1
|
Sastre J, Pérez S, Sabater L, Rius-Pérez S. Redox signaling in the pancreas in health and disease. Physiol Rev 2025; 105:593-650. [PMID: 39324871 DOI: 10.1152/physrev.00044.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
This review addresses oxidative stress and redox signaling in the pancreas under healthy physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione (GSH) in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, with PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-β synthase causes blockade of the transsulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial reactive oxygen species (ROS), which trigger acinar-to-ductal metaplasia and progression to pancreatic intraepithelial neoplasia (PanIN). ROS are maintained at a sufficient level to promote cell proliferation, while avoiding cell death or senescence through formation of NADPH and GSH and activation of NRF2, HIF-1/2α, and CREB. Redox signaling also plays a fundamental role in differentiation, proliferation, and insulin secretion of β-cells. However, ROS overproduction promotes β-cell dysfunction and apoptosis in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Hospital Clínico, Department of Surgery, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Geirnaert F, Kerkhove L, Rifi A, Everaert T, Sanders J, Coppens J, Vandenplas H, Corbet C, Gevaert T, Dufait I, De Ridder M. Revisiting hydrogen peroxide as radiosensitizer for solid tumor cells. Radiother Oncol 2025; 203:110692. [PMID: 39716590 DOI: 10.1016/j.radonc.2024.110692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/01/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND AND PURPOSE Tumor hypoxia is the principal cause of clinical radioresistance. Despite its established role as radiosensitizer, hydrogen peroxide (H2O2) encounters clinical limitations due to stability and toxicity concerns. Recent advancements in drug delivery combine H2O2 with sodium hyaluronate (SH), enabling intratumoral administration of H2O2. This study investigates the radiomodulatory pathways of Kochi Oxydol-Radiation for Unresectable Carcinomas (KORTUC) (H2O2 + SH) under hypoxia. MATERIALS AND METHODS CT26 and 4T1 tumor cells were exposed to H2O2, SH and KORTUC under hypoxic conditions. Toxicity levels were determined using MTT and live-cell analysis. KORTUC's radiomodulatory properties were evaluated by colony formation assay and in spheroids. Reactive oxygen species (ROS) levels, DNA damage, apoptosis and ferroptosis were analyzed using flow cytometry. Oxygen consumption rate (OCR) and mitochondrial complex activity were assessed by Seahorse Analyzer. Oxygen levels were investigated using fiber-optic sensors. The in vitro findings were validated in CT26-bearing mice. RESULTS KORTUC demonstrated less cytotoxicity than H2O2-alone. KORTUC radiosensitized hypoxic tumor cells in a dose-dependent manner with enhancement ratios of 3.1 (CT26) and 2.7 (4T1). Dose-dependent OCR reduction following KORTUC exposure correlated with complex I and II inhibition, accompanied by mitochondrial ROS elevation. KORTUC injection into a 2D hypoxic tumor model surged O2 levels. KORTUC radiosensitized CT26-tumors, delaying growth by 14 days. CONCLUSIONS SH in KORTUC mitigates H2O2 cytotoxicity. We demonstrate that KORTUC overcomes hypoxia-induced radioresistance through inhibition of OCR, via complex I- and II-blockade, leading to tumor reoxygenation. Understanding KORTUC's pathways is essential for developing effective cancer combination therapies.
Collapse
Affiliation(s)
- F Geirnaert
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - L Kerkhove
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - A Rifi
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - T Everaert
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - J Sanders
- Department of Chemical and Physical Health Risks, Sciensano, 1050 Brussels, Belgium; Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - J Coppens
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - H Vandenplas
- Department of Medical Oncology, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - C Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 1200 Brussels, Belgium
| | - T Gevaert
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - I Dufait
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - M De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| |
Collapse
|
3
|
Chen X, Zhong R, Hu B. Mitochondrial dysfunction in the pathogenesis of acute pancreatitis. Hepatobiliary Pancreat Dis Int 2025; 24:76-83. [PMID: 38212158 DOI: 10.1016/j.hbpd.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024]
Abstract
The mechanism of cell damage during acute pancreatitis (AP) has not been fully elucidated, and there is still a lack of specific or effective treatments. Increasing evidence has implicated mitochondrial dysfunction as a key event in the pathophysiology of AP. Mitochondrial dysfunction is closely related to calcium (Ca2+) overload, intracellular adenosine triphosphate depletion, mitochondrial permeability transition pore openings, loss of mitochondrial membrane potential, mitophagy damage and inflammatory responses. Mitochondrial dysfunction is an early triggering event in the initiation and development of AP, and this organelle damage may precede the release of inflammatory cytokines, intracellular trypsin activation and vacuole formation of pancreatic acinar cells. This review provides further insight into the role of mitochondria in both physiological and pathophysiological aspects of AP, aiming to improve our understanding of the underlying mechanism which may lead to the development of therapeutic and preventive strategies for AP.
Collapse
Affiliation(s)
- Xia Chen
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Rui Zhong
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Du W, Wang X, Zhou Y, Wu W, Huang H, Jin Z. From micro to macro, nanotechnology demystifies acute pancreatitis: a new generation of treatment options emerges. J Nanobiotechnology 2025; 23:57. [PMID: 39881355 PMCID: PMC11776322 DOI: 10.1186/s12951-025-03106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Acute pancreatitis (AP) is a disease characterized by an acute inflammatory response in the pancreas. This is caused by the abnormal activation of pancreatic enzymes by a variety of etiologic factors, which results in a localized inflammatory response. The symptoms of this disease include abdominal pain, nausea and vomiting and fever. These symptoms are induced by a hyperinflammatory response and oxidative stress. In recent years, research has focused on developing anti-inflammatory and antioxidative therapies for the treatment of acute pancreatitis (AP). However, there are still limitations to this approach, including poor drug stability, low bioavailability and a short half-life. The advent of nanotechnology has opened up a novel avenue for the management of acute pancreatitis (AP). Nanomaterials can serve as an efficacious vehicle for conventional pharmaceuticals, enhancing their targeting ability, improving bioavailability and prolonging their half-life. Moreover, they can also exert a direct therapeutic effect. This review begins by introducing the general situation of acute pancreatitis (AP). It then discusses the pathogenesis of acute pancreatitis (AP) and the current status of treatment. Finally, it considers the literature related to the treatment of acute pancreatitis (AP) by nanomaterials. The objective of this study is to provide a comprehensive review of the existing literature on the use of nanomaterials in the treatment of acute pancreatitis (AP). In particular, the changes in inflammatory markers and therapeutic outcomes following the administration of nanomaterials are examined. This is done with the intention of offering insights that can inform subsequent research and facilitate the clinical application of nanomaterials in the management of acute pancreatitis (AP).
Collapse
Affiliation(s)
- Wei Du
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xinyue Wang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuyan Zhou
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wencheng Wu
- Central Laboratory, Department of Medical Ultrasound, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Haojie Huang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zhendong Jin
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Xia CC, Chen HT, Deng H, Huang YT, Xu GQ. Reactive oxygen species and oxidative stress in acute pancreatitis: Pathogenesis and new therapeutic interventions. World J Gastroenterol 2024; 30:4771-4780. [PMID: 39649547 PMCID: PMC11606378 DOI: 10.3748/wjg.v30.i45.4771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/13/2024] Open
Abstract
Acute pancreatitis (AP) is a common acute gastrointestinal disorder affecting approximately 20% of patients with systemic inflammatory responses that may cause pancreatic and peripancreatic fat necrosis. This condition often progresses to multiple organ failure, significantly increasing morbidity and mortality. Oxidative stress, characterized by an imbalance between the body's reactive oxygen species (ROS) and antioxidants, activates the inflammatory signaling pathways. Although the pathogenesis of AP is not fully understood, ROS are increasingly recognized as critical in the disease's progression and development. Modulating the oxidative stress pathway has shown efficacy in mitigating the progression of AP. Despite numerous basic studies examining this pathway, comprehensive reviews of recent research remain sparse. This systematic review offers an in-depth examination of the critical role of oxidative stress in the pathogenesis and progression of AP and evaluates the therapeutic potential of antioxidant interventions in its management.
Collapse
Affiliation(s)
- Chuan-Chao Xia
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hong-Tan Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hao Deng
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Ting Huang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Guo-Qiang Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
6
|
Zgajnar N, Lagadari M, Gallo LI, Piwien-Pilipuk G, Galigniana MD. Mitochondrial-nuclear communication by FKBP51 shuttling. J Cell Biochem 2024; 125:e30386. [PMID: 36815347 DOI: 10.1002/jcb.30386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
The HSP90-binding immunophilin FKBP51 is a soluble protein that shows high homology and structural similarity with FKBP52. Both immunophilins are functionally divergent and often show antagonistic actions. They were first described in steroid receptor complexes, their exchange in the complex being the earliest known event in steroid receptor activation upon ligand binding. In addition to steroid-related events, several pleiotropic actions of FKBP51 have emerged during the last years, ranging from cell differentiation and apoptosis to metabolic and psychiatric disorders. On the other hand, mitochondria play vital cellular roles in maintaining energy homeostasis, responding to stress conditions, and affecting cell cycle regulation, calcium signaling, redox homeostasis, and so forth. This is achieved by proteins that are encoded in both the nuclear genome and mitochondrial genes. This implies active nuclear-mitochondrial communication to maintain cell homeostasis. Such communication involves factors that regulate nuclear and mitochondrial gene expression affecting the synthesis and recruitment of mitochondrial and nonmitochondrial proteins, and/or changes in the functional state of the mitochondria itself, which enable mitochondria to recover from stress. FKBP51 has emerged as a serious candidate to participate in these regulatory roles since it has been unexpectedly found in mitochondria showing antiapoptotic effects. Such localization involves the tetratricopeptide repeats domains of the immunophilin and not its intrinsic enzymatic activity of peptidylprolyl-isomerase. Importantly, FKBP51 abandons the mitochondria and accumulates in the nucleus upon cell differentiation or during the onset of stress. Nuclear FKBP51 enhances the enzymatic activity of telomerase. The mitochondrial-nuclear trafficking is reversible, and certain situations such as viral infections promote the opposite trafficking, that is, FKBP51 abandons the nucleus and accumulates in mitochondria. In this article, we review the latest findings related to the mitochondrial-nuclear communication mediated by FKBP51 and speculate about the possible implications of this phenomenon.
Collapse
Affiliation(s)
- Nadia Zgajnar
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
| | - Mariana Lagadari
- Instituto de Ciencia y Tecnología de Alimentos de Entre Ríos, Concordia, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFYBYNE)/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Holman AR, Tran S, Destici E, Farah EN, Li T, Nelson AC, Engler AJ, Chi NC. Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development. CELL GENOMICS 2024; 4:100680. [PMID: 39437788 PMCID: PMC11605693 DOI: 10.1016/j.xgen.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Illuminating the precise stepwise genetic programs directing cardiac development provides insights into the mechanisms of congenital heart disease and strategies for cardiac regenerative therapies. Here, we integrate in vitro and in vivo human single-cell multi-omic studies with high-throughput functional genomic screening to reveal dynamic, cardiac-specific gene regulatory networks (GRNs) and transcriptional regulators during human cardiomyocyte development. Interrogating developmental trajectories reconstructed from single-cell data unexpectedly reveal divergent cardiomyocyte lineages with distinct gene programs based on developmental signaling pathways. High-throughput functional genomic screens identify key transcription factors from inferred GRNs that are functionally relevant for cardiomyocyte lineages derived from each pathway. Notably, we discover a critical heat shock transcription factor 1 (HSF1)-mediated cardiometabolic GRN controlling cardiac mitochondrial/metabolic function and cell survival, also observed in fetal human cardiomyocytes. Overall, these multi-modal genomic studies enable the systematic discovery and validation of coordinated GRNs and transcriptional regulators controlling the development of distinct human cardiomyocyte populations.
Collapse
Affiliation(s)
- Alyssa R Holman
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaina Tran
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugin Destici
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aileena C Nelson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Swamynathan MM, Kuang S, Watrud KE, Doherty MR, Gineste C, Mathew G, Gong GQ, Cox H, Cheng E, Reiss D, Kendall J, Ghosh D, Reczek CR, Zhao X, Herzka T, Špokaitė S, Dessus AN, Kim ST, Klingbeil O, Liu J, Nowak DG, Alsudani H, Wee TL, Park Y, Minicozzi F, Rivera K, Almeida AS, Chang K, Chakrabarty RP, Wilkinson JE, Gimotty PA, Diermeier SD, Egeblad M, Vakoc CR, Locasale JW, Chandel NS, Janowitz T, Hicks JB, Wigler M, Pappin DJ, Williams RL, Cifani P, Tuveson DA, Laporte J, Trotman LC. Dietary pro-oxidant therapy by a vitamin K precursor targets PI 3-kinase VPS34 function. Science 2024; 386:eadk9167. [PMID: 39446948 PMCID: PMC11975464 DOI: 10.1126/science.adk9167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/27/2024] [Indexed: 10/26/2024]
Abstract
Men taking antioxidant vitamin E supplements have increased prostate cancer (PC) risk. However, whether pro-oxidants protect from PC remained unclear. In this work, we show that a pro-oxidant vitamin K precursor [menadione sodium bisulfite (MSB)] suppresses PC progression in mice, killing cells through an oxidative cell death: MSB antagonizes the essential class III phosphatidylinositol (PI) 3-kinase VPS34-the regulator of endosome identity and sorting-through oxidation of key cysteines, pointing to a redox checkpoint in sorting. Testing MSB in a myotubular myopathy model that is driven by loss of MTM1-the phosphatase antagonist of VPS34-we show that dietary MSB improved muscle histology and function and extended life span. These findings enhance our understanding of pro-oxidant selectivity and show how definition of the pathways they impinge on can give rise to unexpected therapeutic opportunities.
Collapse
Affiliation(s)
- Manojit Mosur Swamynathan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Shan Kuang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | | | - Mary R. Doherty
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Charlotte Gineste
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U1258, Strasbourg University, Illkirch CEDEX 67404, France
| | - Grinu Mathew
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Grace Q. Gong
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Hilary Cox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Eileen Cheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U1258, Strasbourg University, Illkirch CEDEX 67404, France
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Diya Ghosh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Colleen R. Reczek
- Department of Medicine, Biochemistry & Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Xiang Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Tali Herzka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Saulė Špokaitė
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Seung Tea Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Juan Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695
| | - Dawid G. Nowak
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, NY 10065, USA
- Division of Hematology and Medical Oncology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, NY 10065, USA
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Tse-Luen Wee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | | | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Ana S. Almeida
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Ram P. Chakrabarty
- Department of Medicine, Biochemistry & Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - John E. Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phyllis A. Gimotty
- Perelman School of Medicine, Division of Biostatistics, University of Pennsylvania, PA 19104, USA
| | - Sarah D. Diermeier
- University of Otago, Department of Biochemistry, Dunedin 9016, New Zealand
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205 USA
| | | | - Jason W. Locasale
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh NC 27695
| | - Navdeep S. Chandel
- Department of Medicine, Biochemistry & Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - James B. Hicks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
- Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Darryl J. Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | | | - Paolo Cifani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U1258, Strasbourg University, Illkirch CEDEX 67404, France
| | - Lloyd C. Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11771, USA
| |
Collapse
|
9
|
Zhu L, Xu Y, Lei J. Molecular mechanism and potential role of mitophagy in acute pancreatitis. Mol Med 2024; 30:136. [PMID: 39227768 PMCID: PMC11373529 DOI: 10.1186/s10020-024-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Acute pancreatitis (AP) is a multifaceted inflammatory disorder stemming from the aberrant activation of trypsin within the pancreas. Despite the contribution of various factors to the pathogenesis of AP, such as trypsin activation, dysregulated increases in cytosolic Ca2+ levels, inflammatory cascade activation, and mitochondrial dysfunction, the precise molecular mechanisms underlying the disease are still not fully understood. Mitophagy, a cellular process that preserves mitochondrial homeostasis under stress, has emerged as a pivotal player in the context of AP. Research suggests that augmenting mitophagy can mitigate pancreatic injury by clearing away malfunctioning mitochondria. Elucidating the role of mitophagy in AP may pave the way for novel therapeutic strategies. This review article aims to synthesize the current research findings on mitophagy in AP and underscore its significance in the clinical management of the disorder.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yunfei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- Postdoctoral Research Station of Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Jian Lei
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
10
|
Cai Y, Yang F, Huang X. Oxidative stress and acute pancreatitis (Review). Biomed Rep 2024; 21:124. [PMID: 39006508 PMCID: PMC11240254 DOI: 10.3892/br.2024.1812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Acute pancreatitis (AP) is a common inflammatory disorder of the exocrine pancreas that causes severe morbidity and mortality. Although the pathophysiology of AP is poorly understood, a substantial body of evidence suggests some critical events for this disease, such as dysregulation of digestive enzyme production, cytoplasmic vacuolization, acinar cell death, edema formation, and inflammatory cell infiltration into the pancreas. Oxidative stress plays a role in the acute inflammatory response. The present review clarified the role of oxidative stress in the occurrence and development of AP by introducing oxidative stress to disrupt cellular Ca2+ balance and stimulating transcription factor activation and excessive release of inflammatory mediators for the application of antioxidant adjuvant therapy in the treatment of AP.
Collapse
Affiliation(s)
- Yongxia Cai
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Feng Yang
- Department of Emergency Medicine, The First People's Hospital of Wuyi County, Jinhua, Zhejiang 321200, P.R. China
| | - Xizhu Huang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
11
|
Bravo A, Sánchez R, Zambrano F, Uribe P. Exogenous Oxidative Stress in Human Spermatozoa Induces Opening of the Mitochondrial Permeability Transition Pore: Effect on Mitochondrial Function, Sperm Motility and Induction of Cell Death. Antioxidants (Basel) 2024; 13:739. [PMID: 38929178 PMCID: PMC11201210 DOI: 10.3390/antiox13060739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress (OS) and disrupted antioxidant defense mechanisms play a pivotal role in the etiology of male infertility. The alterations in reactive oxygen species (ROS) production and calcium (Ca2+) homeostasis are the main activators for the mitochondrial permeability transition pore (mPTP) opening. The mPTP opening is one of the main mechanisms involved in mitochondrial dysfunction in spermatozoa. This alteration in mitochondrial function adversely affects energy supply, sperm motility, and fertilizing capacity and contributes to the development of male infertility. In human spermatozoa, the mPTP opening has been associated with ionomycin-induced endogenous oxidative stress and peroxynitrite-induced nitrosative stress; however, the effect of exogenous oxidative stress on mPTP opening in sperm has not been evaluated. The aim of this study was to determine the effect of exogenous oxidative stress induced by hydrogen peroxide (H2O2) on mPTP opening, mitochondrial function, motility, and cell death markers in human spermatozoa. Human spermatozoa were incubated with 3 mmol/L of H2O2 for 60 min, and intracellular Ca2+ concentration, mPTP opening, mitochondrial membrane potential (ΔΨm), ATP levels, mitochondrial reactive oxygen species (mROS) production, phosphatidylserine (PS) externalization, DNA fragmentation, viability, and sperm motility were evaluated. H2O2-induced exogenous oxidative stress caused increased intracellular Ca2+, leading to subsequent mPTP opening and alteration of mitochondrial function, characterized by ΔΨm dissipation, decreased ATP levels, increased mROS production, and the subsequent alteration of sperm motility. Furthermore, H2O2-induced opening of mPTP was associated with the expression of apoptotic cell death markers including PS externalization and DNA fragmentation. These results highlight the role of exogenous oxidative stress in causing mitochondrial dysfunction, deterioration of sperm motility, and an increase in apoptotic cell death markers, including PS externalization and DNA fragmentation, through the mPTP opening. This study yielded new knowledge regarding the effects of this type of stress on mitochondrial function and specifically on mPTP opening, factors that can contribute to the development of male infertility, considering that the role of mPTP in mitochondrial dysfunction in human sperm is not completely elucidated. Therefore, these findings are relevant to understanding male infertility and may provide an in vitro model for further research aimed at improving human sperm quality.
Collapse
Affiliation(s)
- Anita Bravo
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
| | - Raúl Sánchez
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
- Department of Preclinical Science, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Fabiola Zambrano
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
- Department of Preclinical Science, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Pamela Uribe
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| |
Collapse
|
12
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Ma RK, Tsai PY, Farghli AR, Shumway A, Kanke M, Gordan JD, Gujral TS, Vakili K, Nukaya M, Noetzli L, Ronnekleiv-Kelly S, Broom W, Barrow J, Sethupathy P. DNAJB1-PRKACA fusion protein-regulated LINC00473 promotes tumor growth and alters mitochondrial fitness in fibrolamellar carcinoma. PLoS Genet 2024; 20:e1011216. [PMID: 38512964 PMCID: PMC11020935 DOI: 10.1371/journal.pgen.1011216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/16/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare liver cancer that disproportionately affects adolescents and young adults. Currently, no standard of care is available and there remains a dire need for new therapeutics. Most patients harbor the fusion oncogene DNAJB1-PRKACA (DP fusion), but clinical inhibitors are not yet developed and it is critical to identify downstream mediators of FLC pathogenesis. Here, we identify long noncoding RNA LINC00473 among the most highly upregulated genes in FLC tumors and determine that it is strongly suppressed by RNAi-mediated inhibition of the DP fusion in FLC tumor epithelial cells. We show by loss- and gain-of-function studies that LINC00473 suppresses apoptosis, increases the expression of FLC marker genes, and promotes FLC growth in cell-based and in vivo disease models. Mechanistically, LINC00473 plays an important role in promoting glycolysis and altering mitochondrial activity. Specifically, LINC00473 knockdown leads to increased spare respiratory capacity, which indicates mitochondrial fitness. Overall, we propose that LINC00473 could be a viable target for this devastating disease.
Collapse
Affiliation(s)
- Rosanna K. Ma
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Pei-Yin Tsai
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Alaa R. Farghli
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexandria Shumway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - John D. Gordan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, United States of America
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Khashayar Vakili
- Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Manabu Nukaya
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Leila Noetzli
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Sean Ronnekleiv-Kelly
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Wendy Broom
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Joeva Barrow
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
14
|
Zhang G, Zhang M, Pei Y, Qian K, Xie J, Huang Q, Liu S, Xue N, Zu Y, Wang H. Enhancing stability of liposomes using high molecular weight chitosan to promote antioxidative stress effects and lipid-lowering activity of encapsulated lutein in vivo and in vitro. Int J Biol Macromol 2023; 253:126564. [PMID: 37714230 DOI: 10.1016/j.ijbiomac.2023.126564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023]
Abstract
Lutein is an antioxidant with multiple beneficial functions. However, its therapeutic potential is hampered by its low water solubility and bioavailability. The goal of this study is to compare the stability of lutein-loaded liposomes (Lu-lip) and low (LC)/high molecular weight (HC) chitosan-coated Lu-lip, along with their antioxidant capacity using H2O2-induced HepG2 cells and their lipid-lowering activity using high-fat diet mice. Both LC and HC reduced the lutein degradation rate by 17.5 % and 26.72 % in a challenging environment at pH 6 and T = 4 °C. Compared to LC, the HC coating improved the size- and zeta-potential-stability of Lu-lip at 5 < pH < 7, with the best performance at pH 6. The HC coating prolonged the lutein release profile, increased the cellular uptake of Lu-lip, and reduced the reactive oxygen species (ROS) levels and the H2O2-induced necrotic cell ratios by increasing the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Animal experiments have shown that oral administration of LC and HC coated Lu-lip can significantly reduce body weight levels, total triglycerides (TG), total cholesterol (TC), and non-high-density lipoprotein (n-HDL-C) in high-fat diet mice while significantly increasing the levels of CAT, SOD and GSH-Px in the liver of mice. LC and HC coated Lu-lip can reduce fat accumulation in the liver and epididymal adipose tissue.
Collapse
Affiliation(s)
- Gaoshuai Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Meijing Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Yiqiao Pei
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Kun Qian
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Jiao Xie
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, GuiZhou 550025, China
| | - Qun Huang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, GuiZhou 550025, China.
| | - Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| | - Na Xue
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin Fifth Central Hospital, Tianjin 300450, China; Central Laboratory, the Fifth Central Hospital of Tianjin, Tianjin 300450, China.
| | - Yujiao Zu
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, United States.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
15
|
Orján EM, Kormányos ES, Fűr GM, Dombi Á, Bálint ER, Balla Z, Balog BA, Dágó Á, Totonji A, Bátai ZI, Jurányi EP, Ditrói T, Al-Omari A, Pozsgai G, Kormos V, Nagy P, Pintér E, Rakonczay Z, Kiss L. The anti-inflammatory effect of dimethyl trisulfide in experimental acute pancreatitis. Sci Rep 2023; 13:16813. [PMID: 37798377 PMCID: PMC10556037 DOI: 10.1038/s41598-023-43692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Various organosulfur compounds, such as dimethyl trisulfide (DMTS), display anti-inflammatory properties. We aimed to examine the effects of DMTS on acute pancreatitis (AP) and its mechanism of action in both in vivo and in vitro studies. AP was induced in FVB/n mice or Wistar rats by caerulein, ethanol-palmitoleic acid, or L-ornithine-HCl. DMTS treatments were administered subcutaneously. AP severity was assessed by pancreatic histological scoring, pancreatic water content, and myeloperoxidase activity measurements. The behaviour of animals was followed. Pancreatic heat shock protein 72 (HSP72) expression, sulfide, and protein persulfidation were measured. In vitro acinar viability, intracellular Ca2+ concentration, and reactive oxygen species production were determined. DMTS dose-dependently decreased the severity of AP. It declined the pancreatic infiltration of leukocytes and cellular damage in mice. DMTS upregulated the HSP72 expression during AP and elevated serum sulfide and low molecular weight persulfide levels. DMTS exhibited cytoprotection against hydrogen peroxide and AP-inducing agents. It has antioxidant properties and modulates physiological but not pathophysiological Ca2+ signalling. Generally, DMTS ameliorated AP severity and protected pancreatic acinar cells. Our findings indicate that DMTS is a sulfur donor with anti-inflammatory and antioxidant effects, and organosulfur compounds require further investigation into this potentially lethal disease.
Collapse
Affiliation(s)
- Erik Márk Orján
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Eszter Sára Kormányos
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | | | - Ágnes Dombi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Emese Réka Bálint
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Beáta Adél Balog
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Ágnes Dágó
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Ahmad Totonji
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary
| | - Zoárd István Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Petra Jurányi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Ammar Al-Omari
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary
- Chemistry Institute, University of Debrecen, Debrecen, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary.
| | - Lóránd Kiss
- Department of Pathophysiology, University of Szeged, Semmelweis U. 1, 6725, Szeged, Hungary.
| |
Collapse
|
16
|
Zhu H, Li T, Li C, Liu Y, Miao Y, Liu D, Shen Q. Intracellular kynurenine promotes acetaldehyde accumulation, further inducing the apoptosis in soil beneficial fungi Trichoderma guizhouense NJAU4742 under acid stress. Environ Microbiol 2023; 25:331-351. [PMID: 36367399 DOI: 10.1111/1462-2920.16286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
In this study, the growth of fungi Trichoderma guizhouense NJAU4742 was significantly inhibited under acid stress, and the genes related to acid stress were identified based on transcriptome analysis. Four genes including tna1, adh2/4, and bna3 were significantly up-regulated. Meanwhile, intracellular hydrogen ions accumulated under acid stress, and ATP synthesis was induced to transport hydrogen ions to maintain hydrogen ion balance. The enhancement of glycolysis pathway was also detected, and a large amount of pyruvic acid from glycolysis was accumulated due to the activity limitation of PDH enzymes. Finally, acetaldehyde accumulated, resulting in the induction of adh2/4. In order to cope with stress caused by acetaldehyde, cells enhanced the synthesis of NAD+ by increasing the expression of tna1 and bna3 genes. NAD+ effectively improved the antioxidant capacity of cells, but the NAD+ supplement pathway mediated by bna3 could also cause the accumulation of kynurenine (KYN), which was an inducer of apoptosis. In addition, KYN had a specific promoting effect on acetaldehyde synthesis by improving the expression of eno2 gene, which led to the extremely high intracellular acetaldehyde in the cell under acidic stress. Our findings provided a route to better understand the response of filamentous fungi under acid stress.
Collapse
Affiliation(s)
- Han Zhu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Tuo Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Chi Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu, People's Republic of China
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
Vallabh NA, Armstrong J, Czanner G, McDonagh B, Choudhary A, Criddle DN, Willoughby CE. Evidence of impaired mitochondrial cellular bioenergetics in ocular fibroblasts derived from glaucoma patients. Free Radic Biol Med 2022; 189:102-110. [PMID: 35872337 DOI: 10.1016/j.freeradbiomed.2022.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration of the retinal ganglion cells (RGCs) resulting in irreversible visual impairment and eventual blindness. RGCs are extremely susceptible to mitochondrial compromise due to their marked bioenergetic requirements and morphology. There is increasing interest in therapies targeting mitochondrial health as a method of preventing visual loss in managing glaucoma. The bioenergetic profile of Tenon's ocular fibroblasts from glaucoma patients and controls was investigated using the Seahorse XF24 analyser. Impaired mitochondrial cellular bioenergetics was detected in glaucomatous ocular fibroblasts including basal respiration, maximal respiration and spare capacity. Spare respiratory capacity levels reflect mitochondrial bio-energetic adaptability in response to pathophysiological stress. Basal oxidative stress was elevated in glaucomatous Tenon's ocular fibroblasts and hydrogen peroxide (H2O2) induced reactive oxygen species (ROS) simulated the glaucomatous condition in normal Tenon's ocular fibroblasts. This work supports the role of therapeutic interventions to target oxidative stress or provide mitochondrial energetic support in glaucoma.
Collapse
Affiliation(s)
- Neeru A Vallabh
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, United Kingdom; St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, United Kingdom
| | - Jane Armstrong
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Gabriela Czanner
- School of Computer Science and Mathematics, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom; Faculty of Informatics and Information Technology, Slovak University of Technology, 842 16, Bratislava, Slovakia
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Anshoo Choudhary
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, United Kingdom
| | - David N Criddle
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Colin E Willoughby
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, United Kingdom; Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, United Kingdom.
| |
Collapse
|
18
|
Yang X, Yao L, Yuan M, Zhang X, Jakubowska MA, Ferdek PE, Dai L, Yang J, Jin T, Deng L, Fu X, Du D, Liu T, Criddle DN, Sutton R, Huang W, Xia Q. Transcriptomics and Network Pharmacology Reveal the Protective Effect of Chaiqin Chengqi Decoction on Obesity-Related Alcohol-Induced Acute Pancreatitis via Oxidative Stress and PI3K/Akt Signaling Pathway. Front Pharmacol 2022; 13:896523. [PMID: 35754467 PMCID: PMC9213732 DOI: 10.3389/fphar.2022.896523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity-related acute pancreatitis (AP) is characterized by increasing prevalence worldwide and worse clinical outcomes compared to AP of other etiologies. Chaiqin chengqi decoction (CQCQD), a Chinese herbal formula, has long been used for the clinical management of AP but its therapeutic actions and the underlying mechanisms have not been fully elucidated. This study has investigated the pharmacological mechanisms of CQCQD in a novel mouse model of obesity-related alcohol-induced AP (OA-AP). The mouse OA-AP model was induced by a high-fat diet for 12 weeks and subsequently two intraperitoneal injections of ethanol, CQCQD was administered 2 h after the first injection of ethanol. The severity of OA-AP was assessed and correlated with changes in transcriptomic profiles and network pharmacology in the pancreatic and adipose tissues, and further docking analysis modeled the interactions between compounds of CQCQD and their key targets. The results showed that CQCQD significantly reduced pancreatic necrosis, alleviated systemic inflammation, and decreased the parameters associated with multi-organ dysfunction. Transcriptomics and network pharmacology analysis, as well as further experimental validation, have shown that CQCQD induced Nrf2/HO-1 antioxidant protein response and decreased Akt phosphorylation in the pancreatic and adipose tissues. In vitro, CQCQD protected freshly isolated pancreatic acinar cells from H2O2-elicited oxidative stress and necrotic cell death. The docking results of AKT1 and the active compounds related to AKT1 in CQCQD showed high binding affinity. In conclusion, CQCQD ameliorates the severity of OA-AP by activating of the antioxidant protein response and down-regulating of the PI3K/Akt signaling pathway in the pancreas and visceral adipose tissue.
Collapse
Affiliation(s)
- Xinmin Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoying Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | | | - Pawel E Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jingyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Lihui Deng
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - David N Criddle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China.,Institutes for Systems Genetics & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Guitart-Mampel M, Urquiza P, Carnevale Neto F, Anderson JR, Hambardikar V, Scoma ER, Merrihew GE, Wang L, MacCoss MJ, Raftery D, Peffers MJ, Solesio ME. Mitochondrial Inorganic Polyphosphate (polyP) Is a Potent Regulator of Mammalian Bioenergetics in SH-SY5Y Cells: A Proteomics and Metabolomics Study. Front Cell Dev Biol 2022; 10:833127. [PMID: 35252194 PMCID: PMC8892102 DOI: 10.3389/fcell.2022.833127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
Inorganic polyphosphate (polyP) is an ancient, ubiquitous, and well-conserved polymer which is present in all the studied organisms. It is formed by individual subunits of orthophosphate which are linked by structurally similar bonds and isoenergetic to those found in ATP. While the metabolism and the physiological roles of polyP have already been described in some organisms, including bacteria and yeast, the exact role of this polymer in mammalian physiology still remains poorly understood. In these organisms, polyP shows a co-localization with mitochondria, and its role as a key regulator of the stress responses, including the maintenance of appropriate bioenergetics, has already been demonstrated by our group and others. Here, using Wild-type (Wt) and MitoPPX (cells enzymatically depleted of mitochondrial polyP) SH-SY5Y cells, we have conducted a comprehensive study of the status of cellular physiology, using proteomics and metabolomics approaches. Our results suggest a clear dysregulation of mitochondrial physiology, especially of bioenergetics, in MitoPPX cells when compared with Wt cells. Moreover, the effects induced by the enzymatic depletion of polyP are similar to those present in the mitochondrial dysfunction that is observed in neurodegenerative disorders and in neuronal aging. Based on our findings, the metabolism of mitochondrial polyP could be a valid and innovative pharmacological target in these conditions.
Collapse
Affiliation(s)
| | - Pedro Urquiza
- Department of Biology, Rutgers University, Camden, NJ, United States
| | - Fausto Carnevale Neto
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | - James R. Anderson
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Vedangi Hambardikar
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Ernest R. Scoma
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mandy J. Peffers
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Maria E. Solesio
- Department of Biology, Rutgers University, Camden, NJ, United States
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| |
Collapse
|
20
|
Malla B, Liotta A, Bros H, Ulshöfer R, Paul F, Hauser AE, Niesner R, Infante-Duarte C. Teriflunomide Preserves Neuronal Activity and Protects Mitochondria in Brain Slices Exposed to Oxidative Stress. Int J Mol Sci 2022; 23:ijms23031538. [PMID: 35163469 PMCID: PMC8835718 DOI: 10.3390/ijms23031538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Teriflunomide (TFN) limits relapses in relapsing–remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have been reported during neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility caused by oxidative stress in peripheral axons. Here, we aimed to validate TFN effects on mitochondria and neuronal activity in hippocampal brain slices, in which cellular distribution and synaptic circuits are largely preserved. TFN effects on metabolism and neuronal activity were investigated by assessing oxygen partial pressure and local field potential in acute slices. Additionally, we imaged mitochondria in brain slices from the transgenic Thy1-CFP/COX8A)S2Lich/J (mitoCFP) mice using two-photon microscopy. Although TFN could not prevent oxidative stress-related depletion of ATP, it preserved oxygen consumption and neuronal activity in CNS tissue during oxidative stress. Furthermore, TFN prevented mitochondrial shortening and fragmentation of puncta-shaped and network mitochondria during oxidative stress. Regarding motility, TFN accentuated the decrease in mitochondrial displacement and increase in speed observed during oxidative stress. Importantly, these effects were not associated with neuronal viability and did not lead to axonal damage. In conclusion, during conditions of oxidative stress, TFN preserves the functionality of neurons and prevents morphological and motility alterations of mitochondria.
Collapse
Affiliation(s)
- Bimala Malla
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.M.); (H.B.); (R.U.)
| | - Agustin Liotta
- Klinik für Anästhesiologie mit Schwerpunkt Operative Intensivmedizin, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Helena Bros
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.M.); (H.B.); (R.U.)
| | - Rebecca Ulshöfer
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.M.); (H.B.); (R.U.)
- Experimental and Clinical Research Center (ECRC), MDC for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), MDC for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anja E. Hauser
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany; (A.E.H.); (R.N.)
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Raluca Niesner
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany; (A.E.H.); (R.N.)
- Dynamic and Functional In Vivo Imaging, Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.M.); (H.B.); (R.U.)
- Experimental and Clinical Research Center (ECRC), MDC for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
- Correspondence:
| |
Collapse
|
21
|
Functional Differences between Proteasome Subtypes. Cells 2022; 11:cells11030421. [PMID: 35159231 PMCID: PMC8834425 DOI: 10.3390/cells11030421] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
Four proteasome subtypes are commonly present in mammalian tissues: standard proteasomes, which contain the standard catalytic subunits β1, β2 and β5; immunoproteasomes containing the immuno-subunits β1i, β2i and β5i; and two intermediate proteasomes, containing a mix of standard and immuno-subunits. Recent studies revealed the expression of two tissue-specific proteasome subtypes in cortical thymic epithelial cells and in testes: thymoproteasomes and spermatoproteasomes. In this review, we describe the mechanisms that enable the ATP- and ubiquitin-dependent as well as the ATP- and ubiquitin-independent degradation of proteins by the proteasome. We focus on understanding the role of the different proteasome subtypes in maintaining protein homeostasis in normal physiological conditions through the ATP- and ubiquitin-dependent degradation of proteins. Additionally, we discuss the role of each proteasome subtype in the ATP- and ubiquitin-independent degradation of disordered proteins. We also discuss the role of the proteasome in the generation of peptides presented by MHC class I molecules and the implication of having different proteasome subtypes for the peptide repertoire presented at the cell surface. Finally, we discuss the role of the immunoproteasome in immune cells and its modulation as a potential therapy for autoimmune diseases.
Collapse
|
22
|
Urquiza P, Solesio ME. Inorganic Polyphosphate, Mitochondria, and Neurodegeneration. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:27-49. [PMID: 35697936 DOI: 10.1007/978-3-031-01237-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With an aging population, the presence of aging-associated pathologies is expected to increase within the next decades. Regrettably, we still do not have any valid pharmacological or non-pharmacological tools to prevent, revert, or cure these pathologies. The absence of therapeutical approaches against aging-associated pathologies can be at least partially explained by the relatively lack of knowledge that we still have regarding the molecular mechanisms underlying them, as well as by the complexity of their etiopathology. In fact, a complex number of changes in the physiological function of the cell has been described in all these aging-associated pathologies, including neurodegenerative disorders. Based on multiple scientific manuscripts produced by us and others, it seems clear that mitochondria are dysfunctional in many of these aging-associated pathologies. For example, mitochondrial dysfunction is an early event in the etiopathology of all the main neurodegenerative disorders, and it could be a trigger of many of the other deleterious changes which are present at the cellular level in these pathologies. While mitochondria are complex organelles and their regulation is still not yet entirely understood, inorganic polyphosphate (polyP) could play a crucial role in the regulation of some mitochondrial processes, which are dysfunctional in neurodegeneration. PolyP is a well-preserved biopolymer; it has been identified in every organism that has been studied. It is constituted by a series of orthophosphates connected by highly energetic phosphoanhydride bonds, comparable to those found in ATP. The literature suggests that the role of polyP in maintaining mitochondrial physiology might be related, at least partially, to its effects as a key regulator of cellular bioenergetics. However, further research needs to be conducted to fully elucidate the molecular mechanisms underlying the effects of polyP in the regulation of mitochondrial physiology in aging-associated pathologies, including neurodegenerative disorders. With a significant lack of therapeutic options for the prevention and/or treatment of neurodegeneration, the search for new pharmacological tools against these conditions has been continuous in past decades, even though very few therapeutic approaches have shown potential in treating these pathologies. Therefore, increasing our knowledge about the molecular mechanisms underlying the effects of polyP in mitochondrial physiology as well as its metabolism could place this polymer as a promising and innovative pharmacological target not only in neurodegeneration, but also in a wide range of aging-associated pathologies and conditions where mitochondrial dysfunction has been described as a crucial component of its etiopathology, such as diabetes, musculoskeletal disorders, and cardiovascular disorders.
Collapse
Affiliation(s)
- Pedro Urquiza
- Department of Biology, Rutgers University, Camden, NJ, USA
| | | |
Collapse
|
23
|
Pereira APA, Fernando Figueiredo Angolini C, de Souza-Sporkens JC, da Silva TA, Coutinho Franco de Oliveira H, Pastore GM. Brazilian sunberry (Solanum oocarpum Sendtn): Alkaloid composition and improvement of mitochondrial functionality and insulin secretion of INS-1E cells. Food Res Int 2021; 148:110589. [PMID: 34507734 DOI: 10.1016/j.foodres.2021.110589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 05/24/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
Chronic high-glucose levels induce the generation of reactive oxygen species leading to mitochondrial dysfunction, which is one of the pathological triggers in the development of diabetes. This study investigated the alkaloid composition of two fruits of the genus Solanum, fruta-do-lobo (Solanum lycocarpum) and juá-açu (Solanum oocarpum), and their capacity to protect against oxidative damage and defective insulin secretion induced by chronic high-glucose levels. LC-MS and molecular network of fruit crude extracts reveals that juá-açu and fruta-do-lobo contain kukoamines and glycoalkaloids, respectively. Two purification processes were used to enrich those alkaloids. Fruta-do-lobo extract rich in glycoalkaloids showed a strong cytotoxicity effect, however the juá-açu enriched extract was able to protect mitochondrial functionality against glucotoxicity and stimulate insulin secretion even under conditions of hyperglycemia. These results are promising and suggest that juá-açu is a potential source of bioactive compounds for adjuvant/co-adjuvant therapy for diabetes.
Collapse
Affiliation(s)
- Ana Paula Aparecida Pereira
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, São Paulo 13083-862, Brazil; Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| | | | - Jane Cristina de Souza-Sporkens
- Department of Structural and Functional Biology, Biology Institute, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil
| | - Tomaz Antonio da Silva
- Center for Natural and Human Sciences, University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Helena Coutinho Franco de Oliveira
- Department of Structural and Functional Biology, Biology Institute, University of Campinas, Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-862, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, São Paulo 13083-862, Brazil
| |
Collapse
|
24
|
Bamodu OA, Wang YH, Ho CH, Hu SW, Lin CD, Tzou KY, Wu WL, Chen KC, Wu CC. Genetic Suppressor Element 1 (GSE1) Promotes the Oncogenic and Recurrent Phenotypes of Castration-Resistant Prostate Cancer by Targeting Tumor-Associated Calcium Signal Transducer 2 (TACSTD2). Cancers (Basel) 2021; 13:3959. [PMID: 34439112 PMCID: PMC8392851 DOI: 10.3390/cancers13163959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND prostate cancer (PCa) is a principal cause of cancer-related morbidity and mortality. Castration resistance and metastasis are clinical challenges and continue to impede therapeutic success, despite diagnostic and therapeutic advances. There are reports of the oncogenic activity of genetic suppressor element (GSE)1 in breast and gastric cancers; however, its role in therapy resistance, metastasis, and susceptibility to disease recurrence in PCa patients remains unclear. OBJECTIVE this study investigated the role of aberrantly expressed GSE1 in the metastasis, therapy resistance, relapse, and poor prognosis of advanced PCa. METHODS we used a large cohort of multi-omics data and in vitro, ex vivo, and in vivo assays to investigate the potential effect of altered GSE1 expression on advanced/castration-resistant PCa (CRPC) treatment responses, disease progression, and prognosis. RESULTS using a multi-cohort approach, we showed that GSE1 is upregulated in PCa, while tumor-associated calcium signal transducer 2 (TACSTD2) is downregulated. Moreover, the direct, but inverse, correlation interaction between GSE1 and TACSTD2 drives metastatic disease, castration resistance, and disease progression and modulates the clinical and immune statuses of patients with PCa. Patients with GSE1highTACSTD2low expression are more prone to recurrence and disease-specific death than their GSE1lowTACSTD2high counterparts. Interestingly, we found that the GSE1-TACSTD2 expression profile is associated with the therapy responses and clinical outcomes in patients with PCa, especially those with metastatic/recurrent disease. Furthermore, we demonstrate that the shRNA-mediated targeting of GSE1 (shGSE1) significantly inhibits cell proliferation and attenuates cell migration and tumorsphere formation in metastatic PC3 and DU145 cell lines, with an associated suppression of VIM, SNAI2, and BCL2 and the concomitant upregulation of TACSTD2 and BAX. Moreover, shGSE1 enhances sensitivity to the antiandrogens abiraterone and enzalutamide in vitro and in vivo. CONCLUSION these data provide preclinical evidence of the oncogenic role of dysregulated GSE1-TACSTD2 signaling and show that the molecular or pharmacological targeting of GSE1 is a workable therapeutic strategy for inhibiting androgen-driven oncogenic signals, re-sensitizing CRPC to treatment, and repressing the metastatic/recurrent phenotypes of patients with PCa.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (O.A.B.); (S.-W.H.); (C.-D.L.); (K.-Y.T.); (W.-L.W.); (K.-C.C.)
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan;
- Department of Hematology and Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Yuan-Hung Wang
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Chen-Hsun Ho
- Department of Surgery, Division of Urology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei City 111, Taiwan;
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Su-Wei Hu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (O.A.B.); (S.-W.H.); (C.-D.L.); (K.-Y.T.); (W.-L.W.); (K.-C.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 110, Taiwan
| | - Chia-Da Lin
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (O.A.B.); (S.-W.H.); (C.-D.L.); (K.-Y.T.); (W.-L.W.); (K.-C.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 110, Taiwan
| | - Kai-Yi Tzou
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (O.A.B.); (S.-W.H.); (C.-D.L.); (K.-Y.T.); (W.-L.W.); (K.-C.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 110, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Wen-Ling Wu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (O.A.B.); (S.-W.H.); (C.-D.L.); (K.-Y.T.); (W.-L.W.); (K.-C.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 110, Taiwan
| | - Kuan-Chou Chen
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (O.A.B.); (S.-W.H.); (C.-D.L.); (K.-Y.T.); (W.-L.W.); (K.-C.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 110, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Chia-Chang Wu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan; (O.A.B.); (S.-W.H.); (C.-D.L.); (K.-Y.T.); (W.-L.W.); (K.-C.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 110, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| |
Collapse
|
25
|
Mei QX, Hu JH, Huang ZH, Fan JJ, Huang CL, Lu YY, Wang XP, Zeng Y. Pretreatment with chitosan oligosaccharides attenuate experimental severe acute pancreatitis via inhibiting oxidative stress and modulating intestinal homeostasis. Acta Pharmacol Sin 2021; 42:942-953. [PMID: 33495520 PMCID: PMC8149410 DOI: 10.1038/s41401-020-00581-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Severe acute pancreatitis (SAP) is a severe acute abdominal disease. Recent evidence shows that intestinal homeostasis is essential for the management of acute pancreatitis. Chitosan oligosaccharides (COS) possess antioxidant activity that are effective in treating various inflammatory diseases. In this study we explored the potential therapeutic effects of COS on SAP and underlying mechanisms. Mice were treated with COS (200 mg·kg-1·d-1, po) for 4 weeks, then SAP was induced in the mice by intraperitoneal injection of caerulein. We found that COS administration significantly alleviated the severity of SAP: the serum amylase and lipase levels as well as pancreatic myeloperoxidase activity were significantly reduced. COS administration suppressed the production of proinflammatory cytokines (TNF-α, IL-1β, CXCL2 and MCP1) in the pancreas and ileums. Moreover, COS administration decreased pancreatic inflammatory infiltration and oxidative stress in SAP mice, accompanied by activated Nrf2/HO-1 and inhibited TLR4/NF-κB and MAPK pathways. We further demonstrated that COS administration restored SAP-associated ileal damage and barrier dysfunction. In addition, gut microbiome analyses revealed that the beneficial effect of COS administration was associated with its ability to improve the pancreatitis-associated gut microbiota dysbiosis; in particular, probiotics Akkermansia were markedly increased, while pathogenic bacteria Escherichia-Shigella and Enterococcus were almost eliminated. The study demonstrates that COS administration remarkably attenuates SAP by reducing oxidative stress and restoring intestinal homeostasis, suggesting that COS might be a promising prebiotic agent for the treatment of SAP.
Collapse
Affiliation(s)
- Qi-Xiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
| | - Jun-Hui Hu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
| | - Ze-Hua Huang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
| | - Jun-Jie Fan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
| | - Chun-Lan Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
| | - Ying-Ying Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
| | - Xing-Peng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China.
| | - Yue Zeng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China.
| |
Collapse
|
26
|
Ouyang Y, Wen L, Armstrong JA, Chvanov M, Latawiec D, Cai W, Awais M, Mukherjee R, Huang W, Gough PJ, Bertin J, Tepikin AV, Sutton R, Criddle DN. Protective Effects of Necrostatin-1 in Acute Pancreatitis: Partial Involvement of Receptor Interacting Protein Kinase 1. Cells 2021; 10:1035. [PMID: 33925729 PMCID: PMC8145347 DOI: 10.3390/cells10051035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Acute pancreatitis (AP) is a severe and potentially fatal disease caused predominantly by alcohol excess and gallstones, which lacks a specific therapy. The role of Receptor-Interacting Protein Kinase 1 (RIPK1), a key component of programmed necrosis (Necroptosis), is unclear in AP. We assessed the effects of RIPK1 inhibitor Necrostatin-1 (Nec-1) and RIPK1 modification (RIPK1K45A: kinase dead) in bile acid (TLCS-AP), alcoholic (FAEE-AP) and caerulein hyperstimulation (CER-AP) mouse models. Involvement of collateral Nec-1 target indoleamine 2,3-dioxygenase (IDO) was probed with the inhibitor Epacadostat (EPA). Effects of Nec-1 and RIPK1K45A were also compared on pancreatic acinar cell (PAC) fate in vitro and underlying mechanisms explored. Nec-1 markedly ameliorated histological and biochemical changes in all models. However, these were only partially reduced or unchanged in RIPK1K45A mice. Inhibition of IDO with EPA was protective in TLCS-AP. Both Nec-1 and RIPK1K45A modification inhibited TLCS- and FAEE-induced PAC necrosis in vitro. Nec-1 did not affect TLCS-induced Ca2+ entry in PACs, however, it inhibited an associated ROS elevation. The results demonstrate protective actions of Nec-1 in multiple models. However, RIPK1-dependent necroptosis only partially contributed to beneficial effects, and actions on targets such as IDO are likely to be important.
Collapse
Affiliation(s)
- Yulin Ouyang
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (Y.O.); (M.C.); (A.V.T.)
- Brain Cognition and Brain Disease Institute, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Wen
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Jane A. Armstrong
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Michael Chvanov
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (Y.O.); (M.C.); (A.V.T.)
| | - Diane Latawiec
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Wenhao Cai
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Mohammad Awais
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Rajarshi Mukherjee
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Wei Huang
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - Peter J. Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.J.G.); (J.B.)
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.J.G.); (J.B.)
| | - Alexei V. Tepikin
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (Y.O.); (M.C.); (A.V.T.)
| | - Robert Sutton
- Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (L.W.); (J.A.A.); (D.L.); (W.C.); (M.A.); (R.M.); (W.H.); (R.S.)
| | - David N. Criddle
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (Y.O.); (M.C.); (A.V.T.)
| |
Collapse
|
27
|
Srinivasan MP, Bhopale KK, Caracheo AA, Kaphalia L, Loganathan G, Balamurugan AN, Rastellini C, Kaphalia BS. Differential cytotoxicity, ER/oxidative stress, dysregulated AMPKα signaling, and mitochondrial stress by ethanol and its metabolites in human pancreatic acinar cells. Alcohol Clin Exp Res 2021; 45:961-978. [PMID: 33690904 DOI: 10.1111/acer.14595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disorder of the exocrine pancreatic gland. A previous study from this laboratory showed that ethanol (EtOH) causes cytotoxicity, dysregulates AMPKα and ER/oxidative stress signaling, and induces inflammatory responses in primary human pancreatic acinar cells (hPACs). Here we examined the differential cytotoxicity of EtOH and its oxidative (acetaldehyde) and nonoxidative (fatty acid ethyl esters; FAEEs) metabolites in hPACs was examined to understand the metabolic basis and mechanism of ACP. METHODS We evaluated concentration-dependent cytotoxicity, AMPKα inactivation, ER/oxidative stress, and inflammatory responses in hPACs by incubating them for 6 h with EtOH, acetaldehyde, or FAEEs at clinically relevant concentrations reported in alcoholic subjects using conventional methods. Cellular bioenergetics (mitochondrial stress and a real-time ATP production rate) were determined using Seahorse XFp Extracellular Flux Analyzer in AR42J cells treated with acetaldehyde or FAEEs. RESULTS We observed concentration-dependent increases in LDH release, inactivation of AMPKα along with upregulation of ACC1 and FAS (key lipogenic proteins), downregulation of p-LKB1 (an oxidative stress-sensitive upstream kinase regulating AMPKα) and CPT1A (involved in β-oxidation of fatty acids) in hPACs treated with EtOH, acetaldehyde, or FAEEs. Concentration-dependent increases in oxidative stress and ER stress as measured by GRP78, unspliced XBP1, p-eIF2α, and CHOP along with activation of p-JNK1/2, p-ERK1/2, and p-P38MAPK were present in cells treated with EtOH, acetaldehyde, or FAEEs, respectively. Furthermore, a significant decrease was observed in the total ATP production rate with subsequent mitochondrial stress in AR42J cells treated with acetaldehyde and FAEEs. CONCLUSIONS EtOH and its metabolites, acetaldehyde and FAEEs, caused cytotoxicity, ER/oxidative and mitochondrial stress, and dysregulated AMPKα signaling, suggesting a key role of EtOH metabolism in the etiopathogenesis of ACP. Because oxidative EtOH metabolism is negligible in the exocrine pancreas, the pathogenesis of ACP could be attributable to the formation of FAEEs and related pancreatic acinar cell injury.
Collapse
Affiliation(s)
- Mukund P Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Kamlesh K Bhopale
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Anna A Caracheo
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Lata Kaphalia
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Appakalai N Balamurugan
- Department of Surgery, University of Louisville, Louisville, KY, USA.,Islet Biology Laboratory, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Cristiana Rastellini
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
28
|
Zhang J, Huang W, He Q, Deng T, Wu B, Huang F, Bi J, Jin Y, Sun H, Zhang Q, Shi K. PINK1/PARK2 dependent mitophagy effectively suppresses NLRP3 inflammasome to alleviate acute pancreatitis. Free Radic Biol Med 2021; 166:147-164. [PMID: 33636335 DOI: 10.1016/j.freeradbiomed.2021.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is a clinically common acute inflammatory disease in digestive system, leading to systemic inflammatory response syndrome (SIRS) and severe acute pancreatitis (SAP). It was reported that PINK1/PARK2 dependent mitophagy played an important role in various inflammatory diseases. However, its role in AP has not been elucidated. Herein, we explore the effect of mitophagy in the pathogenesis of AP. METHODS Firstly, we established cerulein-induced AP group and arginine-induced SAP group based on wild, PINK1-/- and PARK2-/- mice. Pancreatic samples were harvested for further investing the mitochondrial dynamics, mitophagy alterations, NLRP3 inflammatory pathway etc. Furthermore, peripheral blood mononuclear cells from SAP patients were collected to examine the expression of mitophagy-related indicators. Additionally, the interrelationship between mitophagy and NLRP3 inflammasome was also explored in AP. RESULTS It was confirmed that mitochondria were damaged in both AP and SAP models. The expressions of PINK1, PARK2 and mitochondrial autophagosomes were elevated in wild AP group, which were decreased in SAP group over time. Similarly, the expressions of PINK1 and PAKR2 in peripheral blood mononuclear cells were significantly lower in SAP patients. Besides, in PINK1-/- and PARK2-/- mice AP groups, more pronounced inflammatory infiltration, increased apoptotic and necrotic levels and upregulated NLRP3 inflammasome pathway were detected. After injection with MCC950, NLRP3 inflammasome production was notably reduced in PINK1-/-and PARK2-/-mice, which effectively alleviated the pancreatic damage and inflammatory cell infiltration. CONCLUSION Our study suggested that mitochondrial dysfunction activated PINK1/PARK2-mediated mitophagy in AP, while mitophagy was impaired in SAP. PINK1-/- and PARK2-/- mice were more sensitive to onset of SAP and the deficiency of mitophagy could lead to the formation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Weiguo Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Qikuan He
- Department of General Surgery, Ningbo First Hospital, Ningbo, Zhejiang, 315000, PR China.
| | - Tuo Deng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Boda Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Feifei Huang
- The Ultrasonic Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Jiayang Bi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Yuepeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Qiyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| |
Collapse
|
29
|
Deng F, Zheng X, Sharma I, Dai Y, Wang Y, Kanwar YS. Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol metabolism. Am J Physiol Renal Physiol 2021; 320:F578-F595. [PMID: 33615890 PMCID: PMC8083971 DOI: 10.1152/ajprenal.00016.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Regulated cell death (RCD), distinct from accidental cell death, refers to a process of well-controlled programmed cell death with well-defined pathological mechanisms. In the past few decades, various terms for RCDs were coined, and some of them have been implicated in the pathogenesis of various types of acute kidney injury (AKI). Cisplatin is widely used as a chemotherapeutic drug for a broad spectrum of cancers, but its usage was hampered because of being highly nephrotoxic. Cisplatin-induced AKI is commonly seen clinically, and it also serves as a well-established prototypic model for laboratory investigations relevant to acute nephropathy affecting especially the tubular compartment. Literature reports over a period of three decades have indicated that there are multiple types of RCDs, including apoptosis, necroptosis, pyroptosis, ferroptosis, and mitochondrial permeability transition-mediated necrosis, and some of them are pertinent to the pathogenesis of cisplatin-induced AKI. Interestingly, myo-inositol metabolism, a vital biological process that is largely restricted to the kidney, seems to be relevant to the pathogenesis of certain forms of RCDs. A comprehensive understanding of RCDs in cisplatin-induced AKI and their relevance to myo-inositol homeostasis may yield novel therapeutic targets for the amelioration of cisplatin-related nephropathy.
Collapse
Affiliation(s)
- Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Xiaoping Zheng
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Isha Sharma
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Yingbo Dai
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The Fifth Affiliated Hospital of Sun Yet-Sen University, Zhuhai, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
30
|
Zhao ZF, Zhang Y, Sun Y, Zhang CH, Liu MW. Protective effects of baicalin on caerulein-induced AR42J pancreatic acinar cells by attenuating oxidative stress through miR-136-5p downregulation. Sci Prog 2021; 104:368504211026118. [PMID: 34176350 PMCID: PMC10305831 DOI: 10.1177/00368504211026118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Baicalin, the main active component of Scutellaria baicalensis, has antioxidant and anti-apoptotic effects and is used to treat acute pancreatitis; however, its specific mechanism is unclear. This study aims to determine the protective effect and underlying mechanism of baicalin on AR42J pancreatic acinar cell injury. AR42J acinar cells (caerulein, 10 nmol/L) were induced in vitro to establish a cell model for acute pancreatitis. Cell relative survival was measured by thiazolyl blue tetrazolium bromide, and cell apoptosis and death were examined by flow cytometry. The expression levels of superoxide dismutase1 (SOD1), Bax, survivin, Bcl-2, caspase-3, and caspase-7 proteins were analyzed by Western blot, and those of SOD1 mRNA and miR-136-5p were determined by RT-PCR. The activities of GSH, SOD1, ROS, and MDA were also investigated. Compared with those of the caerulein group, the relative survival rate and activity of AR42J pancreatic acinar cells with different baicalin concentrations were significantly increased (p < 0.05), and the supernatant amylase level was markedly decreased (p < 0.05). In addition, the ROS and MDA activities and mir-136-5p expression were significantly decreased, and the GSH activities and SOD1 gene and protein expression levels were markedly increased (p < 0.05). These results suggest that baicalin reduced the caerulein-induced death of AR42J acinar cells and alleviated the caerulein-induced injury in pancreatic acinar cells by inhibiting oxidative stress. The mechanism may be related to the decreased expression of Mir-136-5p and the increased expression of SOD1 gene and protein.
Collapse
Affiliation(s)
- Zhu-fen Zhao
- Department of Emergency Medicine, First
Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ye Zhang
- Department of Traditional Chinese
Medicine, The Third People’s Hospital of Yunnan Province, Kunming, China
| | - Yang Sun
- Department of Nephrology, The Sixth
Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Chun-hai Zhang
- Department of Emergency Medicine, First
Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ming-wei Liu
- Department of Emergency Medicine, First
Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
31
|
Brasil FB, Bertolini Gobbo RC, Souza de Almeida FJ, Luckachaki MD, Dall'Oglio EL, de Oliveira MR. The signaling pathway PI3K/Akt/Nrf2/HO-1 plays a role in the mitochondrial protection promoted by astaxanthin in the SH-SY5Y cells exposed to hydrogen peroxide. Neurochem Int 2021; 146:105024. [PMID: 33775716 DOI: 10.1016/j.neuint.2021.105024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
The mitochondria are the major source of reactive species in the mammalian cells. Hydrogen peroxide (H2O2) is a potent inducer of redox impairment by a mechanism, at least in part, dependent on its ability to impair mitochondrial function. H2O2 plays an important role in several pathological conditions, including neurodegeneration and cardiovascular diseases. Astaxanthin (AST) is a xanthophyll that may be found in microalgae, crustaceans, and salmon and exhibits antioxidant and anti-inflammatory effects in different cell types. Even though there is evidence pointing to a role for AST as mitochondrial protectant agent, it was not clearly demonstrated how this xanthophyll attenuates mitochondrial stress. Therefore, we investigated here whether and how AST would be able to prevent the H2O2-induced mitochondrial dysfunction in the human neuroblastoma SH-SY5Y cells. We found that AST (20 μM) prevented the H2O2-induced loss of mitochondrial membrane potential (MMP) and decrease in the activity of the Complexes I and V. AST pretreatment blocked the mitochondria-related pro-apoptotic effects elicited by H2O2. AST upregulated the enzyme heme oxygenase-1 (HO-1) and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) by a mechanism dependent on the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathway. Inhibition of the PI3K/Akt or of the HO-1 enzyme abolished the AST-induced mitochondrial protection in cells challenged with H2O2. Silencing of Nrf2 caused similar effects. Thus, we suggest that AST promotes mitochondrial protection by a mechanism dependent on the PI3K/Akt/Nrf2/HO-1 signaling pathway in SH-SY5Y cells exposed to H2O2.
Collapse
Affiliation(s)
- Flávia Bittencourt Brasil
- Departamento de Ciências da Natureza, Campus Universitário de Rio das Ostras - Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Rênata Cristina Bertolini Gobbo
- Grupo de Estudos em Terapia Mitocondrial, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 (Anexo), CEP 90035-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil; Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiaba, MT, Brazil
| | - Matheus Dargesso Luckachaki
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiaba, MT, Brazil
| | - Evandro Luiz Dall'Oglio
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiaba, MT, Brazil
| | - Marcos Roberto de Oliveira
- Grupo de Estudos em Terapia Mitocondrial, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 (Anexo), CEP 90035-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiaba, MT, Brazil.
| |
Collapse
|
32
|
Sleep deprivation induces oxidative stress in the liver and pancreas in young and aging rats. Heliyon 2021; 7:e06466. [PMID: 33748503 PMCID: PMC7966994 DOI: 10.1016/j.heliyon.2021.e06466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 03/05/2021] [Indexed: 11/26/2022] Open
Abstract
The aging process is characterized by a gradual impairment generally caused by oxidative stress and, more specifically, sleep deprivation, which induces oxidative stress in the brain. The objective of this study was to assess the effect of three types of paradoxical sleep deprivation (PSD): 96 h of PSD (96PSD group); 192 h of PSD (192PSD group); 192 h of PSD followed by a recovery period of 20 days (192PSD + Recovery group) on an oral glucose tolerance test (OGTT), lipid peroxidation (LPO), and superoxide dismutase (SOD) and catalase (CAT) activities in the liver and pancreas of young (3-month-old) and adult (14-month-old) rats. The 96PSD and 192PSD groups of young rats showed lower glucose levels on the OGTT than the control group. In the adult rats, only the 96PSD group had lower glucose levels than the control group. However, the areas under the curve for the young and adult 192 and 192PSD + Recovery groups showed significant differences. Both LPO and SOD increased in the 192PSD and 192PSD + Recovery groups, but CAT decreased in the liver of young rats in the 192PSD group. Regarding the pancreas, LPO and SOD levels increased after 96 h of PSD. In adult animals, CAT decreased in the liver after 96 and 192 h of PSD, while LPO and SOD increased in the pancreas of the 192PSD and PSD + Recovery groups. Differences in the SOD and CAT activities in the liver and SOD activities in the pancreas were also observed between the young and adult rats and maintained across all the PSD groups. In conclusion, PSD induced differential responses that appeared to depend on the duration of the induced condition, the animals’ age, and the tissue analyzed. It was found that adult rats were more susceptible to the effects of PSD than young rats.
Collapse
|
33
|
Fu Y, Ricciardiello F, Yang G, Qiu J, Huang H, Xiao J, Cao Z, Zhao F, Liu Y, Luo W, Chen G, You L, Chiaradonna F, Zheng L, Zhang T. The Role of Mitochondria in the Chemoresistance of Pancreatic Cancer Cells. Cells 2021; 10:497. [PMID: 33669111 PMCID: PMC7996512 DOI: 10.3390/cells10030497] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/16/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The first-line chemotherapies for patients with unresectable pancreatic cancer (PC) are 5-fluorouracil (5-FU) and gemcitabine therapy. However, due to chemoresistance the prognosis of patients with PC has not been significantly improved. Mitochondria are essential organelles in eukaryotes that evolved from aerobic bacteria. In recent years, many studies have shown that mitochondria play important roles in tumorigenesis and may act as chemotherapeutic targets in PC. In addition, according to recent studies, mitochondria may play important roles in the chemoresistance of PC by affecting apoptosis, metabolism, mtDNA metabolism, and mitochondrial dynamics. Interfering with some of these factors in mitochondria may improve the sensitivity of PC cells to chemotherapeutic agents, such as gemcitabine, making mitochondria promising targets for overcoming chemoresistance in PC.
Collapse
Affiliation(s)
- Yibo Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Francesca Ricciardiello
- Department of Biotechnology and Bioscience, University of Milano Bicocca, 20126 Milano, Italy;
| | - Gang Yang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Hua Huang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Jianchun Xiao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Fangyu Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Guangyu Chen
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Lei You
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Bioscience, University of Milano Bicocca, 20126 Milano, Italy;
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
34
|
Prasun P, Ginevic I, Oishi K. Mitochondrial dysfunction in nonalcoholic fatty liver disease and alcohol related liver disease. Transl Gastroenterol Hepatol 2021; 6:4. [PMID: 33437892 DOI: 10.21037/tgh-20-125] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty liver disease constitutes a spectrum of liver diseases which begin with simple steatosis and may progress to advance stages of steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The two main etiologies are-alcohol related fatty liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). NAFLD is a global health epidemic strongly associated with modern dietary habits and life-style. It is the second most common cause of chronic liver disease in the US after chronic hepatitis C virus (HCV) infection. Approximately 100 million people are affected with this condition in the US alone. Excessive intakes of calories, saturated fat and refined carbohydrates, and sedentary life style have led to explosion of this health epidemic in developing nations as well. ALD is the third most common cause of chronic liver disease in the US. Even though the predominant trigger for onset of steatosis is different in these two conditions, they share common themes in progression from steatosis to the advance stages. Oxidative stress (OS) is considered a very significant contributor to hepatocyte injury in these conditions. Mitochondrial dysfunction contributes to this OS. Role of mitochondrial dysfunction in pathogenesis of fatty liver diseases is emerging but far from completely understood. A better understanding is essential for more effective preventive and therapeutic interventions. Here, we discuss the pathogenesis and therapeutic approaches of NAFLD and ALD from a mitochondrial perspective.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilona Ginevic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Gil A, Martín-Montañez E, Valverde N, Lara E, Boraldi F, Claros S, Romero-Zerbo SY, Fernández O, Pavia J, Garcia-Fernandez M. Neuronal Metabolism and Neuroprotection: Neuroprotective Effect of Fingolimod on Menadione-Induced Mitochondrial Damage. Cells 2020; 10:34. [PMID: 33383658 PMCID: PMC7824129 DOI: 10.3390/cells10010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Imbalance in the oxidative status in neurons, along with mitochondrial damage, are common characteristics in some neurodegenerative diseases. The maintenance in energy production is crucial to face and recover from oxidative damage, and the preservation of different sources of energy production is essential to preserve neuronal function. Fingolimod phosphate is a drug with neuroprotective and antioxidant actions, used in the treatment of multiple sclerosis. This work was performed in a model of oxidative damage on neuronal cell cultures exposed to menadione in the presence or absence of fingolimod phosphate. We studied the mitochondrial function, antioxidant enzymes, protein nitrosylation, and several pathways related with glucose metabolism and glycolytic and pentose phosphate in neuronal cells cultures. Our results showed that menadione produces a decrease in mitochondrial function, an imbalance in antioxidant enzymes, and an increase in nitrosylated proteins with a decrease in glycolysis and glucose-6-phosphate dehydrogenase. All these effects were counteracted when fingolimod phosphate was present in the incubation media. These effects were mediated, at least in part, by the interaction of this drug with its specific S1P receptors. These actions would make this drug a potential tool in the treatment of neurodegenerative processes, either to slow progression or alleviate symptoms.
Collapse
Affiliation(s)
- Antonio Gil
- Department of Pharmacology and Pediatrics, Faculty of Medicine, Malaga University, 29010 Malaga, Spain; (A.G.); (E.M.-M.); (O.F.)
| | - Elisa Martín-Montañez
- Department of Pharmacology and Pediatrics, Faculty of Medicine, Malaga University, 29010 Malaga, Spain; (A.G.); (E.M.-M.); (O.F.)
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, 29010 Malaga, Spain; (N.V.); (E.L.); (S.C.)
| | - Nadia Valverde
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, 29010 Malaga, Spain; (N.V.); (E.L.); (S.C.)
- Department of Human Physiology, Faculty of Medicine, Malaga University, 29010 Malaga, Spain;
| | - Estrella Lara
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, 29010 Malaga, Spain; (N.V.); (E.L.); (S.C.)
- Department of Human Physiology, Faculty of Medicine, Malaga University, 29010 Malaga, Spain;
| | - Federica Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, 41125 Modena, Italy;
| | - Silvia Claros
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, 29010 Malaga, Spain; (N.V.); (E.L.); (S.C.)
- Department of Human Physiology, Faculty of Medicine, Malaga University, 29010 Malaga, Spain;
| | | | - Oscar Fernández
- Department of Pharmacology and Pediatrics, Faculty of Medicine, Malaga University, 29010 Malaga, Spain; (A.G.); (E.M.-M.); (O.F.)
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, 29010 Malaga, Spain; (N.V.); (E.L.); (S.C.)
| | - Jose Pavia
- Department of Pharmacology and Pediatrics, Faculty of Medicine, Malaga University, 29010 Malaga, Spain; (A.G.); (E.M.-M.); (O.F.)
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, 29010 Malaga, Spain; (N.V.); (E.L.); (S.C.)
| | - Maria Garcia-Fernandez
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, 29010 Malaga, Spain; (N.V.); (E.L.); (S.C.)
- Department of Human Physiology, Faculty of Medicine, Malaga University, 29010 Malaga, Spain;
| |
Collapse
|
36
|
Lofaro FD, Boraldi F, Garcia-Fernandez M, Estrella L, Valdivielso P, Quaglino D. Relationship Between Mitochondrial Structure and Bioenergetics in Pseudoxanthoma elasticum Dermal Fibroblasts. Front Cell Dev Biol 2020; 8:610266. [PMID: 33392199 PMCID: PMC7773789 DOI: 10.3389/fcell.2020.610266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic disease considered as a paradigm of ectopic mineralization disorders, being characterized by multisystem clinical manifestations due to progressive calcification of skin, eyes, and the cardiovascular system, resembling an age-related phenotype. Although fibroblasts do not express the pathogenic ABCC6 gene, nevertheless these cells are still under investigation because they regulate connective tissue homeostasis, generating the "arena" where cells and extracellular matrix components can promote pathologic calcification and where activation of pro-osteogenic factors can be associated to pathways involving mitochondrial metabolism. The aim of the present study was to integrate structural and bioenergenetic features to deeply investigate mitochondria from control and from PXE fibroblasts cultured in standard conditions and to explore the role of mitochondria in the development of the PXE fibroblasts' pathologic phenotype. Proteomic, biochemical, and morphological data provide new evidence that in basal culture conditions (1) the protein profile of PXE mitochondria reveals a number of differentially expressed proteins, suggesting changes in redox balance, oxidative phosphorylation, and calcium homeostasis in addition to modified structure and organization, (2) measure of oxygen consumption indicates that the PXE mitochondria have a low ability to cope with a sudden increased need for ATP via oxidative phosphorylation, (3) mitochondrial membranes are highly polarized in PXE fibroblasts, and this condition contributes to increased reactive oxygen species levels, (4) ultrastructural alterations in PXE mitochondria are associated with functional changes, and (5) PXE fibroblasts exhibit a more abundant, branched, and interconnected mitochondrial network compared to control cells, indicating that fusion prevail over fission events. In summary, the present study demonstrates that mitochondria are modified in PXE fibroblasts. Since mitochondria are key players in the development of the aging process, fibroblasts cultured from aged individuals or aged in vitro are more prone to calcify, and in PXE, calcified tissues remind features of premature aging syndromes; it can be hypothesized that mitochondria represent a common link contributing to the development of ectopic calcification in aging and in diseases. Therefore, ameliorating mitochondrial functions and cell metabolism could open new strategies to positively regulate a number of signaling pathways associated to pathologic calcification.
Collapse
Affiliation(s)
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Lara Estrella
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Pedro Valdivielso
- Department of Medicine and Dermatology, Instituto de Investigación Biomédica de Málaga, University of Malaga, Málaga, Spain
- Internal Medicine Unit, Hospital Virgen de la Victoria, Málaga, Spain
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
37
|
Faizan MI, Ahmad T. Altered mitochondrial calcium handling and cell death by necroptosis: An emerging paradigm. Mitochondrion 2020; 57:47-62. [PMID: 33340710 DOI: 10.1016/j.mito.2020.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
The classical necroptosis signaling is mediated by death receptors (DRs) that work in synergy with traditional caspase inhibitory signals. Currently, potential therapeutic molecules are in various phases of clinical trials for a spectrum of pathological conditions associated with necroptosis. However, a non-classical model of necroptosis has also emerged over the last decade with a relatively unexplored molecular mechanism. Although in vitro studies and preclinical models have shown its close association with mitochondrial dysfunction (mito-dysfunction), contradictory reports have emerged which complicate its definitiveness. Though impaired mitochondrial calcium ([Ca2+]m) handling is established in necrotic cell death, how this interplay regulates necroptosis is yet to be elucidated. Taking these questions into consideration, we have discussed various molecular aspects of necroptosis with the emerging role of mito-dysfunction. Based on the central role of altered [Ca2+]m handling in mito-dysfunction mediated necroptosis, we have provided a comprehensive molecular insight into this emerging paradigm. Potential reasons for the contradictory findings regarding the role of mito-dysfunction in necroptosis in general and mitochondrial-dependent necroptosis in specific are discussed. We also provide insights into the current understanding of how [Ca2+]m can be a critical determinant in deciding the cell fate under certain pathological conditions, while under others it may be dispensable. Lastly, we have highlighted the key molecular targets which have a direct implication for therapeutic intervention in conditions that are associated with impaired [Ca2+]m handling and cell death by necroptosis.
Collapse
Affiliation(s)
- Md Imam Faizan
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025 India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi 110025 India.
| |
Collapse
|
38
|
Jakkampudi A, Jangala R, Reddy R, Reddy B, Venkat Rao G, Pradeep R, Nageshwar Reddy D, Talukdar R. Fatty acid ethyl ester (FAEE) associated acute pancreatitis: An ex-vivo study using human pancreatic acini. Pancreatology 2020; 20:1620-1630. [PMID: 33077383 PMCID: PMC7616970 DOI: 10.1016/j.pan.2020.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIM Fatty acid ethyl esters (FAEEs), are produced by non-oxidative alcohol metabolism and can cause acinar cell damage and subsequent acute pancreatitis in rodent models. Even though experimental studies have elucidated the FAEE mediated early intra-acinar events, these mechanisms have not been well studied in humans. In the present study, we evaluate the early intra-acinar events and inflammatory response in human pancreatic acinar tissues and cells in an ex-vivo model. METHODS Experiments were conducted using normal human pancreatic tissues exposed to FAEE. Subcellular fractionation was performed on tissue homogenates and trypsin and cathepsin B activities were estimated in these fractions. Acinar cell injury was evaluated by histology and immunohistochemistry. Cytokine release from exposed acinar cells was evaluated by performing Immuno-fluorescence. Serum was collected from patients with AP within the first 72 h of symptom onset for cytokine estimation using FACS. RESULTS We observed significant trypsin activation and acinar cell injury in FAEE treated tissue. Cathepsin B was redistributed from lysosomal to zymogen compartment at 30 min of FAEE exposure. IHC results indicated the presence of apoptosis in pancreatic tissue at 1 & 2hrs of FAEE exposure. We also observed a time dependent increase in secretion of cytokines IL-6, IL-8, TNF-α from FAEE treated acinar tissue. There was also a significant elevation in plasma cytokines in patents with alcohol associated AP within 72 h of symptom onset. CONCLUSION Our data suggest that alcohol metabolites can cause acute acinar cell damage and subsequent cytokine release which could eventually culminant in SIRS.
Collapse
Affiliation(s)
- Aparna Jakkampudi
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India
| | - Ramaiah Jangala
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India
| | - Ratnakar Reddy
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India
| | - Balkumar Reddy
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India
| | - G Venkat Rao
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India; Dept. of Surgical Gastroenterology, Asian Institute of Gastroenterology, India
| | - Rebala Pradeep
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India; Dept. of Surgical Gastroenterology, Asian Institute of Gastroenterology, India
| | - D Nageshwar Reddy
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India; Dept. of Medical Gastroenterology, Asian Institute of Gastroenterology, India
| | - Rupjyoti Talukdar
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India; Dept. of Medical Gastroenterology, Asian Institute of Gastroenterology, India.
| |
Collapse
|
39
|
Choi EJ, Jeon CH, Park DH, Kwon TH. Allithiamine Exerts Therapeutic Effects on Sepsis by Modulating Metabolic Flux during Dendritic Cell Activation. Mol Cells 2020; 43:964-973. [PMID: 33243937 PMCID: PMC7700841 DOI: 10.14348/molcells.2020.0198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have highlighted that early enhancement of the glycolytic pathway is a mode of maintaining the pro-inflammatory status of immune cells. Thiamine, a well-known co-activator of pyruvate dehydrogenase complex, a gatekeeping enzyme, shifts energy utilization of glucose from glycolysis to oxidative phosphorylation. Thus, we hypothesized that thiamine may modulate inflammation by alleviating metabolic shifts during immune cell activation. First, using allithiamine, which showed the most potent anti-inflammatory capacity among thiamine derivatives, we confirmed the inhibitory effects of allithiamine on the lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production and maturation process in dendritic cells. We applied the LPS-induced sepsis model to examine whether allithiamine has a protective role in hyper-inflammatory status. We observed that allithiamine attenuated tissue damage and organ dysfunction during endotoxemia, even when the treatment was given after the early cytokine release. We assessed the changes in glucose metabolites during LPS-induced dendritic cell activation and found that allithiamine significantly inhibited glucose-driven citrate accumulation. We then examined the clinical implication of regulating metabolites during sepsis by performing a tail bleeding assay upon allithiamine treatment, which expands its capacity to hamper the coagulation process. Finally, we confirmed that the role of allithiamine in metabolic regulation is critical in exerting anti-inflammatory action by demonstrating its inhibitory effect upon mitochondrial citrate transporter activity. In conclusion, thiamine could be used as an alternative approach for controlling the immune response in patients with sepsis.
Collapse
Affiliation(s)
- Eun Jung Choi
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41566, Korea
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Chang Hyun Jeon
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Dong Ho Park
- Department of Ophthalmology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Tae-Hwan Kwon
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41566, Korea
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
40
|
Prasun P. Role of mitochondria in pathogenesis of type 2 diabetes mellitus. J Diabetes Metab Disord 2020; 19:2017-2022. [PMID: 33520874 DOI: 10.1007/s40200-020-00679-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is global health problem. An estimated 425 million people in the world had diabetes in 2017. It is a major cause of morbidity and mortality worldwide. Although, pathogenesis of T2DM and its complications have been focus of medical research for long, much remains to be learned. A better understanding of molecular pathogenesis is essential for more effective preventive and therapeutic interventions. Role of mitochondria in pathogenesis of metabolic problems such as obesity, metabolic syndrome, and T2DM is the focus of many recent research studies. Mitochondrial dysfunction contributes to the oxidative stress and systemic inflammation leading to insulin resistance (IR). Mitochondria are also essential for pancreatic beta cell insulin secretion. Hence, mitochondria are important players in the pathogenesis of T2DM. In this article, pathogenesis of T2DM is examined from a mitochondrial perspective.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place - Box 1497, New York, NY 10029 USA
| |
Collapse
|
41
|
Huang CH, Wang FT, Chan WH. Enniatin B induces dosage-related apoptosis or necrosis in mouse blastocysts leading to deleterious effects on embryo development. Drug Chem Toxicol 2020; 45:1449-1460. [PMID: 33106064 DOI: 10.1080/01480545.2020.1838537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The current study has focused on the effects of enniatin B (ENN B, a major mycotoxin produced by Fusarium fungi) on early embryonic development. In in vitro analysis, mouse blastocysts were incubated in medium with ENN B (0-40 μM) or 0.5% DMSO (control group) for 24 hours. In an animal study, blastocysts were collected from mice which were intravenously injected with ENN B (1, 3, 5, and 7mg/kg body weight/day) for 4 days in order to analyze apoptosis and necrosis via Annexin V/PI staining assay; and proliferation using dual differential staining. Exposure to low ENN B concentration (10 μM in vitro and 3 mg/kg/day in vivo) promoted Reactive Oxygen Species (ROS) generation and apoptosis in the Inner Cell Mass (ICM), the mass of cells inside the blastocyst, impairing post-implantation development alone. On the other hand, exposure to a higher ENN B concentration (40 μM in vitro and 7 mg/kg/day in vivo) induced ROS generation and decreased in intracellular ATP which encouraged necrotic processes in both trophectoderm (TE) and ICM of blastocysts leading to impaired implantation and post-implantation development. Moreover, 5 and 7 mg/kg/day ENN B intraperitoneal injection to female mice for 4 days has caused downregulation of CXCL1, IL-1β and IL-8 expressions and increased ROS generation in the liver of newborn mice. Over all, ENN B can induce apoptosis and/or necrosis depending on the treatment dosage in mouse blastocysts. ENN B-induced necrosis in blastocysts may exert long-term harmful effects on next-generation newborns.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
42
|
The role of Ca2+ signalling in the physiology and pathophysiology of exocrine pancreas. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins. Sci Rep 2020; 10:15765. [PMID: 32978409 PMCID: PMC7519072 DOI: 10.1038/s41598-020-71550-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
The proteasome is responsible for selective degradation of proteins. It exists in mammalian cells under four main subtypes, which differ by the combination of their catalytic subunits: the standard proteasome (β1–β2–β5), the immunoproteasome (β1i–β2i–β5i) and the two intermediate proteasomes (β1–β2–β5i and β1i–β2–β5i). The efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins remains unclear. Using cells expressing exclusively one proteasome subtype, we observed that ubiquitinated p21 and c-myc were degraded at similar rates, indicating that the four 26S proteasomes degrade ubiquitinated proteins equally well. Under oxidative stress, we observed a partial dissociation of 26S into 20S proteasomes, which can degrade non-ubiquitinated oxidized proteins. Oxidized calmodulin and hemoglobin were best degraded in vitro by the three β5i-containing 20S proteasomes, while their native forms were not degraded. Circular dichroism analyses indicated that ubiquitin-independent recognition of oxidized proteins by 20S proteasomes was triggered by the disruption of their structure. Accordingly, β5i-containing 20S proteasomes degraded unoxidized naturally disordered protein tau, while 26S proteasomes did not. Our results suggest that the three β5i-containing 20S proteasomes, namely the immunoproteasome and the two intermediate proteasomes, might help cells to eliminate proteins containing disordered domains, including those induced by oxidative stress.
Collapse
|
44
|
Zhao D, Xue C, Li J, Feng K, Zeng P, Chen Y, Duan Y, Zhang S, Li X, Han J, Yang X. Adiponectin agonist ADP355 ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and oxidative stress. Biochem Biophys Res Commun 2020; 533:304-312. [PMID: 32958254 DOI: 10.1016/j.bbrc.2020.09.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
Doxorubicin (DOX) is an anthracycline derivative and widely used as an anticancer drug. However, the severe cardiotoxicity of DOX limits its application. ADP355 is an adiponectin-based active peptide with anti-liver fibrosis and atherosclerosis properties. It remains unclear the effects and involved mechanisms of ADP355 in DOX-induced cardiotoxicity. C57BL/6J mice were intraperitoneally injected DOX once a week to induce heart failure while receiving ADP355 treatment daily for 4 weeks. At the end of experiment, blood and heart tissues were collected. We found that ADP355 markedly improved DOX-induced cardiac dysfunction and histopathological damage, and decreased serum creatine kinase, lactate dehydrogenase and hydroxybutyrate dehydrogenase levels. The anti-apoptotic activity of ADP355 was indicated by reduction in TUNEL-positive cells and cleaved caspase-3 expression, along with decreased BCL2-associated X protein/B cell lymphoma 2 (BAX/BCL2) levels in heart tissues. Additionally, ADP355 markedly increased DOX-decreased cell viability by reducing BAX/BCL2, but inhibited reactive oxygen species production in H9c2 cells. Mechanistically, ADP355 attenuated expression of DOX-reduced nuclear factor-erythroid 2-related factor 2 (Nrf2) and superoxide dismutase 2, as well as mRNA levels of Nrf2 downstream targets. Furthermore, ADP355 activated sirtuin 2 and its target genes. In conclusion, we demonstrate that ADP355 alleviates DOX-induced cardiotoxicity by inhibiting myocardial apoptosis and oxidative stress through Nrf2 and sirtuin 2 signaling pathways. These findings suggest that ADP355 can be a promising candidate for the treatment of cardiac dysfunction.
Collapse
Affiliation(s)
- Dan Zhao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chao Xue
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jiaqi Li
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Ke Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Peng Zeng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoju Li
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jihong Han
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
45
|
Ikeyama Y, Sato T, Takemura A, Sekine S, Ito K. Hypoxia/reoxygenation exacerbates drug-induced cytotoxicity by opening mitochondrial permeability transition pore: Possible application for toxicity screening. Toxicol In Vitro 2020; 67:104889. [PMID: 32417306 DOI: 10.1016/j.tiv.2020.104889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022]
Abstract
Recently, mitochondrial dysfunction is thought of as an important factor leading to a drug-induced liver injury. Our previous reports show that mitochondria-related toxicity, including respiratory chain inhibition (RCI) and reactive oxygen species (ROS) induction, can be detected by the modification of sugar resource substitution and high oxygen condition. However, this in vitro model does not detect mitochondrial permeability transition (MPT)-induced toxicity. Another study with a lipopolysaccharide-pre-administered rodent model showed that ischemia/reperfusion induced ROS, sensitized the susceptibility of MPT pore opening and, finally developed drug-induced liver toxicity. Based on this result, the present study investigated the effect of hypoxia/reoxygenation (H/R) treatment mimicking the ischemia/reperfusion on MPT-dependent toxicity, aiming to construct a system that can evaluate MPT by drugs in hepatocytes. Mitochondrial ROS were enhanced by H/R treatment only in the galactose culture condition. Amiodarone, benzbromarone, flutamide and troglitazone which induced MPT pore opening led to hepatocyte death only in combination with H/R and galactose. Moreover, this alteration was significantly suppressed in hepatocytes lacking cyclophilin D. In conclusion, MPT-induced cytotoxicity can be detected by activating mitochondrial function and H/R. This cell-based assay system could evaluate MPT induced-cytotoxicity by drugs, besides RCI and ROS induction.
Collapse
Affiliation(s)
- Yugo Ikeyama
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Tomoyuki Sato
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Akinori Takemura
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Shuichi Sekine
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Kousei Ito
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
46
|
Marchetti P, Fovez Q, Germain N, Khamari R, Kluza J. Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in non-transformed and cancer cells. FASEB J 2020; 34:13106-13124. [PMID: 32808332 DOI: 10.1096/fj.202000767r] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023]
Abstract
Mitochondrial metabolism must constantly adapt to stress conditions in order to maintain bioenergetic levels related to cellular functions. This absence of proper adaptation can be seen in a wide array of conditions, including cancer. Metabolic adaptation calls on mitochondrial function and draws on the mitochondrial reserve to meet increasing needs. Among mitochondrial respiratory parameters, the spare respiratory capacity (SRC) represents a particularly robust functional parameter to evaluate mitochondrial reserve. We provide an overview of potential SRC mechanisms and regulation with a focus on its particular significance in cancer cells.
Collapse
Affiliation(s)
- Philippe Marchetti
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France.,Banque de Tissus, CHU Lille, Lille Cedex, France
| | - Quentin Fovez
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| | - Nicolas Germain
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France.,Banque de Tissus, CHU Lille, Lille Cedex, France
| | - Raeeka Khamari
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| | - Jérôme Kluza
- Institut de Recherche contre le Cancer de Lille, CNRS, INSERM, CHU Lille, UMR9020 - UMR-S 1277 - Canther, Université Lille, Lille Cedex, France
| |
Collapse
|
47
|
Malla B, Cotten S, Ulshoefer R, Paul F, Hauser AE, Niesner R, Bros H, Infante-Duarte C. Teriflunomide preserves peripheral nerve mitochondria from oxidative stress-mediated alterations. Ther Adv Chronic Dis 2020; 11:2040622320944773. [PMID: 32850106 PMCID: PMC7425321 DOI: 10.1177/2040622320944773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is a common pathological hallmark in various inflammatory and degenerative diseases of the central nervous system, including multiple sclerosis (MS). We previously showed that oxidative stress alters axonal mitochondria, limiting their transport and inducing conformational changes that lead to axonal damage. Teriflunomide (TFN), an oral immunomodulatory drug approved for the treatment of relapsing forms of MS, reversibly inhibits dihydroorotate dehydrogenase (DHODH). DHODH is crucial for de novo pyrimidine biosynthesis and is the only mitochondrial enzyme in this pathway, thus conferring a link between inflammation, mitochondrial activity and axonal integrity. Here, we investigated how DHODH inhibition may affect mitochondrial behavior in the context of oxidative stress. We employed a model of transected murine spinal roots, previously developed in our laboratory. Using confocal live imaging of axonal mitochondria, we showed that in unmanipulated axons, TFN increased significantly the mitochondria length without altering their transport features. In mitochondria challenged with 50 µM hydrogen peroxide (H2O2) to induce oxidative stress, the presence of TFN at 1 µM concentration was able to restore mitochondrial shape, motility, as well as mitochondrial oxidation potential to control levels. No effects were observed at 5 µM TFN, while some shape and motility parameters were restored to control levels at 50 µM TFN. Thus, our data demonstrate an undescribed link between DHODH and mitochondrial dynamics and point to a potential neuroprotective effect of DHODH inhibition in the context of oxidative stress-induced damage of axonal mitochondria.
Collapse
Affiliation(s)
- Bimala Malla
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Samuel Cotten
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Rebecca Ulshoefer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin and Experimental & Clinical Research Center (ECRC), Max Delbrueck Center (MDC) for Molecular Medicine, Berlin, Germany and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja E Hauser
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Raluca Niesner
- Dynamic and Functional in vivo Imaging, Deutsches Rheuma-Forschungszentrum, Berlin, Germany and Veterinary Medicine, Freie Universität Berlin, Germany
| | - Helena Bros
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin and Experimental & Clinical Research Center (ECRC), MDC for Molecular Medicine and Charité - Universitätsmedizin, Campus Virchow Klinikum, Augustenburger Platz 1, Berlin 13353, Germany
| |
Collapse
|
48
|
Srinivasan MP, Bhopale KK, Caracheo AA, Amer SM, Khan S, Kaphalia L, Loganathan G, Balamurugan AN, Kaphalia BS. Activation of AMP-activated protein kinase attenuates ethanol-induced ER/oxidative stress and lipid phenotype in human pancreatic acinar cells. Biochem Pharmacol 2020; 180:114174. [PMID: 32717227 DOI: 10.1016/j.bcp.2020.114174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Primary toxicity targets of alcohol and its metabolites in the pancreas are cellular energetics and endoplasmic reticulum (ER). Therefore, the role of AMP-Activated Protein Kinase (AMPKα) in amelioration of ethanol (EtOH)-induced pancreatic acinar cell injury including ER/oxidative stress, inflammatory responses, the formation of fatty acid ethyl esters (FAEEs) and mitochondrial bioenergetics were determined in human pancreatic acinar cells (hPACs) and AR42J cells incubated with/without AMPKα activator [5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)]. EtOH treated hPACs showed concentration and time-dependent increases for FAEEs and inactivation of AMPKα, along with the upregulation of ACC1 and FAS (key lipogenic proteins) and downregulation of CPT1A (involved β-oxidation of fatty acids). These cells also showed significant ER stress as evidenced by the increased expression for GRP78, IRE1α, and PERK/CHOP arm of unfolded protein response promoting apoptosis and activating p-JNK1/2 and p-ERK1/2 with increased secretion of cytokines. AR42J cells treated with EtOH showed increased oxidative stress, impaired mitochondrial biogenesis, and decreased ATP production rate. However, AMPKα activation by AICAR attenuated EtOH-induced ER/oxidative stress, lipogenesis, and inflammatory responses as well as the formation of FAEEs and restored mitochondrial function in hPACs as well as AR42J cells. Therefore, it is likely that EtOH-induced inactivation of AMPKα plays a crucial role in acinar cell injury leading to pancreatitis. Findings from this study also suggest that EtOH-induced inactivation of AMPKα is closely related to ER/oxidative stress and synthesis of FAEEs, as activation of AMPKα by AICAR attenuates formation of FAEEs, ER/oxidative stress and lipogenesis, and improves inflammatory responses and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Mukund P Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Kamlesh K Bhopale
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Anna A Caracheo
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Samir M Amer
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Department of Forensic Medicine and Clinical Toxicology, Tanta University, Tanta, Egypt
| | - Shamis Khan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Lata Kaphalia
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Appakalai N Balamurugan
- Department of Surgery, University of Louisville, Louisville, KY 40202, USA; Islet Biology Laboratory, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA.
| |
Collapse
|
49
|
Agarwal S, Ganesh S. Perinuclear mitochondrial clustering, increased ROS levels, and HIF1 are required for the activation of HSF1 by heat stress. J Cell Sci 2020; 133:jcs245589. [PMID: 32503939 DOI: 10.1242/jcs.245589] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 08/31/2023] Open
Abstract
The heat shock response (HSR) is a conserved cellular defensive response against stresses such as temperature, oxidative stress and heavy metals. A significant group of players in the HSR is the set of molecular chaperones known as heat shock proteins (HSPs), which assist in the refolding of unfolded proteins and prevent the accumulation of damaged proteins. HSP genes are activated by the HSF1 transcription factor, a master regulator of the HSR pathway. A variety of stressors activate HSF1, but the key molecular players and the processes that directly contribute to HSF1 activation remain unclear. In this study, we show that heat shock induces perinuclear clustering of mitochondria in mammalian cells, and this clustering is essential for activation of the HSR. We also show that this perinuclear clustering of mitochondria results in increased levels of reactive oxygen species in the nucleus, leading to the activation of hypoxia-inducible factor-1α (HIF-1α). To conclude, we provide evidence to suggest that HIF-1α is one of the crucial regulators of HSF1 and that HIF-1α is essential for activation of the HSR during heat shock.
Collapse
Affiliation(s)
- Saloni Agarwal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
50
|
Abstract
Natural Killer (NK) cells mediate mainly innate anti-tumor and anti-viral immune responses and respond to a variety of cytokines and other stimuli to promote survival, cellular proliferation, production of cytokines such as interferon gamma (IFNγ) and/or cytotoxicity programs. NK cell activation by cytokine stimulation requires a substantial remodeling of metabolic pathways to support their bioenergetic and biosynthetic requirements. There is a large body of evidence that suggests that impaired NK cell metabolism is associated with a number of chronic diseases including obesity and cancer, which highlights the clinical importance of the availability of a method to determine NK cell metabolism. Here we describe the use of an extracellular flux analyzer, a platform that allows real-time measurements of glycolysis and mitochondrial oxygen consumption, as a tool to monitor changes in the energy metabolism of human NK cells. The method described here also allows for the monitoring of metabolic changes after stimulation of NK cells with cytokines such as IL-15, a system that is currently being investigated in a wide range of clinical trials.
Collapse
Affiliation(s)
- Javier Traba
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health; Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM)
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Olga M Anton
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health;
| |
Collapse
|