1
|
Gao J, Ververi A, Thompson E, Tryon R, Sotiriadis A, Rouvalis F, Grange DK, Giannios C, Nichols CG. A novel ABCC9 variant in a Greek family with Cantu syndrome affecting multiple generations highlights the functional role of the SUR2B NBD1. Am J Med Genet A 2024; 194:e63815. [PMID: 39031464 PMCID: PMC11540739 DOI: 10.1002/ajmg.a.63815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
Cantu syndrome (CS) (OMIM #239850) is an autosomal dominant multiorgan system condition, associated with a characteristic facial phenotype, hypertrichosis, and multiple cardiovascular complications. CS is caused by gain-of-function (GOF) variants in KCNJ8 or ABCC9 that encode pore-forming Kir6.1 and regulatory SUR2 subunits of ATP-sensitive potassium (KATP) channels. A novel heterozygous ABCC9 variant, c.2440G>T; p.Gly814Trp, was identified in three individuals from a four generation Greek family. The membrane potential in cells stably expressing hKir6.1 and hSUR2B with p.Gly814Trp was hyperpolarized compared to cells expressing WT channels, and inside-out patch-clamp assays of KATP channels formed with hSUR2B p.Gly814Trp demonstrated a decreased sensitivity to ATP inhibition, confirming a relatively mild GOF effect of this variant. The specific location of the variant reveals an unrecognized functional role of the first glycine in the signature motif of the nucleotide binding domains in ATP-binding cassette (ABC) protein ion channels.
Collapse
Affiliation(s)
- Jian Gao
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Athina Ververi
- Department for Genetics of Rare Diseases, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Ellen Thompson
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rob Tryon
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexandros Sotiriadis
- Second Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Ippokrateio Hospital, Thessaloniki, Greece
| | | | - Dorothy K Grange
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christos Giannios
- Department of Developmental Paediatrics, Naval Hospital of Athens, Athens, Greece
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Hanson A, McClenaghan C, Weng KC, Colijn S, Stratman AN, Halabi CM, Grange DK, Silva JR, Nichols CG. Electrophysiology of Human iPSC-derived Vascular Smooth Muscle Cells and Cell-autonomous Consequences of Cantú Syndrome Mutations. FUNCTION 2024; 5:zqae027. [PMID: 38984978 PMCID: PMC11388097 DOI: 10.1093/function/zqae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Cantú syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by gain-of-function (GoF) variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels and is characterized by low systemic vascular resistance, as well as tortuous, dilated, vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell autonomously within vascular smooth muscle cells (VSMCs) or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Whole-cell voltage clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild-type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were similar to those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs and suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF. The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs .
Collapse
Affiliation(s)
- Alex Hanson
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kuo-Chan Weng
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Sarah Colijn
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amber N Stratman
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dorothy K Grange
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Cui F, Wulan T, Zhang Q, Zhang VW, Jiang Y. Identification of a novel KCNT2 variant in a family with developmental and epileptic encephalopathies: a case report and literature review. Front Genet 2024; 15:1371282. [PMID: 38510274 PMCID: PMC10951377 DOI: 10.3389/fgene.2024.1371282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Background: Developmental and epileptic encephalopathies (DEEs) are a group of heterogeneous neurodevelopmental diseases characterized mainly by developmental delay/intellectual disability and early-onset epilepsy. Researchers have identified variations in the KCNT2 gene (OMIM* 610044) as the cause of DEE type 57 (MIM# 617771). Case presentation: We report in this study a 46-year-old woman who presented with early-onset epilepsy, intellectual disability, hypertrichosis, coarse facial features, and short stature. Besides, there were four other affected individuals in her family history, including two elder brothers, a younger brother, and their mother. We collected blood samples from the proband, her two affected brothers, and her clinically normal daughter for genetic analysis. Clinical exome sequencing revealed a novel heterozygous variant in the KCNT2 gene (NM_198503: c.188G>A, p.Arg63His) in the proband and her two affected brothers, while her daughter did not carry this variant. Furthermore, we reviewed all 25 patients identified in the literature with KCNT2 variants and compared their phenotypes. Conclusion: Epilepsy and intellectual disability/developmental delay occur in almost all patients with KCNT2 variants. KCNT2-relevant DEEs partially overlap with the clinical phenotypes of KATP channel diseases, particularly in hypertrichosis and distinctive coarse facial features.
Collapse
Affiliation(s)
- Fengji Cui
- Department of Molecular Genetics, Chifeng Maternity Hospital, Chifeng, China
| | - Tuoya Wulan
- Department of Reproduction, Chifeng Maternity Hospital, Chifeng, China
| | | | | | - Yuhua Jiang
- Department of Obstetrics, Chifeng Maternity Hospital, Chifeng, China
| |
Collapse
|
4
|
Longden TA, Lederer WJ. Electro-metabolic signaling. J Gen Physiol 2024; 156:e202313451. [PMID: 38197953 PMCID: PMC10783436 DOI: 10.1085/jgp.202313451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Precise matching of energy substrate delivery to local metabolic needs is essential for the health and function of all tissues. Here, we outline a mechanistic framework for understanding this critical process, which we refer to as electro-metabolic signaling (EMS). All tissues exhibit changes in metabolism over varying spatiotemporal scales and have widely varying energetic needs and reserves. We propose that across tissues, common signatures of elevated metabolism or increases in energy substrate usage that exceed key local thresholds rapidly engage mechanisms that generate hyperpolarizing electrical signals in capillaries that then relax contractile elements throughout the vasculature to quickly adjust blood flow to meet changing needs. The attendant increase in energy substrate delivery serves to meet local metabolic requirements and thus avoids a mismatch in supply and demand and prevents metabolic stress. We discuss in detail key examples of EMS that our laboratories have discovered in the brain and the heart, and we outline potential further EMS mechanisms operating in tissues such as skeletal muscle, pancreas, and kidney. We suggest that the energy imbalance evoked by EMS uncoupling may be central to cellular dysfunction from which the hallmarks of aging and metabolic diseases emerge and may lead to generalized organ failure states-such as diverse flavors of heart failure and dementia. Understanding and manipulating EMS may be key to preventing or reversing these dysfunctions.
Collapse
Affiliation(s)
- Thomas A. Longden
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W. Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Molecular Cardiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Gao J, McClenaghan C, Matreyek KA, Grange DK, Nichols CG. Rapid Characterization of the Functional and Pharmacological Consequences of Cantú Syndrome K ATP Channel Mutations in Intact Cells. J Pharmacol Exp Ther 2023; 386:298-309. [PMID: 37527933 PMCID: PMC10449099 DOI: 10.1124/jpet.123.001659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 08/03/2023] Open
Abstract
Gain-of-function of KATP channels, resulting from mutations in either KCNJ8 (encoding inward rectifier sub-family 6 [Kir6.1]) or ABCC9 (encoding sulphonylurea receptor [SUR2]), cause Cantú syndrome (CS), a channelopathy characterized by excess hair growth, coarse facial appearance, cardiomegaly, and lymphedema. Here, we established a pipeline for rapid analysis of CS mutation consequences in Landing pad HEK 293 cell lines stably expressing wild type (WT) and mutant human Kir6.1 and SUR2B. Thallium-influx and cell membrane potential, reported by fluorescent Tl-sensitive Fluozin-2 and voltage-sensitive bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) dyes, respectively, were used to assess channel activity. In the Tl-influx assay, CS-associated Kir6.1 mutations increased sensitivity to the ATP-sensitive potassium (KATP) channel activator, pinacidil, but there was strikingly little effect of pinacidil for any SUR2B mutations, reflecting unexpected differences in the molecular mechanisms of Kir6.1 versus SUR2B mutations. Compared with the Tl-influx assay, the DiBAC4(3) assay presents more significant signal changes in response to subtle KATP channel activity changes, and all CS mutants (both Kir6.1 and SUR2B), but not WT channels, caused marked hyperpolarization, demonstrating that all mutants were activated under ambient conditions in intact cells. Most SUR2 CS mutations were markedly inhibited by <100 nM glibenclamide, but sensitivity to inhibition by glibenclamide, repaglinide, and PNU37883A was markedly reduced for Kir6.1 CS mutations. Understanding functional consequences of mutations can help with disease diagnosis and treatment. The analysis pipeline we have developed has the potential to rapidly identify mutational consequences, aiding future CS diagnosis, drug discovery, and individualization of treatment. SIGNIFICANCE STATEMENT: We have developed new fluorescence-based assays of channel activities and drug sensitivities of Cantú syndrome (CS) mutations in human Kir6.1/SUR2B-dependent KATP channels, showing that Kir6.1 mutations increase sensitivity to potassium channel openers, while SUR2B mutations markedly reduce K channel opener (KCO) sensitivity. However, both Kir6.1 and SUR2B CS mutations are both more hyperpolarized than WT cells under basal conditions, confirming pathophysiologically relevant gain-of-function, validating DiBAC4(3) fluorescence to characterize hyperpolarization induced by KATP channel activity under basal, non KCO-activated conditions.
Collapse
Affiliation(s)
- Jian Gao
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Conor McClenaghan
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Kenneth A Matreyek
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Dorothy K Grange
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| | - Colin G Nichols
- Department of Cell Biology and Physiology (J.G., C.M.C., C.G.N.), Center for the Investigation of Membrane Excitability Diseases (J.G., C.M.C., D.K.G., C.G.N.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (D.K.G.), Washington University in St. Louis, St. Louis, Missouri; and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio (K.A.M.)
| |
Collapse
|
6
|
Hanson A, McClenaghan C, Weng KC, Colijn S, Stratman AN, Halabi CM, Grange DK, Silva JR, Nichols CG. Electrophysiology of human iPSC-derived vascular smooth muscle cells and cell autonomous consequences of Cantu Syndrome mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547088. [PMID: 37425756 PMCID: PMC10327170 DOI: 10.1101/2023.06.29.547088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Objective Cantu Syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by GoF variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (K ATP ) channels, and is characterized by low systemic vascular resistance, as well as tortuous, dilated vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with distinct hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell-autonomously within vascular smooth muscle cells (VSMCs), or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Approach and Results Whole-cell voltage-clamp of isolated aortic and mesenteric VSMCs isolated from wild type (WT) and Kir6.1[V65M] (CS) mice revealed no difference in voltage-gated K + (K v ) or Ca 2+ currents. K v and Ca 2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. Pinacidil-sensitive K ATP currents in control hiPSC-VSMCs were consistent with those in WT mouse VSMCs, and were considerably larger in CS hiPSC-VSMCs. Consistent with lack of any compensatory modulation of other currents, this resulted in membrane hyperpolarization, explaining the hypomyotonic basis of CS vasculopathy. Increased compliance and dilation in isolated CS mouse aortae, was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs, suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular K ATP GoF. Conclusions The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. The results further indicate that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by K ATP overactivity within VSMCs.
Collapse
|
7
|
Davis MJ, Castorena-Gonzalez JA, Kim HJ, Li M, Remedi M, Nichols CG. Lymphatic contractile dysfunction in mouse models of Cantú Syndrome with K ATP channel gain-of-function. FUNCTION 2023; 4:zqad017. [PMID: 37214333 PMCID: PMC10194823 DOI: 10.1093/function/zqad017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Cantú Syndrome (CS) is an autosomal dominant disorder caused by gain-of-function (GoF) mutations in the Kir6.1 and SUR2 subunits of KATP channels. KATP overactivity results in a chronic reduction in arterial tone and hypotension, leading to other systemic cardiovascular complications. However, the underlying mechanism of lymphedema, developed by >50% of CS patients, is unknown. We investigated whether lymphatic contractile dysfunction occurs in mice expressing CS mutations in Kir6.1 (Kir6.1[V65M]) or SUR2 (SUR2[A478V], SUR2[R1154Q]). Pressure myograph tests of contractile function of popliteal lymphatic vessels over the physiological pressure range revealed significantly impaired contractile strength and reduced frequency of spontaneous contractions at all pressures in heterozygous Kir6.1[V65M] vessels, compared to control littermates. Contractile dysfunction of intact popliteal lymphatics in vivo was confirmed using near-infrared fluorescence microscopy. Homozygous SUR2[A478V] vessels exhibited profound contractile dysfunction ex vivo, but heterozygous SUR2[A478V] vessels showed essentially normal contractile function. However, further investigation of vessels from all three GoF mouse strains revealed significant disruption in contraction wave entrainment, decreased conduction speed and distance, multiple pacemaker sites, and reversing wave direction. Tests of 2-valve lymphatic vessels forced to pump against an adverse pressure gradient revealed that all CS-associated genotypes were essentially incapable of pumping under an imposed outflow load. Our results show that varying degrees of lymphatic contractile dysfunction occur in proportion to the degree of molecular GoF in Kir6.1 or SUR2. This is the first example of lymphatic contractile dysfunction caused by a smooth muscle ion channel mutation and potentially explains the susceptibility of CS patients to lymphedema.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | | | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia MO 65212, USA
| | - Maria Remedi
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Gao J, McClenaghan C, Christiaans I, Alders M, van Duinen K, van Haelst MM, van Haaften G, Nichols CG. Lymphedema as first clinical presentation of Cantu Syndrome: reversed phenotyping after identification of gain-of-function variant in ABCC9. Eur J Hum Genet 2023; 31:188-194. [PMID: 36336713 PMCID: PMC9905590 DOI: 10.1038/s41431-022-01210-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
Cantu Syndrome (CS), [OMIM #239850] is characterized by hypertrichosis, osteochondrodysplasia, and cardiomegaly. CS is caused by gain-of-function (GOF) variants in the KCNJ8 or ABCC9 genes that encode pore-forming Kir6.1 and regulatory SUR2 subunits of ATP-sensitive potassium (KATP) channels. Many subjects with CS also present with the complication of lymphedema. A previously uncharacterized, heterozygous ABCC9 variant, p.(Leu1055_Glu1058delinsPro), termed indel1055, was identified in an individual diagnosed with idiopathic lymphedema. The variant was introduced into the equivalent position of rat SUR2A, and inside-out patches were used to characterize the KATP channels formed by Kir6.2 and WT or mutant SUR2A subunits coexpressed in Cosm6 cells. The indel1055 variant causes gain-of-function of the channel, with an increase of the IC50 for ATP inhibition compared to WT. Retrospective consideration of this individual reveals clear features of Cantu Syndrome. An additional heterozygous ABCC9 variant, p.(Ile419Thr), was identified in a second individual diagnosed with lymphedema. In this case, there were no additional features consistent with CS, and the properties of p.(Ile416Thr) (the corresponding mutation in rat SUR2A)--containing channels were not different from WT. This proof-of-principle study shows that idiopathic lymphedema may actually be a first presentation of otherwise unrecognized Cantu Syndrome, but molecular phenotyping of identified variants is necessary to confirm relevance.
Collapse
Affiliation(s)
- Jian Gao
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - Conor McClenaghan
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - Imke Christiaans
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marielle Alders
- University of Amsterdam, Department of Human Genetics, Meibergdreef 9, Amsterdam, The Netherlands
| | - Kirsten van Duinen
- Department of Dermatology, Nij Smellinghe Hospital, Drachten, The Netherlands
| | - Mieke M van Haelst
- University of Amsterdam, Department of Human Genetics, Meibergdreef 9, Amsterdam, The Netherlands.
- Departments of Pediatrics, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- Emma Center for Personalized Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Colin G Nichols
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
9
|
Abstract
Ubiquitously expressed throughout the body, ATP-sensitive potassium (KATP) channels couple cellular metabolism to electrical activity in multiple tissues; their unique assembly as four Kir6 pore-forming subunits and four sulfonylurea receptor (SUR) subunits has resulted in a large armory of selective channel opener and inhibitor drugs. The spectrum of monogenic pathologies that result from gain- or loss-of-function mutations in these channels, and the potential for therapeutic correction of these pathologies, is now clear. However, while available drugs can be effective treatments for specific pathologies, cross-reactivity with the other Kir6 or SUR subfamily members can result in drug-induced versions of each pathology and may limit therapeutic usefulness. This review discusses the background to KATP channel physiology, pathology, and pharmacology and considers the potential for more specific or effective therapeutic agents.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
10
|
Le Ribeuz H, Masson B, Dutheil M, Boët A, Beauvais A, Sabourin J, De Montpreville VT, Capuano V, Mercier O, Humbert M, Montani D, Antigny F. Involvement of SUR2/Kir6.1 channel in the physiopathology of pulmonary arterial hypertension. Front Cardiovasc Med 2023; 9:1066047. [PMID: 36704469 PMCID: PMC9871631 DOI: 10.3389/fcvm.2022.1066047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Aims We hypothesized that the ATP-sensitive K+ channels (KATP) regulatory subunit (ABCC9) contributes to PAH pathogenesis. ABCC9 gene encodes for two regulatory subunits of KATP channels: the SUR2A and SUR2B proteins. In the KATP channel, the SUR2 subunits are associated with the K+ channel Kir6.1. We investigated how the SUR2/Kir6.1 channel contributes to PAH pathogenesis and its potential as a therapeutic target in PAH. Methods and results Using in vitro, ex vivo, and in vivo approaches, we analyzed the localization and expression of SUR2A, SUR2B, and Kir6.1 in the pulmonary vasculature of controls and patients with PAH as in experimental pulmonary hypertension (PH) rat models and its contribution to PAH physiopathology. Finally, we deciphered the consequences of in vivo activation of SUR2/Kir6.1 in the monocrotaline (MCT)-induced PH model. We found that SUR2A, SUR2B, and Kir6.1 were expressed in the lungs of controls and patients with PAH and MCT-induced PH rat models. Organ bath studies showed that SUR2 activation by pinacidil induced relaxation of pulmonary arterial in rats and humans. In vitro experiments on human pulmonary arterial smooth muscle cells and endothelial cells (hPASMCs and hPAECs) in controls and PAH patients showed decreased cell proliferation and migration after SUR2 activation. We demonstrated that SUR2 activation in rat right ventricular (RV) cardiomyocytes reduced RV action potential duration by patch-clamp. Chronic pinacidil administration in control rats increased heart rate without changes in hemodynamic parameters. Finally, in vivo pharmacological activation of SUR2 on MCT and Chronic-hypoxia (CH)-induced-PH rats showed improved PH. Conclusion We showed that SUR2A, SUR2B, and Kir6.1 are presented in hPASMCs and hPAECs of controls and PAH patients. In vivo SUR2 activation reduced the MCT-induced and CH-induced PH phenotype, suggesting that SUR2 activation should be considered for treating PAH.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Bastien Masson
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mary Dutheil
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Angèle Boët
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Antoine Beauvais
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Orsay, France
| | | | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Olaf Mercier
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique–Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique–Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 « Hypertension Pulmonaire Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
11
|
Crespo-García T, Rubio-Alarcón M, Cámara-Checa A, Dago M, Rapún J, Nieto-Marín P, Marín M, Cebrián J, Tamargo J, Delpón E, Caballero R. A Cantú syndrome mutation produces dual effects on KATP channels by disrupting ankyrin B regulation. J Gen Physiol 2022; 155:213613. [PMID: 36287534 PMCID: PMC9614705 DOI: 10.1085/jgp.202112995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 02/01/2023] Open
Abstract
ATP-sensitive potassium (KATP) channels composed of Kir6.x and sulfonylurea receptor (SURs) subunits couple cellular metabolism to electrical activity. Cantú syndrome (CS) is a rare disease caused by mutations in the genes encoding Kir6.1 (KCNJ8) and SUR2A (ABCC9) that produce KATP channel hyperactivity due to a reduced channel block by physiological ATP concentrations. We functionally characterized the p.S1054Y SUR2A mutation identified in two CS carriers, who exhibited a mild phenotype although the mutation was predicted as highly pathogenic. We recorded macroscopic and single-channel currents in CHO and HEK-293 cells and measured the membrane expression of the channel subunits by biotinylation assays in HEK-293 cells. The mutation increased basal whole-cell current density and at the single-channel level, it augmented opening frequency, slope conductance, and open probability (Po), and promoted the appearance of multiple conductance levels. p.S1054Y also reduced Kir6.2 and SUR2A expression specifically at the membrane. Overexpression of ankyrin B (AnkB) prevented these gain- and loss-of-function effects, as well as the p.S1054Y-induced reduction of ATP inhibition of currents measured in inside-out macropatches. Yeast two-hybrid assays suggested that SUR2A WT and AnkB interact, while p.S1054Y interaction with AnkB is decreased. The p.E322K Kir6.2 mutation, which prevents AnkB binding to Kir6.2, produced similar biophysical alterations than p.S1054Y. Our results are the first demonstration of a CS mutation whose functional consequences involve the disruption of AnkB effects on KATP channels providing a novel mechanism by which CS mutations can reduce ATP block. Furthermore, they may help explain the mild phenotype associated with this mutation.
Collapse
Affiliation(s)
- Teresa Crespo-García
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - María Dago
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Josu Rapún
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Paloma Nieto-Marín
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - María Marín
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Jorge Cebrián
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain,Correspondence to Eva Delpón:
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
12
|
Davis MJ, Kim HJ, Nichols CG. K ATP channels in lymphatic function. Am J Physiol Cell Physiol 2022; 323:C1018-C1035. [PMID: 35785984 PMCID: PMC9550566 DOI: 10.1152/ajpcell.00137.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
KATP channels function as negative regulators of active lymphatic pumping and lymph transport. This review summarizes and critiques the evidence for the expression of specific KATP channel subunits in lymphatic smooth muscle and endothelium, the roles that they play in normal lymphatic function, and their possible involvement in multiple diseases, including metabolic syndrome, lymphedema, and Cantú syndrome. For each of these topics, suggestions are made for directions for future research.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
13
|
McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantú syndrome. Am J Physiol Cell Physiol 2022; 323:C920-C935. [PMID: 35876283 PMCID: PMC9467476 DOI: 10.1152/ajpcell.00154.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
Kir6.1 and SUR2 are subunits of ATP-sensitive potassium (KATP) channels expressed in a wide range of tissues. Extensive study has implicated roles of these channel subunits in diverse physiological functions. Together they generate the predominant KATP conductance in vascular smooth muscle and are the target of vasodilatory drugs. Roles for Kir6.1/SUR2 dysfunction in disease have been suggested based on studies of animal models and human genetic discoveries. In recent years, it has become clear that gain-of-function (GoF) mutations in both genes result in Cantú syndrome (CS)-a complex, multisystem disorder. There is currently no targeted therapy for CS, but studies of mouse models of the disease reveal that pharmacological reversibility of cardiovascular and gastrointestinal pathologies can be achieved by administration of the KATP channel inhibitor, glibenclamide. Here we review the function, structure, and physiological and pathological roles of Kir6.1/SUR2B channels, with a focus on CS. Recent studies have led to much improved understanding of the underlying pathologies and the potential for treatment, but important questions remain: Can the study of genetically defined CS reveal new insights into Kir6.1/SUR2 function? Do these reveal new pathophysiological mechanisms that may be important in more common diseases? And is our pharmacological armory adequately stocked?
Collapse
Affiliation(s)
- Conor McClenaghan
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| |
Collapse
|
14
|
Zaytseva A, Tulintseva T, Fomicheva Y, Mikhailova V, Treshkur T, Kostareva A. Case Report: Loss-of-Function ABCC9 Genetic Variant Associated With Ventricular Fibrillation. Front Genet 2022; 13:718853. [PMID: 35495129 PMCID: PMC9044080 DOI: 10.3389/fgene.2022.718853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic variants in the ABCC9 gene, encoding the SUR2 auxiliary subunit from KATP channels, were previously linked with various inherited diseases. This wide range of congenital disorders includes multisystem and cardiovascular pathologies. The gain-of-function mutations result in Cantu syndrome, acromegaloid facial appearance, hypertrichosis, and acromegaloid facial features. The loss-of-function mutations in the ABCC9 gene were associated with the Brugada syndrome, early repolarization syndrome, and dilated cardiomyopathy. Here, we reported a patient with a loss-of-function variant in the ABCC9 gene, identified by target high-throughput sequencing. The female proband presented with several episodes of ventricular fibrillation and hypokalemia upon emotional stress. This case sheds light on the consequences of KATP channel dysfunction in the cardiovascular system and underlines the complexity of the clinical presentation of ABCC9-related diseases.
Collapse
Affiliation(s)
- Anastasia Zaytseva
- Almazov National Medical Research Centre, St Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
- *Correspondence: Anastasia Zaytseva,
| | | | - Yulya Fomicheva
- Almazov National Medical Research Centre, St Petersburg, Russia
| | | | | | - Anna Kostareva
- Almazov National Medical Research Centre, St Petersburg, Russia
- Department of Woman and Child Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Singareddy SS, Roessler HI, McClenaghan C, Ikle JM, Tryon RC, van Haaften G, Nichols CG. ATP-sensitive potassium channels in zebrafish cardiac and vascular smooth muscle. J Physiol 2021; 600:299-312. [PMID: 34820842 DOI: 10.1113/jp282157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
ATP-sensitive potassium channels (KATP channels) are hetero-octameric nucleotide-gated ion channels that couple cellular metabolism to excitability in various tissues. In the heart, KATP channels are activated during ischaemia and potentially during adrenergic stimulation. In the vasculature, they are normally active at a low level, reducing vascular tone, but the ubiquitous nature of these channels leads to complex and poorly understood channelopathies as a result of gain- or loss-of-function mutations. Zebrafish (ZF) models of these channelopathies may provide insights to the link between molecular dysfunction and complex pathophysiology, but this requires understanding the tissue dependence of channel activity and subunit specificity. Thus far, direct analysis of ZF KATP expression and functional properties has only been performed in pancreatic β-cells. Using a comprehensive combination of genetically modified fish, electrophysiology and gene expression analysis, we demonstrate that ZF cardiac myocytes (CM) and vascular smooth muscle (VSM) express functional KATP channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. However, in contrast to mammalian cardiovascular KATP channels, ZF channels are insensitive to potassium channel opener drugs (pinacidil, minoxidil) in both chambers of the heart and in VSM. The results provide a first characterization of the molecular properties of fish KATP channels and validate the use of such genetically modified fish as models of human Cantú syndrome and ABCC9-related Intellectual Disability and Myopathy syndrome. KEY POINTS: Zebrafish cardiac myocytes (CM) and vascular smooth muscle (VSM) express functional KATP channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. In contrast to mammalian cardiovascular KATP channels, zebrafish channels are insensitive to potassium channel opener drugs (pinacidil, minoxidil) in both chambers of the heart and in VSM. We provide a first characterization of the molecular properties of fish KATP channels and validate the use of such genetically modified fish as models of human Cantú syndrome and ABCC9-related Intellectual Disability and Myopathy syndrome.
Collapse
Affiliation(s)
- Soma S Singareddy
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Conor McClenaghan
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Jennifer M Ikle
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Robert C Tryon
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Colin G Nichols
- Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
16
|
Vascular K ATP channel structural dynamics reveal regulatory mechanism by Mg-nucleotides. Proc Natl Acad Sci U S A 2021; 118:2109441118. [PMID: 34711681 PMCID: PMC8694068 DOI: 10.1073/pnas.2109441118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/24/2022] Open
Abstract
Vascular KATP channels formed by the potassium channel Kir6.1 and its regulatory protein SUR2B maintain blood pressure in the physiological range. Overactivity of the channel due to genetic mutations in either Kir6.1 or SUR2B causes severe cardiovascular pathologies known as Cantú syndrome. The cryogenic electron microscopy structures of the vascular KATP channel reported here show multiple, dynamically related conformations of the regulatory subunit SUR2B. Molecular dynamics simulations reveal the negatively charged ED-domain in SUR2B, a stretch of 15 glutamate (E) and aspartate (D) residues not previously resolved, play a key MgADP-dependent role in mediating interactions at the interface between the SUR2B and Kir6.1 subunits. Our findings provide a mechanistic understanding of how channel activity is regulated by intracellular MgADP. Vascular tone is dependent on smooth muscle KATP channels comprising pore-forming Kir6.1 and regulatory SUR2B subunits, in which mutations cause Cantú syndrome. Unique among KATP isoforms, they lack spontaneous activity and require Mg-nucleotides for activation. Structural mechanisms underlying these properties are unknown. Here, we determined cryogenic electron microscopy structures of vascular KATP channels bound to inhibitory ATP and glibenclamide, which differ informatively from similarly determined pancreatic KATP channel isoform (Kir6.2/SUR1). Unlike SUR1, SUR2B subunits adopt distinct rotational “propeller” and “quatrefoil” geometries surrounding their Kir6.1 core. The glutamate/aspartate-rich linker connecting the two halves of the SUR-ABC core is observed in a quatrefoil-like conformation. Molecular dynamics simulations reveal MgADP-dependent dynamic tripartite interactions between this linker, SUR2B, and Kir6.1. The structures captured implicate a progression of intermediate states between MgADP-free inactivated, and MgADP-bound activated conformations wherein the glutamate/aspartate-rich linker participates as mobile autoinhibitory domain, suggesting a conformational pathway toward KATP channel activation.
Collapse
|
17
|
Scala R, Maqoud F, Zizzo N, Passantino G, Mele A, Camerino GM, McClenaghan C, Harter TM, Nichols CG, Tricarico D. Consequences of SUR2[A478V] Mutation in Skeletal Muscle of Murine Model of Cantu Syndrome. Cells 2021; 10:cells10071791. [PMID: 34359961 PMCID: PMC8307364 DOI: 10.3390/cells10071791] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Cantu syndrome (CS) arises from gain-of-function (GOF) mutations in the ABCC9 and KCNJ8 genes, which encode ATP-sensitive K+ (KATP) channel subunits SUR2 and Kir6.1, respectively. Most CS patients have mutations in SUR2, the major component of skeletal muscle KATP, but the consequences of SUR2 GOF in skeletal muscle are unknown. (2) Methods: We performed in vivo and ex vivo characterization of skeletal muscle in heterozygous SUR2[A478V] (SUR2wt/AV) and homozygous SUR2[A478V] (SUR2AV/AV) CS mice. (3) Results: In SUR2wt/AV and SUR2AV/AV mice, forelimb strength and diaphragm amplitude movement were reduced; muscle echodensity was enhanced. KATP channel currents recorded in Flexor digitorum brevis fibers showed reduced MgATP-sensitivity in SUR2wt/AV, dramatically so in SUR2AV/AV mice; IC50 for MgATP inhibition of KATP currents were 1.9 ± 0.5 × 10−5 M in SUR2wt/AV and 8.6 ± 0.4 × 10−6 M in WT mice and was not measurable in SUR2AV/AV. A slight rightward shift of sensitivity to inhibition by glibenclamide was detected in SUR2AV/AV mice. Histopathological and qPCR analysis revealed atrophy of soleus and tibialis anterior muscles and up-regulation of atrogin-1 and MuRF1 mRNA in CS mice. (4) Conclusions: SUR2[A478V] “knock-in” mutation in mice impairs KATP channel modulation by MgATP, markedly so in SUR2AV/AV, with atrophy and non-inflammatory edema in different skeletal muscle phenotypes.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (N.Z.); (G.P.)
| | - Giuseppe Passantino
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (N.Z.); (G.P.)
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; (C.M.); (T.M.H.); (C.G.N.)
| | - Theresa M. Harter
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; (C.M.); (T.M.H.); (C.G.N.)
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; (C.M.); (T.M.H.); (C.G.N.)
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
- Correspondence:
| |
Collapse
|
18
|
Roessler HI, van der Heuvel LM, Shields K, Guilliams KP, Knoers NVAM, van Haaften G, Grange DK, van Haelst MM. Behavioral and cognitive functioning in individuals with Cantú syndrome. Am J Med Genet A 2021; 185:2434-2444. [PMID: 34056838 DOI: 10.1002/ajmg.a.62348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 11/07/2022]
Abstract
Cantú syndrome (CS) is caused by pathogenic variants in ABCC9 and KCNJ8 encoding the regulatory and pore-forming subunits of ATP-sensitive potassium (KATP ) channels. CS is characterized by congenital hypertrichosis, distinctive facial features, peripheral edema, and cardiac and neurodevelopmental abnormalities. Behavioral and cognitive issues have been self-reported by some CS individuals, but results of formal standardized investigations have not been published. To assess the cognitive profile, social functioning, and psychiatric symptoms in a large group of CS subjects systematically in a cross-sectional manner, we invited 35 individuals (1-69 years) with confirmed ABCC9 variants and their relatives to complete various commonly applied standardized age-related questionnaires, including the Kaufman brief intelligence test 2, the social responsiveness scale-2, and the Achenbach system of empirically based assessment. The majority of CS individuals demonstrated average verbal and nonverbal intelligence compared to the general population. Fifteen percent of cases showed social functioning strongly associated with a clinical diagnosis of autism spectrum disorder. Both externalizing and internalizing problems were also present in this cohort. In particular, anxiety, anxiety or attention deficit hyperactivity disorder, and autism spectrum behaviors were predominantly observed in the younger subjects in the cohort (≥25%), but this percentage decreased markedly in adults.
Collapse
Affiliation(s)
- Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lieke M van der Heuvel
- Department of Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Kathleen Shields
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristin P Guilliams
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Pediatric Critical Care, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nine V A M Knoers
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for the Investigation of Membrane Excitability Diseases (CIMED), St. Louis, Missouri, USA
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Clinical Genetics, VU Medical Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Zhang H, Hanson A, de Almeida TS, Emfinger C, McClenaghan C, Harter T, Yan Z, Cooper PE, Brown GS, Arakel EC, Mecham RP, Kovacs A, Halabi CM, Schwappach B, Remedi MS, Nichols CG. Complex consequences of Cantu syndrome SUR2 variant R1154Q in genetically modified mice. JCI Insight 2021; 6:145934. [PMID: 33529173 PMCID: PMC8021106 DOI: 10.1172/jci.insight.145934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits, the most common mutations being SUR2[R1154Q] and SUR2[R1154W], carried by approximately 30% of patients. We used CRISPR/Cas9 genome engineering to introduce the equivalent of the human SUR2[R1154Q] mutation into the mouse ABCC9 gene. Along with minimal CS disease features, R1154Q cardiomyocytes and vascular smooth muscle showed much lower KATP current density and pinacidil activation than WT cells. Almost complete loss of SUR2-dependent protein and KATP in homozygous R1154Q ventricles revealed underlying diazoxide-sensitive SUR1-dependent KATP channel activity. Surprisingly, sequencing of SUR2 cDNA revealed 2 distinct transcripts, one encoding full-length SUR2 protein; and the other with an in-frame deletion of 93 bases (corresponding to 31 amino acids encoded by exon 28) that was present in approximately 40% and approximately 90% of transcripts from hetero- and homozygous R1154Q tissues, respectively. Recombinant expression of SUR2A protein lacking exon 28 resulted in nonfunctional channels. CS tissue from SUR2[R1154Q] mice and human induced pluripotent stem cell-derived (hiPSC-derived) cardiomyocytes showed only full-length SUR2 transcripts, although further studies will be required in order to fully test whether SUR2[R1154Q] or other CS mutations might result in aberrant splicing and variable expressivity of disease features in human CS.
Collapse
Affiliation(s)
- Haixia Zhang
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Alex Hanson
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tobias Scherf de Almeida
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Christopher Emfinger
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Theresa Harter
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Zihan Yan
- Center for the Investigation of Membrane Excitability Diseases and.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research
| | - Paige E Cooper
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - G Schuyler Brown
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eric C Arakel
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | - Carmen M Halabi
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Blanche Schwappach
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases and.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Scala R, Maqoud F, Zizzo N, Mele A, Camerino GM, Zito FA, Ranieri G, McClenaghan C, Harter TM, Nichols CG, Tricarico D. Pathophysiological Consequences of KATP Channel Overactivity and Pharmacological Response to Glibenclamide in Skeletal Muscle of a Murine Model of Cantù Syndrome. Front Pharmacol 2020; 11:604885. [PMID: 33329006 PMCID: PMC7734337 DOI: 10.3389/fphar.2020.604885] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cantù syndrome (CS) arises from mutations in ABCC9 and KCNJ8 genes that lead to gain of function (GOF) of ATP-sensitive potassium (KATP) channels containing SUR2A and Kir6.1 subunits, respectively, of KATP channels. Pathological consequences of CS have been reported for cardiac and smooth muscle cells but consequences in skeletal muscle are unknown. Children with CS show muscle hypotonia and adult manifest fatigability. We analyzed muscle properties of Kir6.1[V65M] CS mice, by measurements of forelimb strength and ultrasonography of hind-limb muscles, as well as assessing KATP channel properties in native Flexor digitorum brevis (FDB) and Soleus (SOL) fibers by the patch-clamp technique in parallel with histopathological, immunohistochemical and Polymerase Chain Reaction (PCR) analysis. Forelimb strength was lower in Kir6.1wt/VM mice than in WT mice. Also, a significant enhancement of echodensity was observed in hind-limb muscles of Kir6.1wt/VM mice relative to WT, suggesting the presence of fibrous tissue. There was a higher KATP channel current amplitude in Kir6.1wt/VM FDB fibers relative to WT and a reduced response to glibenclamide. The IC50 of glibenclamide to block KATP channels in FDB fibers was 1.3 ± 0.2 × 10−7 M in WT and 1.2 ± 0.1 × 10−6 M in Kir6.1wt/VM mice, respectively; and it was 1.2 ± 0.4 × 10−7 M in SOL WT fibers but not measurable in Kir6.1wt/VM fibers. The sensitivity of the KATP channel to MgATP was not modified in Kir6.1wt/VM fibers. Histopathological/immunohistochemical analysis of SOL revealed degeneration plus regressive-necrotic lesions with regeneration, and up-regulation of Atrogin-1, MuRF1, and BNIP3 mRNA/proteins in Kir6.1wt/VM mice. Kir6.1wt/VM mutation in skeletal muscle leads to changes of the KATP channel response to glibenclamide in FDB and SOL fibers, and it is associated with histopathological and gene expression changes in slow-twitch muscle, suggesting marked atrophy and autophagy.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Alfredo Zito
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Conor McClenaghan
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Theresa M Harter
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
21
|
Yokoi T, Enomoto Y, Tsurusaki Y, Naruto T, Kurosawa K. Cantú syndrome with novel pathogenic variant in nucleotide-binding domain 1 of ABCC9. Pediatr Int 2020; 62:1206-1208. [PMID: 32926509 DOI: 10.1111/ped.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Takayuki Yokoi
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan.,Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshinori Tsurusaki
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Takuya Naruto
- Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
22
|
Le Ribeuz H, Capuano V, Girerd B, Humbert M, Montani D, Antigny F. Implication of Potassium Channels in the Pathophysiology of Pulmonary Arterial Hypertension. Biomolecules 2020; 10:biom10091261. [PMID: 32882918 PMCID: PMC7564204 DOI: 10.3390/biom10091261] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and severe cardiopulmonary disease without curative treatments. PAH is a multifactorial disease that involves genetic predisposition, epigenetic factors, and environmental factors (drugs, toxins, viruses, hypoxia, and inflammation), which contribute to the initiation or development of irreversible remodeling of the pulmonary vessels. The recent identification of loss-of-function mutations in KCNK3 (KCNK3 or TASK-1) and ABCC8 (SUR1), or gain-of-function mutations in ABCC9 (SUR2), as well as polymorphisms in KCNA5 (Kv1.5), which encode two potassium (K+) channels and two K+ channel regulatory subunits, has revived the interest of ion channels in PAH. This review focuses on KCNK3, SUR1, SUR2, and Kv1.5 channels in pulmonary vasculature and discusses their pathophysiological contribution to and therapeutic potential in PAH.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Barbara Girerd
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France; (H.L.R.); (V.C.); (B.G.); (M.H.); (D.M.)
- INSERM UMR_S 999, Hypertension pulmonaire, Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Assistance Publique—Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Correspondence: or ; Tel.: +33-1-40-94-22-99
| |
Collapse
|
23
|
Kortüm F, Niceta M, Magliozzi M, Dumic Kubat K, Robertson SP, Moresco A, Dentici ML, Baban A, Leoni C, Onesimo R, Obregon MG, Digilio MC, Zampino G, Novelli A, Tartaglia M, Kutsche K. Cantú syndrome versus Zimmermann-Laband syndrome: Report of nine individuals with ABCC9 variants. Eur J Med Genet 2020; 63:103996. [PMID: 32622958 DOI: 10.1016/j.ejmg.2020.103996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 11/17/2022]
Abstract
Cantú syndrome (CS) is a rare developmental disorder characterized by a coarse facial appearance, macrocephaly, hypertrichosis, skeletal and cardiovascular anomalies and caused by heterozygous gain-of-function variants in ABCC9 and KCNJ8, encoding subunits of heterooctameric ATP-sensitive potassium (KATP) channels. CS shows considerable clinical overlap with Zimmermann-Laband syndrome (ZLS), a rare condition with coarse facial features, hypertrichosis, gingival overgrowth, intellectual disability of variable degree, and hypoplasia or aplasia of terminal phalanges and/or nails. ZLS is caused by heterozygous gain-of-function variants in KCNH1 or KCNN3, and gain-of-function KCNK4 variants underlie the clinically similar FHEIG (facial dysmorphism, hypertrichosis, epilepsy, intellectual disability/developmental delay, and gingival overgrowth) syndrome; KCNH1, KCNN3 and KCNK4 encode potassium channels. Within our research project on ZLS, we performed targeted Sanger sequencing of ABCC9 in 15 individuals tested negative for a mutation in the ZLS-associated genes and found two individuals harboring a heterozygous pathogenic ABCC9 missense variant. Through a collaborative effort, we identified a total of nine individuals carrying a monoallelic ABCC9 variant: five sporadic patients and four members of two unrelated families. Among the six detected ABCC9 missense variants, four [p.(Pro252Leu), p.(Thr259Lys), p.(Ala1064Pro), and p.(Arg1197His)] were novel. Systematic assessment of the clinical features in the nine cases with an ABCC9 variant highlights the significant clinical overlap between ZLS and CS that includes early developmental delay, hypertrichosis, gingival overgrowth, joint laxity, and hypoplasia of terminal phalanges and nails. Gain of K+ channel activity possibly accounts for significant clinical similarities of CS, ZLS and FHEIG syndrome and defines a new subgroup of potassium channelopathies.
Collapse
Affiliation(s)
- Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Monia Magliozzi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Angelica Moresco
- Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anwar Baban
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart - ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Chiara Leoni
- Center of Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Roberta Onesimo
- Center of Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Center of Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Antonio Novelli
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
24
|
Grange DK, Roessler HI, McClenaghan C, Duran K, Shields K, Remedi MS, Knoers NVAM, Lee JM, Kirk EP, Scurr I, Smithson SF, Singh GK, van Haelst MM, Nichols CG, van Haaften G. Cantú syndrome: Findings from 74 patients in the International Cantú Syndrome Registry. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 181:658-681. [PMID: 31828977 DOI: 10.1002/ajmg.c.31753] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/11/2022]
Abstract
Cantú syndrome (CS), first described in 1982, is caused by pathogenic variants in ABCC9 and KCNJ8, which encode the regulatory and pore forming subunits of ATP-sensitive potassium (KATP ) channels, respectively. Multiple case reports of affected individuals have described the various clinical features of CS, but systematic studies are lacking. To define the effects of genetic variants on CS phenotypes and clinical outcomes, we have developed a standardized REDCap-based registry for CS. We report phenotypic features and associated genotypes on 74 CS subjects, with confirmed ABCC9 variants in 72 of the individuals. Hypertrichosis and a characteristic facial appearance are present in all individuals. Polyhydramnios during fetal life, hyperflexibility, edema, patent ductus arteriosus (PDA), cardiomegaly, dilated aortic root, vascular tortuosity of cerebral arteries, and migraine headaches are common features, although even with this large group of subjects, there is incomplete penetrance of CS-associated features, without clear correlation to genotype.
Collapse
Affiliation(s)
- Dorothy K Grange
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.,Center for the Investigation of Membrane Excitability Diseases (CIMED)
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases (CIMED).,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri
| | - Karen Duran
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kathleen Shields
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases (CIMED).,Department of Medicine, Division of Endocrinology, Washington University School of Medicine, St. Louis, Missouri
| | - Nine V A M Knoers
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Jin-Moo Lee
- Department of Neurology and Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Edwin P Kirk
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Ingrid Scurr
- Department of Clinical Genetics, University Hospitals, Bristol, UK
| | - Sarah F Smithson
- Department of Clinical Genetics, University Hospitals, Bristol, UK
| | - Gautam K Singh
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.,Center for the Investigation of Membrane Excitability Diseases (CIMED)
| | - Mieke M van Haelst
- Department of Clinical Genetics, VU Medical Center, VU University Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases (CIMED).,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
25
|
Roessler HI, Shields K, Grange DK, Knoers NVAM, van Haaften G, Hammond P, van Haelst MM. Three-dimensional facial morphology in Cantú syndrome. Am J Med Genet A 2020; 182:1041-1052. [PMID: 32100467 PMCID: PMC7217184 DOI: 10.1002/ajmg.a.61517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Cantú syndrome (CS) was first described in 1982, and is caused by pathogenic variants in ABCC9 and KCNJ8 encoding regulatory and pore forming subunits of ATP-sensitive potassium (KATP ) channels, respectively. It is characterized by congenital hypertrichosis, osteochondrodysplasia, extensive cardiovascular abnormalities and distinctive facial anomalies including a broad nasal bridge, long philtrum, epicanthal folds, and prominent lips. Many genetic syndromes, such as CS, involve facial anomalies that serve as a significant clue in the initial identification of the respective disorder before clinical or molecular diagnosis are undertaken. However, an overwhelming number of CS patients receive misdiagnoses based on an evaluation of coarse facial features. By analyzing three-dimensional images of CS faces, we quantified facial dysmorphology in a cohort of both male and female CS patients with confirmed ABCC9 variants. Morphometric analysis of different regions of the face revealed gender-specific significant differences in face shape. Moreover, we show that 3D facial photographs can distinguish between CS and other genetic disorders with specific facial dysmorphologies that have been mistaken for CS-associated anomalies in the past, hence assisting in an earlier clinical and molecular diagnosis. This optimizes genetic counseling and reduces stress for patients and parents by avoiding unnecessary misdiagnosis.
Collapse
Affiliation(s)
- Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kathleen Shields
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.,Center for the Investigation of Membrane Excitability Diseases (CIMED), St. Louis, Missouri, USA
| | - Nine V A M Knoers
- Deptartment of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter Hammond
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, VU Medical Center, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Parrott A, Lombardo R, Brown N, Tretter JT, Riley L, Weaver KN. Cantu syndrome: A longitudinal review of vascular findings in three individuals. Am J Med Genet A 2020; 182:1243-1248. [PMID: 32065455 DOI: 10.1002/ajmg.a.61521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 11/10/2022]
Abstract
Cantu syndrome is a rare autosomal dominant disorder caused by missense variants in ABCC9 and KCNJ8. It is characterized by hypertrichosis, neonatal macrosomia, coarse facial features, and skeletal anomalies. Reported cardiovascular anomalies include cardiomegaly, structural defects, collateral vessels, and rare report of arteriovenous malformation (AVM). Arterial dilation is reported in a few individuals including one with surgical intervention for a thoracic aortic aneurysm. The natural history of this aortopathy including the rate of progression or risk for dissection is unknown and longitudinal patient data is unavailable. We present data from vascular imaging in three individuals with genetically confirmed Cantu syndrome over 3 to 14 years of follow-up. All patients had generally stable aortic dilation, which did not reach the surgical threshold, including one individual followed closely through pregnancy. In adulthood, one individual had a maximum ascending aortic measurement of 4.2 cm. Two pediatric patients had aortic root or ascending z-scores of approximately +3. A large asymptomatic pelvic AVM was identified in one individual on head-pelvis MRI. While the data reported in these individuals is reassuring regarding the risk for progressive disease, further data from additional individuals with Cantu syndrome is needed to best inform screening recommendations, improve understanding of dissection risk, and guide management.
Collapse
Affiliation(s)
- Ashley Parrott
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rachel Lombardo
- Department of Medical Genetics, UT Southwestern Medical Center, Dallas, Texas
| | - Nicole Brown
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Justin T Tretter
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Laura Riley
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kathryn Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
27
|
Smeland MF, McClenaghan C, Roessler HI, Savelberg S, Hansen GÅM, Hjellnes H, Arntzen KA, Müller KI, Dybesland AR, Harter T, Sala-Rabanal M, Emfinger CH, Huang Y, Singareddy SS, Gunn J, Wozniak DF, Kovacs A, Massink M, Tessadori F, Kamel SM, Bakkers J, Remedi MS, Van Ghelue M, Nichols CG, van Haaften G. ABCC9-related Intellectual disability Myopathy Syndrome is a K ATP channelopathy with loss-of-function mutations in ABCC9. Nat Commun 2019; 10:4457. [PMID: 31575858 PMCID: PMC6773855 DOI: 10.1038/s41467-019-12428-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/30/2019] [Indexed: 11/30/2022] Open
Abstract
Mutations in genes encoding KATP channel subunits have been reported for pancreatic disorders and Cantú syndrome. Here, we report a syndrome in six patients from two families with a consistent phenotype of mild intellectual disability, similar facies, myopathy, and cerebral white matter hyperintensities, with cardiac systolic dysfunction present in the two oldest patients. Patients are homozygous for a splice-site mutation in ABCC9 (c.1320 + 1 G > A), which encodes the sulfonylurea receptor 2 (SUR2) subunit of KATP channels. This mutation results in an in-frame deletion of exon 8, which results in non-functional KATP channels in recombinant assays. SUR2 loss-of-function causes fatigability and cardiac dysfunction in mice, and reduced activity, cardiac dysfunction and ventricular enlargement in zebrafish. We term this channelopathy resulting from loss-of-function of SUR2-containing KATP channels ABCC9-related Intellectual disability Myopathy Syndrome (AIMS). The phenotype differs from Cantú syndrome, which is caused by gain-of-function ABCC9 mutations, reflecting the opposing consequences of KATP loss- versus gain-of-function.
Collapse
Affiliation(s)
- Marie F Smeland
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway.
| | - Conor McClenaghan
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Sanne Savelberg
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | | | - Helene Hjellnes
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Kjell Arne Arntzen
- Department of Neurology, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019, Tromsø, Norway
- The National Neuromuscular Centre of Norway, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Kai Ivar Müller
- Department of Neurology, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019, Tromsø, Norway
| | - Andreas Rosenberger Dybesland
- The National Neuromuscular Centre of Norway, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Physiotherapy, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Theresa Harter
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Monica Sala-Rabanal
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University, St Louis, MO, 63110, USA
| | - Chris H Emfinger
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Yan Huang
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Soma S Singareddy
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Jamie Gunn
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maarten Massink
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Federico Tessadori
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Sarah M Kamel
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Maria S Remedi
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, MO, 63110, USA
| | - Marijke Van Ghelue
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Medical Genetics, the Arctic University of Norway, 9019, Tromsø, Norway
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
28
|
Ma A, Gurnasinghani S, Kirk EP, McClenaghan C, Singh GK, Grange DK, Pandit C, Zhu Y, Roscioli T, Elakis G, Buckley M, Mehta B, Roberts P, Mervis J, Biggin A, Nichols CG. Glibenclamide treatment in a Cantú syndrome patient with a pathogenic ABCC9 gain-of-function variant: Initial experience. Am J Med Genet A 2019; 179:1585-1590. [PMID: 31175705 PMCID: PMC6899598 DOI: 10.1002/ajmg.a.61200] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022]
Abstract
Cantú syndrome (CS), characterized by hypertrichosis, distinctive facial features, and complex cardiovascular abnormalities, is caused by pathogenic variants in ABCC9 and KCNJ8 genes. These genes encode gain-of-function mutations in the regulatory (SUR2) and pore-forming (Kir6.1) subunits of KATP channels, respectively, suggesting that channel-blocking sulfonylureas could be a viable therapy. Here we report a neonate with CS, carrying a heterozygous ABCC9 variant (c.3347G>A, p.Arg1116His), born prematurely at 32 weeks gestation. Initial echocardiogram revealed a large patent ductus arteriosus (PDA), and high pulmonary pressures with enlarged right ventricle. He initially received surfactant and continuous positive airway pressure ventilation and was invasively ventilated for 4 weeks, until PDA ligation. After surgery, he still had ongoing bilevel positive airway pressure (BiPAP) requirement, but was subsequently weaned to nocturnal BiPAP. He was treated for pulmonary hypertension with Sildenafil, but failed to make further clinical improvement. A therapeutic glibenclamide trial was commenced in week 11 (initial dose of 0.05 mg-1 kg-1 day-1 in two divided doses). After 1 week of treatment, he began to tolerate time off BiPAP when awake, and edema improved. Glibenclamide was well tolerated, and the dose was slowly increased to 0.15 mg-1 kg-1 day-1 over the next 12 weeks. Mild transient hypoglycemia was observed, but there was no cardiovascular dysfunction. Confirmation of therapeutic benefit will require studies of more CS patients but, based on this limited experience, consideration should be given to glibenclamide as CS therapy, although problems associated with prematurity, and complications of hypoglycemia, might limit outcome in critically ill neonates with CS.
Collapse
Affiliation(s)
- Alan Ma
- Department of Clinical GeneticsChildren's Hospital at Westmead, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
- Discipline of Genomic MedicineSydney Medical School, University of SydneySydneyNew South WalesAustralia
| | - Sunita Gurnasinghani
- Department of Clinical GeneticsChildren's Hospital at Westmead, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Edwin P. Kirk
- Centre for Clinical GeneticsSydney Children's Hospital, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
- School of Women's and Children's Health, University of NSWSydneyNew South WalesAustralia
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of MedicineSt. LouisMissouri
- Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMissouri
| | - Gautam K. Singh
- Department of PediatricsWashington University School of MedicineSt. LouisMissouri
| | - Dorothy K. Grange
- Department of PediatricsWashington University School of MedicineSt. LouisMissouri
| | - Chetan Pandit
- Department of Respiratory and Sleep MedicineThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Yung Zhu
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - Tony Roscioli
- Centre for Clinical GeneticsSydney Children's Hospital, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - George Elakis
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - Michael Buckley
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - Bhavesh Mehta
- Grace Centre for Newborn Intensive CareThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Philip Roberts
- Department of CardiologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Jonathan Mervis
- Department of CardiologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Andrew Biggin
- Children's Hospital Westmead Clinical School, University of SydneyNew South WalesAustralia
- Institute of Endocrinology and Diabetes, The Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of MedicineSt. LouisMissouri
- Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMissouri
| |
Collapse
|
29
|
McClenaghan C, Woo KV, Nichols CG. Pulmonary Hypertension and ATP-Sensitive Potassium Channels. Hypertension 2019; 74:14-22. [PMID: 31132951 DOI: 10.1161/hypertensionaha.119.12992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Conor McClenaghan
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| | - Kel Vin Woo
- Department of Pediatrics, Division of Cardiology, Washington University School of Medicine, St Louis, MO (K.V.W.)
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| |
Collapse
|
30
|
Houtman MJC, Chen X, Qile M, Duran K, van Haaften G, Stary-Weinzinger A, van der Heyden MAG. Glibenclamide and HMR1098 normalize Cantú syndrome-associated gain-of-function currents. J Cell Mol Med 2019; 23:4962-4969. [PMID: 31119887 PMCID: PMC7346732 DOI: 10.1111/jcmm.14329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Cantú syndrome (CS) is caused by dominant gain-of-function mutation in ATP-dependent potassium channels. Cellular ATP concentrations regulate potassium current thereby coupling energy status with membrane excitability. No specific pharmacotherapeutic options are available to treat CS but IKATP channels are pharmaceutical targets in type II diabetes or cardiac arrhythmia treatment. We have been suggested that IKATP inhibitors, glibenclamide and HMR1098, normalize CS channels. IKATP in response to Mg-ATP, glibenclamide and HMR1098 were measured by inside-out patch-clamp electrophysiology. Results were interpreted in view of cryo-EM IKATP channel structures. Mg-ATP IC50 values of outward current were increased for D207E (0.71 ± 0.14 mmol/L), S1020P (1.83 ± 0.10), S1054Y (0.95 ± 0.06) and R1154Q (0.75 ± 0.13) channels compared to H60Y (0.14 ± 0.01) and wild-type (0.15 ± 0.01). HMR1098 dose-dependently inhibited S1020P and S1054Y channels in the presence of 0.15 mmol/L Mg-ATP, reaching, at 30 μmol/L, current levels displayed by wild-type and H60Y channels in the presence of 0.15 mmol/L Mg-ATP. Glibenclamide (10 μmol/L) induced similar normalization. S1054Y sensitivity to glibenclamide increases strongly at 0.5 mmol/L Mg-ATP compared to 0.15 mmol/L, in contrast to D207E and S1020P channels. Experimental findings agree with structural considerations. We conclude that CS channel activity can be normalized by existing drugs; however, complete normalization can be achieved at supraclinical concentrations only.
Collapse
Affiliation(s)
- Marien J C Houtman
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Muge Qile
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karen Duran
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs van Haaften
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Marcel A G van der Heyden
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
31
|
Huang Y, Hu D, Huang C, Nichols CG. Genetic Discovery of ATP-Sensitive K + Channels in Cardiovascular Diseases. Circ Arrhythm Electrophysiol 2019; 12:e007322. [PMID: 31030551 PMCID: PMC6494091 DOI: 10.1161/circep.119.007322] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ATP-sensitive K+ (KATP) channels are hetero-octameric protein complexes comprising 4 pore-forming (Kir6.x) subunits and 4 regulatory sulfonylurea receptor (SURx) subunits. They are prominent in myocytes, pancreatic β cells, and neurons and link cellular metabolism with membrane excitability. Using genetically modified animals and genomic analysis in patients, recent studies have implicated certain ATP-sensitive K+ channel subtypes in physiological and pathological processes in a variety of cardiovascular diseases. In this review, we focus on the causal relationship between ATP-sensitive K+ channel activity and pathophysiology in the cardiovascular system, particularly from the perspective of genetic changes in human and animal models.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
32
|
Burkardt DD, Graham JM. Abnormal Body Size and Proportion. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS AND GENOMICS 2019:81-143. [DOI: 10.1016/b978-0-12-812536-6.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Tessadori F, Roessler HI, Savelberg SMC, Chocron S, Kamel SM, Duran KJ, van Haelst MM, van Haaften G, Bakkers J. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders. Dis Model Mech 2018; 11:11/10/dmm035469. [PMID: 30355756 PMCID: PMC6215435 DOI: 10.1242/dmm.035469] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/31/2018] [Indexed: 12/24/2022] Open
Abstract
The zebrafish (Danio rerio) has become a popular vertebrate model organism to study organ formation and function due to its optical clarity and rapid embryonic development. The use of genetically modified zebrafish has also allowed identification of new putative therapeutic drugs. So far, most studies have relied on broad overexpression of transgenes harboring patient-derived mutations or loss-of-function mutants, which incompletely model the human disease allele in terms of expression levels or cell-type specificity of the endogenous gene of interest. Most human genetically inherited conditions are caused by alleles carrying single nucleotide changes resulting in altered gene function. Introduction of such point mutations in the zebrafish genome would be a prerequisite to recapitulate human disease but remains challenging to this day. We present an effective approach to introduce small nucleotide changes in the zebrafish genome. We generated four different knock-in lines carrying distinct human cardiovascular-disorder-causing missense mutations in their zebrafish orthologous genes by combining CRISPR/Cas9 with a short template oligonucleotide. Three of these lines carry gain-of-function mutations in genes encoding the pore-forming (Kir6.1, KCNJ8) and regulatory (SUR2, ABCC9) subunits of an ATP-sensitive potassium channel (KATP) linked to Cantú syndrome (CS). Our heterozygous zebrafish knock-in lines display significantly enlarged ventricles with enhanced cardiac output and contractile function, and distinct cerebral vasodilation, demonstrating the causality of the introduced mutations for CS. These results demonstrate that introducing patient alleles in their zebrafish orthologs promises a broad application for modeling human genetic diseases, paving the way for new therapeutic strategies using this model organism.
Collapse
Affiliation(s)
- Federico Tessadori
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Sanne M C Savelberg
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Sonja Chocron
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Sarah M Kamel
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Karen J Duran
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Mieke M van Haelst
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.,Department of Clinical Genetics, Amsterdam Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Clinical Genetics, Free University Medical Center, 1018 HV Amsterdam, the Netherlands
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands .,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
34
|
Huang Y, McClenaghan C, Harter TM, Hinman K, Halabi CM, Matkovich SJ, Zhang H, Brown GS, Mecham RP, England SK, Kovacs A, Remedi MS, Nichols CG. Cardiovascular consequences of KATP overactivity in Cantu syndrome. JCI Insight 2018; 3:e121153. [PMID: 30089727 PMCID: PMC6129117 DOI: 10.1172/jci.insight.121153] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 11/17/2022] Open
Abstract
Cantu syndrome (CS) is characterized by multiple vascular and cardiac abnormalities including vascular dilation and tortuosity, systemic hypotension, and cardiomegaly. The disorder is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits. However, there is little understanding of the link between molecular dysfunction and the complex pathophysiology observed, and there is no known treatment, in large part due to the lack of appropriate preclinical disease models in which to test therapies. Notably, expression of Kir6.1 and SUR2 does not fully overlap, and the relative contribution of KATP GOF in various cardiovascular tissues remains to be elucidated. To investigate pathophysiologic mechanisms in CS we have used CRISPR/Cas9 engineering to introduce CS-associated SUR2[A478V] and Kir6.1[V65M] mutations to the equivalent endogenous loci in mice. Mirroring human CS, both of these animals exhibit low systemic blood pressure and dilated, compliant blood vessels, as well dramatic cardiac enlargement, the effects being more severe in V65M animals than in A478V animals. In both animals, whole-cell patch-clamp recordings reveal enhanced basal KATP conductance in vascular smooth muscle, explaining vasodilation and lower blood pressure, and demonstrating a cardinal role for smooth muscle KATP dysfunction in CS etiology. Echocardiography confirms in situ cardiac enlargement and increased cardiac output in both animals. Patch-clamp recordings reveal reduced ATP sensitivity of ventricular myocyte KATP channels in A478V, but normal ATP sensitivity in V65M, suggesting that cardiac remodeling occurs secondary to KATP overactivity outside of the heart. These SUR2[A478V] and Kir6.1[V65M] animals thus reiterate the key cardiovascular features seen in human CS. They establish the molecular basis of the pathophysiological consequences of reduced smooth muscle excitability resulting from SUR2/Kir6.1-dependent KATP GOF, and provide a validated animal model in which to examine potential therapeutic approaches to treating CS.
Collapse
Affiliation(s)
- Yan Huang
- Center for the Investigation of Membrane Excitability Diseases, and Departments of
- Cell Biology and Physiology
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, and Departments of
- Cell Biology and Physiology
| | - Theresa M. Harter
- Center for the Investigation of Membrane Excitability Diseases, and Departments of
- Cell Biology and Physiology
| | | | | | | | - Haixia Zhang
- Center for the Investigation of Membrane Excitability Diseases, and Departments of
- Cell Biology and Physiology
| | - G. Schuyler Brown
- Center for the Investigation of Membrane Excitability Diseases, and Departments of
- Cell Biology and Physiology
| | | | - Sarah K. England
- Center for the Investigation of Membrane Excitability Diseases, and Departments of
- Obstetrics and Gynecology, and
| | - Attila Kovacs
- Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria S. Remedi
- Center for the Investigation of Membrane Excitability Diseases, and Departments of
- Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, and Departments of
- Cell Biology and Physiology
| |
Collapse
|