Molecular Biophysics and Integrated Bioimaging, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Coots RA, Liu XM, Mao Y, Dong L, Zhou J, Wan J, Zhang X, Qian SB. m 6A Facilitates eIF4F-Independent mRNA Translation. Mol Cell 2017; 68:504-514.e7. [PMID: 29107534 DOI: 10.1016/j.molcel.2017.10.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/25/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
In eukaryotic cells, protein synthesis typically begins with the binding of eIF4F to the 7-methylguanylate (m7G) cap found on the 5' end of the majority of mRNAs. Surprisingly, overall translational output remains robust under eIF4F inhibition. The broad spectrum of eIF4F-resistant translatomes is incompatible with cap-independent translation mediated by internal ribosome entry sites (IRESs). Here, we report that N6-methyladenosine (m6A) facilitates mRNA translation that is resistant to eIF4F inactivation. Depletion of the methyltransferase METTL3 selectively inhibits translation of mRNAs bearing 5' UTR methylation, but not mRNAs with 5' terminal oligopyrimidine (TOP) elements. We identify ABCF1 as a critical mediator of m6A-promoted translation under both stress and physiological conditions. Supporting the role of ABCF1 in m6A-facilitated mRNA translation, ABCF1-sensitive transcripts largely overlap with METTL3-dependent mRNA targets. By illustrating the scope and mechanism of eIF4F-independent mRNA translation, these findings reshape our current perceptions of cellular translational pathways.
Collapse
Affiliation(s)
- Ryan A Coots
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Graduate Field of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xiao-Min Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jun Zhou
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ji Wan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xingqian Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Graduate Field of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
28
|
Zheng F, Yu X, Huang J, Dai Y. Circular RNA expression profiles of peripheral blood mononuclear cells in rheumatoid arthritis patients, based on microarray chip technology. Mol Med Rep 2017; 16:8029-8036. [PMID: 28983619 PMCID: PMC5779885 DOI: 10.3892/mmr.2017.7638] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic synovial inflammation and finally leads to variable degrees of bone and cartilage erosion. The diagnosis of RA is not an accurate indicator, but a series of scores and the mechanisms underlying it remain only partially understood. The present study explored whether circular RNAs (circRNAs) contribute to the RA pathophysiological mechanism. Total RNA from peripheral blood mononuclear cells of 10 RA patients and 10 healthy controls were extracted and circRNA expression profiling was followed by microarray analysis. In addition, circRNA interactions with microRNAs were performed and microRNA response elements were listed to identify differentially expressed binding site targets in RA. Reverse transcription-quantitative polymerase chain reaction amplification (RT-qPCR) was used to verify the differential expression of circRNAs. A total of 584 circRNAs were differentially expressed in RA patients vs. healthy controls, by circRNA microarray, including 255 circRNAs which were significantly upregulated and 329 downregulated among the RA samples. RT-qPCR validation demonstrated that the expression levels of hsa_circRNA_104194, hsa_circRNA_104593, hsa_circRNA_103334, hsa_circRNA_101407 and hsa_circRNA_102594 were consistent with the results from the microarray analysis. The current study presented differentially expressed circRNAs and their corresponding microRNA binding sites in RA. circRNAs may exhibit a role in the regulation of expression of symbol genes that influence the occurrence and development of RA.
Collapse
Affiliation(s)
- Fengping Zheng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xiangqi Yu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Jiahuang Huang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
29
|
Zinshteyn B, Rojas-Duran MF, Gilbert WV. Translation initiation factor eIF4G1 preferentially binds yeast transcript leaders containing conserved oligo-uridine motifs. RNA (NEW YORK, N.Y.) 2017; 23:1365-1375. [PMID: 28546148 PMCID: PMC5558906 DOI: 10.1261/rna.062059.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 05/30/2023]
Abstract
Translational control of gene expression plays essential roles in cellular stress responses and organismal development by enabling rapid, selective, and localized control of protein production. Translational regulation depends on context-dependent differences in the protein output of mRNAs, but the key mRNA features that distinguish efficiently translated mRNAs are largely unknown. Here, we comprehensively determined the RNA-binding preferences of the eukaryotic initiation factor 4G (eIF4G) to assess whether this core translation initiation factor has intrinsic sequence preferences that may contribute to preferential translation of specific mRNAs. We identified a simple RNA sequence motif-oligo-uridine-that mediates high-affinity binding to eIF4G in vitro. Oligo(U) motifs occur naturally in the transcript leader (TL) of hundreds of yeast genes, and mRNAs with unstructured oligo(U) motifs were enriched in immunoprecipitations against eIF4G. Ribosome profiling following depletion of eIF4G in vivo showed preferentially reduced translation of mRNAs with long TLs, including those that contain oligo(U). Finally, TL oligo(U) elements are enriched in genes with regulatory roles and are conserved between yeast species, consistent with an important cellular function. Taken together, our results demonstrate RNA sequence preferences for a general initiation factor, which cells potentially exploit for translational control of specific mRNAs.
Collapse
Affiliation(s)
- Boris Zinshteyn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maria F Rojas-Duran
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
30
|
Yamamoto H, Unbehaun A, Spahn CMT. Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms. Trends Biochem Sci 2017; 42:655-668. [PMID: 28684008 DOI: 10.1016/j.tibs.2017.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022]
Abstract
Internal initiation is a 5'-end-independent mode of translation initiation engaged by many virus- and putatively some cell-encoded templates. Internal initiation is facilitated by specific RNA tertiary folds, called internal ribosomal entry sites (IRESs), in the 5' untranslated region (UTR) of the respective transcripts. In this review we discuss recent structural insight into how established IRESs first capture and then manipulate the eukaryotic translation machinery through non-canonical interactions and by guiding the intrinsic conformational flexibility of the eukaryotic ribosome. Because IRESs operate with reduced complexity and constitute minimal systems of initiation, comparison with canonical initiation may allow common mechanistic principles of the ribosome to be delineated.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany
| | - Anett Unbehaun
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
31
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
32
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
33
|
Luhur A, Sokol N. Starving for more: Nutrient sensing by LIN-28 in adult intestinal progenitor cells. Fly (Austin) 2016; 9:173-7. [PMID: 26934725 DOI: 10.1080/19336934.2016.1158366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this Extra View, we extend our recent work on the protein LIN-28 and its role in adult stem cell divisions. LIN-28 is an mRNA- and microRNA-binding protein that is conserved from worms to humans. When expressed ectopically, it promotes the reprogramming of differentiated vertebrate cells into pluripotent stem cells as well as the regeneration of vertebrate tissues after injury. However, its endogenous function in stem cell populations is less clear. We recently reported that LIN-28 is specifically expressed in progenitor cells in the adult Drosophila intestine and enhances insulin signaling within this population. Loss of lin-28 alters the division patterns of these progenitor cells, limiting the growth of the intestinal epithelium that is ordinarily caused by feeding. Thus, LIN-28 is part of an uncharacterized circuit used to remodel a tissue in response to environmental cues like nutrition. Here, we extend this analysis by reporting that the levels of LIN-28 in progenitor cells are sensitive to nutrient availability. In addition, we speculate about the role of LIN-28 in the translational control of target mRNAs such as Insulin Receptor (InR) and how such translational control may be an important mechanism that underlies the stem cell dynamics needed for tissue homeostasis and growth.
Collapse
Affiliation(s)
- Arthur Luhur
- a Department of Biology ; Indiana University ; Bloomington , IN USA
| | - Nicholas Sokol
- a Department of Biology ; Indiana University ; Bloomington , IN USA
| |
Collapse
|
34
|
Smylla TK, Preiss A, Maier D. In vivo analysis of internal ribosome entry at the Hairless locus by genome engineering in Drosophila. Sci Rep 2016; 6:34881. [PMID: 27713501 PMCID: PMC5054391 DOI: 10.1038/srep34881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/21/2016] [Indexed: 12/23/2022] Open
Abstract
Cell communication in metazoans requires the highly conserved Notch signaling pathway, which is subjected to strict regulation of both activation and silencing. In Drosophila melanogaster, silencing involves the assembly of a repressor complex by Hairless (H) on Notch target gene promoters. We previously found an in-frame internal ribosome entry site in the full length H transcript resulting in two H protein isoforms (Hp120 and Hp150). Hence, H may repress Notch signalling activity in situations where cap-dependent translation is inhibited. Here we demonstrate the in vivo importance of both H isoforms for proper fly development. To this end, we replaced the endogenous H locus by constructs specifically affecting translation of either Hp150 or Hp120 isoforms using genome engineering. Our findings indicate the functional relevance of both H proteins. Based on bristle phenotypes, the predominant isoform Hp150 appears to be of particular importance. In contrast, growth regulation and venation of the wing require the concomitant activity of both isoforms. Finally, the IRES dependent production of Hp120 during mitosis was verified in vivo. Together our data confirm IRES mediated translation of H protein in vivo, supporting strict regulation of Notch in different cellular settings.
Collapse
Affiliation(s)
- Thomas K Smylla
- Universität Hohenheim, Institut für Genetik (240), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Anette Preiss
- Universität Hohenheim, Institut für Genetik (240), Garbenstr. 30, 70599 Stuttgart, Germany
| | - Dieter Maier
- Universität Hohenheim, Institut für Genetik (240), Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
35
|
Curran JA, Weiss B. What Is the Impact of mRNA 5' TL Heterogeneity on Translational Start Site Selection and the Mammalian Cellular Phenotype? Front Genet 2016; 7:156. [PMID: 27630668 PMCID: PMC5005323 DOI: 10.3389/fgene.2016.00156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
A major determinant in the efficiency of ribosome loading onto mRNAs is the 5′ TL (transcript leader or 5′ UTR). In addition, elements within this region also impact on start site selection demonstrating that it can modulate the protein readout at both quantitative and qualitative levels. With the increasing wealth of data generated by the mining of the mammalian transcriptome, it has become evident that a genes 5′ TL is not homogeneous but actually exhibits significant heterogeneity. This arises due to the utilization of alternative promoters, and is further compounded by significant variability with regards to the precise transcriptional start sites of each (not to mention alternative splicing). Consequently, the transcript for a protein coding gene is not a unique mRNA, but in-fact a complexed quasi-species of variants whose composition may respond to the changing physiological environment of the cell. Here we examine the potential impact of these events with regards to the protein readout.
Collapse
Affiliation(s)
- Joseph A Curran
- Department of Microbiology and Molecular Medicine, Medical School, University of GenevaGeneva, Switzerland; Institute of Genetics and Genomics of Geneva, University of GenevaGeneva, Switzerland
| | - Benjamin Weiss
- Department of Microbiology and Molecular Medicine, Medical School, University of Geneva Geneva, Switzerland
| |
Collapse
|
36
|
Li LJ, Huang Q, Pan HF, Ye DQ. Circular RNAs and systemic lupus erythematosus. Exp Cell Res 2016; 346:248-54. [DOI: 10.1016/j.yexcr.2016.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/20/2016] [Indexed: 01/01/2023]
|
37
|
Weingarten-Gabbay S, Segal E. Toward a systematic understanding of translational regulatory elements in human and viruses. RNA Biol 2016; 13:927-933. [PMID: 27442807 DOI: 10.1080/15476286.2016.1212802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Translational regulation is a critical step in the production of proteins from genomic material in both human and viruses. However, unlike other steps of the central dogma, such as transcriptional regulation, little is known about the cis-regulatory elements involved. In a recent study we devised a high-throughput bicistronic reporter assay for the discovery and the characterization of thousands of novel Internal Ribosome Entry Sites (IRESs) in human and hundreds of viral genomes. Our results provide insights into the landscape of IRES elements in human and viral transcripts and the cis-regulatory sequences underlying their activity. Here, we discuss these results as well as emerging insights from other studies, providing new views about translational regulation in human and viruses. In addition, we highlight recent high-throughput technologies in the field and discuss how combining insights from high- and low-throughput approaches can illuminate yet uncovered mechanisms of translational regulation.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- a Department of Computer Science and Applied Mathematics , Weizmann Institute of Science , Rehovot , Israel.,b Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot , Israel
| | - Eran Segal
- a Department of Computer Science and Applied Mathematics , Weizmann Institute of Science , Rehovot , Israel.,b Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
38
|
Assembly of eIF3 Mediated by Mutually Dependent Subunit Insertion. Structure 2016; 24:886-96. [PMID: 27210288 DOI: 10.1016/j.str.2016.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/19/2016] [Accepted: 02/21/2016] [Indexed: 02/05/2023]
Abstract
Eukaryotic initiation factor 3 (eIF3), an essential multi-protein complex involved in translation initiation, is composed of 12 tightly associated subunits in humans. While the overall structure of eIF3 is known, the mechanism of its assembly and structural consequences of dysregulation of eIF3 subunit expression seen in many cancers is largely unknown. Here we show that subunits in eIF3 assemble into eIF3 in an interdependent manner. Assembly of eIF3 is governed primarily by formation of a helical bundle, composed of helices extending C-terminally from PCI-MPN domains in eight subunits. We propose that, while the minimal subcomplex of human-like eIF3 functional for translation initiation in cells consists of subunits a, b, c, f, g, i, and m, numerous other eIF3 subcomplexes exist under circumstances of subunit over- or underexpression. Thus, eIF3 subcomplexes formed or "released" due to dysregulated subunit expression may be determining factors contributing to eIF3-related cancers.
Collapse
|
39
|
Smirnova VV, Terenin IM, Khutornenko AA, Andreev DE, Dmitriev SE, Shatsky IN. Does HIV-1 mRNA 5'-untranslated region bear an internal ribosome entry site? Biochimie 2016; 121:228-37. [DOI: 10.1016/j.biochi.2015.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/11/2015] [Indexed: 12/18/2022]
|
40
|
Mouilleron H, Delcourt V, Roucou X. Death of a dogma: eukaryotic mRNAs can code for more than one protein. Nucleic Acids Res 2016; 44:14-23. [PMID: 26578573 PMCID: PMC4705651 DOI: 10.1093/nar/gkv1218] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022] Open
Abstract
mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma.
Collapse
Affiliation(s)
- Hélène Mouilleron
- Department of biochemistry, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec, Canada
| | - Vivian Delcourt
- Department of biochemistry, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec, Canada Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université de Lille 1, Cité Scientifique, 59655 Villeneuve D'Ascq, France
| | - Xavier Roucou
- Department of biochemistry, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec, Canada
| |
Collapse
|
41
|
Park HJ, Ko HL, Jung SY, Jo HB, Nam JH. The Characteristics of RNA Vaccine; its Strengths and Weaknesses. ACTA ACUST UNITED AC 2016. [DOI: 10.4167/jbv.2016.46.3.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hyo-Jung Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Hae Li Ko
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Seo-Yeon Jung
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Han-Byeol Jo
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| |
Collapse
|
42
|
eIF4E and eIF4GI have distinct and differential imprints on multiple myeloma's proteome and signaling. Oncotarget 2015; 6:4315-29. [PMID: 25717031 PMCID: PMC4414192 DOI: 10.18632/oncotarget.3008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
Accumulating data indicate translation plays a role in cancer biology, particularly its rate limiting stage of initiation. Despite this evolving recognition, the function and importance of specific translation initiation factors is unresolved. The eukaryotic translation initiation complex eIF4F consists of eIF4E and eIF4G at a 1:1 ratio. Although it is expected that they display interdependent functions, several publications suggest independent mechanisms. This study is the first to directly assess the relative contribution of eIF4F components to the expressed cellular proteome, transcription factors, microRNAs, and phenotype in a malignancy known for extensive protein synthesis-multiple myeloma (MM). Previously, we have shown that eIF4E/eIF4GI attenuation (siRNA/Avastin) deleteriously affected MM cells' fate and reduced levels of eIF4E/eIF4GI established targets. Here, we demonstrated that eIF4E/eIF4GI indeed have individual influences on cell proteome. We used an objective, high throughput assay of mRNA microarrays to examine the significance of eIF4E/eIF4GI silencing to several cellular facets such as transcription factors, microRNAs and phenotype. We showed different imprints for eIF4E and eIF4GI in all assayed aspects. These results promote our understanding of the relative contribution and importance of eIF4E and eIF4GI to the malignant phenotype and shed light on their function in eIF4F translation initiation complex.
Collapse
|
43
|
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5' UTR m(6)A Promotes Cap-Independent Translation. Cell 2015; 163:999-1010. [PMID: 26593424 DOI: 10.1016/j.cell.2015.10.012] [Citation(s) in RCA: 1415] [Impact Index Per Article: 141.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/02/2015] [Accepted: 10/01/2015] [Indexed: 01/24/2023]
Abstract
Protein translation typically begins with the recruitment of the 43S ribosomal complex to the 5' cap of mRNAs by a cap-binding complex. However, some transcripts are translated in a cap-independent manner through poorly understood mechanisms. Here, we show that mRNAs containing N(6)-methyladenosine (m(6)A) in their 5' UTR can be translated in a cap-independent manner. A single 5' UTR m(6)A directly binds eukaryotic initiation factor 3 (eIF3), which is sufficient to recruit the 43S complex to initiate translation in the absence of the cap-binding factor eIF4E. Inhibition of adenosine methylation selectively reduces translation of mRNAs containing 5'UTR m(6)A. Additionally, increased m(6)A levels in the Hsp70 mRNA regulate its cap-independent translation following heat shock. Notably, we find that diverse cellular stresses induce a transcriptome-wide redistribution of m(6)A, resulting in increased numbers of mRNAs with 5' UTR m(6)A. These data show that 5' UTR m(6)A bypasses 5' cap-binding proteins to promote translation under stresses.
Collapse
Affiliation(s)
- Kate D Meyer
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Deepak P Patil
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Jun Zhou
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Alexandra Zinoviev
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Maxim A Skabkin
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Medical College, Cornell University, New York, NY 10065, USA; HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
44
|
Tholen M, Wolanski J, Stolze B, Chiabudini M, Gajda M, Bronsert P, Stickeler E, Rospert S, Reinheckel T. Stress-resistant Translation of Cathepsin L mRNA in Breast Cancer Progression. J Biol Chem 2015; 290:15758-15769. [PMID: 25957406 DOI: 10.1074/jbc.m114.624353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 11/06/2022] Open
Abstract
The cysteine protease cathepsin L (CTSL) is often thought to act as a tumor promoter by enhancing tumor progression and metastasis. This goes along with increased CTSL activity in various tumor entities; however, the mechanisms leading to high CTSL levels are incompletely understood. With the help of the polyoma middle T oncogene driven breast cancer mouse model expressing a human CTSL genomic transgene, we show that CTSL indeed promotes breast cancer metastasis to the lung. During tumor formation and progression high expression levels of CTSL are maintained by enduring translation of CTSL mRNA. Interestingly, human breast cancer specimens expressed the same pattern of 5' untranslated region (UTR) splice variants as the transgenic mice and the human cancer cell line MDA-MB 321. By polyribosome profiling of tumor tissues and human breast cancer cells, we observe an intrinsic resistance of CTSL to stress-induced shutdown of translation. This ability can be attributed to all 5' UTR variants of CTSL and is not dependent on a previously described internal ribosomal entry site motif. In conclusion, we provide in vivo functional evidence for overexpressed CTSL as a promoter of lung metastasis, whereas high CTSL levels are maintained during tumor progression due to stress-resistant mRNA translation.
Collapse
Affiliation(s)
- Martina Tholen
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Julia Wolanski
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Britta Stolze
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Marco Chiabudini
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg
| | - Mieczyslaw Gajda
- Institute of Pathology, Friedrich-Schiller University, 07743 Jena, Germany
| | - Peter Bronsert
- Institute of Pathology, University Medical Center Freiburg, 79106 Freiburg; Comprehensive Cancer Center/German Cancer Consortium (DKTK), 79106 Freiburg
| | - Elmar Stickeler
- Comprehensive Cancer Center/German Cancer Consortium (DKTK), 79106 Freiburg; Clinic for Gynecology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg; Comprehensive Cancer Center/German Cancer Consortium (DKTK), 79106 Freiburg.
| |
Collapse
|
45
|
Saha A, Mitchell JA, Nishida Y, Hildreth JE, Ariberre JA, Gilbert WV, Garfinkel DJ. A trans-dominant form of Gag restricts Ty1 retrotransposition and mediates copy number control. J Virol 2015; 89:3922-38. [PMID: 25609815 PMCID: PMC4403431 DOI: 10.1128/jvi.03060-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/15/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Saccharomyces cerevisiae and Saccharomyces paradoxus lack the conserved RNA interference pathway and utilize a novel form of copy number control (CNC) to inhibit Ty1 retrotransposition. Although noncoding transcripts have been implicated in CNC, here we present evidence that a truncated form of the Gag capsid protein (p22) or its processed form (p18) is necessary and sufficient for CNC and likely encoded by Ty1 internal transcripts. Coexpression of p22/p18 and Ty1 decreases mobility more than 30,000-fold. p22/p18 cofractionates with Ty1 virus-like particles (VLPs) and affects VLP yield, protein composition, and morphology. Although p22/p18 and Gag colocalize in the cytoplasm, p22/p18 disrupts sites used for VLP assembly. Glutathione S-transferase (GST) affinity pulldowns also suggest that p18 and Gag interact. Therefore, this intrinsic Gag-like restriction factor confers CNC by interfering with VLP assembly and function and expands the strategies used to limit retroelement propagation. IMPORTANCE Retrotransposons dominate the chromosomal landscape in many eukaryotes, can cause mutations by insertion or genome rearrangement, and are evolutionarily related to retroviruses such as HIV. Thus, understanding factors that limit transposition and retroviral replication is fundamentally important. The present work describes a retrotransposon-encoded restriction protein derived from the capsid gene of the yeast Ty1 element that disrupts virus-like particle assembly in a dose-dependent manner. This form of copy number control acts as a molecular rheostat, allowing high levels of retrotransposition when few Ty1 elements are present and inhibiting transposition as copy number increases. Thus, yeast and Ty1 have coevolved a form of copy number control that is beneficial to both "host and parasite." To our knowledge, this is the first Gag-like retrotransposon restriction factor described in the literature and expands the ways in which restriction proteins modulate retroelement replication.
Collapse
Affiliation(s)
- Agniva Saha
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Jessica A Mitchell
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Yuri Nishida
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Jonathan E Hildreth
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Joshua A Ariberre
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
46
|
Tomita T, Ieguchi K, Sawamura T, Maru Y. Human serum amyloid A3 (SAA3) protein, expressed as a fusion protein with SAA2, binds the oxidized low density lipoprotein receptor. PLoS One 2015; 10:e0118835. [PMID: 25738827 PMCID: PMC4349446 DOI: 10.1371/journal.pone.0118835] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/16/2015] [Indexed: 11/19/2022] Open
Abstract
Serum amyloid A3 (SAA3) possesses characteristics distinct from the other serum amyloid A isoforms, SAA1, SAA2, and SAA4. High density lipoprotein contains the latter three isoforms, but not SAA3. The expression of mouse SAA3 (mSAA3) is known to be up-regulated extrahepatically in inflammatory responses, and acts as an endogenous ligand for the toll-like receptor 4/MD-2 complex. We previously reported that mSAA3 plays an important role in facilitating tumor metastasis by attracting circulating tumor cells and enhancing hyperpermeability in the lungs. On the other hand, human SAA3 (hSAA3) has long been regarded as a pseudogene, which is in contrast to the abundant expression levels of the other isoforms. Although the nucleotide sequence of hSAA3 is very similar to that of the other SAAs, a single oligonucleotide insertion in exon 2 causes a frame-shift to generate a unique amino acid sequence. In the present study, we identified that hSAA3 was transcribed in the hSAA2-SAA3 fusion transcripts of several human cell lines. In the fusion transcript, hSAA2 exon 3 was connected to hSAA3 exon 1 or hSAA3 exon 2, located approximately 130kb downstream from hSAA2 exon 3 in the genome, which suggested that it is produced by alternative splicing. Furthermore, we succeeded in detecting and isolating hSAA3 protein for the first time by an immunoprecipitation-enzyme linked immune assay system using monoclonal and polyclonal antibodies that recognize the hSAA3 unique amino acid sequence. We also demonstrated that hSAA3 bound oxidized low density lipoprotein receptor (oxLDL receptor, LOX-1) and elevated the phosphorylation of ERK, the intracellular MAP-kinase signaling protein.
Collapse
Affiliation(s)
- Takeshi Tomita
- Department of Pharmacology, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail: (TT); (YM)
| | - Katsuaki Ieguchi
- Department of Pharmacology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Tatsuya Sawamura
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail: (TT); (YM)
| |
Collapse
|
47
|
Ozretić P, Bisio A, Musani V, Trnski D, Sabol M, Levanat S, Inga A. Regulation of human PTCH1b expression by different 5' untranslated region cis-regulatory elements. RNA Biol 2015; 12:290-304. [PMID: 25826662 PMCID: PMC4615190 DOI: 10.1080/15476286.2015.1008929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 02/08/2023] Open
Abstract
PTCH1 gene codes for a 12-pass transmembrane receptor with a negative regulatory role in the Hedgehog-Gli signaling pathway. PTCH1 germline mutations cause Gorlin syndrome, a disorder characterized by developmental abnormalities and tumor susceptibility. The autosomal dominant inheritance, and the evidence for PTCH1 haploinsufficiency, suggests that fine-tuning systems of protein patched homolog 1 (PTC1) levels exist to properly regulate the pathway. Given the role of 5' untranslated region (5'UTR) in protein expression, our aim was to thoroughly explore cis-regulatory elements in the 5'UTR of PTCH1 transcript 1b. The (CGG)n polymorphism was the main potential regulatory element studied so far but with inconsistent results and no clear association between repeat number and disease risk. Using luciferase reporter constructs in human cell lines here we show that the number of CGG repeats has no strong impact on gene expression, both at mRNA and protein levels. We observed variability in the length of 5'UTR and changes in abundance of the associated transcripts after pathway activation. We show that upstream AUG codons (uAUGs) present only in longer 5'UTRs could negatively regulate the amount of PTC1 isoform L (PTC1-L). The existence of an internal ribosome entry site (IRES) observed using different approaches and mapped in the region comprising the CGG repeats, would counteract the effect of the uAUGs and enable synthesis of PTC1-L under stressful conditions, such as during hypoxia. Higher relative translation efficiency of PTCH1b mRNA in HEK 293T cultured hypoxia was observed by polysomal profiling and Western blot analyses. All our results point to an exceptionally complex and so far unexplored role of 5'UTR PTCH1b cis-element features in the regulation of the Hedgehog-Gli signaling pathway.
Collapse
Key Words
- 5'UTR
- 5′UTR, 5′ untranslated region
- CGG repeats
- Fluc, Firefly luciferase
- Hedgehog-Gli
- Hh-Gli, Hedgehog-Gli
- IRES
- IRES, internal ribosome entry site
- POL, polysome-associated
- PTC1-L, protein patched homolog 1
- PTCH1
- Rluc, Renilla luciferase
- SUB, subpolysomal
- isoform L PTCH1b, Patched 1 gene, transcript variant 1b
- uAUG
- uAUG, upstream AUG codon
- uORF
- uORF, upstream open reading frame
Collapse
Affiliation(s)
- Petar Ozretić
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Alessandra Bisio
- Laboratory of Transcriptional Networks; Center for Integrative Biology; University of Trento; Mattarello, Trento, Italy
| | - Vesna Musani
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Diana Trnski
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Sonja Levanat
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Alberto Inga
- Laboratory of Transcriptional Networks; Center for Integrative Biology; University of Trento; Mattarello, Trento, Italy
| |
Collapse
|
48
|
Ctk1 function is necessary for full translation initiation activity in Saccharomyces cerevisiae. EUKARYOTIC CELL 2014; 14:86-95. [PMID: 25416238 DOI: 10.1128/ec.00106-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Translation is a fundamental and highly regulated cellular process. Previously, we reported that the kinase and transcription elongation factor Ctk1 increases fidelity during translation elongation in Saccharomyces cerevisiae. Here, we show that loss of Ctk1 function also affects the initiation step of translation. Translation active extracts from Ctk1-depleted cells show impaired translation activity of capped mRNA, but not mRNA reporters containing the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Furthermore, the formation of 80S initiation complexes is decreased, which is probably due to reduced subunit joining. In addition, we determined the changes in the phosphorylation pattern of a ribosome enriched fraction after depletion of Ctk1. Thus, we provide a catalogue of phosphoproteomic changes dependent on Ctk1. Taken together, our data suggest a stimulatory function of Ctk1 in 80S formation during translation initiation.
Collapse
|
49
|
Leprivier G, Rotblat B, Khan D, Jan E, Sorensen PH. Stress-mediated translational control in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:845-60. [PMID: 25464034 DOI: 10.1016/j.bbagrm.2014.11.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/22/2022]
Abstract
Tumor cells are continually subjected to diverse stress conditions of the tumor microenvironment, including hypoxia, nutrient deprivation, and oxidative or genotoxic stress. Tumor cells must evolve adaptive mechanisms to survive these conditions to ultimately drive tumor progression. Tight control of mRNA translation is critical for this response and the adaptation of tumor cells to such stress forms. This proceeds though a translational reprogramming process which restrains overall translation activity to preserve energy and nutrients, but which also stimulates the selective synthesis of major stress adaptor proteins. Here we present the different regulatory signaling pathways which coordinate mRNA translation in the response to different stress forms, including those regulating eIF2α, mTORC1 and eEF2K, and we explain how tumor cells hijack these pathways for survival under stress. Finally, mechanisms for selective mRNA translation under stress, including the utilization of upstream open reading frames (uORFs) and internal ribosome entry sites (IRESes) are discussed in the context of cell stress. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Gabriel Leprivier
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Barak Rotblat
- Department of Life Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Debjit Khan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.
| |
Collapse
|
50
|
Out-of-frame start codons prevent translation of truncated nucleo-cytosolic cathepsin L in vivo. Nat Commun 2014; 5:4931. [PMID: 25222295 DOI: 10.1038/ncomms5931] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/07/2014] [Indexed: 11/08/2022] Open
Abstract
The lysosomal protease cathepsin L has been reported to cleave various functionally important cytosolic or nuclear proteins. To explain nucleo-cytosolic localization of cathepsin L, it has been hypothesized that skipping of the first start codon during translation initiation results in an N-terminally truncated protein lacking the endoplasmic reticulum-import signal. Here we demonstrate that out-of-frame AUGs prevent translation of truncated cathepsin L in cell culture as well as in a new knock-in mouse model. We further evaluate potential roles of nuclear cathepsin L during early embryonic development. Our analysis reveals normal epiblast development of cathepsin L-deficient embryos, but uncovers a pronounced lysosomal storage phenotype in the extra-embryonic tissue of the visceral endoderm. In conclusion, the phenotypes of cathepsin L deficiency can be fully assigned to lack of canonically targeted cathepsin L, while the biogenesis and functionality of nucleo-cytosolic cathepsin L remain elusive.
Collapse
|