1
|
Bradić I, Kuentzel KB, Pirchheim A, Rainer S, Schwarz B, Trauner M, Larsen MR, Vujić N, Kratky D. From LAL-D to MASLD: Insights into the role of LAL and Kupffer cells in liver inflammation and lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159575. [PMID: 39486573 DOI: 10.1016/j.bbalip.2024.159575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver pathology worldwide, closely associated with obesity and metabolic disorders. Increasing evidence suggests that macrophages play a crucial role in the development of MASLD. Several human studies have shown an inverse correlation between circulating lysosomal acid lipase (LAL) activity and MASLD. LAL is the sole enzyme known to degrade cholesteryl esters (CE) and triacylglycerols in lysosomes. Consequently, these substrates accumulate when their enzymatic degradation is impaired due to LAL deficiency (LALD). This study aimed to investigate the role of hepatic LAL activity and liver-resident macrophages (i.e., Kupffer cells (KC)) in MASLD. To this end, we analyzed lipid metabolism in hepatocyte-specific (hep)Lal-/- mice and depleted KC with clodronate treatment. When fed a high-fat/high-cholesterol diet (HF/HCD), hepLal-/- mice exhibited CE accumulation and an increased number of macrophages in the liver and significant hepatic inflammation. KC were depleted upon clodronate administration, whereas infiltrating/proliferating CD68-expressing macrophages were less affected. This led to exacerbated hepatic CE accumulation and dyslipidemia, as evidenced by increased LDL-cholesterol concentrations. Along with proteomic analysis of liver tissue, these findings indicate that hepatic LAL-D in HF/HCD-fed mice leads to macrophage infiltration into the liver and that KC depletion further exacerbates hepatic CE concentrations and dyslipidemia.
Collapse
Affiliation(s)
- Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Birgit Schwarz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
2
|
Steinhoff JS, Wagner C, Dähnhardt HE, Košić K, Meng Y, Taschler U, Pajed L, Yang N, Wulff S, Kiefer MF, Petricek KM, Flores RE, Li C, Dittrich S, Sommerfeld M, Guillou H, Henze A, Raila J, Wowro SJ, Schoiswohl G, Lass A, Schupp M. Adipocyte HSL is required for maintaining circulating vitamin A and RBP4 levels during fasting. EMBO Rep 2024; 25:2878-2895. [PMID: 38769419 PMCID: PMC11239848 DOI: 10.1038/s44319-024-00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Vitamin A (retinol) is distributed via the blood bound to its specific carrier protein, retinol-binding protein 4 (RBP4). Retinol-loaded RBP4 is secreted into the circulation exclusively from hepatocytes, thereby mobilizing hepatic retinoid stores that represent the major vitamin A reserves in the body. The relevance of extrahepatic retinoid stores for circulating retinol and RBP4 levels that are usually kept within narrow physiological limits is unknown. Here, we show that fasting affects retinoid mobilization in a tissue-specific manner, and that hormone-sensitive lipase (HSL) in adipose tissue is required to maintain serum concentrations of retinol and RBP4 during fasting in mice. We found that extracellular retinol-free apo-RBP4 induces retinol release by adipocytes in an HSL-dependent manner. Consistently, global or adipocyte-specific HSL deficiency leads to an accumulation of retinoids in adipose tissue and a drop of serum retinol and RBP4 during fasting, which affects retinoid-responsive gene expression in eye and kidney and lowers renal retinoid content. These findings establish a novel crosstalk between liver and adipose tissue retinoid stores for the maintenance of systemic vitamin A homeostasis during fasting.
Collapse
Affiliation(s)
- Julia S Steinhoff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Henriette E Dähnhardt
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Kristina Košić
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Yueming Meng
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Laura Pajed
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Na Yang
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Sascha Wulff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Marie F Kiefer
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Konstantin M Petricek
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Roberto E Flores
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Chen Li
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Sarah Dittrich
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Manuela Sommerfeld
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Andrea Henze
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle, Germany
- Junior Research Group ProAID, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jens Raila
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Sylvia J Wowro
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany
| | - Gabriele Schoiswohl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Michael Schupp
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular-Metabolic-Renal Research, Berlin, Germany.
| |
Collapse
|
3
|
Yang X, Zhang J, Li Y, Hu H, Li X, Ma T, Zhang B. Si-Ni-San promotes liver regeneration by maintaining hepatic oxidative equilibrium and glucose/lipid metabolism homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117918. [PMID: 38382654 DOI: 10.1016/j.jep.2024.117918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The efficacy of clinical treatments for various liver diseases is intricately tied to the liver's regenerative capacity. Insufficient or failed liver regeneration is a direct cause of mortality following fulminant hepatic failure and extensive hepatectomy. Si-Ni-San (SNS), a renowned traditional Chinese medicine prescription for harmonizing liver and spleen functions, has shown clinical efficacy in the alleviation of liver injury for thousands of years. However, the precise molecular pharmacological mechanisms underlying its effects remain unclear. AIMS OF THE STUDY This study aimed to investigate the effects of SNS on liver regeneration and elucidate the underlying mechanisms. MATERIALS AND METHODS A mouse model of 70% partial hepatectomy (PHx) was used to analyze the effects of SNS on liver regeneration. Aquaporin-9 knockout mice (AQP9-/-) were used to demonstrate that SNS-mediated enhancement of liver regeneration was AQP9-targeted. A tandem dimer-Tomato-tagged AQP9 transgenic mouse line (AQP9-RFP) was utilized to determine the expression pattern of AQP9 protein in hepatocytes. Immunoblotting, quantitative real-time PCR, staining techniques, and biochemical assays were used to further explore the underlying mechanisms of SNS. RESULTS SNS treatment significantly enhanced liver regeneration and increased AQP9 protein expression in hepatocytes of wild-type mice (AQP9+/+) post 70% PHx, but had no significant effects on AQP9-/- mice. Following 70% PHx, SNS helped maintain hepatic oxidative equilibrium by increasing the levels of reactive oxygen species scavengers glutathione and superoxide dismutase and reducing the levels of oxidative stress molecules H2O2 and malondialdehyde in liver tissues, thereby preserving this crucial process for hepatocyte proliferation. Simultaneously, SNS augmented glycerol uptake by hepatocytes, stimulated gluconeogenesis, and maintained glucose/lipid metabolism homeostasis, ensuring the energy supply required for liver regeneration. CONCLUSIONS This study provides the first evidence that SNS maintains liver oxidative equilibrium and glucose/lipid metabolism homeostasis by upregulating AQP9 expression in hepatocytes, thereby promoting liver regeneration. These findings offer novel insights into the molecular pharmacological mechanisms of SNS in promoting liver regeneration and provide guidance for its clinical application and optimization in liver disease treatment.
Collapse
Affiliation(s)
- Xu Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junqi Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanghao Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huiting Hu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Bo Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Bradić I, Liesinger L, Kuentzel KB, Vujić N, Trauner M, Birner-Gruenberger R, Kratky D. Metabolic changes and propensity for inflammation, fibrosis, and cancer in livers of mice lacking lysosomal acid lipase. J Lipid Res 2023; 64:100427. [PMID: 37595802 PMCID: PMC10482749 DOI: 10.1016/j.jlr.2023.100427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Lysosomal acid lipase (LAL) is the sole lysosomal enzyme responsible for the degradation of cholesteryl esters and triacylglycerols at acidic pH. Impaired LAL activity leads to LAL deficiency (LAL-D), a severe and fatal disease characterized by ectopic lysosomal lipid accumulation. Reduced LAL activity also contributes to the development and progression of non-alcoholic fatty liver disease (NAFLD). To advance our understanding of LAL-related liver pathologies, we performed comprehensive proteomic profiling of livers from mice with systemic genetic loss of LAL (Lal-/-) and from mice with hepatocyte-specific LAL-D (hepLal-/-). Lal-/- mice exhibited drastic proteome alterations, including dysregulation of multiple proteins related to metabolism, inflammation, liver fibrosis, and cancer. Global loss of LAL activity impaired both acidic and neutral lipase activities and resulted in hepatic lipid accumulation, indicating a complete metabolic shift in Lal-/- livers. Hepatic inflammation and immune cell infiltration were evident, with numerous upregulated inflammation-related gene ontology biological process terms. In contrast, both young and mature hepLal-/- mice displayed only minor changes in the liver proteome, suggesting that loss of LAL solely in hepatocytes does not phenocopy metabolic alterations observed in mice globally lacking LAL. These findings provide valuable insights into the mechanisms underlying liver dysfunction in LAL-D and may help in understanding why decreased LAL activity contributes to NAFLD. Our study highlights the importance of LAL in maintaining liver homeostasis and demonstrates the drastic consequences of its global deficiency on the liver proteome and liver function.
Collapse
Affiliation(s)
- Ivan Bradić
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Laura Liesinger
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Katharina B Kuentzel
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Nemanja Vujić
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria; BioTechMed-Graz, Graz, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
| | - Dagmar Kratky
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
5
|
Korbelius M, Kuentzel KB, Bradić I, Vujić N, Kratky D. Recent insights into lysosomal acid lipase deficiency. Trends Mol Med 2023; 29:425-438. [PMID: 37028992 DOI: 10.1016/j.molmed.2023.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Lysosomal acid lipase (LAL) is the sole enzyme known to degrade neutral lipids in the lysosome. Mutations in the LAL-encoding LIPA gene lead to rare lysosomal lipid storage disorders with complete or partial absence of LAL activity. This review discusses the consequences of defective LAL-mediated lipid hydrolysis on cellular lipid homeostasis, epidemiology, and clinical presentation. Early detection of LAL deficiency (LAL-D) is essential for disease management and survival. LAL-D must be considered in patients with dyslipidemia and elevated aminotransferase concentrations of unknown etiology. Enzyme replacement therapy, sometimes in combination with hematopoietic stem cell transplantation (HSCT), is currently the only therapy for LAL-D. New technologies based on mRNA and viral vector gene transfer are recent efforts to provide other effective therapeutic strategies.
Collapse
Affiliation(s)
- Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
6
|
Lysosomal Acid Lipase Deficiency: Genetics, Screening, and Preclinical Study. Int J Mol Sci 2022; 23:ijms232415549. [PMID: 36555187 PMCID: PMC9779616 DOI: 10.3390/ijms232415549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Lysosomal acid lipase (LAL) is a lysosomal enzyme essential for the degradation of cholesteryl esters through the endocytic pathway. Deficiency of the LAL enzyme encoded by the LIPA gene leads to LAL deficiency (LAL-D) (OMIM 278000), one of the lysosomal storage disorders involving 50-60 genes. Among the two disease subtypes, the severe disease subtype of LAL-D is known as Wolman disease, with typical manifestations involving hepatomegaly, splenomegaly, vomiting, diarrhea, and hematopoietic abnormalities, such as anemia. In contrast, the mild disease subtype of this disorder is known as cholesteryl ester storage disease, with hypercholesterolemia, hypertriglyceridemia, and high-density lipoprotein disappearance. The prevalence of LAL-D is rare, but several treatment options, including enzyme replacement therapy, are available. Accordingly, a number of screening methodologies have been developed for this disorder. This review summarizes the current discussion on LAL-D, covering genetics, screening, and the tertiary structure of human LAL enzyme and preclinical study for the future development of a novel therapy.
Collapse
|
7
|
Lam P, Ashbrook A, Zygmunt DA, Yan C, Du H, Martin PT. Therapeutic efficacy of rscAAVrh74.miniCMV.LIPA gene therapy in a mouse model of lysosomal acid lipase deficiency. Mol Ther Methods Clin Dev 2022; 26:413-426. [PMID: 36092360 PMCID: PMC9403906 DOI: 10.1016/j.omtm.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
Abstract
Lysosomal acid lipase deficiency (LAL-D) presents as one of two rare autosomal recessive diseases: Wolman disease (WD), a severe disorder presenting in infancy characterized by absent or very low LAL activity, and cholesteryl ester storage disease (CESD), a less severe, later onset disease form. Recent clinical studies have shown efficacy of enzyme replacement therapy for both forms of LAL-D; however, no gene therapy approach has yet been developed for clinical use. Here, we show that rscAAVrh74.miniCMV.LIPA gene therapy can significantly improve disease symptoms in the Lipa−/− mouse model of LAL-D. Treatment dramatically lowered hepatosplenomegaly, liver and spleen triglyceride and cholesterol levels, and serum expression of markers of liver damage. Measures of liver inflammation and fibrosis were also reduced. Treatment of young adult mice was more effective than treatment of neonates, and enzyme activity was elevated in serum, consistent with possible bystander effects. These results demonstrate that adeno associated virus (AAV)-mediated LIPA gene-replacement therapy may be a viable option to treat patients with LAL-D, particularly patients with CESD.
Collapse
|
8
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 364] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
9
|
Han SL, Qian YC, Limbu SM, Wang J, Chen LQ, Zhang ML, Du ZY. Lipolysis and lipophagy play individual and interactive roles in regulating triacylglycerol and cholesterol homeostasis and mitochondrial form in zebrafish. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158988. [PMID: 34111526 DOI: 10.1016/j.bbalip.2021.158988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022]
Abstract
Neutral lipases-mediated lipolysis and acid lipases-moderated lipophagy are two main processes for degradation of lipid droplets (LDs). However, the individual and interactive roles of these metabolic pathways are not well known across vertebrates. This study explored the roles of lipolysis and lipophagy from the aspect of neutral and acid lipases in zebrafish. We established zebrafish strains deficient in either adipose triglyceride lipase (atgl-/-; AKO fish) or lysosomal acid lipase (lal-/-; LKO fish) respectively, and then inhibited lipolysis in the LKO fish and lipophagy in the AKO fish by feeding diets supplemented with the corresponding inhibitors Atglistatin and 3-Methyladenine, respectively. Both the AKO and LKO fish showed reduced growth, swimming activity, and oxygen consumption. The AKO fish did not show phenotypes in adipose tissue, but mainly accumulated triacylglycerol (TAG) in liver, also, they had large LDs in the hepatocytes, and did not stimulate lipophagy as a compensation response but maintained basal lipophagy. The LKO fish reduced total lipid accumulation in the body but had high cholesterol content in liver; also, they accumulated small LDs in the hepatocytes, and showed increased lipolysis, especially Atgl expression, as a compensatory mechanism. Simultaneous inhibition of lipolysis and lipophagy in zebrafish resulted in severe liver damage, with the potential to trigger mitophagy. Overall, our study illustrates that lipolysis and lipophagy perform individual and interactive roles in maintaining homeostasis of TAG and cholesterol metabolism. Furthermore, the interactive roles of lipolysis and lipophagy may be essential in regulating the functions and form of mitochondria.
Collapse
Affiliation(s)
- Si-Lan Han
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu-Cheng Qian
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Jing Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
10
|
Li F, Zhao X, Li H, Liu Y, Zhang Y, Huang X, Cao J, Du F, Wu D, Yu H. Hepatic lysosomal acid lipase drives the autophagy-lysosomal response and alleviates cholesterol metabolic disorder in ApoE deficient mice. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159027. [PMID: 34416392 DOI: 10.1016/j.bbalip.2021.159027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/22/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
Lysosomal acid lipase (LAL)-dependent lipolysis degrades cholesteryl ester (CE) and triglyceride in the lysosome. LAL deficiency in human and mice leads to hypercholesterolemia, hepatic CE deposition, and atherosclerosis. Despite its hepatocyte-specific deficiency leads to CE accumulation, the regulation of LAL in cholesterol metabolic disease remains elusive. For the in vitro study, the target gene Lipa was transfected with recombinant shRNA or lentiviral vector in Hepa1-6 cells. It was found that LAL silencing in cells affected lysosomal function by reducing LAL activity and proteolytic activity, and altered the expression of genes related to cholesterol metabolism and autophagy, leading to cholesterol accumulation; whereas LAL overexpression improved the above effects. To explore the impacts of hepatic LAL on cholesterol metabolic disease in vivo, apolipoprotein E deficient (ApoE-/-) mice were intravenously injected with lentivirus to achieve hepatic LAL overexpression and fed a Western diet for 16 weeks. The results showed that hepatic LAL overexpression significantly reduced plasma lipid levels, alleviated inflammation and oxidative status in plasma and liver, and attenuated hepatic steatosis and fibrosis in ApoE-/- mice. Mechanically, hepatic LAL promoted cholesterol transport and biliary excretion by increasing liver X receptor alpha (LXRα) and its downstream genes, and modulated the compliance of the autophagy-lysosomal pathway. Our data provide the original evidence of the validity of hepatic LAL in controlling cholesterol metabolism and liver homeostasis, suggesting that targeting hepatic LAL may provide a promising approach to rescue cholesterol metabolic disorders, such as hypercholesterolemia and liver disease.
Collapse
Affiliation(s)
- Feifei Li
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Xiaojie Zhao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Hao Li
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yu Liu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Xiaopeng Huang
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Jia Cao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Fen Du
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Dongfang Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China.
| |
Collapse
|
11
|
Helderman RC, Whitney DG, Duta-Mare M, Akhmetshina A, Vujic N, Jayapalan S, Nyman JS, Misra BB, Rosen CJ, Czech MP, Kratky D, Rendina-Ruedy E. Loss of function of lysosomal acid lipase (LAL) profoundly impacts osteoblastogenesis and increases fracture risk in humans. Bone 2021; 148:115946. [PMID: 33838322 PMCID: PMC8108562 DOI: 10.1016/j.bone.2021.115946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Lysosomal acid lipase (LAL) is essential for cholesteryl ester (CE) and triacylglycerol (TAG) hydrolysis in the lysosome. Clinically, an autosomal recessive LIPA mutation causes LAL deficiency (LALD), previously described as Wolman Disease or Cholesteryl Ester Storage Disease (CESD). LAL-D is associated with ectopic lipid accumulation in the liver, small intestine, spleen, adrenal glands, and blood. Considering the importance of unesterified cholesterol and fatty acids in bone metabolism, we hypothesized that LAL is essential for bone formation, and ultimately, skeletal health. To investigate the role of LAL in skeletal homeostasis, we used LAL-deficient (-/-) mice, in vitro osteoblast cultures, and novel clinical data from LAL-D patients. Both male and female LAL-/- mice demonstarted lower trabecular and cortical bone parameters , which translated to reduced biomechanical properties. Further histological analyses revealed that LAL-/- mice had fewer osteoblasts, with no change in osteoclast or marrow adipocyte numbers. In studying the cell-autonomous role of LAL, we observed impaired differentiation of LAL-/- calvarial osteoblasts and in bone marrow stromal cells treated with the LAL inhibitor lalistat. Consistent with LAL's role in other tissues, lalistat resulted in profound lipid puncta accumulation and an altered intracellular lipid profile. Finally, we analyzed a large de-identified national insurance database (i.e. 2016/2017 Optum Clinformatics®) which revealed that adults (≥18 years) with CESD (n = 3076) had a higher odds ratio (OR = 1.21; 95% CI = 1.03-1.41) of all-cause fracture at any location compared to adults without CESD (n = 13.7 M) after adjusting for demographic variables and osteoporosis. These data demonstrate that alterations in LAL have significant clinical implications related to fracture risk and that LAL's modulation of lipid metabolism is a critical for osteoblast function.
Collapse
Affiliation(s)
- Ron C Helderman
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA; Center for Bone Biology, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel G Whitney
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48108, USA; Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Madalina Duta-Mare
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010 Graz, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010 Graz, Austria
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010 Graz, Austria
| | - Shobana Jayapalan
- Center for Bone Biology, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Center for Bone Biology, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27104, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Elizabeth Rendina-Ruedy
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA; Center for Bone Biology, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Coupling Machine Learning and Lipidomics as a Tool to Investigate Metabolic Dysfunction-Associated Fatty Liver Disease. A General Overview. Biomolecules 2021; 11:biom11030473. [PMID: 33810079 PMCID: PMC8004861 DOI: 10.3390/biom11030473] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatic biopsy is the gold standard for staging nonalcoholic fatty liver disease (NAFLD). Unfortunately, accessing the liver is invasive, requires a multidisciplinary team and is too expensive to be conducted on large segments of the population. NAFLD starts quietly and can progress until liver damage is irreversible. Given this complex situation, the search for noninvasive alternatives is clinically important. A hallmark of NAFLD progression is the dysregulation in lipid metabolism. In this context, recent advances in the area of machine learning have increased the interest in evaluating whether multi-omics data analysis performed on peripheral blood can enhance human interpretation. In the present review, we show how the use of machine learning can identify sets of lipids as predictive biomarkers of NAFLD progression. This approach could potentially help clinicians to improve the diagnosis accuracy and predict the future risk of the disease. While NAFLD has no effective treatment yet, the key to slowing the progression of the disease may lie in predictive robust biomarkers. Hence, to detect this disease as soon as possible, the use of computational science can help us to make a more accurate and reliable diagnosis. We aimed to provide a general overview for all readers interested in implementing these methods.
Collapse
|
13
|
Gamblin C, Rouault C, Lacombe A, Langa-Vives F, Farabos D, Lamaziere A, Clément K, Gautier EL, Yvan-Charvet L, Dugail I. Lysosomal Acid Lipase Drives Adipocyte Cholesterol Homeostasis and Modulates Lipid Storage in Obesity, Independent of Autophagy. Diabetes 2021; 70:76-90. [PMID: 33139329 DOI: 10.2337/db20-0578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022]
Abstract
Besides cytoplasmic lipase-dependent adipocyte fat mobilization, the metabolic role of lysosomal acid lipase (LAL), highly expressed in adipocytes, is unclear. We show that the isolated adipocyte fraction, but not the total undigested adipose tissue (ATs), from obese patients has decreased LAL expression compared with that from nonobese people. Lentiviral-mediated LAL knockdown in the 3T3L1 mouse cell line to mimic the obese adipocytes condition did not affect lysosome density or autophagic flux, but it did increase triglyceride storage and disrupt endoplasmic reticulum cholesterol, as indicated by activated SREBP. Conversely, mice with adipose-specific LAL overexpression (Adpn-rtTA x TetO-hLAL) gained less weight and body fat than did control mice fed a high-fat diet, resulting in ameliorated glucose tolerance. Blood cholesterol level in the former was lower than that of control mice, although triglyceridemia in the two groups of mice was similar. The adipose-specific LAL-overexpressing mouse phenotype depends on the housing temperature and develops only under mild hypothermic stress (e.g., room temperature) but not at thermoneutrality (30°C), demonstrating the prominent contribution of brown AT (BAT) thermogenesis. LAL overexpression increased levels of BAT free cholesterol, decreased SREBP targets, and induced the expression of genes involved in initial steps of mitochondrial steroidogenesis, suggesting conversion of lysosome-derived cholesterol to pregnenolone. In conclusion, our study demonstrates that adipose LAL drives tissue-cholesterol homeostasis and affects BAT metabolism, suggesting beneficial LAL activation in anti-obesity approaches aimed at reactivating thermogenic energy expenditure.
Collapse
Affiliation(s)
- Camille Gamblin
- UMRS 1269 INSERM/Sorbonne University, Nutriomics, Paris, France
| | | | | | | | - Dominique Farabos
- Sorbonne University INSERM, Saint Antoine Research Center, CRSA, INSERM, Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP/Sorbonne Université, Paris, France
| | - Antonin Lamaziere
- Sorbonne University INSERM, Saint Antoine Research Center, CRSA, INSERM, Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP/Sorbonne Université, Paris, France
| | - Karine Clément
- UMRS 1269 INSERM/Sorbonne University, Nutriomics, Paris, France
| | | | | | - Isabelle Dugail
- UMRS 1269 INSERM/Sorbonne University, Nutriomics, Paris, France
| |
Collapse
|
14
|
Wagner C, Hois V, Pajed L, Pusch LM, Wolinski H, Trauner M, Zimmermann R, Taschler U, Lass A. Lysosomal acid lipase is the major acid retinyl ester hydrolase in cultured human hepatic stellate cells but not essential for retinyl ester degradation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158730. [PMID: 32361002 PMCID: PMC7279957 DOI: 10.1016/j.bbalip.2020.158730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Vitamin A is stored as retinyl esters (REs) in lipid droplets of hepatic stellate cells (HSCs). To date, two different pathways are known to facilitate the breakdown of REs: (i) Hydrolysis of REs by neutral lipases, and (ii) whole lipid droplet degradation in autolysosomes by acid hydrolysis. In this study, we evaluated the contribution of neutral and acid RE hydrolases to the breakdown of REs in human HSCs. (R)-Bromoenol lactone (R-BEL), inhibitor of adipose triglyceride lipase (ATGL) and patatin-like phospholipase domain-containing 3 (PNPLA3), the hormone-sensitive lipase (HSL) inhibitor 76-0079, as well as the serine-hydrolase inhibitor Orlistat reduced neutral RE hydrolase activity of LX-2 cell-lysates between 20 and 50%. Interestingly, in pulse-chase experiments, R-BEL, 76-0079, as well as Orlistat exerted little to no effect on cellular RE breakdown of LX-2 cells as well as primary human HSCs. In contrast, Lalistat2, a specific lysosomal acid lipase (LAL) inhibitor, virtually blunted acid in vitro RE hydrolase activity of LX-2 cells. Accordingly, HSCs isolated from LAL-deficient mice showed RE accumulation and were virtually devoid of acidic RE hydrolase activity. In pulse-chase experiments however, LAL-deficient HSCs, similar to LX-2 cells and primary human HSCs, were not defective in degrading REs. In summary, results demonstrate that ATGL, PNPLA3, and HSL contribute to neutral RE hydrolysis of human HSCs. LAL is the major acid RE hydrolase in HSCs. Yet, LAL is not limiting for RE degradation under serum-starvation. Together, results suggest that RE breakdown of HSCs is facilitated by (a) so far unknown, non-Orlistat inhibitable RE-hydrolase(s).
Collapse
Affiliation(s)
- Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Victoria Hois
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Laura Pajed
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Lisa-Maria Pusch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
15
|
Miller AP, Coronel J, Amengual J. The role of β-carotene and vitamin A in atherogenesis: Evidences from preclinical and clinical studies. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158635. [PMID: 31978554 DOI: 10.1016/j.bbalip.2020.158635] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the principal contributor to myocardial infarction, the leading cause of death worldwide. Epidemiological and mechanistic studies indicate that β-carotene and its vitamin A derivatives stimulate lipid catabolism in several tissues to reduce the incidence of obesity, but their roles within ASCVD are elusive. Herein, we review the mechanisms by which β-carotene and vitamin A modulate ASCVD. First, we summarize the current knowledge linking these nutrients with epidemiological studies and lipoprotein metabolism as one of the initiating factors of ASCVD. Next, we focus on different aspects of vitamin A metabolism in immune cells such as the mechanisms of carotenoid uptake and conversion to the vitamin A metabolite, retinoic acid. Lastly, we review the effects of retinoic acid on immuno-metabolism, differentiation, and function of macrophages and T cells, the two pillars of the innate and adaptive immune response in ASCVD, respectively. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Anthony P Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America
| | - Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America; Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|