1
|
Kang JH, Lee DW. Targeting signals required for protein sorting to sub-chloroplast compartments. PLANT CELL REPORTS 2024; 44:14. [PMID: 39724313 DOI: 10.1007/s00299-024-03409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Chloroplasts, distinctive subcellular organelles found exclusively in plant species, contain three membranes: the outer, inner, and thylakoid membranes. They also have three soluble compartments: the intermembrane space, stroma, and thylakoid lumen. Accordingly, delicate sorting mechanisms are required to ensure proper protein targeting to these sub-chloroplast compartments. Except for most outer membrane proteins, chloroplast interior proteins possess N-terminal cleavable transit peptides as primary import signals. After the cleavage of transit peptides, which occurs during or after import into chloroplasts, the inner and thylakoid membrane proteins, as well as stromal and thylakoid luminal proteins, are further sorted based on additional targeting signals. In this review, we aim to recapitulate the mechanisms by which proteins are targeted to chloroplasts and subsequently sorted into sub-chloroplast compartments, with a focus on the design principles of sorting signals present in chloroplast proteins.
Collapse
Affiliation(s)
- Ji Hyun Kang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea.
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, South Korea.
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
2
|
Sinclair M, Tajkhorshid E. The Role of Protein-Lipid Interactions in Priming the Bacterial Translocon. MEMBRANES 2024; 14:249. [PMID: 39728699 DOI: 10.3390/membranes14120249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Protein-lipid interactions demonstrate important regulatory roles in the function of membrane proteins. Nevertheless, due to the semi-liquid nature and heterogeneity of biological membranes, and dissecting the details of such interactions at high resolutions continues to pose a major challenge to experimental biophysical techniques. Computational techniques such as molecular dynamics (MD) offer an alternative approach with both temporally and spatially high resolutions. Here, we present an extensive series of MD simulations focused on the inner membrane protein YidC (PDB: 6AL2) from Escherichia coli, a key insertase responsible for the integration and folding of membrane proteins. Notably, we observed rare lipid fenestration events, where lipids fully penetrate the vestibule of YidC, providing new insights into the lipid-mediated regulation of protein insertion mechanisms. Our findings highlight the direct involvement of lipids in modulating the greasy slide of YidC and suggest that lipids enhance the local flexibility of the C1 domain, which is crucial for recruiting substrate peptides. These results contribute to a deeper understanding of how protein-lipid interactions facilitate the functional dynamics of membrane protein insertases, with implications for broader studies of membrane protein biology.
Collapse
Affiliation(s)
- Matt Sinclair
- Department of Biochemistry, University of Illinois Urbana, Champaign, IL 61801, USA
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana, Champaign, IL 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois Urbana, Champaign, IL 61801, USA
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana, Champaign, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana, Champaign, IL 61801, USA
| |
Collapse
|
3
|
Caccamo A, Vega de Luna F, Misztak AE, Pyr dit Ruys S, Vertommen D, Cardol P, Messens J, Remacle C. APX2 Is an Ascorbate Peroxidase-Related Protein that Regulates the Levels of Plastocyanin in Chlamydomonas. PLANT & CELL PHYSIOLOGY 2024; 65:644-656. [PMID: 38591346 PMCID: PMC11094752 DOI: 10.1093/pcp/pcae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
The function of ascorbate peroxidase-related (APX-R) proteins, present in all green photosynthetic eukaryotes, remains unclear. This study focuses on APX-R from Chlamydomonas reinhardtii, namely, ascorbate peroxidase 2 (APX2). We showed that apx2 mutants exhibited a faster oxidation of the photosystem I primary electron donor, P700, upon sudden light increase and a slower re-reduction rate compared to the wild type, pointing to a limitation of plastocyanin. Spectroscopic, proteomic and immunoblot analyses confirmed that the phenotype was a result of lower levels of plastocyanin in the apx2 mutants. The redox state of P700 did not differ between wild type and apx2 mutants when the loss of function in plastocyanin was nutritionally complemented by growing apx2 mutants under copper deficiency. In this case, cytochrome c6 functionally replaces plastocyanin, confirming that lower levels of plastocyanin were the primary defect caused by the absence of APX2. Overall, the results presented here shed light on an unexpected regulation of plastocyanin level under copper-replete conditions, induced by APX2 in Chlamydomonas.
Collapse
Affiliation(s)
- Anna Caccamo
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
- VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels 1050, Belgium
- Brussels Center for Redox Biology, Pleinlaan 2, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Félix Vega de Luna
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
| | - Agnieszka E Misztak
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
| | - Sébastien Pyr dit Ruys
- de Duve Institute and MASSPROT platform, UCLouvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Didier Vertommen
- de Duve Institute and MASSPROT platform, UCLouvain, Avenue Hippocrate 74, Brussels 1200, Belgium
| | - Pierre Cardol
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels 1050, Belgium
- Brussels Center for Redox Biology, Pleinlaan 2, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Chemin de la vallée 4, Liège 4000, Belgium
| |
Collapse
|
4
|
Caccamo A, Vega de Luna F, Wahni K, Volkov AN, Przybyla-Toscano J, Amelii A, Kriznik A, Rouhier N, Messens J, Remacle C. Ascorbate Peroxidase 2 (APX2) of Chlamydomonas Binds Copper and Modulates the Copper Insertion into Plastocyanin. Antioxidants (Basel) 2023; 12:1946. [PMID: 38001799 PMCID: PMC10669542 DOI: 10.3390/antiox12111946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Recent phylogenetic studies have unveiled a novel class of ascorbate peroxidases called "ascorbate peroxidase-related" (APX-R). These enzymes, found in green photosynthetic eukaryotes, lack the amino acids necessary for ascorbate binding. This study focuses on the sole APX-R from Chlamydomonas reinhardtii referred to as ascorbate peroxidase 2 (APX2). We used immunoblotting to locate APX2 within the chloroplasts and in silico analysis to identify key structural motifs, such as the twin-arginine transport (TAT) motif for lumen translocation and the metal-binding MxxM motif. We also successfully expressed recombinant APX2 in Escherichia coli. Our in vitro results showed that the peroxidase activity of APX2 was detected with guaiacol but not with ascorbate as an electron donor. Furthermore, APX2 can bind both copper and heme, as evidenced by spectroscopic, and fluorescence experiments. These findings suggest a potential interaction between APX2 and plastocyanin, the primary copper-containing enzyme within the thylakoid lumen of the chloroplasts. Predictions from structural models and evidence from 1H-NMR experiments suggest a potential interaction between APX2 and plastocyanin, emphasizing the influence of APX2 on the copper-binding abilities of plastocyanin. In summary, our results propose a significant role for APX2 as a regulator in copper transfer to plastocyanin. This study sheds light on the unique properties of APX-R enzymes and their potential contributions to the complex processes of photosynthesis in green algae.
Collapse
Affiliation(s)
- Anna Caccamo
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Félix Vega de Luna
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Alexander N. Volkov
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Jonathan Przybyla-Toscano
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Antonello Amelii
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Alexandre Kriznik
- CNRS, IMoPA and IBSLor, Université de Lorraine, F-54000 Nancy, France;
| | | | - Joris Messens
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| |
Collapse
|
5
|
Achimovich AM, Yan T, Gahlmann A. Dimerization of iLID optogenetic proteins observed using 3D single-molecule tracking in live E. coli. Biophys J 2023; 122:3254-3267. [PMID: 37421134 PMCID: PMC10465707 DOI: 10.1016/j.bpj.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/25/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023] Open
Abstract
3D single-molecule tracking microscopy has enabled measurements of protein diffusion in living cells, offering information about protein dynamics and cellular environments. For example, different diffusive states can be resolved and assigned to protein complexes of different size and composition. However, substantial statistical power and biological validation, often through genetic deletion of binding partners, are required to support diffusive state assignments. When investigating cellular processes, real-time perturbations to protein spatial distributions is preferable to permanent genetic deletion of an essential protein. For example, optogenetic dimerization systems can be used to manipulate protein spatial distributions that could offer a means to deplete specific diffusive states observed in single-molecule tracking experiments. Here, we evaluate the performance of the iLID optogenetic system in living E. coli cells using diffraction-limited microscopy and 3D single-molecule tracking. We observed a robust optogenetic response in protein spatial distributions after 488 nm laser activation. Surprisingly, 3D single-molecule tracking results indicate activation of the optogenetic response when illuminating with high-intensity light with wavelengths at which there is minimal photon absorbance by the LOV2 domain. The preactivation can be minimized through the use of iLID system mutants, and titration of protein expression levels.
Collapse
Affiliation(s)
- Alecia M Achimovich
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ting Yan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Andreas Gahlmann
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Chemistry, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
6
|
Stockwald ER, Steger LME, Vollmer S, Gottselig C, Grage SL, Bürck J, Afonin S, Fröbel J, Blümmel AS, Setzler J, Wenzel W, Walther TH, Ulrich AS. Length matters: Functional flip of the short TatA transmembrane helix. Biophys J 2023; 122:2125-2146. [PMID: 36523158 PMCID: PMC10257086 DOI: 10.1016/j.bpj.2022.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The twin arginine translocase (Tat) exports folded proteins across bacterial membranes. The putative pore-forming or membrane-weakening component (TatAd in B. subtilis) is anchored to the lipid bilayer via an unusually short transmembrane α-helix (TMH), with less than 16 residues. Its tilt angle in different membranes was analyzed under hydrophobic mismatch conditions, using synchrotron radiation circular dichroism and solid-state NMR. Positive mismatch (introduced either by reconstitution in short-chain lipids or by extending the hydrophobic TMH length) increased the helix tilt of the TMH as expected. Negative mismatch (introduced either by reconstitution in long-chain lipids or by shortening the TMH), on the other hand, led to protein aggregation. These data suggest that the TMH of TatA is just about long enough for stable membrane insertion. At the same time, its short length is a crucial factor for successful translocation, as demonstrated here in native membrane vesicles using an in vitro translocation assay. Furthermore, when reconstituted in model membranes with negative spontaneous curvature, the TMH was found to be aligned parallel to the membrane surface. This intrinsic ability of TatA to flip out of the membrane core thus seems to play a key role in its membrane-destabilizing effect during Tat-dependent translocation.
Collapse
Affiliation(s)
- Eva R Stockwald
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Lena M E Steger
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Stefanie Vollmer
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Christina Gottselig
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany
| | - Stephan L Grage
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | - Julia Fröbel
- University of Freiburg, Institute of Biochemistry and Molecular Biology, Freiburg, Germany
| | - Anne-Sophie Blümmel
- University of Freiburg, Institute of Biochemistry and Molecular Biology, Freiburg, Germany
| | - Julia Setzler
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Karlsruhe, Germany
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Karlsruhe, Germany
| | - Torsten H Walther
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany.
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Karlsruhe, Germany; Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany.
| |
Collapse
|
7
|
Severi E, Bunoro Batista M, Lannoy A, Stansfeld PJ, Palmer T. Characterization of a TatA/TatB binding site on the TatC component of the Escherichia coli twin arginine translocase. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001298. [PMID: 36790402 PMCID: PMC10197872 DOI: 10.1099/mic.0.001298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
The twin arginine transport (Tat) pathway exports folded proteins across the cytoplasmic membranes of prokaryotes and the thylakoid membranes of chloroplasts. In Escherichia coli and other Gram-negative bacteria, the Tat machinery comprises TatA, TatB and TatC components. A Tat receptor complex, formed from all three proteins, binds Tat substrates, which triggers receptor organization and recruitment of further TatA molecules to form the active Tat translocon. The polytopic membrane protein TatC forms the core of the Tat receptor and harbours two binding sites for the sequence-related TatA and TatB proteins. A 'polar' cluster binding site, formed by TatC transmembrane helices (TMH) 5 and 6 is occupied by TatB in the resting receptor and exchanges for TatA during receptor activation. The second binding site, lying further along TMH6, is occupied by TatA in the resting state, but its functional relevance is unclear. Here we have probed the role of this second binding site through a programme of random and targeted mutagenesis. Characterization of three stably produced TatC variants, P221R, M222R and L225P, each of which is inactive for protein transport, demonstrated that the substitutions did not affect assembly of the Tat receptor. Moreover, the substitutions that we analysed did not abolish TatA or TatB binding to either binding site. Using targeted mutagenesis we introduced bulky substitutions into the TatA binding site. Molecular dynamics simulations and crosslinking analysis indicated that TatA binding at this site was substantially reduced by these amino acid changes, but TatC retained function. While it is not clear whether TatA binding at the TMH6 site is essential for Tat activity, the isolation of inactivating substitutions indicates that this region of the protein has a critical function.
Collapse
Affiliation(s)
- Emmanuele Severi
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mariana Bunoro Batista
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Adelie Lannoy
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Phillip J. Stansfeld
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
8
|
Alcock F, Berks BC. New insights into the Tat protein transport cycle from characterizing the assembled Tat translocon. Mol Microbiol 2022; 118:637-651. [PMID: 36151601 PMCID: PMC10092561 DOI: 10.1111/mmi.14984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023]
Abstract
The twin-arginine protein translocation (Tat) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of chloroplasts. The Tat translocation site is transiently assembled by the recruitment of multiple TatA proteins to a substrate-activated TatBC receptor complex in a process requiring the protonmotive force. The ephemeral nature of the Tat translocation site has so far precluded its isolation. We now report that detergent solubilization of membranes during active transport allows the recovery of receptor complexes that are associated with elevated levels of TatA. We apply this biochemical analysis in combination with live cell fluorescence imaging to Tat systems trapped in the assembled state. We resolve sub-steps in the Tat translocation cycle and infer that TatA assembly precedes the functional interaction of TatA with a polar cluster site on TatC. We observe that dissipation of the protonmotive force releases TatA oligomers from the assembled translocation site demonstrating that the stability of the TatA oligomer does not depend on binding to the receptor complex and implying that the TatA oligomer is assembled at the periphery of the receptor complex. This work provides new insight into the Tat transport cycle and advances efforts to isolate the active Tat translocon.
Collapse
Affiliation(s)
- Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, UK.,Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Sharma A, Chowdhury R, Musser SM. Oligomerization state of the functional bacterial twin-arginine translocation (Tat) receptor complex. Commun Biol 2022; 5:988. [PMID: 36123532 PMCID: PMC9485244 DOI: 10.1038/s42003-022-03952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plastid energy transducing membranes. Ion leaks are generally considered to be mitigated by the creation and destruction of the translocation conduit in a cargo-dependent manner, a mechanism that enables tight sealing around a wide range of cargo shapes and sizes. In contrast to the variable stoichiometry of the active translocon, the oligomerization state of the receptor complex is considered more consistently stable but has proved stubbornly difficult to establish. Here, using a single molecule photobleaching analysis of individual inverted membrane vesicles, we demonstrate that Tat receptor complexes are tetrameric in native membranes with respect to both TatB and TatC. This establishes a maximal diameter for a resting state closed pore. A large percentage of Tat-deficient vesicles explains the typically low transport efficiencies observed. This individual reaction chamber approach will facilitate examination of the effects of stochastically distributed molecules.
Collapse
Affiliation(s)
- Ankith Sharma
- Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, College Station, TX, 77843, USA
| | - Rajdeep Chowdhury
- Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, College Station, TX, 77843, USA
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Mehner-Breitfeld D, Ringel MT, Tichy DA, Endter LJ, Stroh KS, Lünsdorf H, Risselada HJ, Brüser T. TatA and TatB generate a hydrophobic mismatch important for the function and assembly of the Tat translocon in Escherichia coli. J Biol Chem 2022; 298:102236. [PMID: 35809643 PMCID: PMC9424591 DOI: 10.1016/j.jbc.2022.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
The twin-arginine translocation (Tat) system serves to translocate folded proteins across energy-transducing membranes in bacteria, archaea, plastids, and some mitochondria. In Escherichia coli, TatA, TatB, and TatC constitute functional translocons. TatA and TatB both possess an N-terminal transmembrane helix (TMH) followed by an amphipathic helix. The TMHs of TatA and TatB generate a hydrophobic mismatch with the membrane, as the helices comprise only 12 consecutive hydrophobic residues; however, the purpose of this mismatch is unclear. Here, we shortened or extended this stretch of hydrophobic residues in either TatA, TatB, or both and analyzed effects on translocon function and assembly. We found the WT length helices functioned best, but some variation was clearly tolerated. Defects in function were exacerbated by simultaneous mutations in TatA and TatB, indicating partial compensation of mutations in each by the other. Furthermore, length variation in TatB destabilized TatBC-containing complexes, revealing that the 12-residue-length is important but not essential for this interaction and translocon assembly. To also address potential effects of helix length on TatA interactions, we characterized these interactions by molecular dynamics simulations, after having characterized the TatA assemblies by metal-tagging transmission electron microscopy. In these simulations, we found that interacting short TMHs of larger TatA assemblies were thinning the membrane and—together with laterally-aligned tilted amphipathic helices—generated a deep V-shaped membrane groove. We propose the 12 consecutive hydrophobic residues may thus serve to destabilize the membrane during Tat transport, and their conservation could represent a delicate compromise between functionality and minimization of proton leakage.
Collapse
Affiliation(s)
| | - Michael T Ringel
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Daniel Alexander Tichy
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany; Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Laura J Endter
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Kai Steffen Stroh
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | | | - Herre Jelger Risselada
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
11
|
Pei D, Dalbey RE. Membrane Translocation of Folded Proteins. J Biol Chem 2022; 298:102107. [PMID: 35671825 PMCID: PMC9251779 DOI: 10.1016/j.jbc.2022.102107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation (TAT) system in bacteria and chloroplasts, unconventional protein secretion (UPS) and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse (VBC), and present evidence that VBC may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210.
| |
Collapse
|
12
|
Dwivedi M, Bajpai K. The chamber of secretome in Mycobacterium tuberculosis as a potential therapeutic target. Biotechnol Genet Eng Rev 2022; 39:1-44. [PMID: 35613080 DOI: 10.1080/02648725.2022.2076031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mycobacterium tuberculosis (MTB) causes one of the ancient diseases, Tuberculosis, affects people around the globe and its severity can be understood by its classification as a second infectious disease after COVID-19 and the 13th leading cause of death according to a WHO report. Despite having advanced diagnostic approaches and therapeutic strategies, unfortunately, TB is still spreading across the population due to the emergence of drug-resistance MTB and Latent TB infection (LTBI). We are seeking for effective approaches to overcome these hindrances and efficient treatment for this perilous disease. Therefore, there is an urgent need to develop drugs based on operative targeting of the bacterial system that could result in both efficient treatment and lesser emergence of MDR-TB. One such promising target could be the secretory systems and especially the Type 7 secretory system (T7SS-ESX) of Mycobacterium tuberculosis, which is crucial for the secretion of effector proteins as well as in establishing host-pathogen interactions of the tubercle bacilli. The five paralogous ESX systems (ESX-1 to EXS-5) have been observed by in silico genome analysis of MTB, among which ESX-1 and ESX-5 are substantial for virulence and mediating host cellular inflammasome. The bacterium growth and virulence can be modulated by targeting the T7SS. In the present review, we demonstrate the current status of therapeutics against MTB and focus on the function and cruciality of T7SS along with other secretory systems as a promising therapeutic target against Tuberculosis.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Kriti Bajpai
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| |
Collapse
|
13
|
Spaniol B, Lang J, Venn B, Schake L, Sommer F, Mustas M, Geimer S, Wollman FA, Choquet Y, Mühlhaus T, Schroda M. Complexome profiling on the Chlamydomonas lpa2 mutant reveals insights into PSII biogenesis and new PSII associated proteins. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:245-262. [PMID: 34436580 PMCID: PMC8730698 DOI: 10.1093/jxb/erab390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/24/2021] [Indexed: 05/27/2023]
Abstract
While the composition and function of the major thylakoid membrane complexes are well understood, comparatively little is known about their biogenesis. The goal of this work was to shed more light on the role of auxiliary factors in the biogenesis of photosystem II (PSII). Here we have identified the homolog of LOW PSII ACCUMULATION 2 (LPA2) in Chlamydomonas. A Chlamydomonas reinhardtii lpa2 mutant grew slower in low light, was hypersensitive to high light, and exhibited aberrant structures in thylakoid membrane stacks. Chlorophyll fluorescence (Fv/Fm) was reduced by 38%. Synthesis and stability of newly made PSII core subunits D1, D2, CP43, and CP47 were not impaired. However, complexome profiling revealed that in the mutant CP43 was reduced to ~23% and D1, D2, and CP47 to ~30% of wild type levels. Levels of PSI and the cytochrome b6f complex were unchanged, while levels of the ATP synthase were increased by ~29%. PSII supercomplexes, dimers, and monomers were reduced to ~7%, ~26%, and ~60% of wild type levels, while RC47 was increased ~6-fold and LHCII by ~27%. We propose that LPA2 catalyses a step during PSII assembly without which PSII monomers and further assemblies become unstable and prone to degradation. The LHCI antenna was more disconnected from PSI in the lpa2 mutant, presumably as an adaptive response to reduce excitation of PSI. From the co-migration profiles of 1734 membrane-associated proteins, we identified three novel putative PSII associated proteins with potential roles in regulating PSII complex dynamics, assembly, and chlorophyll breakdown.
Collapse
Affiliation(s)
- Benjamin Spaniol
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Julia Lang
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Benedikt Venn
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Lara Schake
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Matthieu Mustas
- Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Francis-André Wollman
- Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Yves Choquet
- Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, Institut de Biologie Physico-Chimique, UMR CNRS/UPMC 7141, Paris, France
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
14
|
Bageshwar UK, DattaGupta A, Musser SM. Influence of the TorD signal peptide chaperone on Tat-dependent protein translocation. PLoS One 2021; 16:e0256715. [PMID: 34499687 PMCID: PMC8428690 DOI: 10.1371/journal.pone.0256715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway transports folded proteins across energetic membranes. Numerous Tat substrates contain co-factors that are inserted before transport with the assistance of redox enzyme maturation proteins (REMPs), which bind to the signal peptide of precursor proteins. How signal peptides are transferred from a REMP to a binding site on the Tat receptor complex remains unknown. Since the signal peptide mediates both interactions, possibilities include: i) a coordinated hand-off mechanism; or ii) a diffusional search after REMP dissociation. We investigated the binding interaction between substrates containing the TorA signal peptide (spTorA) and its cognate REMP, TorD, and the effect of TorD on the in vitro transport of such substrates. We found that Escherichia coli TorD is predominantly a monomer at low micromolar concentrations (dimerization KD > 50 μM), and this monomer binds reversibly to spTorA (KD ≈ 1 μM). While TorD binds to membranes (KD ≈ 100 nM), it has no apparent affinity for Tat translocons and it inhibits binding of a precursor substrate to the membrane. TorD has a minimal effect on substrate transport by the Tat system, being mildly inhibitory at high concentrations. These data are consistent with a model in which the REMP-bound signal peptide is shielded from recognition by the Tat translocon, and spontaneous dissociation of the REMP allows the substrate to engage the Tat machinery. Thus, the REMP does not assist with targeting to the Tat translocon, but rather temporarily shields the signal peptide.
Collapse
Affiliation(s)
- Umesh K. Bageshwar
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, The Texas A&M Health Science Center, TX, United States of America
| | - Antara DattaGupta
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, The Texas A&M Health Science Center, TX, United States of America
| | - Siegfried M. Musser
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, The Texas A&M Health Science Center, TX, United States of America
- * E-mail:
| |
Collapse
|
15
|
Characterization of the Free and Membrane-Associated Fractions of the Thylakoid Lumen Proteome in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22158126. [PMID: 34360890 PMCID: PMC8346976 DOI: 10.3390/ijms22158126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
The thylakoid lumen houses proteins that are vital for photosynthetic electron transport, including water-splitting at photosystem (PS) II and shuttling of electrons from cytochrome b6f to PSI. Other lumen proteins maintain photosynthetic activity through biogenesis and turnover of PSII complexes. Although all lumen proteins are soluble, these known details have highlighted interactions of some lumen proteins with thylakoid membranes or thylakoid-intrinsic proteins. Meanwhile, the functional details of most lumen proteins, as well as their distribution between the soluble and membrane-associated lumen fractions, remain unknown. The current study isolated the soluble free lumen (FL) and membrane-associated lumen (MAL) fractions from Arabidopsis thaliana, and used gel- and mass spectrometry-based proteomics methods to analyze the contents of each proteome. These results identified 60 lumenal proteins, and clearly distinguished the difference between the FL and MAL proteomes. The most abundant proteins in the FL fraction were involved in PSII assembly and repair, while the MAL proteome was enriched in proteins that support the oxygen-evolving complex (OEC). Novel proteins, including a new PsbP domain-containing isoform, as well as several novel post-translational modifications and N-termini, are reported, and bi-dimensional separation of the lumen proteome identified several protein oligomers in the thylakoid lumen.
Collapse
|
16
|
Lee DW, Hwang I. Understanding the evolution of endosymbiotic organelles based on the targeting sequences of organellar proteins. THE NEW PHYTOLOGIST 2021; 230:924-930. [PMID: 33404103 DOI: 10.1111/nph.17167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/14/2020] [Indexed: 05/17/2023]
Abstract
Organellogenesis, a key aspect of eukaryotic cell evolution, critically depends on the successful establishment of organellar protein import mechanisms. Phylogenetic analysis revealed that the evolution of the two endosymbiotic organelles, the mitochondrion and the chloroplast, is thought to have occurred at time periods far from each other. Despite this, chloroplasts and mitochondria have highly similar protein import mechanisms. This raises intriguing questions such as what underlies such similarity in the import mechanisms and how these similar mechanisms have evolved. In this review, we summarise the recent findings regarding sorting and specific targeting of these organellar proteins. Based on these findings, we propose possible evolutionary scenarios regarding how the signal sequences of chloroplasts and mitochondrial proteins ended up having such relationship.
Collapse
Affiliation(s)
- Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
17
|
Irmscher T, Roske Y, Gayk I, Dunsing V, Chiantia S, Heinemann U, Barbirz S. Pantoea stewartii WceF is a glycan biofilm-modifying enzyme with a bacteriophage tailspike-like fold. J Biol Chem 2021; 296:100286. [PMID: 33450228 PMCID: PMC7949094 DOI: 10.1016/j.jbc.2021.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022] Open
Abstract
Pathogenic microorganisms often reside in glycan-based biofilms. Concentration and chain length distribution of these mostly anionic exopolysaccharides (EPS) determine the overall biophysical properties of a biofilm and result in a highly viscous environment. Bacterial communities regulate this biofilm state via intracellular small-molecule signaling to initiate EPS synthesis. Reorganization or degradation of this glycan matrix, however, requires the action of extracellular glycosidases. So far, these were mainly described for bacteriophages that must degrade biofilms for gaining access to host bacteria. The plant pathogen Pantoea stewartii (P. stewartii) encodes the protein WceF within its EPS synthesis cluster. WceF has homologs in various biofilm forming plant pathogens of the Erwinia family. In this work, we show that WceF is a glycosidase active on stewartan, the main P. stewartii EPS biofilm component. WceF has remarkable structural similarity with bacteriophage tailspike proteins (TSPs). Crystal structure analysis showed a native trimer of right-handed parallel β-helices. Despite its similar fold, WceF lacks the high stability found in bacteriophage TSPs. WceF is a stewartan hydrolase and produces oligosaccharides, corresponding to single stewartan repeat units. However, compared with a stewartan-specific glycan hydrolase of bacteriophage origin, WceF showed lectin-like autoagglutination with stewartan, resulting in notably slower EPS cleavage velocities. This emphasizes that the bacterial enzyme WceF has a role in P. stewartii biofilm glycan matrix reorganization clearly different from that of a bacteriophage exopolysaccharide depolymerase.
Collapse
Affiliation(s)
- Tobias Irmscher
- Physikalische Biochemie, Universität Potsdam, Potsdam, Germany; Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Yvette Roske
- Crystallography, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Igor Gayk
- Physikalische Biochemie, Universität Potsdam, Potsdam, Germany
| | - Valentin Dunsing
- Physikalische Zellbiochemie, Universität Potsdam, Potsdam, Germany
| | | | - Udo Heinemann
- Crystallography, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany; Institut für Chemie und Biochemie, Freie Universität, Berlin, Germany.
| | | |
Collapse
|
18
|
Xu X, Ouyang M, Lu D, Zheng C, Zhang L. Protein Sorting within Chloroplasts. Trends Cell Biol 2020; 31:9-16. [PMID: 33121860 DOI: 10.1016/j.tcb.2020.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Chloroplasts have multiple suborganellar membranes. Correct and efficient translocation of chloroplast proteins from their site of synthesis into or across membranes to their functional compartments are fundamental processes. In recent years, several new components and regulatory mechanisms involved in chloroplast protein import and sorting have been explored. Moreover, the formation of liquid-liquid phase transition (LLPT) has been recently reported as a novel mechanism for regulating chloroplast protein sorting. Here, we overview the recent advances of both nuclear- and chloroplast-encoded protein trafficking to their final destination within chloroplasts, and discuss the novel components and regulatory mechanisms of intrachloroplast sorting. Furthermore, we propose that LLPT may be a universal and conserved mechanism for driving organelle protein trafficking and organelle biogenesis.
Collapse
Affiliation(s)
- Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Min Ouyang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng 475004, China.
| |
Collapse
|
19
|
The Twin-Arginine Translocation System Is Important for Stress Resistance and Virulence of Brucella melitensis. Infect Immun 2020; 88:IAI.00389-20. [PMID: 32778612 DOI: 10.1128/iai.00389-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
Brucella, the causative agent of brucellosis, is a stealthy intracellular pathogen that is highly pathogenic to a range of mammals, including humans. The twin-arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane and has been implicated in virulence in many bacterial pathogens. However, the roles of the Tat system and related substrates in Brucella remain unclear. We report here that disruption of Tat increases the sensitivity of Brucella melitensis M28 to the membrane stressor sodium dodecyl sulfate (SDS), indicating cell envelope defects, as well as to EDTA. In addition, mutating Tat renders M28 bacteria more sensitive to oxidative stress caused by H2O2 Further, loss of Tat significantly attenuates B. melitensis infection in murine macrophages ex vivo Using a mouse model for persistent infection, we demonstrate that Tat is required for full virulence of B. melitensis M28. Genome-wide in silico prediction combined with an in vivo amidase reporter assay indicates that at least 23 proteins are authentic Tat substrates, and they are functionally categorized into solute-binding proteins, oxidoreductases, cell envelope biosynthesis enzymes, and others. A comprehensive deletion study revealed that 6 substrates contribute significantly to Brucella virulence, including an l,d-transpeptidase, an ABC transporter solute-binding protein, and a methionine sulfoxide reductase. Collectively, our work establishes that the Tat pathway plays a critical role in Brucella virulence.
Collapse
|
20
|
Wu X, Siggel M, Ovchinnikov S, Mi W, Svetlov V, Nudler E, Liao M, Hummer G, Rapoport TA. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Science 2020; 368:368/6489/eaaz2449. [PMID: 32327568 DOI: 10.1126/science.aaz2449] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/18/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Misfolded luminal endoplasmic reticulum (ER) proteins undergo ER-associated degradation (ERAD-L): They are retrotranslocated into the cytosol, polyubiquitinated, and degraded by the proteasome. ERAD-L is mediated by the Hrd1 complex (composed of Hrd1, Hrd3, Der1, Usa1, and Yos9), but the mechanism of retrotranslocation remains mysterious. Here, we report a structure of the active Hrd1 complex, as determined by cryo-electron microscopy analysis of two subcomplexes. Hrd3 and Yos9 jointly create a luminal binding site that recognizes glycosylated substrates. Hrd1 and the rhomboid-like Der1 protein form two "half-channels" with cytosolic and luminal cavities, respectively, and lateral gates facing one another in a thinned membrane region. These structures, along with crosslinking and molecular dynamics simulation results, suggest how a polypeptide loop of an ERAD-L substrate moves through the ER membrane.
Collapse
Affiliation(s)
- Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Siggel
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Sergey Ovchinnikov
- Faculty of Arts and Sciences, Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Wei Mi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.,Present address: Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vladimir Svetlov
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Lee DW, Hwang I. Liquid-Liquid Phase Transition as a New Means of Protein Targeting in Chloroplasts. MOLECULAR PLANT 2020; 13:679-681. [PMID: 32298786 DOI: 10.1016/j.molp.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea.
| |
Collapse
|
22
|
Palmer T, Stansfeld PJ. Targeting of proteins to the twin-arginine translocation pathway. Mol Microbiol 2020; 113:861-871. [PMID: 31971282 PMCID: PMC7317946 DOI: 10.1111/mmi.14461] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
The twin-arginine protein transport (Tat pathway) is found in prokaryotes and plant organelles and transports folded proteins across membranes. Targeting of substrates to the Tat system is mediated by the presence of an N-terminal signal sequence containing a highly conserved twin-arginine motif. The Tat machinery comprises membrane proteins from the TatA and TatC families. Assembly of the Tat translocon is dynamic and is triggered by the interaction of a Tat substrate with the Tat receptor complex. This review will summarise recent advances in our understanding of Tat transport, focusing in particular on the roles played by Tat signal peptides in protein targeting and translocation.
Collapse
Affiliation(s)
- Tracy Palmer
- Faculty of Medical Sciences, Centre for Bacterial Cell Biology, Biosciences Institute, Molecular and Cellular Microbiology Theme, Newcastle University, Newcastle upon Tyne, England
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| |
Collapse
|
23
|
Lee DW, Lee S, Min CK, Park C, Kim JM, Hwang CS, Park SK, Cho NH, Hwang I. Cross-Species Functional Conservation and Possible Origin of the N-Terminal Specificity Domain of Mitochondrial Presequences. FRONTIERS IN PLANT SCIENCE 2020; 11:64. [PMID: 32117399 PMCID: PMC7031408 DOI: 10.3389/fpls.2020.00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/16/2020] [Indexed: 05/28/2023]
Abstract
Plants have two endosymbiotic organelles, chloroplast and mitochondrion. Although they have their own genomes, proteome assembly in these organelles depends on the import of proteins encoded by the nuclear genome. Previously, we elucidated the general design principles of chloroplast and mitochondrial targeting signals, transit peptide, and presequence, respectively, which are highly diverse in primary structure. Both targeting signals are composed of N-terminal specificity domain and C-terminal translocation domain. Especially, the N-terminal specificity domain of mitochondrial presequences contains multiple arginine residues and hydrophobic sequence motif. In this study we investigated whether the design principles of plant mitochondrial presequences can be applied to those in other eukaryotic species. We provide evidence that both presequences and import mechanisms are remarkably conserved throughout the species. In addition, we present evidence that the N-terminal specificity domain of presequence might have evolved from the bacterial TAT (twin-arginine translocation) signal sequence.
Collapse
Affiliation(s)
- Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Sumin Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Chan-Ki Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Cana Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Jeong-Mok Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
24
|
Zinecker S, Jakob M, Klösgen RB. Functional reconstitution of TatB into the thylakoidal Tat translocase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118606. [PMID: 31733260 DOI: 10.1016/j.bbamcr.2019.118606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
We have established an experimental system for the functional analysis of thylakoidal TatB, a component of the membrane-integral TatBC receptor complex of the thylakoidal Twin-arginine protein transport (Tat) machinery. For this purpose, the intrinsic TatB activity of isolated pea thylakoids was inhibited by affinity-purified antibodies and substituted by supplementing the assays with TatB protein either obtained by in vitro translation or purified after heterologous expression in E. coli. Tat transport activity of such reconstituted thylakoids, which was analysed with the authentic Tat substrate pOEC16, reached routinely 20-25% of the activity of mock-treated thylakoid vesicles analysed in parallel. In contrast, supplementation of the assays with the purified antigen comprising all but the N-terminal transmembrane helix of thylakoidal TatB did not result in Tat transport reconstitution which confirms that transport relies strictly on the activity of the TatB protein added and is not due to restoration of the intrinsic TatB activity by antibody release. Unexpectedly, even a mutated TatB protein (TatB,E10C) assumed to be incapable of assembling into the TatBC receptor complex showed low but considerable transport reconstitution underlining the sensitivity of the approach and its suitability for further functional analyses of protein variants. Finally, quantification of TatB demand suggests that TatA and TatB are required in approximately equimolar amounts to achieve Tat-dependent thylakoid transport.
Collapse
Affiliation(s)
- Sarah Zinecker
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany
| | - Mario Jakob
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany
| | - Ralf Bernd Klösgen
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| |
Collapse
|
25
|
Hamsanathan S, Musser SM. The Tat protein transport system: intriguing questions and conundrums. FEMS Microbiol Lett 2019; 365:5000164. [PMID: 29897510 DOI: 10.1093/femsle/fny123] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
The Tat machinery catalyzes the transport of folded proteins across the cytoplasmic membrane in bacteria and the thylakoid membrane in plants. Transport occurs only in the presence of an electric field (Δψ) and/or a pH (ΔpH) gradient, and thus, Tat transport is considered to be dependent on the proton motive force (pmf). This presents a fundamental and major challenge, namely, that the Tat system catalyzes the movement of large folded protein cargos across a membrane without collapse of ion gradients. Current models argue that the active translocon assembles de novo for each cargo transported, thus providing an effective gating mechanism to minimize ion leakage. A limited structural understanding of the intermediates occurring during transport and the role of the pmf in stabilizing and/or driving this process have hindered the development of more detailed models. A fundamental question that remains unanswered is whether the pmf is actually 'consumed', providing an energetic driving force for transport, or alternatively, whether its presence is instead necessary to provide the appropriate environment for the translocon components to become active. Including addressing this issue in greater detail, we explore a series of additional questions that challenge current models, and, hopefully, motivate future work.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, Texas A&M University, 1114 TAMU, College Station, TX 77843, USA
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M Health Science Center, Texas A&M University, 1114 TAMU, College Station, TX 77843, USA
| |
Collapse
|
26
|
Abstract
The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thylakoidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead for future investigations.
Collapse
Affiliation(s)
- Kelly M. Frain
- The School of Biosciences, University of Kent, Canterbury, CT2 7NZ UK
| | - Colin Robinson
- The School of Biosciences, University of Kent, Canterbury, CT2 7NZ UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen (UMCG), Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
27
|
Geise H, Heidrich ES, Nikolin CS, Mehner-Breitfeld D, Brüser T. A Potential Late Stage Intermediate of Twin-Arginine Dependent Protein Translocation in Escherichia coli. Front Microbiol 2019; 10:1482. [PMID: 31354642 PMCID: PMC6637791 DOI: 10.3389/fmicb.2019.01482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/14/2019] [Indexed: 02/01/2023] Open
Abstract
The twin-arginine translocation (Tat) system transports folded proteins across membranes of prokaryotes, plant plastids, and some mitochondria. According to blue-native polyacrylamide gel electrophoresis after solubilization with digitonin, distinct interactions between the components TatA, TatB, and TatC result in two major TatBC-containing complexes in Escherichia coli that can bind protein substrates. We now report the first detection of a TatABC complex that likely represents the state at which transport occurs. This complex was initially found when the photo cross-linking amino acid p-benzoyl-l-phenylalanine (Bpa) was introduced at position I50 on the periplasmic side of the first trans-membrane domain of TatC. Cross-linking of TatCI50Bpa resulted in TatC-TatC-cross-links, indicating a close proximity to neighboring TatC in the complex. However, the new complex was not caused by cross-links but rather by non-covalent side chain interactions, as it was also detectable without UV-cross-linking or with an I50Y exchange. The new complex did not contain any detectable substrate. It was slightly upshifted relative to previously reported substrate-containing TatABC complexes. In the absence of TatA, an inactive TatBCI50Bpa complex was formed of the size of wild-type substrate-containing TatABC complexes, suggesting that TatB occupies TatA-binding sites at TatCI50Bpa. When substrate binding was abolished by point mutations, this TatBCI50Bpa complex shifted analogously to active TatABCI50Bpa complexes, indicating that a defect substrate-binding site further enhances TatB association to TatA-binding sites. Only TatA could shift the complex with an intact substrate-binding site, which explains the TatA requirement for substrate transport by TatABC systems.
Collapse
Affiliation(s)
- Hendrik Geise
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | | | | | | | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
28
|
Lee DW, Lee S, Lee J, Woo S, Razzak MA, Vitale A, Hwang I. Molecular Mechanism of the Specificity of Protein Import into Chloroplasts and Mitochondria in Plant Cells. MOLECULAR PLANT 2019; 12:951-966. [PMID: 30890495 DOI: 10.1016/j.molp.2019.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/19/2019] [Accepted: 03/10/2019] [Indexed: 05/04/2023]
Abstract
Plants possess both types of endosymbiotic organelles, chloroplasts and mitochondria. Transit peptides and presequences function as signal sequences for specific import into chloroplasts and mitochondria, respectively. However, how these highly similar signal sequences confer the protein import specificity remains elusive. Here, we show that mitochondrial- or chloroplast-specific import involves two distinct steps, specificity determination and translocation across envelopes, which are mediated by the N-terminal regions and functionally interchangeable C-terminal regions, respectively, of transit peptides and presequences. A domain harboring multiple-arginine and hydrophobic sequence motifs in the N-terminal regions of presequences was identified as the mitochondrial specificity factor. The presence of this domain and the absence of arginine residues in the N-terminal regions of otherwise common targeting signals confers specificity of protein import into mitochondria and chloroplasts, respectively. AtToc159, a chloroplast import receptor, also contributes to determining chloroplast import specificity. We propose that common ancestral sequences were functionalized into mitochondrial- and chloroplast-specific signal sequences by the presence and absence, respectively, of multiple-arginine and hydrophobic sequence motifs in the N-terminal region.
Collapse
Affiliation(s)
- Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sumin Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Junho Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seungjin Woo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Md Abdur Razzak
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Milano, Italy
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea.
| |
Collapse
|
29
|
McKinnon L, Theg SM. Determinants of the Specificity of Protein Targeting to Chloroplasts or Mitochondria. MOLECULAR PLANT 2019; 12:893-895. [PMID: 31128277 DOI: 10.1016/j.molp.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 05/17/2023]
Affiliation(s)
- Lucas McKinnon
- Department of Plant Biology, University of California Davis, Davis, CA, USA
| | - Steven M Theg
- Department of Plant Biology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
30
|
Abstract
The Tat pathway for protein translocation across bacterial membranes stands out for its selective handling of fully folded cargo proteins. In this review, we provide a comprehensive summary of our current understanding of the different known Tat components, their assembly into different complexes, and their specific roles in the protein translocation process. In particular, this overview focuses on the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Bacillus subtilis. Using these organisms as examples, we discuss structural features of Tat complexes alongside mechanistic models that allow for the Tat pathway's unique protein proofreading and transport capabilities. Finally, we highlight recent advances in exploiting the Tat pathway for biotechnological benefit, the production of high-value pharmaceutical proteins.
Collapse
Affiliation(s)
- Kelly M Frain
- The School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - Colin Robinson
- The School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| |
Collapse
|
31
|
Contribution of Mitochondrial Ion Channels to Chemo-Resistance in Cancer Cells. Cancers (Basel) 2019; 11:cancers11060761. [PMID: 31159324 PMCID: PMC6627730 DOI: 10.3390/cancers11060761] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial ion channels are emerging oncological targets, as modulation of these ion-transporting proteins may impact on mitochondrial membrane potential, efficiency of oxidative phosphorylation and reactive oxygen production. In turn, these factors affect the release of cytochrome c, which is the point of no return during mitochondrial apoptosis. Many of the currently used chemotherapeutics induce programmed cell death causing damage to DNA and subsequent activation of p53-dependent pathways that finally leads to cytochrome c release from the mitochondrial inter-membrane space. The view is emerging, as summarized in the present review, that ion channels located in this organelle may account in several cases for the resistance that cancer cells can develop against classical chemotherapeutics, by preventing drug-induced apoptosis. Thus, pharmacological modulation of these channel activities might be beneficial to fight chemo-resistance of different types of cancer cells.
Collapse
|
32
|
Ganesan I, Theg SM. Structural considerations of folded protein import through the chloroplast TOC/TIC translocons. FEBS Lett 2019; 593:565-572. [PMID: 30775779 DOI: 10.1002/1873-3468.13342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 11/11/2022]
Abstract
Protein import into chloroplasts is carried out by the protein translocons at the outer and inner envelope membranes (TOC and TIC). Detailed structures for these translocons are lacking, with only a low-resolution TOC complex structure available. Recently, we showed that the TOC/TIC translocons can import folded proteins, a rather unique feat for a coupled double membrane system. We also determined the maximum functional TOC/TIC pore size to be 30-35 Å. Here, we discuss how such large pores could form and compare the structural dynamics of the pore-forming Toc75 subunit to its bacterial/mitochondrial Omp85 family homologs. We put forward structural models that can be empirically tested and also briefly review the pore dynamics of other protein translocons with known structures.
Collapse
Affiliation(s)
- Iniyan Ganesan
- Department of Plant Biology, University of California Davis, CA, USA
| | - Steven M Theg
- Department of Plant Biology, University of California Davis, CA, USA
| |
Collapse
|
33
|
Abstract
The inner membrane of Gram-negative bacteria is a ~6 nm thick phospholipid bilayer. It forms a semi-permeable barrier between the cytoplasm and periplasm allowing only regulated export and import of ions, sugar polymers, DNA and proteins. Inner membrane proteins, embedded via hydrophobic transmembrane α-helices, play an essential role in this regulated trafficking: they mediate insertion into the membrane (insertases) or complete crossing of the membrane (translocases) or both. The Gram-negative inner membrane is equipped with a variety of different insertases and translocases. Many of them are specialized, taking care of the export of only a few protein substrates, while others have more general roles. Here, we focus on the three general export/insertion pathways, the secretory (Sec) pathway, YidC and the twin-arginine translocation (TAT) pathway, focusing closely on the Escherichia coli (E. coli) paradigm. We only briefly mention dedicated export pathways found in different Gram-negative bacteria. The Sec system deals with the majority of exported proteins and functions both as a translocase for secretory proteins and an insertase for membrane proteins. The insertase YidC assists the Sec system or operates independently on membrane protein clients. Sec and YidC, in common with most export pathways, require their protein clients to be in soluble non-folded states to fit through the translocation channels and grooves. The TAT pathway is an exception, as it translocates folded proteins, some loaded with prosthetic groups.
Collapse
Affiliation(s)
- Jozefien De Geyter
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dries Smets
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
34
|
New CP, Ma Q, Dabney-Smith C. Routing of thylakoid lumen proteins by the chloroplast twin arginine transport pathway. PHOTOSYNTHESIS RESEARCH 2018; 138:289-301. [PMID: 30101370 DOI: 10.1007/s11120-018-0567-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Thylakoids are complex sub-organellar membrane systems whose role in photosynthesis makes them critical to life. Thylakoids require the coordinated expression of both nuclear- and plastid-encoded proteins to allow rapid response to changing environmental conditions. Transport of cytoplasmically synthesized proteins to thylakoids or the thylakoid lumen is complex; the process involves transport across up to three membrane systems with routing through three aqueous compartments. Protein transport in thylakoids is accomplished by conserved ancestral prokaryotic plasma membrane translocases containing novel adaptations for the sub-organellar location. This review focuses on the evolutionarily conserved chloroplast twin arginine transport (cpTat) pathway. An overview is provided of known aspects of the cpTat components, energy requirements, and mechanisms with a focus on recent discoveries. Some of the most exciting new studies have been in determining the structural architecture of the membrane complex involved in forming the point of passage for the precursor and binding features of the translocase components. The cpTat system is of particular interest because it transports folded protein domains using only the proton motive force for energy. The implications for mechanism of translocation by recent studies focusing on interactions between membrane Tat components and with the translocating precursor will be discussed.
Collapse
Affiliation(s)
- Christopher Paul New
- Cellular, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH, 45056, USA
| | - Qianqian Ma
- Cellular, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH, 45056, USA
| | - Carole Dabney-Smith
- Cellular, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH, 45056, USA.
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
35
|
Petrů M, Wideman J, Moore K, Alcock F, Palmer T, Doležal P. Evolution of mitochondrial TAT translocases illustrates the loss of bacterial protein transport machines in mitochondria. BMC Biol 2018; 16:141. [PMID: 30466434 PMCID: PMC6251230 DOI: 10.1186/s12915-018-0607-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bacteria and mitochondria contain translocases that function to transport proteins across or insert proteins into their inner and outer membranes. Extant mitochondria retain some bacterial-derived translocases but have lost others. While BamA and YidC were integrated into general mitochondrial protein transport pathways (as Sam50 and Oxa1), the inner membrane TAT translocase, which uniquely transports folded proteins across the membrane, was retained sporadically across the eukaryote tree. RESULTS We have identified mitochondrial TAT machinery in diverse eukaryotic lineages and define three different types of eukaryote-encoded TatABC-derived machineries (TatAC, TatBC and TatC-only). Here, we investigate TatAC and TatC-only machineries, which have not been studied previously. We show that mitochondria-encoded TatAC of the jakobid Andalucia godoyi represent the minimal functional pathway capable of substituting for the Escherichia coli TatABC complex and can transport at least one substrate. However, selected TatC-only machineries, from multiple eukaryotic lineages, were not capable of supporting the translocation of this substrate across the bacterial membrane. Despite the multiple losses of the TatC gene from the mitochondrial genome, the gene was never transferred to the cell nucleus. Although the major constraint preventing nuclear transfer of mitochondrial TatC is likely its high hydrophobicity, we show that in chloroplasts, such transfer of TatC was made possible due to modifications of the first transmembrane domain. CONCLUSIONS At its origin, mitochondria inherited three inner membrane translocases Sec, TAT and Oxa1 (YidC) from its bacterial ancestor. Our work shows for the first time that mitochondrial TAT has likely retained its unique function of transporting folded proteins at least in those few eukaryotes with TatA and TatC subunits encoded in the mitochondrial genome. However, mitochondria, in contrast to chloroplasts, abandoned the machinery multiple times in evolution. The overall lower hydrophobicity of the Oxa1 protein was likely the main reason why this translocase was nearly universally retained in mitochondrial biogenesis pathways.
Collapse
Affiliation(s)
- Markéta Petrů
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Jeremy Wideman
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193, Berlin, Germany
- Department of Biochemistry and Molecular Biology, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Kristoffer Moore
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, Průmyslová 595, 252 50, Vestec, Czech Republic.
| |
Collapse
|
36
|
Ma Q, Fite K, New CP, Dabney‐Smith C. Thylakoid-integrated recombinant Hcf106 participates in the chloroplast twin arginine transport system. PLANT DIRECT 2018; 2:e00090. [PMID: 31245690 PMCID: PMC6508782 DOI: 10.1002/pld3.90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Abstract
The chloroplast twin arginine transport (cpTat) system distinguishes itself as a protein transport pathway by translocating fully folded proteins, using the proton-motive force (PMF) as the sole source of energy. The cpTat pathway is evolutionarily conserved with the Tat pathway found in the plasma membrane of many prokaryotes. The cpTat (Escherichia coli) system uses three proteins, Tha4 (TatA), Hcf106 (TatB), and cpTatC (TatC), to form a transient translocase allowing the passage of precursor proteins. Briefly, cpTatC and Hcf106, with Tha4, form the initial receptor complex responsible for precursor protein recognition and binding in an energy-independent manner, while a separate pool of Tha4 assembles with the precursor-bound receptor complex in the presence the PMF. Analysis by blue-native polyacrylamide gel electrophoresis (BN-PAGE) shows that the receptor complex, in the absence of precursor, migrates near 700 kDa and contains cpTatC and Hcf106 with little Tha4 remaining after detergent solubilization. To investigate the role that Hcf106 may play in receptor complex oligomerization and/or stability, systematic cysteine substitutions were made in positions from the N-terminal transmembrane domain to the end of the predicted amphipathic helix of the protein. BN-PAGE analysis allowed us to identify the locations of amino acids in Hcf106 that were critical for interacting with cpTatC. Oxidative cross-linking allowed us to map interactions of the transmembrane domain and amphipathic helix region of Hcf106. In addition, we showed that in vitro expressed, integrated Hcf106 can interact with the precursor signal peptide domain and imported cpTatC, strongly suggesting that a subpopulation of the integrated Hcf106 is participating in competent cpTat complexes.
Collapse
Affiliation(s)
- Qianqian Ma
- Graduate Program in Cell, Molecular, and Structural BiologyMiami UniversityOxfordOhio
- Present address:
Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Kristen Fite
- Department of Chemistry and BiochemistryMiami UniversityOxfordOhio
- Present address:
Boonshoft School of MedicineWright State UniversityDaytonOhio
| | - Christopher Paul New
- Graduate Program in Cell, Molecular, and Structural BiologyMiami UniversityOxfordOhio
| | - Carole Dabney‐Smith
- Graduate Program in Cell, Molecular, and Structural BiologyMiami UniversityOxfordOhio
- Department of Chemistry and BiochemistryMiami UniversityOxfordOhio
| |
Collapse
|
37
|
Habersetzer J, Moore K, Cherry J, Buchanan G, Stansfeld PJ, Palmer T. Substrate-triggered position switching of TatA and TatB during Tat transport in Escherichia coli. Open Biol 2018; 7:rsob.170091. [PMID: 28814647 PMCID: PMC5577447 DOI: 10.1098/rsob.170091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/19/2017] [Indexed: 01/29/2023] Open
Abstract
The twin-arginine protein transport (Tat) machinery mediates the translocation of folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. The Escherichia coli Tat system comprises TatC and two additional sequence-related proteins, TatA and TatB. The active translocase is assembled on demand, with substrate-binding at a TatABC receptor complex triggering recruitment and assembly of multiple additional copies of TatA; however, the molecular interactions mediating translocase assembly are poorly understood. A ‘polar cluster’ site on TatC transmembrane (TM) helix 5 was previously identified as binding to TatB. Here, we use disulfide cross-linking and molecular modelling to identify a new binding site on TatC TM helix 6, adjacent to the polar cluster site. We demonstrate that TatA and TatB each have the capacity to bind at both TatC sites, however in vivo this is regulated according to the activation state of the complex. In the resting-state system, TatB binds the polar cluster site, with TatA occupying the TM helix 6 site. However when the system is activated by overproduction of a substrate, TatA and TatB switch binding sites. We propose that this substrate-triggered positional exchange is a key step in the assembly of an active Tat translocase.
Collapse
Affiliation(s)
- Johann Habersetzer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kristoffer Moore
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jon Cherry
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Grant Buchanan
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
38
|
Ulfig A, Freudl R. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding. J Biol Chem 2018; 293:7281-7299. [PMID: 29593092 DOI: 10.1074/jbc.ra118.002576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/22/2018] [Indexed: 11/06/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial membranes. Tat precursor proteins possess a conserved twin-arginine (RR) motif in their signal peptides that is involved in the binding of the proteins to the membrane-associated TatBC receptor complex. In addition, the hydrophobic region in the Tat signal peptides also contributes to TatBC binding, but whether regions beyond the signal-peptide cleavage site are involved in this process is unknown. Here, we analyzed the contribution of the early mature protein part of the Escherichia coli trimethylamine N-oxide reductase (TorA) to productive TatBC receptor binding. We identified substitutions in the 30 amino acids immediately following the TorA signal peptide (30aa-region) that restored export of a transport-defective TorA[KQ]-30aa-MalE precursor, in which the RR residues had been replaced by a lysine-glutamine pair. Some of these substitutions increased the hydrophobicity of the N-terminal part of the 30aa-region and thereby likely enhanced hydrophobic substrate-receptor interactions within the hydrophobic TatBC substrate-binding cavity. Another class of substitutions increased the positive net charge of the region's C-terminal part, presumably leading to strengthened electrostatic interactions between the mature substrate part and the cytoplasmic TatBC regions. Furthermore, we identified substitutions in the C-terminal domains of TatB following the transmembrane segment that restored transport of various transport-defective TorA-MalE derivatives. Some of these substitutions most likely affected the orientation or conformation of the flexible, carboxy-proximal helices of TatB. Therefore, we propose that a tight accommodation of the folded mature region by TatB contributes to productive binding of Tat substrates to TatBC.
Collapse
Affiliation(s)
- Agnes Ulfig
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany
| | - Roland Freudl
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany.
| |
Collapse
|
39
|
Hou B, Heidrich ES, Mehner-Breitfeld D, Brüser T. The TatA component of the twin-arginine translocation system locally weakens the cytoplasmic membrane of Escherichia coli upon protein substrate binding. J Biol Chem 2018. [PMID: 29535185 DOI: 10.1074/jbc.ra118.002205] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The twin-arginine translocation (Tat) system that comprises the TatA, TatB, and TatC components transports folded proteins across energized membranes of prokaryotes and plant plastids. It is not known, however, how the transport of this protein cargo is achieved. Favored models suggest that the TatA component supports transport by weakening the membrane upon full translocon assembly. Using Escherichia coli as a model organism, we now demonstrate in vivo that the N terminus of TatA can indeed destabilize the membrane, resulting in a lowered membrane energization in growing cells. We found that in full-length TatA, this effect is counterbalanced by its amphipathic helix. Consistent with these observations, the TatA N terminus induced proton leakage in vitro, indicating membrane destabilization. Fluorescence quenching data revealed that substrate binding causes the TatA hinge region and the N-terminal part of the TatA amphipathic helix to move toward the membrane surface. In the presence of TatBC, substrate binding also reduced the exposure of a specific region in the amphipathic helix, indicating a participation of TatBC. Of note, the substrate-induced reorientation of the TatA amphipathic helix correlated with detectable membrane weakening. We therefore propose a two-state model in which membrane-destabilizing effects of the short TatA membrane anchor are compensated by the membrane-immersed N-terminal part of the amphipathic helix in a resting state. We conclude that substrate binding to TatABC complexes switches the position of the amphipathic helix, which locally weakens the membrane on demand to allow substrate translocation across the membrane.
Collapse
Affiliation(s)
- Bo Hou
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Eyleen S Heidrich
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Denise Mehner-Breitfeld
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Thomas Brüser
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
40
|
Wojnowska M, Gault J, Yong SC, Robinson CV, Berks BC. Precursor-Receptor Interactions in the Twin Arginine Protein Transport Pathway Probed with a New Receptor Complex Preparation. Biochemistry 2018; 57:1663-1671. [PMID: 29460615 PMCID: PMC5852461 DOI: 10.1021/acs.biochem.8b00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The twin arginine translocation (Tat) system moves folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Signal peptide-bearing substrates of the Tat pathway (precursor proteins) are recognized at the membrane by the TatBC receptor complex. The only established preparation of the TatBC complex uses the detergent digitonin, rendering it unsuitable for biophysical analysis. Here we show that the detergent glyco-diosgenin (GDN) can be used in place of digitonin to isolate homogeneous TatBC complexes that bind precursor proteins with physiological specificity. We use this new preparation to quantitatively characterize TatBC-precursor interactions in a fully defined system. Additionally, we show that the GDN-solubilized TatBC complex co-purifies with substantial quantities of phospholipids.
Collapse
Affiliation(s)
- Marta Wojnowska
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Joseph Gault
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Shee Chien Yong
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Ben C Berks
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| |
Collapse
|
41
|
Blümmel AS, Drepper F, Knapp B, Eimer E, Warscheid B, Müller M, Fröbel J. Structural features of the TatC membrane protein that determine docking and insertion of a twin-arginine signal peptide. J Biol Chem 2017; 292:21320-21329. [PMID: 29089385 DOI: 10.1074/jbc.m117.812560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/26/2017] [Indexed: 11/06/2022] Open
Abstract
Twin-arginine translocation (Tat) systems transport folded proteins across cellular membranes with the concerted action of mostly three membrane proteins: TatA, TatB, and TatC. Hetero-oligomers of TatB and TatC form circular substrate-receptor complexes with a central binding cavity for twin-arginine-containing signal peptides. After binding of the substrate, energy from an electro-chemical proton gradient is transduced into the recruitment of TatA oligomers and into the actual translocation event. We previously reported that Tat-dependent protein translocation into membrane vesicles of Escherichia coli is blocked by the compound N,N'-dicyclohexylcarbodiimide (DCCD, DCC). We have now identified a highly conserved glutamate residue in the transmembrane region of E. coli TatC, which when modified by DCCD interferes with the deep insertion of a Tat signal peptide into the TatBC receptor complex. Our findings are consistent with a hydrophobic binding cavity formed by TatB and TatC inside the lipid bilayer. Moreover, we found that DCCD mediates discrete intramolecular cross-links of E. coli TatC involving both its N- and C-tails. These results confirm the close proximity of two distant sequence sections of TatC proposed to concertedly function as the primary docking site for twin-arginine signal peptides.
Collapse
Affiliation(s)
- Anne-Sophie Blümmel
- From the Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine.,the Spemann Graduate School of Biology and Medicine (SGBM).,the Faculty of Biology
| | - Friedel Drepper
- the Institute of Biology II, Biochemistry: Functional Proteomics, Faculty of Biology, and.,the BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Knapp
- the Institute of Biology II, Biochemistry: Functional Proteomics, Faculty of Biology, and
| | - Ekaterina Eimer
- From the Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine.,the Faculty of Biology
| | - Bettina Warscheid
- the Institute of Biology II, Biochemistry: Functional Proteomics, Faculty of Biology, and.,the BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Müller
- From the Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine,
| | - Julia Fröbel
- From the Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine
| |
Collapse
|
42
|
Alcock F, Damen MP, Levring J, Berks BC. In vivo experiments do not support the charge zipper model for Tat translocase assembly. eLife 2017; 6:30127. [PMID: 28857741 PMCID: PMC5601993 DOI: 10.7554/elife.30127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022] Open
Abstract
The twin-arginine translocase (Tat) transports folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat translocation site is formed by substrate-triggered oligomerization of the protein TatA. Walther and co-workers have proposed a structural model for the TatA oligomer in which TatA monomers self-assemble using electrostatic 'charge zippers' (Cell (2013) 132: 15945). This model was supported by in vitro analysis of the oligomeric state of TatA variants containing charge-inverting substitutions. Here we have used live cell assays of TatA assembly and function in Escherichia coli to re-assess the roles of the charged residues of TatA. Our results do not support the charge zipper model. Instead, we observe that substitutions of charged residues located in the TatA amphipathic helix lock TatA in an assembled state, suggesting that these charged residues play a critical role in the protein translocation step that follows TatA assembly.
Collapse
Affiliation(s)
- Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Merel Pm Damen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jesper Levring
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Abstract
TatA is an essential and structurally conserved component of all known Twin-arginine transport (Tat) machineries which are able to catalyse membrane transport of fully folded proteins. Here we have investigated if bacterial TatA, or chimeric pea/E. coli TatA derivatives, are capable of replacing thylakoidal TatA in function. While authentic E. coli TatA does not show any transport activity in thylakoid transport experiments, TatA chimeras comprising the transmembrane helix (TMH) of pea TatA are fully active. For minimal catalytic activity it is even sufficient to replace three residues within TMH of E. coli TatA by the corresponding pea residues. Almost any further substitution within TMH gradually raises transport activity in the thylakoid system, while functional characterization of the same set of TatA derivatives in E. coli yields essentially inverse catalytic activities. Closer inspection of the substituted residues suggests that the two transport systems have deviating demands with regard to the hydrophobicity of the transmembrane helix.
Collapse
|
44
|
Abstract
The general secretory pathway (Sec) and twin-arginine translocase (Tat) operate in parallel to export proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Substrates are targeted to their respective machineries by N-terminal signal peptides that share a tripartite organization; however, Tat signal peptides harbor a conserved and almost invariant arginine pair that is critical for efficient targeting to the Tat machinery. Tat signal peptides interact with a membrane-bound receptor complex comprised of TatB and TatC components, with TatC containing the twin-arginine recognition site. Here, we isolated suppressors in the signal peptide of the Tat substrate, SufI, that restored Tat transport in the presence of inactivating substitutions in the TatC twin-arginine binding site. These suppressors increased signal peptide hydrophobicity, and copurification experiments indicated that they restored binding to the variant TatBC complex. The hydrophobic suppressors could also act in cis to suppress substitutions at the signal peptide twin-arginine motif that normally prevent targeting to the Tat pathway. Highly hydrophobic variants of the SufI signal peptide containing four leucine substitutions retained the ability to interact with the Tat system. The hydrophobic signal peptides of two Sec substrates, DsbA and OmpA, containing twin lysine residues, were shown to mediate export by the Tat pathway and to copurify with TatBC. These findings indicate that there is unprecedented overlap between Sec and Tat signal peptides and that neither the signal peptide twin-arginine motif nor the TatC twin-arginine recognition site is an essential mechanistic feature for operation of the Tat pathway.IMPORTANCE Protein export is an essential process in all prokaryotes. The Sec and Tat export pathways operate in parallel, with the Sec machinery transporting unstructured precursors and the Tat pathway transporting folded proteins. Proteins are targeted to the Tat pathway by N-terminal signal peptides that contain an almost invariant twin-arginine motif. Here, we make the surprising discovery that the twin arginines are not essential for recognition of substrates by the Tat machinery and that this requirement can be bypassed by increasing the signal peptide hydrophobicity. We further show that signal peptides of bona fide Sec substrates can also mediate transport by the Tat pathway. Our findings suggest that key features of the Tat targeting mechanism have evolved to prevent mistargeting of substrates to the Sec pathway rather than being a critical requirement for function of the Tat pathway.
Collapse
|
45
|
Ulfig A, Fröbel J, Lausberg F, Blümmel AS, Heide AK, Müller M, Freudl R. The h-region of twin-arginine signal peptides supports productive binding of bacterial Tat precursor proteins to the TatBC receptor complex. J Biol Chem 2017; 292:10865-10882. [PMID: 28515319 DOI: 10.1074/jbc.m117.788950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Indexed: 11/06/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial membranes. Tat precursor proteins possess a conserved twin-arginine (RR) motif in their signal peptides that is involved in their binding to the Tat translocase, but some facets of this interaction remain unclear. Here, we investigated the role of the hydrophobic (h-) region of the Escherichia coli trimethylamine N-oxide reductase (TorA) signal peptide in TatBC receptor binding in vivo and in vitro We show that besides the RR motif, a minimal, functional h-region in the signal peptide is required for Tat-dependent export in Escherichia coli Furthermore, we identified mutations in the h-region that synergistically suppressed the export defect of a TorA[KQ]-30aa-MalE Tat reporter protein in which the RR motif was replaced with a lysine-glutamine pair. Strikingly, all suppressor mutations increased the hydrophobicity of the h-region. By systematically replacing a neutral residue in the h-region with various amino acids, we detected a positive correlation between the hydrophobicity of the h-region and the translocation efficiency of the resulting reporter variants. In vitro cross-linking of residues located in the periplasmically-oriented part of the TatBC receptor to TorA[KQ]-30aa-MalE reporter variants harboring a more hydrophobic h-region in their signal peptides confirmed that unlike in TorA[KQ]-30aa-MalE with an unaltered h-region, the mutated reporters moved deep into the TatBC-binding cavity. Our results clearly indicate that, besides the Tat motif, the h-region of the Tat signal peptides is another important binding determinant that significantly contributes to the productive interaction of Tat precursor proteins with the TatBC receptor complex.
Collapse
Affiliation(s)
- Agnes Ulfig
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany and
| | - Julia Fröbel
- the Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Frank Lausberg
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany and
| | - Anne-Sophie Blümmel
- the Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Anna Katharina Heide
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany and
| | - Matthias Müller
- the Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Roland Freudl
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany and
| |
Collapse
|
46
|
TatA complexes exhibit a marked change in organisation in response to expression of the TatBC complex. Biochem J 2017; 474:1495-1508. [PMID: 28280110 PMCID: PMC5396077 DOI: 10.1042/bcj20160952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/19/2017] [Accepted: 03/07/2017] [Indexed: 11/24/2022]
Abstract
The twin-arginine translocation (Tat) system is an integral membrane protein complex that accomplishes the remarkable feat of transporting large, fully folded polypeptides across the inner membrane of bacteria, into the periplasm. In Escherichia coli, Tat comprises three membrane proteins: TatA, TatB and TatC. How these proteins arrange themselves in the inner membrane to permit passage of Tat substrates, whilst maintaining membrane integrity, is still poorly understood. TatA is the most abundant component of this complex and facilitates assembly of the transport mechanism. We have utilised immunogold labelling in combination with array tomography to gain insight into the localisation and distribution of the TatA protein in E. coli cells. We show that TatA exhibits a uniform distribution throughout the inner membrane of E. coli and that altering the expression of TatBC shows a previously uncharacterised distribution of TatA in the inner membrane. Array tomography was used to provide our first insight into this altered distribution of TatA in three-dimensional space, revealing that this protein forms linear clusters in the inner membrane of E. coli upon increased expression of TatBC. This is the first indication that TatA organisation in the inner membrane alters in response to changes in Tat subunit stoichiometry.
Collapse
|
47
|
Huang Q, Alcock F, Kneuper H, Deme JC, Rollauer SE, Lea SM, Berks BC, Palmer T. A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase. Proc Natl Acad Sci U S A 2017; 114:E1958-E1967. [PMID: 28223511 PMCID: PMC5347605 DOI: 10.1073/pnas.1615056114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.
Collapse
Affiliation(s)
- Qi Huang
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Holger Kneuper
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Justin C Deme
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Sarah E Rollauer
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
48
|
Frain KM, Jones AS, Schoner R, Walker KL, Robinson C. The Bacillus subtilis TatAdCd system exhibits an extreme level of substrate selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:202-208. [PMID: 27984091 DOI: 10.1016/j.bbamcr.2016.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 11/27/2022]
Abstract
The Tat system preferentially transports correctly folded proteins across the bacterial membrane although little is known of the proofreading mechanism. Most research has focused on TatABC systems from Gram-negative bacteria, especially Escherichia coli, and much less is known of the TatAC-type systems from Gram-positive organisms. We have previously shown that the Bacillus subtilis TatAdCd system is functional in an E. coli tat null background and able to transport TorA-GFP and native TorA (TMAO reductase); here, we examined its ability to transport other proteins bearing a TorA signal sequence. We show that whereas E. coli TatABC transports a wide range of biotherapeutics including human growth hormone, interferon α2b, a VH domain protein and 2 different scFvs, TatAdCd transports the scFvs but completely rejects the other proteins. The system also rejects two native E. coli substrates, NrfC and FhuD. Moreover, we have shown that TatABC will transport a wide range of folded scFv variants with the surface altered to incorporate multiple salt bridges, charged residues (5 glutamate, lysine or arginine), or hydrophobic residues (up to 6 leucines). In contrast, TatAdCd completely rejects many of these variants including those with 5 or 6 added Leu residues. The combined data show that the TatABC and TatAdCd systems have very different substrate selectivities, with the TatAdCd system displaying an extreme level of selectivity when compared to the E. coli system. The data also provide a preliminary suggestion that TatAdCd may not tolerate substrates that contain surface domains with a level of hydrophobicity above a certain threshold.
Collapse
Affiliation(s)
- Kelly M Frain
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Alexander S Jones
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Ronald Schoner
- Biopharmaceutical Development, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Kelly L Walker
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Colin Robinson
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom.
| |
Collapse
|
49
|
Oswald F, Varadarajan A, Lill H, Peterman EJG, Bollen YJM. MreB-Dependent Organization of the E. coli Cytoplasmic Membrane Controls Membrane Protein Diffusion. Biophys J 2016; 110:1139-49. [PMID: 26958890 PMCID: PMC4788719 DOI: 10.1016/j.bpj.2016.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 01/13/2023] Open
Abstract
The functional organization of prokaryotic cell membranes, which is essential for many cellular processes, has been challenging to analyze due to the small size and nonflat geometry of bacterial cells. Here, we use single-molecule fluorescence microscopy and three-dimensional quantitative analyses in live Escherichia coli to demonstrate that its cytoplasmic membrane contains microdomains with distinct physical properties. We show that the stability of these microdomains depends on the integrity of the MreB cytoskeletal network underneath the membrane. We explore how the interplay between cytoskeleton and membrane affects trans-membrane protein (TMP) diffusion and reveal that the mobility of the TMPs tested is subdiffusive, most likely caused by confinement of TMP mobility by the submembranous MreB network. Our findings demonstrate that the dynamic architecture of prokaryotic cell membranes is controlled by the MreB cytoskeleton and regulates the mobility of TMPs.
Collapse
Affiliation(s)
- Felix Oswald
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, the Netherlands; Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands
| | - Aravindan Varadarajan
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands
| | - Holger Lill
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands
| | - Yves J M Bollen
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, the Netherlands; LaserLaB Amsterdam, the Netherlands.
| |
Collapse
|
50
|
Alcock F, Stansfeld PJ, Basit H, Habersetzer J, Baker MA, Palmer T, Wallace MI, Berks BC. Assembling the Tat protein translocase. eLife 2016; 5. [PMID: 27914200 PMCID: PMC5201420 DOI: 10.7554/elife.20718] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022] Open
Abstract
The twin-arginine protein translocation system (Tat) transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membranes of plant chloroplasts. The Tat transporter is assembled from multiple copies of the membrane proteins TatA, TatB, and TatC. We combine sequence co-evolution analysis, molecular simulations, and experimentation to define the interactions between the Tat proteins of Escherichia coli at molecular-level resolution. In the TatBC receptor complex the transmembrane helix of each TatB molecule is sandwiched between two TatC molecules, with one of the inter-subunit interfaces incorporating a functionally important cluster of interacting polar residues. Unexpectedly, we find that TatA also associates with TatC at the polar cluster site. Our data provide a structural model for assembly of the active Tat translocase in which substrate binding triggers replacement of TatB by TatA at the polar cluster site. Our work demonstrates the power of co-evolution analysis to predict protein interfaces in multi-subunit complexes. DOI:http://dx.doi.org/10.7554/eLife.20718.001
Collapse
Affiliation(s)
- Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Hajra Basit
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Johann Habersetzer
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew Ab Baker
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Tracy Palmer
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark I Wallace
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|