1
|
Nunez H, Nieto PA, Mars RA, Ghavami M, Sew Hoy C, Sukhum K. Early life gut microbiome and its impact on childhood health and chronic conditions. Gut Microbes 2025; 17:2463567. [PMID: 39916516 PMCID: PMC11810090 DOI: 10.1080/19490976.2025.2463567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 02/12/2025] Open
Abstract
The development of the gut microbiome is crucial to human health, particularly during the first three years of life. Given its role in immune development, disturbances in the establishment process of the gut microbiome may have long term consequences. This review summarizes evidence for these claims, highlighting compositional changes of the gut microbiome during this critical period of life as well as factors that affect gut microbiome development. Based on human and animal data, we conclude that the early-life microbiome is a determinant of long-term health, impacting physiological, metabolic, and immune processes. The early-life gut microbiome field faces challenges. Some of these challenges are technical, such as lack of standardized stool collection protocols, inconsistent DNA extraction methods, and outdated sequencing technologies. Other challenges are methodological: small sample sizes, lack of longitudinal studies, and poor control of confounding variables. To address these limitations, we advocate for more robust research methodologies to better understand the microbiome's role in health and disease. Improved methods will lead to more reliable microbiome studies and a deeper understanding of its impact on health outcomes.
Collapse
Affiliation(s)
- Harold Nunez
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
| | | | - Ruben A. Mars
- Seeding Inc, DBA Tiny Health, Austin, Texas, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
2
|
Yu J, Li L, Kraithong S, Zou L, Zhang X, Huang R. Comprehensive review on human Milk oligosaccharides: Biosynthesis, structure, intestinal health benefits, immune regulation, neuromodulation mechanisms, and applications. Food Res Int 2025; 209:116328. [PMID: 40253162 DOI: 10.1016/j.foodres.2025.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/15/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
This review provides a comprehensive analysis of the biosynthetic pathways of various oligosaccharides in Escherichia coli, structural characteristics, and bioactive mechanisms of human milk oligosaccharides (HMOs), with a particular emphasis on their roles in gut health, immune modulation, and neurodevelopment. HMOs primarily function as prebiotics, facilitating the growth of beneficial bacteria such as Bifidobacterium to maintain microbial homeostasis, with a discussion on the synergistic role of carbohydrate-binding modules (CBMs). In immune modulation, HMOs interact with lectins on immune and epithelial cells, influencing immune responses via pathways such as Toll-like receptors (TLRs). Additionally, HMOs have been linked to enhanced cognitive, motor, and language development in infants, influencing genes such as GABRB2, SLC1A7, GLRA4, and CHRM3. The review also examines commercially available HMO-containing products and highlights future research directions and potential applications in nutrition and healthcare.
Collapse
Affiliation(s)
- Jieting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Le Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Lingshan Zou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Boquien CY, Moyon T, Billard H, David-Sochard A, Boscher C, Simon L, Roze JC, De Lauzon-Guillain B, Antignac JP, Mahieu B, Alexandre-Gouabau MC, Vigneau E, Cano-Sancho G. Associations of maternal diet with nutritional and chemical exposure markers in human milk from the LACTACOL cohort of preterm infants. Eur J Nutr 2025; 64:157. [PMID: 40244369 DOI: 10.1007/s00394-025-03658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/22/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE Maternal diet may impact human milk composition. Our objective was to characterize the association between maternal diet and the presence of nutritional and chemical exposure markers of human milk in the context of prematurity. METHODS One hundred and three mothers of preterm infants, recruited in the west of France near the Atlantic coast, completed a food frequency questionnaire to assess daily food intake. Milk was sampled up to discharge for analysis of Fatty Acids (FAs), Human Milk Oligosaccharides (HMOs) and Persistent Organic Pollutants (POPs). RESULTS Four dietary patterns were identified by principal component analysis coupled with hierarchical clustering. The pattern "Snack Eater" with the highest n-6:n-3 ratio in terms of polyunsaturated FA intake showed the lowest levels of n-3 FAs (e.g., DocosaHexaenoic Acid (DHA), p = 0.037) and POPs in milk. The highest level of dibenzodioxin was observed among the "Omnivores" pattern (p = 0.027). Butter intake was associated with FAs in milk, mainly saturated (e.g., 15:0, β = 59.2, 95%CI [30.0-88.5]) and some POPs (e.g., PCB138, β = 53.3, 95%CI [10.9-95.6]), but not with HMO. Fish intake was associated with POPs in milk. CONCLUSION Maternal diet may be associated with the FAs and POPs composition of milk in mothers of preterm infants, as it is for full-term infants. To improve the nutritional composition of human milk, it would be advisable to avoid the "Snack-eater" pattern and to favour the consumption of nutrient-rich foods. Butter consumption has been identified as a major contributor of pollutants and saturated fatty acids, and should therefore be given particular attention.
Collapse
Affiliation(s)
- Clair-Yves Boquien
- Nantes Université, INRAE, UMR1280 PhAN, CRNH - Ouest, IMAD, Nantes, F-44000, France.
| | - Thomas Moyon
- Nantes Université, INRAE, UMR1280 PhAN, CRNH - Ouest, IMAD, Nantes, F-44000, France
| | - Hélène Billard
- Nantes Université, INRAE, UMR1280 PhAN, CRNH - Ouest, IMAD, Nantes, F-44000, France
| | - Agnès David-Sochard
- Nantes Université, INRAE, UMR1280 PhAN, CRNH - Ouest, IMAD, Nantes, F-44000, France
| | - Cécile Boscher
- Department of Neonatology, CHU, Nantes University Hospital, Nantes, F-44000, France
| | - Laure Simon
- Department of Neonatology, CHU, Nantes University Hospital, Nantes, F-44000, France
| | - Jean-Christophe Roze
- Department of Neonatology, CHU, Nantes University Hospital, Nantes, F-44000, France
| | - Blandine De Lauzon-Guillain
- Université Paris Cité and Université Sorbonne Paris Nord, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Inserm, Paris, F-75004, France
| | | | | | | | | | | |
Collapse
|
4
|
Dhestina W, Lee H, Provido SMP, Chung GH, Hong S, Yu SH, Lee CB, Lee JE, Dai Z. Identifying Factors Associated With Breastfeeding Length Among Filipino Migrant Women in South Korea. J Hum Nutr Diet 2025; 38:e70030. [PMID: 40065564 PMCID: PMC11894243 DOI: 10.1111/jhn.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/17/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Migrant women becoming mothers often face social, economic, and family challenges that can affect their dietary and breastfeeding practices. This study identified factors associated with breastfeeding length in migrant women. METHODS The study sample involved 504 migrant women from the Filipino Women's Diet and Health Study (FiLWHEL) in 2014-2016. Two-hundred-seventy women who had completed information on demographic characteristics, 24-h dietary recall, breastfeeding, parity, and health conditions were included in the analysis. Multivariable logistic and linear regression models were applied to identify significant factors associated with breastfeeding length cross-sectionally. RESULTS The median (interquartile range [IQR]) for age was 35 (30, 40) years, and the mean body mass index (BMI) was 23.8 kg/m2; 62 women (23%) were breastfeeding for at least 1 year, with the median (IQR) length of 4 (1, 10) months per child. The median (IQR) of the total intake of fruits, vegetables, nuts, and legumes was 165.5 (76.9, 265.9) g/day. Women who consumed the highest tertile of fruits, vegetables, nuts, and legumes compared to those in the lowest tertile were more likely to breastfeed for at least 12 months (adjusted-OR [95% CI]: 2.24 [1.08-4.67]), primarily driven by vegetable consumption (adjusted-OR [95% CI]: 2.34 [1.11-4.93]). Additionally, women in the highest tertile of these food groups or earned an annual income of 20-40 M KRW (~15-30 K USD) appeared to breastfeed longer compared to their counterparts (p < 0.05). CONCLUSIONS This study suggests that dietary quality and income may impact breastfeeding duration for migrant women in South Korea.
Collapse
Affiliation(s)
- Winny Dhestina
- Department of Food and Nutrition, College of Human EcologySeoul National UniversitySeoulKorea
| | - Heejin Lee
- Department of Food and Nutrition, College of Human EcologySeoul National UniversitySeoulKorea
| | | | - Grace H. Chung
- Department of Child Development and Family Studies, College of Human EcologySeoul National UniversitySeoulKorea
| | - Sangmo Hong
- Division of Endocrinology and Metabolism, Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea
| | - Sung Hoon Yu
- Division of Endocrinology and Metabolism, Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea
| | - Chang Beom Lee
- Division of Endocrinology and Metabolism, Department of Internal MedicineHanyang University Guri Hospital, Hanyang University College of MedicineGuriKorea
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human EcologySeoul National UniversitySeoulKorea
- Research, Institute of Human EcologySeoul National UniversitySeoulKorea
| | - Zhaoli Dai
- School of Population Health, Faculty of Medicine and HealthUniversity of New South WalesSydneyAustralia
- School of Pharmacy, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia
| |
Collapse
|
5
|
Gonsalves J, Bauzá-Martinez J, Stahl B, Dingess KA, Mank M. Robust and High-Resolution All-Ion Fragmentation LC-ESI-IM-MS Analysis for In-Depth Characterization or Profiling of Up to 200 Human Milk Oligosaccharides. Anal Chem 2025; 97:5563-5574. [PMID: 40047520 PMCID: PMC11923967 DOI: 10.1021/acs.analchem.4c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Human milk oligosaccharides (HMOs) represent the third most abundant fraction of biomolecules in human milk (HM) and play a crucial role in infant health and development. The unique contributions of HMOs to healthy development of breast-fed infants are assumed to rely on the extraordinary complexity and diversity of HMO isomeric structures, which in turn still cause a huge analytical challenge. Many contemporary analytical methods aiming for more detailed HMO characterization combine ion mobility (IM) with LC-MS for enhanced structural resolution but are typically lacking the robustness necessary for application to HM cohorts with hundreds of samples. To overcome these challenges, we introduce a novel, robust all-ion fragmentation (AIF) LC-ESI-IM-MS method integrating four analytical dimensions: high-resolution LC separation, IM drift time, accurate mass precursor, and fragment ion measurements. This four-dimensional (4D) analytical characterization is sufficient for resolving various HMO structural isomers in an efficient way. Thereby, up to 200 HMO compounds with a maximum degree of polymerization of 13 could be simultaneously identified and relatively quantified. We devised two methods using this 4D analytical approach. One intended for in-depth characterization of multiple known but also novel HMO structures and the second is designed for robust, increased-throughput analyses. With the first approach, five trifucosyl-lacto-N-tetraose isomers (TF-LNTs), four of which were never detected before in HM, as well as additional difucosyl-lacto-N-heaose isomers (DF-LNHs), were revealed and structures fully elucidated by AIF and IM. This exemplifies the potential of our method for in-depth characterization of novel complex HMO structures. Furthermore, the increased-throughput method featuring a shorter LC gradient was applied to real-world HM samples. Here, we could differentiate the HM types I-IV based on a broader range of partly new marker HMOs. We could also derive valuable new insights into variations of multiple and rare HMOs up to DP 11 across lactational stages. Overall, our AIF LC-ESI-IM-MS approach facilitates in-depth monitoring and confident identification of a broad array of distinct and simple to very complex HMOs. We envision this robust AIF LC-ESI-IM-MS approach to advance HMO research by facilitating the characterization of a broad range of HMOs in high numbers of HM samples. This may help to further extend our understanding about HMOs structure-function relationships relevant for infants' healthy development.
Collapse
Affiliation(s)
- John Gonsalves
- Danone Research & Innovation, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | | | - Bernd Stahl
- Danone Research & Innovation, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Department of Chemical Biology & Drug Discovery, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kelly A Dingess
- Danone Research & Innovation, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Marko Mank
- Danone Research & Innovation, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
6
|
Tjandrawinata RR, Amalia N, Tandi YYP, Athallah AF, Afif Wibowo C, Aditya MR, Muhammad AR, Azizah MR, Humardani FM, Nojaid A, Christabel JA, Agnuristyaningrum A, Nurkolis F. The forgotten link: how the oral microbiome shapes childhood growth and development. FRONTIERS IN ORAL HEALTH 2025; 6:1547099. [PMID: 39989601 PMCID: PMC11842321 DOI: 10.3389/froh.2025.1547099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Childhood stunting, defined as impaired linear growth and development, remains a significant global health challenge with long-term consequences on cognitive and physical well-being. Emerging evidence highlights the pivotal role of the oral microbiome-a dynamic microbial ecosystem-in influencing nutritional status, immune response, and overall systemic health. This review explores the intricate interplay between the oral microbiome and stunting, emphasizing mechanisms such as microbial dysbiosis, its impact on nutrient absorption, and immune modulation. Disruptions in the oral microbiome can lead to nutrient malabsorption and systemic inflammation, further exacerbating growth impairments in children. Furthermore, the potential for microbiome-targeted diagnostics and interventions, including probiotics and prebiotics, offers novel strategies to address stunting. A deeper understanding of these interactions may inform innovative diagnostic tools and therapeutic interventions aimed at mitigating stunting through oral microbiome modulation. Integrating oral microbiome research into stunting prevention efforts could provide valuable insights for public health strategies to improve child growth and development, particularly in resource-limited settings. Future research should focus on elucidating the molecular pathways linking the oral microbiome to stunting and developing personalized interventions that optimize microbiome health in early life.
Collapse
Affiliation(s)
- Raymond Rubianto Tjandrawinata
- Center for Pharmaceutical and Nutraceutical Research and Policy, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Nurlinah Amalia
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Research Center of Indonesia, Surabaya, Indonesia
| | | | - Ariq Fadhil Athallah
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Caesaroy Afif Wibowo
- Medical Study Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Reva Aditya
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Athaya Rahmanardi Muhammad
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Maghfira Rahma Azizah
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program of Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | | | - Ammar Nojaid
- Medical Study Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | | | | | - Fahrul Nurkolis
- Medical Research Center of Indonesia, Surabaya, Indonesia
- Master of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
7
|
Urashima T, Ajisaka K, Ujihara T, Nakazaki E. Recent advances in the science of human milk oligosaccharides. BBA ADVANCES 2025; 7:100136. [PMID: 39991261 PMCID: PMC11847054 DOI: 10.1016/j.bbadva.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 02/25/2025] Open
Abstract
Human colostrum and mature milk contain oligosaccharides (Os), designated as human milk oligosaccharides (HMOs). Approximately 200 varieties of HMOs have been characterized. Although HMOs are not utilized as an energy source by infants, they have important protective functions, including pathogenic bacteria and viral infection inhibitors and immune modulators, among other functions, and HMOs stimulate brain-nerve development. The Os concentration is average 11 g/L in human milk but >100 mg/L in mature bovine milk, which is used to manufacture infant formula, suggesting that human-identical milk oligosaccharides (HiMOs) should be incorporated into milk substitutes. Some infant formulas incorporating 2'-fucosyllactose and lacto-N-neotetraose are now commercially available, and intervention trials have been concluded. We review basic HMO information, including their chemical structures and concentrations, attempts to synthesize HMOs at small and plant scale, studies that clarified HMO biological functions, and interventions with milk substitutes incorporating HiMOs in formula-fed infants.
Collapse
Affiliation(s)
- Tadasu Urashima
- Department of Food and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi2sen 11banchi, Inada cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Katsumi Ajisaka
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-Ku, Niigata City, Niigata, 956-8603, Japan
| | - Tetsuro Ujihara
- Kyowa Hakko Bio Co., Ltd. 4-10-2, Nakano-ku, Nakano, Tokyo, 164-0001, Japan
| | - Eri Nakazaki
- Kyowa Hakko Bio Co., Ltd. 4-10-2, Nakano-ku, Nakano, Tokyo, 164-0001, Japan
| |
Collapse
|
8
|
Sun W, Tao L, Qian C, Xue PP, Du SS, Tao YN. Human milk oligosaccharides: bridging the gap in intestinal microbiota between mothers and infants. Front Cell Infect Microbiol 2025; 14:1386421. [PMID: 39835278 PMCID: PMC11743518 DOI: 10.3389/fcimb.2024.1386421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Breast milk is an essential source of infant nutrition. It is also a vital determinant of the structure and function of the infant intestinal microbial community, and it connects the mother and infant intestinal microbiota. Human milk oligosaccharides (HMOs) are a critical component in breast milk. HMOs can reach the baby's colon entirely from milk and become a fermentable substrate for some intestinal microorganisms. HMOs can enhance intestinal mucosal barrier function and affect the intestinal function of the host through immune function, which has a therapeutic effect on specific infant intestinal diseases, such as necrotizing enterocolitis. In addition, changes in infant intestinal microbiota can reflect the maternal intestinal microbiota. HMOs are a link between the maternal intestinal microbiota and infant intestinal microbiota. HMOs affect the intestinal microbiota of infants and are related to the maternal milk microbiota. Through breastfeeding, maternal microbiota and HMOs jointly affect infant intestinal bacteria. Therefore, HMOs positively influence the establishment and balance of the infant microbial community, which is vital to ensure infant intestinal function. Therefore, HMOs can be used as a supplement and alternative therapy for infant intestinal diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying-na Tao
- Department of Traditional Chinese Medicine, Shanghai Fourth People’s Hospital
Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
9
|
Neu V, Hoffmann W, Weiß TD, Puhl M, Abikhodr A, Warnke S, Ben Faleh A, Klinck S, Pommer M, Kellner S, Maier W. Validated Multimethod Approach for Full Characterization of 2'-Fucosyl-d-lactose as an Industrially Produced Human Milk Oligosaccharide. Anal Chem 2024; 96:18615-18624. [PMID: 39540461 DOI: 10.1021/acs.analchem.4c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Human milk oligosaccharides are of high interest as active ingredients in infant formulas and dietary food supplements. Full characterization of members of this compound class is challenging due to the intrinsic complexity of byproducts during synthesis by fermentation. Moreover, when method validation is targeted for a regulated environment, a robust chromatographic separation of the highly polar oligosaccharides needs to be addressed, including isomers and compounds relevant for potential product adulteration. We present a combined approach of validated chromatography and NMR spectroscopy, which allows for full mass balancing of industrially produced 2'-fucosyl-d-lactose. A combination of NMR spectroscopy, mass spectrometry, and action IR spectroscopy tackles structural elucidation of monoacetylated species as a new class of byproducts.
Collapse
Affiliation(s)
- Volker Neu
- Analytical and Materials Science, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Waldemar Hoffmann
- Analytical and Materials Science, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Thomas D Weiß
- Agricultural Solutions, BASF SE, Speyerer Strasse 2, Limburgerhof 67117, Germany
| | - Michael Puhl
- Chemicals and Catalysis Research, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Ali Abikhodr
- Isospec Analytics SA, Renens CH-1020, Switzerland
| | | | | | - Sandra Klinck
- Analytical and Materials Science, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Maria Pommer
- Analytical and Materials Science, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Sarah Kellner
- Analytical and Materials Science, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Walter Maier
- Analytical and Materials Science, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| |
Collapse
|
10
|
Zhu L, Peng X, Li H, Luo T, Wang J, Gao Y, Deng Z, Li J, Li W, Zheng L, Zhang B. Systematic Characterization of the Oligosaccharide Profile of Human Milk in Rural Areas of Central China: Quantitative Tracking of Human Milk Oligosaccharide Composition during 12 Months of Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39359140 DOI: 10.1021/acs.jafc.4c07225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
This study investigates changes in human milk oligosaccharide (HMO) composition over a 12 month breastfeeding period in rural central China. The HMO profiles of 97 mothers were analyzed by graphitized carbon liquid chromatography-electrospray ionization-mass spectrometry. This method was simple to prepare samples and can simultaneously and absolutely quantify at least 20 neutral and acidic HMOs. All mothers were classified into four milk groups based on the presence or absence of specific α-1,2 and α-1,4-fucosylated HMOs. The main oligosaccharides in milk groups I and II were 2'-FL, LDFT, LNFP-I, and LNDFH-I, while LNT, 3-FL, LNFP-II, LNFP-V, LNDFH-II, and DFLNH-b were predominant in milk groups III and IV. Additionally, the lactation period was the primary factor affecting the concentration of individual HMOs. The concentrations of most HMOs decreased with lactation and stabilized after 180 days. However, the concentrations of 3-FL, LDFT, and LNDFH II increased gradually over the lactation period, and the concentration of 3'-SL decreased during early lactation (5-180 days) but increased during later lactation (180-365 days). Furthermore, Spearman correlation analysis revealed that maternal factors and infant factors may also affect the concentration of various HMOs. These findings provide fundamental insights for the development of a comprehensive human milk database.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoyu Peng
- Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Jiaqi Wang
- Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Yu Gao
- Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Wei Li
- Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| |
Collapse
|
11
|
Vaishnavi J, Osborne JW. Biodegradation of monocrotophos, cypermethrin & fipronil by Proteus myxofaciens VITVJ1: A plant - microbe based remediation. Heliyon 2024; 10:e37384. [PMID: 39309857 PMCID: PMC11416261 DOI: 10.1016/j.heliyon.2024.e37384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Current study was focused on the degradation of pesticides such as Monocrotophos, Cypermethrin & Fipronil (M, C & F) using phyto and rhizoremediation strategies. The isolate Proteus myxofaciens (VITVJ1) obtained from agricultural soil was capable of degrading M, C & F. The bacteria exhibited resistance to all the pesticides (M, C & F) up to 1500 ppm and was also capable of forming biofilms. The degraded products identified using Gas Chromatography-Mass Spectroscopy (GC-MS) and FTIR was further used for deriving the degradation pathway. The end product of M, C & F was acetic acid and 3-phenoxy benzoic acid which was confirmed by the presence of functional groups such as C=O and OH. Seed germination assay revealed the non-toxic nature of the degraded products with increased germination index in the treatments augmented with degraded products. The candidate genes such as opdA gene, Est gene and MnP1gene was amplified with the amplicon size of 700bp, 1200bp and 500bp respectively. P. myxofaciens not only degraded M, C & F, but was also found to be a plant growth promoting rhizobacteria. Since, it was capable of producing Indole Acetic acid (IAA), siderophore and was able to solubilize insoluble phosphate. Therefore, VITVJ1 upon augmentation to the rhizoremediation setup aided the degradation of pesticides with increase in plant growth as compared to that of the phytoremediation setup. To our knowledge this is the first study where P. myxofaciens has been effectively used for the degradation of three different classes of pesticides, which could also enhance the growth of plants and simultaneously degrade M, C & F.
Collapse
Affiliation(s)
- Jeevanandam Vaishnavi
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Jabez William Osborne
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
12
|
Gonzalez-Prendes R, Crooijmans RPMA, Dibbits B, Laport K, Breunig S, Keijzer P, Pellis L, Bovenhuis H. Genetic and environmental factors shaping goat milk oligosaccharide composition. J Dairy Sci 2024:S0022-0302(24)01101-9. [PMID: 39218066 DOI: 10.3168/jds.2024-25132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Oligosaccharides (OS) in milk have been suggested to influence the health and development of the newborn by promoting growth of beneficial gut bacteria, stimulating brain development, and enhancing immune functions. Goat milk is a natural source of specific OS, which could be a potential beneficial ingredient for infant formula. In this study, goat milk oligosaccharide (gMOS) content from approximately 1,000 dairy goats across 18 commercial farms was studied. A genomic relationship matrix was used to unravel genetic and environmental factors shaping gMOS content. The most abundant gMOS identified was 3'-NGL, with a concentration of 32.05 mg/kg, while 3-FL exhibited the lowest concentration at 1.85 mg/kg. Acidic OS had a notably higher content (81.67 mg/kg) than neutral OS (24.88 mg/kg). High variability in gMOS content was observed among individual goats, which could for a large extent be attributed to genetic differences. Heritability estimates ranged from 31% for 3'-GL to 85% for 3-FL. High positive genetic correlations (>0.57) were estimated between 3'-SL and 6'-SL, and between 6'-GL and 3'-GL. The contribution of differences between farms to variation in milk OS content varied from 3% for 3'-NGL to 45% for 6'-SL. While gMOS like 3'-GL, 6'-GL, and 6'-NGL, were significantly influenced by systematic environmental factors such as the lactation stage, the impact of these factors was relatively minor compared with the importance of genetic and farm effects. This research, which stands out due to its relatively large sample size, underscores the pivotal role of genetics, and to a smaller extent farm practices like feed ration, in determining gMOS composition.
Collapse
Affiliation(s)
- R Gonzalez-Prendes
- Ausnutria BV, Zwolle, The Netherlands,; Animal Breeding and Genomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - R P M A Crooijmans
- Animal Breeding and Genomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - B Dibbits
- Animal Breeding and Genomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - K Laport
- Animal Breeding and Genomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - S Breunig
- Ausnutria BV, Zwolle, The Netherlands,; Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - P Keijzer
- Ausnutria BV, Zwolle, The Netherlands
| | - L Pellis
- Ausnutria BV, Zwolle, The Netherlands
| | - H Bovenhuis
- Animal Breeding and Genomics Group, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Konieczna M, Koryszewska-Bagińska A, Bzikowska-Jura A, Chmielewska-Jeznach M, Jarzynka S, Olędzka G. Modifiable and Non-Modifiable Factors That Affect Human Milk Oligosaccharides Composition. Nutrients 2024; 16:2887. [PMID: 39275203 PMCID: PMC11397269 DOI: 10.3390/nu16172887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Human milk, the gold standard in infant nutrition, is a unique fluid that provides essential nutrients such as lactose, lipids, proteins, and free oligosaccharides. While its primary role is nutritional, it also protects against pathogens. This protection mainly comes from immunoglobulins, with human milk oligosaccharides (HMOs) providing additional support by inhibiting pathogen binding to host cell ligands. The prebiotic and immune-modulatory activity of HMOs strongly depends on their structure. Over 200 individual structures have been identified so far, with the composition varying significantly among women. The structure and composition of HMOs are influenced by factors such as the Lewis blood group, secretor status, and the duration of nursing. HMO profiles are heavily influenced by maternal phenotypes, which are defined based on the expression of two specific fucosyltransferases. However, recent data have shown that HMO content can be modified by various factors, both changeable and unchangeable, including diet, maternal age, gestational age, mode of delivery, breastfeeding frequency, and race. The first part of this overview presents the historical background of these sugars and the efforts by scientists to extract them using the latest chromatography methods. The second part is divided into subchapters that examine modifiable and non-modifiable factors, reviewing the most recent articles on HMO composition variations due to specific reasons and summarizing potential future challenges in conducting these types of studies.
Collapse
Affiliation(s)
- Małgorzata Konieczna
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | | | - Agnieszka Bzikowska-Jura
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
- Laboratory of Human Milk and Lactation Research, Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | | | - Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| |
Collapse
|
14
|
Isernhagen L, Galuska CE, Vernunft A, Galuska SP. Structural Characterization and Abundance of Sialylated Milk Oligosaccharides in Holstein Cows during Early Lactation. Foods 2024; 13:2484. [PMID: 39200411 PMCID: PMC11353935 DOI: 10.3390/foods13162484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Among other bioactive molecules, milk contains high amounts of sialylated milk oligosaccharides (MOs) that influence numerous processes in the offspring. For instance, sialylated MOs inhibit the invasion of pathogens and positively influence the gut microbiome to support the optimal development of the offspring. For these reasons, sialylated MOs are also used in infant formula as well as food supplements and are potential therapeutic substances for humans and animals. Because of the high interest in sialylated bovine MOs (bMOs), we used several analytical approaches, such as gas and liquid chromatography in combination with mass spectrometry, to investigate in detail the profile of sialylated bMOs in the milk of Holstein Friesian cows during early lactation. Most of the 40 MOs identified in this study were sialylated, and a rapid decrease in all detected sialylated bMOs took place during the first day of lactation. Remarkably, we observed a high variance within the sialylation level during the first two days after calving. Therefore, our results suggest that the content of sialylated MOs might be an additional quality marker for the bioactivity of colostrum and transitional milk to ensure its optimized application for the production of milk replacer and food supplements.
Collapse
Affiliation(s)
| | | | | | - Sebastian P. Galuska
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (L.I.); (A.V.)
| |
Collapse
|
15
|
Chen Q, Mueed A, Zhu L, Deng Z, Peng H, Li H, Zhang B. HPLC-QQQ-MS/MS-based authentication and determination of free and bound sialic acids content in human, bovine, sheep, goat milk, and infant formula. J Food Sci 2024; 89:4178-4191. [PMID: 38847763 DOI: 10.1111/1750-3841.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
An accurate method for qualitative and quantitative analysis of lipid-bound (LB), protein-bound (PB), oligosaccharides-bound, and free sialic acids in milk was developed by using high-performance liquid chromatography -triple quadrupole-tandem mass spectrometer. The profile of free and bound sialic acids in milk (human, bovine, goat, and sheep) and infant formula (IF) was examined in the present study. Human milk contains only N-acetylneuraminic acid (Neu5Ac) and was mainly present in the form of oligosaccharide-bound. The content of total Neu5Ac (T-Neu5Ac), free and bound Neu5Ac in human milk decreased with the prolongation of lactation. The most intriguing finding was the increase in the proportion of PB and LB sialic acids. The sialic acids in bovine and sheep milk were mainly PB and oligosaccharides-bound Neu5Ac. T-Neu5Ac in goat milk (GM) was 67.44-89.72 µg/mL and was mainly PB Neu5Ac, but total N-glycolylneuraminic acid (T-Neu5Gc) content of GM can be as high as 100.01 µg/mL. The concentration of T-Neu5Gc in sheep and GM was significantly higher than that of bovine milk (BM). T-Neu5Gc content of GM -based IF was 264.86 µg/g, whereas T-Neu5Gc content of BM -based IF was less (2.26-17.01 µg/g). Additionally, our results found that there were also sialic acids in IF ingredients, which were mainly bound with protein and oligosaccharides, primarily derived from desalted whey powder and whey protein concentrate.
Collapse
Affiliation(s)
- Qingyan Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Han Peng
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Urrutia-Baca VH, Gutiérrez-Uribe JA, Ramos-Parra PA, Domínguez-Uscanga A, Rodriguez-Gutierrez NA, Chavez-Caraza KL, Martinez-Cano I, Padilla-Garza AS, Ruiz-Villarreal EG, Espiricueta-Candelaria F, Chuck-Hernández C. Exploring the impact of maternal factors and dietary habits on human milk oligosaccharide composition in early breastfeeding among Mexican women. Sci Rep 2024; 14:14685. [PMID: 38918476 PMCID: PMC11199484 DOI: 10.1038/s41598-024-63787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Human milk oligosaccharides (HMOs) promote adequate intestinal microbiota development and favor the immune system's maturation and cognitive development. In addition to non-modifiable factors, HMOs composition can be influenced by other factors like body mass index and eating habits, but the reports are discrepant. The aim of this work was to describe the correlation between maternal factors and HMOs concentration in colostrum in 70 women from northeastern Mexico categorized into women with normal weight and women with overweight or obesity. The absolute concentration of six HMOs were significantly lower in women with overweight or obesity compared to women with normal weight (LNFPI p = 0.0021, 2'-FL p = 0.0304, LNT p = 0.0492, LNnT p = 0.00026, 3'-SL p = 0.0476, 6'-SL p = 0.00041). Another main finding was that the frequency of consumption of food groups such as vegetables, fruits and meats was positively correlated to specific HMOs (Poblano chili and 2'-FL; rs = 0.702, p = 0.0012; Orange or tangerine and 3-FL; rs = 0.428, p = 0.0022; Chicken and 2'-FL; rs = 0.615, p = 0.0039). This study contributes to the elucidation of how maternal factors influence the composition of HMOs and opens possibilities for future research aimed at mitigating overweight or obesity, consequently improving the quality of human milk.
Collapse
Affiliation(s)
- Víctor H Urrutia-Baca
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - Janet A Gutiérrez-Uribe
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - Perla A Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - Astrid Domínguez-Uscanga
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - Nora A Rodriguez-Gutierrez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Ignacio Morones Prieto 3000, 64710, Monterrey, NL, Mexico
| | - Karla L Chavez-Caraza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Ignacio Morones Prieto 3000, 64710, Monterrey, NL, Mexico
| | - Ilen Martinez-Cano
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Dr. José Eleuterio González 235, 64460, Monterrey, NL, Mexico
| | - Alicia S Padilla-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Ignacio Morones Prieto 3000, 64710, Monterrey, NL, Mexico
| | - Elias G Ruiz-Villarreal
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Dr. José Eleuterio González 235, 64460, Monterrey, NL, Mexico
| | | | - Cristina Chuck-Hernández
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico.
| |
Collapse
|
17
|
Mokhtari P, Schmidt KA, Zamanian H, Babaei M, Machle CJ, Trifonova D, Alderete TL, Holzhausen EA, Ottino-González J, Chalifour BN, Jones RB, Furst A, Yonemitsu C, Bode L, Goran MI. Maternal Diet Associated with Oligosaccharide Abundances in Human Milk from Latina Mothers. Nutrients 2024; 16:1795. [PMID: 38931150 PMCID: PMC11206877 DOI: 10.3390/nu16121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Growing evidence indicates that human milk oligosaccharides (HMOs) are important bioactive compounds that enhance health and developmental outcomes in breastfed babies. Maternal dietary intake likely contributes to variation in HMO composition, but studies identifying diet-HMO relationships are few and inconsistent. This study aimed to investigate how the maternal intake of macronutrients and micronutrients-specifically proteins, fats, vitamins, and minerals-associated with HMOs at 1 month (n = 210), 6 months (n = 131), and 12 months postpartum (n = 84). Several associations between maternal dietary factors and HMO profiles were identified utilizing partial correlation analysis. For example, maternal free sugar (rho = -0.02, p < 0.01), added sugar (rho = -0.22, p < 0.01), and sugary sweetened beverage (rho = -0.22, p < 0.01) intake were negatively correlated with the most abundant HMO, 2'-fucosyllactose (2'-FL), at 1 month, suggesting that higher sugar consumption was associated with reduced levels of 2'-FL. Further, vitamins D, C, K, and the minerals zinc and potassium were positively correlated with 2'-FL at 1 month (pAll < 0.05). For the longitudinal analysis, a mixed-effects linear regression model revealed significant associations between maternal vitamin intake and HMO profiles over time. For example, for each unit increase in niacin intake, there was a 31.355 nmol/mL increase in 2'-FL concentration (p = 0.03). Overall, the results provide additional evidence supporting a role for maternal nutrition in shaping HMO profiles, which may inform future intervention strategies with the potential of improving infant growth and development through optimal HMO levels in mothers' milk.
Collapse
Affiliation(s)
- Pari Mokhtari
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Kelsey A. Schmidt
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Hashem Zamanian
- The Saban Research Institute (TSRI) Data Science, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Mahsa Babaei
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Christopher J. Machle
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Diana Trifonova
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (D.T.); (E.A.H.); (B.N.C.)
| | - Tanya L. Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (T.L.A.); (R.B.J.)
| | - Elizabeth A. Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (D.T.); (E.A.H.); (B.N.C.)
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (T.L.A.); (R.B.J.)
| | - Jonatan Ottino-González
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Bridget N. Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (D.T.); (E.A.H.); (B.N.C.)
| | - Roshonda B. Jones
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (T.L.A.); (R.B.J.)
| | - Annalee Furst
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92123, USA; (A.F.); (C.Y.); (L.B.)
| | - Chloe Yonemitsu
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92123, USA; (A.F.); (C.Y.); (L.B.)
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92123, USA; (A.F.); (C.Y.); (L.B.)
| | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| |
Collapse
|
18
|
Dedola S, Ahmadipour S, de Andrade P, Baker AN, Boshra AN, Chessa S, Gibson MI, Hernando PJ, Ivanova IM, Lloyd JE, Marín MJ, Munro-Clark AJ, Pergolizzi G, Richards SJ, Ttofi I, Wagstaff BA, Field RA. Sialic acids in infection and their potential use in detection and protection against pathogens. RSC Chem Biol 2024; 5:167-188. [PMID: 38456038 PMCID: PMC10915975 DOI: 10.1039/d3cb00155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 03/09/2024] Open
Abstract
In structural terms, the sialic acids are a large family of nine carbon sugars based around an alpha-keto acid core. They are widely spread in nature, where they are often found to be involved in molecular recognition processes, including in development, immunology, health and disease. The prominence of sialic acids in infection is a result of their exposure at the non-reducing terminus of glycans in diverse glycolipids and glycoproteins. Herein, we survey representative aspects of sialic acid structure, recognition and exploitation in relation to infectious diseases, their diagnosis and prevention or treatment. Examples covered span influenza virus and Covid-19, Leishmania and Trypanosoma, algal viruses, Campylobacter, Streptococci and Helicobacter, and commensal Ruminococci.
Collapse
Affiliation(s)
- Simone Dedola
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Sanaz Ahmadipour
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Peterson de Andrade
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Alexander N Baker
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Andrew N Boshra
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Simona Chessa
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Matthew I Gibson
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School Coventry CV4 7AL UK
| | - Pedro J Hernando
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Irina M Ivanova
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Jessica E Lloyd
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich NR4 7TJ UK
| | - Alexandra J Munro-Clark
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | | | - Sarah-Jane Richards
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Iakovia Ttofi
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| | - Ben A Wagstaff
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
- Iceni Glycoscience Ltd, Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
19
|
Lundstrøm J, Bojar D. The evolving world of milk oligosaccharides: Biochemical diversity understood by computational advances. Carbohydr Res 2024; 537:109069. [PMID: 38402731 DOI: 10.1016/j.carres.2024.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Milk oligosaccharides, complex carbohydrates unique to mammalian milk, play crucial roles in infant nutrition and immune development. This review explores their biochemical diversity, tracing the evolutionary paths that have led to their variation across different species. We highlight the intersection of nutrition, biology, and chemistry in understanding these compounds. Additionally, we discuss the latest computational methods and analytical techniques that have revolutionized the study of milk oligosaccharides, offering insights into their structural complexity and functional roles. This brief but essential review not only aims to provide a deeper understanding of milk oligosaccharides but also discuss the road toward their potential applications.
Collapse
Affiliation(s)
- Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden.
| |
Collapse
|
20
|
Le Bourgot C, Lollier V, Richer Y, Thoulouze L, Svilar L, Le Gall S, Blat S, Le Huërou-Luron I. Maternal short chain fructo-oligosaccharides supplementation during late gestation and lactation influences milk components and offspring gut metabolome: a pilot study. Sci Rep 2024; 14:4236. [PMID: 38378944 PMCID: PMC10879084 DOI: 10.1038/s41598-024-54813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024] Open
Abstract
Breast milk composition is influenced by maternal diet. This study aimed to evaluate if supplementation of maternal diet with a prebiotic fibre, through its potential effect on milk composition, can be a leverage to orientate the gut microbiota of infants in a way that would be beneficial for their health. Twelve sows received a diet supplemented with short chain fructo-oligosaccharides or maltodextrins during the last month of gestation and the lactation. Oligosaccharidic and lipidomic profiles of colostrum and mature milk (21 days), as well as faecal microbiota composition and metabolomic profile of 21 day-old piglets were evaluated. The total porcine milk oligosaccharide concentration tended to be lower in scFOS-supplemented sows, mainly due to the significant reduction of the neutral core oligosaccharides (in particular that of a tetrahexose). Maternal scFOS supplementation affected the concentration of 31 lipids (mainly long-chain triglycerides) in mature milk. Faecal short-chain fatty acid content and that of 16 bacterial metabolites were modified by scFOS supplementation. Interestingly, the integrative data analysis gave a novel insight into the relationships between (i) maternal milk lipids and PMOs and (ii) offspring faecal bacteria and metabolites. In conclusion, scFOS-enriched maternal diet affected the composition of mature milk, and this was associated with a change in the colonisation of the offspring intestinal microbiota.
Collapse
Affiliation(s)
- Cindy Le Bourgot
- Tereos, Scientific and Regulatory Affairs Department, Moussy-le-Vieux, France.
| | - Virginie Lollier
- INRAE, UR1268 BIA, 44300, Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, 44300, Nantes, France
| | - Yoann Richer
- INRAE, UR1268 BIA, 44300, Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, 44300, Nantes, France
| | - Loric Thoulouze
- INRAE, UR1268 BIA, 44300, Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, 44300, Nantes, France
| | - Ljubica Svilar
- Cribiom, Centre de Recherche Cardiovasculaire et Nutrition C2VN, UMR INRAE 1260 INSERM 1263, University Aix-Marseille, Marseille, France
| | - Sophie Le Gall
- INRAE, UR1268 BIA, 44300, Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, 44300, Nantes, France
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, University Rennes, 35590, Saint-Gilles, France
| | | |
Collapse
|
21
|
Zhang L, Lin Q, Zhang J, Shi Y, Pan L, Hou Y, Peng X, Li W, Wang J, Zhou P. Qualitative and Quantitative Changes of Oligosaccharides in Human and Animal Milk over Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15553-15568. [PMID: 37815401 DOI: 10.1021/acs.jafc.3c03181] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The aim of this study was to investigate the changes in human and animal milk oligosaccharides over lactation. In total, 89, 97, 115, and 71 oligosaccharides were identified in human, bovine, goat, and camel milk. The number of common oligosaccharides between camel and human milk was the highest (16 and 17 in transitional and mature milk). With respect to the absolute concentration of eight oligosaccharides (2'-FL, 3-FL, α3'-GL, LNT, LNnT, 3'-SL, 6'-SL, and DSL), 2'-FL, 3'-FL, LNT, and LNnT were much higher in human than three animal species. 3'-SL had a similar concentration in bovine colostrum (322.2 μg/mL) and human colostrum (321.0 μg/mL), followed by goat colostrum (105.1 μg/mL); however, it had the highest concentration in camel mature milk (304.5 μg/mL). The ratio of 6'-SL and 3'-SL (1.77) in goat colostrum was similar to that in human colostrum (1.68), followed by bovine colostrum (0.13). In terms of changes of eight oligosaccharides over lactation, they all decreased with the increase of lactation in bovine and goat milk; however, α3'-GL, 2'-FL, and 3-FL increased in camel species, and LNT increased first and then decreased over lactation in human milk. This study provides a better understanding of the variation of milk oligosaccharides related to lactation and species.
Collapse
Affiliation(s)
- Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Qiaran Lin
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jinyue Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yue Shi
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lina Pan
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, People's Republic of China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Company, Limited, Changsha, Hunan 410011, People's Republic of China
| | - Xiaoyu Peng
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
| | - Wei Li
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
| | - Jiaqi Wang
- Ausnutria Dairy (China) Company, Limited, Changsha, Hunan 410200, People's Republic of China
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
22
|
Ali MY, Liaqat F, Khazi MI, Sethupathy S, Zhu D. Utilization of glycosyltransferases as a seamless tool for synthesis and modification of the oligosaccharides-A review. Int J Biol Macromol 2023; 249:125916. [PMID: 37527764 DOI: 10.1016/j.ijbiomac.2023.125916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
Glycosyltransferases (GTs) catalyze the transfer of active monosaccharide donors to carbohydrates to create a wide range of oligosaccharide structures. GTs display strong regioselectivity and stereoselectivity in producing glycosidic bonds, making them extremely valuable in the in vitro synthesis of oligosaccharides. The synthesis of oligosaccharides by GTs often gives high yields; however, the enzyme activity may experience product inhibition. Additionally, the higher cost of nucleotide sugars limits the usage of GTs for oligosaccharide synthesis. In this review, we comprehensively discussed the structure and mechanism of GTs based on recent literature and the CAZY website data. To provide innovative ideas for the functional studies of GTs, we summarized several remarkable characteristics of GTs, including folding, substrate specificity, regioselectivity, donor sugar nucleotides, catalytic reversibility, and differences between GTs and GHs. In particular, we highlighted the recent advancements in multi-enzyme cascade reactions and co-immobilization of GTs, focusing on overcoming problems with product inhibition and cost issues. Finally, we presented various types of GT that have been successfully used for oligosaccharide synthesis. We concluded that there is still an opportunity for improvement in enzymatically produced oligosaccharide yield, and future research should focus on improving the yield and reducing the production cost.
Collapse
Affiliation(s)
- Mohamad Yassin Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Fakhra Liaqat
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mahammed Ilyas Khazi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
23
|
van der Toorn M, Chatziioannou AC, Pellis L, Haandrikman A, van der Zee L, Dijkhuizen L. Biological Relevance of Goat Milk Oligosaccharides to Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13935-13949. [PMID: 37691562 PMCID: PMC10540210 DOI: 10.1021/acs.jafc.3c02194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Milk is often regarded as the gold standard for the nourishment of all mammalian offspring. The World Health Organization (WHO) recommends exclusive breastfeeding for the first 6 months of the life of the infant, followed by a slow introduction of complementary foods to the breastfeeding routine for a period of approximately 2 years, whenever this is possible ( Global Strategy for Infant and Young Child Feeding; WHO, 2003). One of the most abundant components in all mammals' milk, which is associated with important health benefits, is the oligosaccharides. The milk oligosaccharides (MOS) of humans and other mammals differ in terms of their concentration and diversity. Among those, goat milk contains more oligosaccharides (gMOS) than other domesticated dairy animals, as well as a greater range of structures. This review summarizes the biological functions of MOS found in both human and goat milk to identify the possible biological relevance of gMOS in human health and development. Based on the existing literature, seven biological functions of gMOS were identified, namely, MOS action as prebiotics, immune modulators, and pathogen traps; their modulation of intestinal cells; protective effect against necrotizing enterocolitis; improved brain development; and positive effects on stressor exposure. Overall, goat milk is a viable alternate supply of functional MOS that could be employed in a newborn formula.
Collapse
Affiliation(s)
| | - Anastasia Chrysovalantou Chatziioannou
- CarbExplore
Research BV, Groningen, 9747 AN The Netherlands
- Department
of Chemistry, Laboratory of Analytical Biochemistry, University of Crete, Heraklion, 70013, Greece
| | | | | | | | - Lubbert Dijkhuizen
- CarbExplore
Research BV, Groningen, 9747 AN The Netherlands
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
24
|
Jin C, Lundstrøm J, Korhonen E, Luis AS, Bojar D. Breast Milk Oligosaccharides Contain Immunomodulatory Glucuronic Acid and LacdiNAc. Mol Cell Proteomics 2023; 22:100635. [PMID: 37597722 PMCID: PMC10509713 DOI: 10.1016/j.mcpro.2023.100635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Breast milk is abundant with functionalized milk oligosaccharides (MOs) to nourish and protect the neonate. Yet we lack a comprehensive understanding of the repertoire and evolution of MOs across Mammalia. We report ∼400 MO-species associations (>100 novel structures) from milk glycomics of nine mostly understudied species: alpaca, beluga whale, black rhinoceros, bottlenose dolphin, impala, L'Hoest's monkey, pygmy hippopotamus, domestic sheep, and striped dolphin. This revealed the hitherto unknown existence of the LacdiNAc motif (GalNAcβ1-4GlcNAc) in MOs of all species except alpaca, sheep, and striped dolphin, indicating the widespread occurrence of this potentially antimicrobial motif in MOs. We also characterize glucuronic acid-containing MOs in the milk of impala, dolphins, sheep, and rhinoceros, previously only reported in cows. We demonstrate that these GlcA-MOs exhibit potent immunomodulatory effects. Our study extends the number of known MOs by >15%. Combined with >1900 curated MO-species associations, we characterize MO motif distributions, presenting an exhaustive overview of MO biodiversity.
Collapse
Affiliation(s)
- Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emma Korhonen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ana S Luis
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
25
|
Fontaine F, Turjeman S, Callens K, Koren O. The intersection of undernutrition, microbiome, and child development in the first years of life. Nat Commun 2023; 14:3554. [PMID: 37322020 PMCID: PMC10272168 DOI: 10.1038/s41467-023-39285-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Undernutrition affects about one out of five children worldwide. It is associated with impaired growth, neurodevelopment deficits, and increased infectious morbidity and mortality. Undernutrition, however, cannot be solely attributed to a lack of food or nutrient deficiency but rather results from a complex mix of biological and environmental factors. Recent research has shown that the gut microbiome is intimately involved in the metabolism of dietary components, in growth, in the training of the immune system, and in healthy development. In this review, we look at these features in the first three years of life, which is a critical window for both microbiome establishment and maturation and child development. We also discuss the potential of the microbiome in undernutrition interventions, which could increase efficacy and improve child health outcomes.
Collapse
Affiliation(s)
- Fanette Fontaine
- Food and Agriculture Organization of the United Nations, Rome, Italy
- Université Paris- Cité, 75006, Paris, France
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Karel Callens
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
26
|
Melekoglu E, Yılmaz B, Çevik A, Gökyıldız Sürücü Ş, Avcıbay Vurgeç B, Gözüyeşil E, Sharma H, Boyan N, Ozogul F. The Impact of the Human Milk Microbiota in the Prevention of Disease and Infant Health. Breastfeed Med 2023. [PMID: 37140562 DOI: 10.1089/bfm.2022.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Background: Human milk is recognized as an ideal food for newborns and infants owing to the presence of various nutritive factors, including healthy bacteria. Aim/Objective: This review aimed to understand the effects of human milk microbiota in both the prevention of disease and the health of infants. Methods: Data were obtained from PubMed, Scopus, Web of Science, clinical trial registries, Dergipark, and Türk Atıf Dizini up to February 2023 without language restrictions. Results: It is considered that the first human milk microbiota ingested by the newborn creates the initial microbiome of the gut system, which in turn influences the development and maturation of immunity. Bacteria present in human milk modulate the anti-inflammatory response by releasing certain cytokines, protecting the newborn against certain infections. Therefore, certain bacterial strains isolated from human milk could serve as potential probiotics for various therapeutic applications. Conclusions: In this review, the origin and significance of human milk bacteria have been highlighted along with certain factors influencing the composition of human milk microbiota. In addition, it also summarizes the health benefits of human milk as a protective agent against certain diseases and ailments.
Collapse
Affiliation(s)
- Ebru Melekoglu
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Ayseren Çevik
- Department of Midwifery, Cukurova University, Adana, Turkey
| | | | | | - Ebru Gözüyeşil
- Department of Midwifery, Cukurova University, Adana, Turkey
| | - Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Neslihan Boyan
- Department of Anatomy, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
27
|
Biddulph C, Holmes M, Tran TD, Kuballa A, Davies PSW, Koorts P, Maher J. Associations between Maternal Nutrition and the Concentrations of Human Milk Oligosaccharides in a Cohort of Healthy Australian Lactating Women. Nutrients 2023; 15:2093. [PMID: 37432220 PMCID: PMC10180645 DOI: 10.3390/nu15092093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are complex glycans associated with positive infant health outcomes. The concentrations of HMOs in the milk of lactating women are associated with substantial intra- and inter-individual differences and may be influenced by maternal physiological and/or nutrition-related factors. The primary aim of this study was to explore potential influences of short-term maternal diet and current body composition on HMO profiles in mature human milk. Milk samples were collected at 3-4 months postpartum from 101 healthy Australian women using standardised procedures, and analysed for macronutrients (lactose, fat, and protein). In addition, HMO concentrations were analysed using liquid-chromatography mass-spectrometry (LC-MS). Maternal dietary data were collected using three validated 24-h dietary recalls, and the body composition of a subgroup of mothers was assessed by DEXA scans (n = 30). Most (79%) of the women were secretor-positive. Individual nutrients were not significantly correlated with HMO concentrations after correction for multiple comparisons (p > 0.05), except for dietary folate intake. DEXA scans revealed no associations between HMO profiles and maternal body composition during established lactation. The study findings suggest a lack of clear and consistent associations between maternal nutrition and HMO concentrations in mature human milk from healthy lactating women with adequate dietary intake. The prevailing influence of genetic variation in lactating mothers may overshadow any impact of maternal nutritional and/or physiological status on HMO composition in mature human milk.
Collapse
Affiliation(s)
- Caren Biddulph
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLS 4558, Australia
| | - Mark Holmes
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLS 4558, Australia
- School of Health, University of the Sunshine Coast, Maroochydore DC, QLS 4558, Australia
| | - Trong D. Tran
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLS 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLS 4558, Australia
| | - Anna Kuballa
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLS 4558, Australia
- School of Health, University of the Sunshine Coast, Maroochydore DC, QLS 4558, Australia
| | - Peter S. W. Davies
- Child Health Research Centre, University of Queensland (UQ), St. Lucia, QLS 4072, Australia
| | - Pieter Koorts
- Department of Neonatology, Royal Brisbane and Women’s Hospital, Herston, QLS 4029, Australia
| | - Judith Maher
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLS 4558, Australia
- School of Health, University of the Sunshine Coast, Maroochydore DC, QLS 4558, Australia
| |
Collapse
|
28
|
Taylor R, Keane D, Borrego P, Arcaro K. Effect of Maternal Diet on Maternal Milk and Breastfed Infant Gut Microbiomes: A Scoping Review. Nutrients 2023; 15:1420. [PMID: 36986148 PMCID: PMC10051234 DOI: 10.3390/nu15061420] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
While it is widely recognized that nutrition during pregnancy and lactation can affect the microbiome of breast milk as well as the formation of the infant gut microbiome, we are only just beginning to understand the extent to which maternal diet impacts these microbiomes. Given the importance of the microbiome for infant health, we conducted a comprehensive review of the published literature to explore the current scope of knowledge regarding associations between maternal diet and the breast milk and infant gut microbiomes. Papers included in this review assessed either diet during lactation or pregnancy, and the milk and/or infant gut microbiome. Sources included cohort studies, randomized clinical trials, one case-control study, and one crossover study. From an initial review of 808 abstracts, we identified 19 reports for a full analysis. Only two studies assessed the effects of maternal diet on both milk and infant microbiomes. Although the reviewed literature supports the importance of a varied, nutrient-dense maternal diet in the formation of the infant's gut microbiome, several studies found factors other than maternal diet to have a greater impact on the infant microbiome.
Collapse
Affiliation(s)
- Rachel Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Deirdre Keane
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Paulina Borrego
- Science & Engineering Library, University of Massachusetts, Lederle Grad Research Ctr Low-Rise, 740 N Pleasant St Rm A273, Amherst, MA 01003, USA
| | - Kathleen Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| |
Collapse
|
29
|
Berger PK, Hampson HE, Schmidt KA, Alderete TL, Furst A, Yonemitsu C, Demerath E, Goran MI, Fields DA, Bode L. Stability of Human-Milk Oligosaccharide Concentrations Over 1 Week of Lactation and Over 6 Hours Following a Standard Meal. J Nutr 2023; 152:2727-2733. [PMID: 36111739 PMCID: PMC9839992 DOI: 10.1093/jn/nxac214] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/07/2022] [Accepted: 09/09/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Our previous studies revealed that human-milk oligosaccharides (HMOs) have health benefits for nursing infants and their concentrations change dynamically over 24 mo of lactation. Yet, the extent to which HMOs vary over the short term (days) and in response to acute factors such as maternal diet is unclear. OBJECTIVE The purpose of this study was to determine the stability of HMO concentrations over 7 d and in response to a standard meal and sugar-sweetened beverage (SSB) over 6 h. METHODS In this ancillary study, lactating mothers were enrolled at 6 wk postpartum. Participants received in-person instructions and materials to complete procedures at home. In the 1-wk experiment (n = 11), mothers pumped a milk sample at 07:00 h for 7 consecutive days. In the 6-h experiment (n = 35), mothers pumped a milk sample after an overnight fast at 06:00 h and then consumed a standard meal plus SSB provided by the study team. Mothers pumped a milk sample every hour for 6 consecutive hours. Samples were analyzed for the 19 most abundant HMOs. Repeated-measures ANOVA was used to test changes in HMO concentrations over time, reported as F(dftime, dferror) = F value, P value. RESULTS Concentrations of all assayed HMOs were stable over 7 consecutive days, including, for example, the most widely studied HMOs in relation to infant health: 2'-fucosyllactose (2'FL) [F(2,17) = 0.39, P = 0.65], disialyl-lacto-N-tetraose (DSLNT) [F(4, 37) = 0.60, P = 0.66], and lacto-N-neotetraose (LNnT) [F(3, 32) = 1.5, P = 0.23]. Concentrations of all assayed HMOs were stable in response to a standard meal plus SSB. For example, fasted baseline concentrations of 2'FL, DSLNT, and LNnT were 2310 ± 1620 μg/mL, 560 ± 290 μg/mL, and 630 ± 290 μg/mL, respectively, and there were no changes in 2'FL [F(4, 119) = 1.9, P = 0.13], DSLNT [F(4, 136) = 0.39, P = 0.83], and LNnT [F(4, 120) = 0.64, P = 0.63] over 6 consecutive hours. CONCLUSIONS HMO concentrations are stable over 1 wk of lactation and are not acutely affected by a standard meal plus SSB in mothers.
Collapse
Affiliation(s)
- Paige K Berger
- Department of Pediatric Newborn Medicine, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Hailey E Hampson
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Kelsey A Schmidt
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Annalee Furst
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA
| | - Chloe Yonemitsu
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA
| | - Ellen Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Michael I Goran
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - David A Fields
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Okburan G, Kızıler S. Human milk oligosaccharides as prebiotics. Pediatr Neonatol 2023; 64:231-238. [PMID: 36642576 DOI: 10.1016/j.pedneo.2022.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/12/2022] [Accepted: 09/21/2022] [Indexed: 01/04/2023] Open
Abstract
Based on its richness in immune-related components such as human milk, human milk oligosaccharides (HMOs), milk proteins, and lipids, breast milk can be considered the first functional food that humans encounter in their lifetime. According to WHO recommendations breast milk has to be the only food in an infant's diet in the first six months of age which is then continued up to two years of age with the suitable complementary foods. Regarding breast milk balanced composition, it is considered as the best food of infants thus many studies have been carried out to determine the benefits of breast milk. Based on numerous studies breast milk have a tendency to reduce the risk of type 2 diabetes, obesity, allergies, celiac disease, necrotizing enterocolitis (NEC), gastrointestinal tract infections and some type of cancers. The benefits of breast milk can be explained by its special combination which includes; macronutrients, micronutrients and bioactive components such as immunoglobulins, hormones, growth factors and oligosaccharides. One of the essential bioactive compounds of breast milk is known as human milk oligosaccharides (HMOs). HMOs are unique, bioactive carbohydrates which are identified as the most significant components of breast milk. Since they have structural complexity and multifunctional properties, they are one of the most wondered components of breast milk. HMOs promote the development of the neonatal intestinal immune, and nervous systems. This article briefly describes the history, complex structure and different functions of HMOs and highlight the importance of maternal diet for HMO biosynthesis.
Collapse
Affiliation(s)
- Gozde Okburan
- Eastern Mediterranean University, Faculty of Health Sciences, Nutrition and Dietetics Department, Famagusta, Cyprus, Mersin 10, Turkey.
| | - Serap Kızıler
- Eastern Mediterranean University, Faculty of Health Sciences, Nutrition and Dietetics Department, Famagusta, Cyprus, Mersin 10, Turkey
| |
Collapse
|
31
|
Human Milk Microbiome and Microbiome-Related Products: Potential Modulators of Infant Growth. Nutrients 2022; 14:nu14235148. [PMID: 36501178 PMCID: PMC9737635 DOI: 10.3390/nu14235148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Infant growth trajectory may influence later-life obesity. Human milk provides a wide range of nutritional and bioactive components that are vital for infant growth. Compared to formula-fed infants, breastfed infants are less likely to develop later-onset obesity, highlighting the potential role of bioactive components present in human milk. Components of particular interest are the human milk microbiota, human milk oligosaccharides (HMOs), short-chain fatty acids (SCFAs), and antimicrobial proteins, each of which influence the infant gut microbiome, which in turn has been associated with infant body composition. SCFAs and antimicrobial proteins from human milk may also systemically influence infant metabolism. Although inconsistent, multiple studies have reported associations between HMOs and infant growth, while studies on other bioactive components in relation to infant growth are sparse. Moreover, these microbiome-related components may interact with each other within the mammary gland. Here, we review the evidence around the impact of human milk microbes, HMOs, SCFAs, and antimicrobial proteins on infant growth. Breastfeeding is a unique window of opportunity to promote optimal infant growth, with aberrant growth trajectories potentially creating short- and long-term public health burdens. Therefore, it is important to understand how bioactive components of human milk influence infant growth.
Collapse
|
32
|
Zhang W, Vervoort J, Pan J, Gao P, Zhu H, Wang X, Zhang Y, Chen B, Liu Y, Li Y, Pang X, Zhang S, Jiang S, Lu J, Lyu J. Comparison of twelve human milk oligosaccharides in mature milk from different areas in China in the Chinese Human Milk Project (CHMP) study. Food Chem 2022; 395:133554. [PMID: 35830777 DOI: 10.1016/j.foodchem.2022.133554] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 12/16/2022]
Abstract
Human milk oligosaccharides (HMOs) act as a vital role in the development of infant's gut microbiome and immune function. This study aimed to measure 12 oligosaccharides in milk from Chinese donors (n = 203), and evaluated the influences of multiple factors on the HMOs profiles. The results indicated that concentrations of 6'-sialyllactose were the highest among 12 oligosaccharides (2.31 ± 0.81 g/L). HMOs concentrations varied depending on geographical location. Latitude was observed to be related to concentrations of Lacto-N-neohexaose, lacto-N-fucopentaose III, 3'-sialyllactose (r = -0.67, r = +0.63 and r = +0.50, respectively). Environmental factors like seasons correlated with lacto-N-difucohexaose Ⅱ, Lacto-N-neohexaose and 2'-fucosyllactose (r = -0.47, r = -0.4, r = -0.35, respectively). Several HMOs concentrations were correlated with maternal diet. As a consequence, the HMOs profiles measured were influenced by geographical, environmental, maternal anthropometric as well as dietary factors.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China; Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jacques Vervoort
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China; Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jiancun Pan
- Feihe Research Institute, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Peng Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Huiquan Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiaodan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Yumeng Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Baorong Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Ying Liu
- Feihe Research Institute, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Yuanyuan Li
- Feihe Research Institute, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Shilong Jiang
- Feihe Research Institute, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China; PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing 100083, China.
| | - Jing Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center for Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Jiaping Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
33
|
Moya-Alvarez V, Eussen SRBM, Mank M, Koyembi JCJ, Nyasenu YT, Ngaya G, Mad-Bondo D, Kongoma JB, Stahl B, Sansonetti PJ, Bourdet-Sicard R. Human milk nutritional composition across lactational stages in Central Africa. Front Nutr 2022; 9:1033005. [PMID: 36466422 PMCID: PMC9709887 DOI: 10.3389/fnut.2022.1033005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 03/11/2024] Open
Abstract
The African region encompasses the highest undernutrition burden with the highest neonatal and infant mortality rates globally. Under these circumstances, breastfeeding is one of the most effective ways to ensure child health and development. However, evidence on human milk (HM) composition from African women is scarce. This is of special concern, as we have no reference data from HM composition in the context of food insecurity in Africa. Furthermore, data on the evolution of HM across lactational stages in this setting lack as well. In the MITICA study, we conducted a cohort study among 48 Central-African women and their 50 infants to analyze the emergence of gut dysbiosis in infants and describe the mother-infant transmission of microbiota between birth and 6 months of age. In this context, we assessed nutritional components in HM of 48 lactating women in Central Africa through five sampling times from week 1 after birth until week 25. Unexpectedly, HM-type III (Secretor + and Lewis genes -) was predominant in HM from Central African women, and some nutrients differed significantly among HM-types. While lactose concentration increased across lactation periods, fatty acid concentration did not vary significantly. The overall median level of 16 detected individual human milk oligosaccharides (HMOs; core structures as well as fucosylated and sialylated ones) decreased from 7.3 g/l at week 1 to 3.5 g/l at week 25. The median levels of total amino acids in HM dropped from 12.8 mg/ml at week 1 to 7.4 mg/ml at week 25. In contrast, specific free amino acids increased between months 1 and 3 of lactation, e.g., free glutamic acid, glutamine, aspartic acid, and serine. In conclusion, HM-type distribution and certain nutrients differed from Western mother HM.
Collapse
Affiliation(s)
- Violeta Moya-Alvarez
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Department of Cell Biology and Infection, Institut Pasteur, Paris, France
- Epidemiology of Emergent Diseases Unit, Global Health Department, Institut Pasteur, Paris, France
| | - Simone R. B. M. Eussen
- Human Milk Research and Analytical Science, Danone Nutricia Research, Utrecht, Netherlands
| | - Marko Mank
- Human Milk Research and Analytical Science, Danone Nutricia Research, Utrecht, Netherlands
| | | | - Yawo Tufa Nyasenu
- Laboratoire d'Analyses Médicales, Institut Pasteur de Bangui, Bangui, Central African Republic
- Laboratoire de Biologie Moléculaire et d'Immunologie, Université de Lomé, Lomé, Togo
| | - Gilles Ngaya
- Laboratoire de Biologie Moléculaire et d'Immunologie, Université de Lomé, Lomé, Togo
| | - Daniel Mad-Bondo
- Direction du Service de Santé de la Gendarmerie, Sis Camp Henri Izamo, Bangui, Central African Republic
| | - Jean-Bertrand Kongoma
- Direction du Service de Santé de la Gendarmerie, Sis Camp Henri Izamo, Bangui, Central African Republic
| | - Bernd Stahl
- Human Milk Research and Analytical Science, Danone Nutricia Research, Utrecht, Netherlands
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Department of Cell Biology and Infection, Institut Pasteur, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | | |
Collapse
|
34
|
Vitamins, Vegetables and Metal Elements Are Positively Associated with Breast Milk Oligosaccharide Composition among Mothers in Tianjin, China. Nutrients 2022; 14:nu14194131. [PMID: 36235783 PMCID: PMC9570563 DOI: 10.3390/nu14194131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) are a group of breast milk carbohydrates exerting pivotal benefits for breastfed infants. Whether maternal diet is associated with breastmilk HMO composition has not been well-characterized. OBJECTIVES We investigated the associations between dietary nutrient intake and HMO concentrations in a general pregnant and postpartum population. METHODS A total of 383 breast milk samples and the corresponding food frequency questionnaires during 0-400 postpartum days from 277 mothers were collected. Six different HMOs were detected in mothers' milk. The correlation between nutrients and HMOs were analyzed using a linear mixed-effects model. RESULTS We found plant nutrients, vitamin A, vitamin C and vegetables as positive predictors of 3-fucosyllactose; vitamin B1 and vitamin B2 were positive predictors for 2'-fucosyllactose level and the sum of 2'-fucosyllactose and 3-fucosyllactose; tocopherol and metal elements were positive predictors for 3'-sialyllactose; and metal elements were positively associated with the sum of all the six HMOs; the milk and lactose intake was a positive predictor of lacto-N-tetraose levels and the sum of lacto-N-tetraose and lacto-N-neotetraose. CONCLUSIONS The results show that vegetables, vitamins and metal elements are dietary components positively associated with HMO concentrations.
Collapse
|
35
|
Selma‐Royo M, González S, Gueimonde M, Chang M, Fürst A, Martínez‐Costa C, Bode L, Collado MC. Maternal Diet Is Associated with Human Milk Oligosaccharide Profile. Mol Nutr Food Res 2022; 66:e2200058. [PMID: 35612565 PMCID: PMC9541341 DOI: 10.1002/mnfr.202200058] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/03/2022] [Indexed: 01/18/2023]
Abstract
SCOPE Human milk oligosaccharides (HMOs) are complex glycans that are abundant in human milk. The potential impact of a maternal diet on individual HMOs and the association with secretor status is unknown. Thus, this study is aimed to examine the association between maternal diet and HMO profiles. METHODS AND RESULTS This is a cross-sectional study of the MAMI cohort with 101 human milk samples from healthy mothers. HMO profiling is assessed by quantitative HPLC. Maternal dietary information is recorded through an FFQ, and perinatal factors including the mode of delivery, antibiotic exposure, and breastfeeding practices, are collected. A more significant effect of diet on HMO profiles is observed in secretor mothers than in non-secretor mothers. (Poly)phenols and fibers, both soluble and insoluble, and several insoluble polysaccharides, pectin, and MUFA are associated with the secretor HMO profiles. CONCLUSIONS Maternal diet is associated with the composition and diversity of HMO in a secretor status-dependent manner. The relationship between maternal diet and bioactive compounds, including HMOs, which are present in human milk, needs further research due its potential impact on infant development and health outcomes.
Collapse
Affiliation(s)
- Marta Selma‐Royo
- Institute of Agrochemistry and Food Technology‐National Research Council (IATA‐CSIC)PaternaValencia46980Spain
| | - Sonia González
- Department of Functional BiologyUniversity of OviedoOviedoAsturias33006Spain
- DietMicrobiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoAsturias33011Spain
| | - Miguel Gueimonde
- DietMicrobiota, and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoAsturias33011Spain
- Department of Microbiology and Biochemistry of Dairy ProductsInstituto de Productos Lácteos de Asturias‐National Research Council (IPLA‐CSIC)VillaviciosaAsturias33300Spain
| | - Melinda Chang
- Department of PediatricsUniversity of California San DiegoLa JollaCA92093USA
| | - Annalee Fürst
- Department of PediatricsUniversity of California San DiegoLa JollaCA92093USA
| | - Cecilia Martínez‐Costa
- Department of Pediatrics, School of MedicineUniversity of ValenciaValencia46010Spain
- Pediatric Gastroenterology and Nutrition SectionHospital Clínico Universitario ValenciaINCLIVA Research CenterValencia46010Spain
| | - Lars Bode
- Department of PediatricsUniversity of California San DiegoLa JollaCA92093USA
- Larsson‐Rosenquist Foundation Mother‐Milk‐Infant Center of Research ExcellenceUniversity of California San DiegoLa JollaCA92093USA
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology‐National Research Council (IATA‐CSIC)PaternaValencia46980Spain
| |
Collapse
|
36
|
Wang J, Chen MS, Wang RS, Hu JQ, Liu S, Wang YYF, Xing XL, Zhang BW, Liu JM, Wang S. Current Advances in Structure-Function Relationships and Dose-Dependent Effects of Human Milk Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6328-6353. [PMID: 35593935 DOI: 10.1021/acs.jafc.2c01365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
HMOs (human milk oligosaccharides) are the third most important nutrient in breast milk. As complex glycans, HMOs play an important role in regulating neonatal intestinal immunity, resisting viral and bacterial infections, displaying anti-inflammatory characteristics, and promoting brain development. Although there have been some previous reports of HMOs, a detailed literature review summarizing the structure-activity relationships and dose-dependent effects of HMOs is lacking. Hence, after introducing the structures and synthetic pathways of HMOs, this review summarizes and categorizes identified structure-function relationships of HMOs. Differential mechanisms of different structural HMOs utilization by microorganisms are summarized. This review also emphasizes the recent advances in the interactions between different health benefits and the variance of dosage effect based on in vitro cell tests, animal experiments, and human intervention studies. The potential relationships between the chemical structure, the dosage selection, and the physiological properties of HMOs as functional foods are vital for further understanding of HMOs and their future applications.
Collapse
Affiliation(s)
- Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Meng-Shan Chen
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Rui-Shan Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Jia-Qiang Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Shuang Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Yuan-Yi-Fei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Xiao-Long Xing
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Bo-Wei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
37
|
Wang X, Liu J, Li C, Xu Y, Wang X, Lu Y, Zhang T, Cao H, Huang L, Wang Z. Pregnancy-Related Diseases and Delivery Mode can Affect the Content of Human Milk Oligosaccharides: A Preliminary Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5207-5217. [PMID: 35434993 DOI: 10.1021/acs.jafc.2c00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human milk oligosaccharides (HMOs) are the second most abundant carbohydrates in colostrum. In this study, we performed a quantitative analysis of 13 oligosaccharides in 99 colostrum samples obtained from mothers living in Northwest China. The analysis combined liquid chromatography-mass spectrometry (LC-MS) with 2-amino-N-(2-aminoethyl)benzamide (AEAB) labeling and nonsecretors accounted for 17%. Compared with healthy secretor mothers, those with gestational diabetes mellitus presented lower levels of sialylated oligosaccharides, especially 3'-sialyllactose. Colostrum from mothers with pregnancy-induced hypertension had higher levels of fucosylated oligosaccharides, but the difference was not significant, and hypothyroidism appeared to have no effect on HMOs. Most HMOs (especially 6'-sialyllactose) were more abundant in colostrum from mothers who underwent vaginal delivery than a C-section. These findings show that the concentration of total or individual HMOs is affected by multiple factors. These findings provide a reference for evaluating variations in HMO expression among different populations and potential guidance for providing personalized clinical nutrition.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jing Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Cheng Li
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yifan Xu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xinyi Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Ting Zhang
- The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
38
|
Neville J, Pawlak R, Chang M, Furst A, Bode L, Perrin MT. A Cross-Sectional Assessment of Human Milk Oligosaccharide Composition of Vegan, Vegetarian, and Nonvegetarian Mothers. Breastfeed Med 2022; 17:210-217. [PMID: 34870467 DOI: 10.1089/bfm.2021.0259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose: Recently, maternal nutrient intake has been associated with human milk oligosaccharides (HMOs) composition. The goal of this study was to assess HMO composition in breast milk samples from vegan, vegetarian, and nonvegetarian lactating women. Second, we assessed impact of maternal body mass index (BMI), age, parity, and lactation stage on HMO composition. Materials and Methods: A cross-sectional analysis of HMO composition from vegan (n = 26), vegetarian (n = 22), and nonvegetarian (n = 26) lactating women was carried out. The majority of participants took dietary supplements. Results: In an unadjusted bivariate model, there was no difference in individual HMO composition, total HMO-bound fucose and HMO-bound sialic acid, or diversity and evenness scores by diet group. When adjusting for factors that significantly differed between groups (maternal BMI and lactation stage), no differences in HMO composition were observed. Secretor status was significant for 13 of the outcome variables with the strongest positive relationship with total HMO (β = 0.922) and HMO-bound fucose (β = 0.910), and the strongest negative relationship with sialyl-lacto-N-tetraose b (LSTb) (β = -0.544). Lactation stage was significant for eight analytes, with the strongest positive impact on 3'sialyllactose (3'SL) (β = 0.433), and the strongest negative impact on 6'sialyllactose (6'SL) (β = -0.519). Maternal BMI had a significant positive relationship with total HMO composition (β = 0.113) and 3'SL (β = 0.325). Conclusions: Lactating women who consume plant-based diets do not produce different breast milk as it relates to HMO composition.
Collapse
Affiliation(s)
| | - Roman Pawlak
- Department of Nutrition Science, East Carolina University, Greenville, North Carolina, USA
| | - Melinda Chang
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Annalee Furst
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, California, USA
| | - Maryanne T Perrin
- Department of Nutrition, The University of North Carolina Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
39
|
Moya-Alvarez V, Sansonetti PJ. Understanding the pathways leading to gut dysbiosis and enteric environmental dysfunction in infants: the influence of maternal dysbiosis and other microbiota determinants during early life. FEMS Microbiol Rev 2022; 46:6516326. [PMID: 35088084 DOI: 10.1093/femsre/fuac004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal environmental enteric dysfunction (EED) encompasses undernutrition with an inflammatory gut profile, a variable degree of dysbiosis and increased translocation of pathogens in the gut mucosa. Even though recent research findings have shed light on the pathological pathways underlying the establishment of the infant gut dysbiosis, evidence on how maternal EED influences the development of gut dysbiosis and EED in the offspring remains elusive. This review summarizes the current knowledge on the effect of maternal dysbiosis and EED on infant health, and explores recent progress in unraveling the mechanisms of acquisition of a dysbiotic gut microbiota in the offspring. In Western communities, maternal inoculum, delivery mode, perinatal antibiotics, feeding practices, and infections are the major drivers of the infant gut microbiota during the first two years of life. In other latitudes, the infectious burden and maternal malnutrition might introduce further risk factors for infant gut dysbiosis. Novel tools, such as transcriptomics and metabolomics, have become indispensable to analyze the metabolic environment of the infant in utero and post-partum. Human-milk oligosaccharides have essential prebiotic, antimicrobial, and anti-biofilm properties that might offer additional therapeutic opportunities.
Collapse
Affiliation(s)
- Violeta Moya-Alvarez
- Molecular Microbial Pathogenesis - INSERM U1202, Department of Cell Biology and Infection, 28 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France.,Epidemiology of Emergent Diseases Unit, Global Health Department, 25 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France
| | - Philippe J Sansonetti
- Molecular Microbial Pathogenesis - INSERM U1202, Department of Cell Biology and Infection, 28 rue du Dr. Roux, Institut Pasteur, 75015 Paris, France.,Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France.,The Center for Microbes, Development and Health, Institut Pasteur de Shanghai, China
| |
Collapse
|
40
|
Zeinali LI, Giuliano S, Lakshminrusimha S, Underwood MA. Intestinal Dysbiosis in the Infant and the Future of Lacto-Engineering to Shape the Developing Intestinal Microbiome. Clin Ther 2021; 44:193-214.e1. [PMID: 34922744 DOI: 10.1016/j.clinthera.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE The goal of this study was to review the role of human milk in shaping the infant intestinal microbiota and the potential of human milk bioactive molecules to reverse trends of increasing intestinal dysbiosis and dysbiosis-associated diseases. METHODS This narrative review was based on recent and historic literature. FINDINGS Human milk immunoglobulins, oligosaccharides, lactoferrin, lysozyme, milk fat globule membranes, and bile salt-stimulating lipase are complex multifunctional bioactive molecules that, among other important functions, shape the composition of the infant intestinal microbiota. IMPLICATIONS The co-evolution of human milk components and human milk-consuming commensal anaerobes many thousands of years ago resulted in a stable low-diversity infant microbiota. Over the past century, the introduction of antibiotics and modern hygiene practices plus changes in the care of newborns have led to significant alterations in the intestinal microbiota, with associated increases in risk of dysbiosis-associated disease. A better understanding of mechanisms by which human milk shapes the intestinal microbiota of the infant during a vulnerable period of development of the immune system is needed to alter the current trajectory and decrease intestinal dysbiosis and associated diseases.
Collapse
Affiliation(s)
- Lida I Zeinali
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | | | | | - Mark A Underwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
41
|
Trapped ion mobility spectrometry time-of-flight mass spectrometry for high throughput and high resolution characterization of human milk oligosaccharide isomers. Anal Chim Acta 2021; 1180:338878. [PMID: 34538323 DOI: 10.1016/j.aca.2021.338878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
The microbiome and immune system of infants are shaped by various bioactive components of human breastmilk, notably human milk oligosaccharides (HMOs). HMOs represent the third component of breastmilk and exhibit extremely high structural diversity with many isomers. Here, we propose a high throughput and high resolution approach to characterize main oligosaccharides present in breastmilk with high identification level thanks to ion mobility spectrometry. Four pairs of standard HMO isomers, that are (LNT/LNnT), (LNFP I/LNFP V), (3'-SL/6'-SL) and (2'-FL/3-FL), were first investigated under both positive and negative ionization mode using direct introduction-trapped ion mobility spectrometry-time-of-flight mass spectrometry (TIMS-TOF). By examining all the ionic species formed (i.e. protonated and deprotonated ions as well as adduct species), every isomer pair could be distinguished through the separation of at least one species, even with a small difference in collision cross section values (as small as 1.5%) thanks to the flexible resolution capacity of the TIMS instrument. Although multiple mobility peaks resulting from different glycan anomeric conformers, open-ring and/or different ionic isomer structures (i.e. various charge site locations), could be observed for some HMO species. The reduction at the reducing-end of HMOs did not significantly facilitate the isomer distinction. Finally, the unambiguous identification of the studied HMOs in a breastmilk sample showed the potential of the approach combining ion mobility separation and MS/MS experiments for high throughput distinction of HMO isomers in complex breastmilk samples without laborious sample preparation.
Collapse
|
42
|
Evolution of milk oligosaccharides: Origin and selectivity of the ratio of milk oligosaccharides to lactose among mammals. Biochim Biophys Acta Gen Subj 2021; 1866:130012. [PMID: 34536507 DOI: 10.1016/j.bbagen.2021.130012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The carbohydrate fraction of mammalian milk is constituted of lactose and oligosaccharides, most of which contain a lactose unit at their reducing ends. Although lactose is the predominant saccharide in the milk of most eutherians, oligosaccharides significantly predominate over lactose in the milk of monotremes and marsupials. SCOPE OF REVIEW This review describes the most likely process by which lactose and milk oligosaccharides were acquired during the evolution of mammals and the mechanisms by which these saccharides are digested and absorbed by the suckling neonates. MAJOR CONCLUSIONS During the evolution of mammals, c-type lysozyme evolved to α-lactalbumin. This permitted the biosynthesis of lactose by modulating the substrate specificity of β4galactosyltransferase 1, thus enabling the concomitant biosynthesis of milk oligosaccharides through the activities of several glycosyltransferases using lactose as an acceptor. In most eutherian mammals the digestion of lactose to glucose and galactose is achieved through the action of intestinal lactase (β-galactosidase), which is located within the small intestinal brush border. This enzyme, however, is absent in neonatal monotremes and macropod marsupials. It has therefore been proposed that in these species the absorption of milk oligosaccharides is achieved by pinocytosis or endocytosis, after which digestion occurs through the actions of several lysosomal acid glycosidases. This process would enable the milk oligosaccharides of monotremes and marsupials to be utilized as a significant energy source for the suckling neonates. GENERAL SIGNIFICANCE The evolution and significance of milk oligosaccharides is discussed in relation to the evolution of mammals.
Collapse
|
43
|
Sánchez C, Fente C, Regal P, Lamas A, Lorenzo MP. Human Milk Oligosaccharides (HMOs) and Infant Microbiota: A Scoping Review. Foods 2021; 10:1429. [PMID: 34203072 PMCID: PMC8234547 DOI: 10.3390/foods10061429] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are the third most abundant solid component of breast milk. However, the newborn cannot assimilate them as nutrients. They are recognized prebiotic agents (the first in the newborn diet) that stimulate the growth of beneficial microorganisms, mainly the genus Bifidobacterium, dominant in the gut of breastfed infants. The structures of the oligosaccharides vary mainly according to maternal genetics, but also other maternal factors such as parity and mode of delivery, age, diet, and nutritional status or even geographic location and seasonality cause different breast milk oligosaccharides profiles. Differences in the profiles of HMO have been linked to breast milk microbiota and gut microbial colonization of babies. Here, we provide a review of the scope of reports on associations between HMOs and the infant gut microbiota to assess the impact of HMO composition.
Collapse
Affiliation(s)
- Cristina Sánchez
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Campus Montepríncipe, Universidad San Pablo-CEU, Boadilla del Monte, 28668 Madrid, Spain; (C.S.); (M.P.L.)
| | - Cristina Fente
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.)
| | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.)
| | - María Paz Lorenzo
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Campus Montepríncipe, Universidad San Pablo-CEU, Boadilla del Monte, 28668 Madrid, Spain; (C.S.); (M.P.L.)
| |
Collapse
|
44
|
Gray TE, Narayana K, Garner AM, Bakker SA, Yoo RKH, Fischer-Tlustos AJ, Steele MA, Zandberg WF. Analysis of the biosynthetic flux in bovine milk oligosaccharides reveals competition between sulfated and sialylated species and the existence of glucuronic acid-containing analogues. Food Chem 2021; 361:130143. [PMID: 34051596 DOI: 10.1016/j.foodchem.2021.130143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
We previously observed that sialylated bovine milk oligosaccharides (BMOs) decline in both absolute and relative abundances over the initial stages of bovine lactation, with initial evidence suggesting that this decline occurred due to increased concentrations of unique sulfated BMOs. Since both sulfated and sialylated BMOs have distinct bioactivites, a follow up study was launched in order to more clearly define relative changes in these classes of BMOs over the first week of lactation in dairy cattle. Capillary electrophoresis (CE) and several liquid chromatography mass spectrometry (LC-MS) methods, including a novel multiplexed tandem MS method, were used to profile the BMOs extracted from milk collected from the same 20 Holstein cows at milkings 1, 2, 3, 4, 8, and 14 post-partum. In addition to clearly validating that sulfated and sialylated BMOs exist in direct biosynthetic completion, our study has identified over 170 unique BMOs including 14 unique glucuronic acid-containing trisaccharides.
Collapse
Affiliation(s)
- Taylor E Gray
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Kamal Narayana
- Department of Biology, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Alexander M Garner
- Department of Biology, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Samantha A Bakker
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Rachael K H Yoo
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | | | - Michael A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 1Y2, Canada.
| | - Wesley F Zandberg
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
45
|
Kong C, Faas MM, de Vos P, Akkerman R. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food Funct 2021; 11:9445-9467. [PMID: 33150902 DOI: 10.1039/d0fo01700k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human milk (HM) is the gold standard for the nutrition of infants. An important component of HM is human milk oligosaccharides (hMOs), which play an important role in gut microbiota colonization and gut immune barrier establishment, and thereby contribute to the maturation of the immune system in early life. Guiding these processes is important as disturbances have life-long health effects and can lead to the development of allergic diseases. Unfortunately, not all infants can be exclusively fed with HM. These infants are routinely fed with infant formulas that contain hMO analogs and other non-digestible carbohydrates (NDCs) to mimic the effects of hMOs. Currently, the hMO analogs 2'-fucosyllactose (2'-FL), galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), and pectins are added to infant formulas; however, these NDCs cannot mimic all hMO functions and therefore new NDCs and NDC mixtures need to become available for specific groups of neonates like preterm and disease-prone neonates. In this review, we discuss human data on the beneficial effects of infant formula supplements such as the specific hMO analog 2'-FL and NDCs as well as their mechanism of effects like stimulation of microbiota development, maturation of different parts of the gut immune barrier and anti-pathogenic effects. Insights into the structure-specific mechanisms by which hMOs and NDCs exert their beneficial functions might contribute to the development of new tailored NDCs and NDC mixtures. We also describe the needs for new in vitro systems that can be used for research on hMOs and NDCs. The current data suggest that "tailored infant formulas" for infants of different ages and healthy statuses are needed to ensure a healthy development of the microbiota and the gut immune system of infants.
Collapse
Affiliation(s)
- Chunli Kong
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Boudry G, Charton E, Le Huerou-Luron I, Ferret-Bernard S, Le Gall S, Even S, Blat S. The Relationship Between Breast Milk Components and the Infant Gut Microbiota. Front Nutr 2021; 8:629740. [PMID: 33829032 PMCID: PMC8019723 DOI: 10.3389/fnut.2021.629740] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The assembly of the newborn's gut microbiota during the first months of life is an orchestrated process resulting in specialized microbial ecosystems in the different gut compartments. This process is highly dependent upon environmental factors, and many evidences suggest that early bacterial gut colonization has long-term consequences on host digestive and immune homeostasis but also metabolism and behavior. The early life period is therefore a "window of opportunity" to program health through microbiota modulation. However, the implementation of this promising strategy requires an in-depth understanding of the mechanisms governing gut microbiota assembly. Breastfeeding has been associated with a healthy microbiota in infants. Human milk is a complex food matrix, with numerous components that potentially influence the infant microbiota composition, either by enhancing specific bacteria growth or by limiting the growth of others. The objective of this review is to describe human milk composition and to discuss the established or purported roles of human milk components upon gut microbiota establishment. Finally, the impact of maternal diet on human milk composition is reviewed to assess how maternal diet could be a simple and efficient approach to shape the infant gut microbiota.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | - Elise Charton
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- UMR STLO INRAE, Institut Agro, Rennes, France
| | | | | | - Sophie Le Gall
- INRAE, UR BIA, Nantes, France
- INRAE, BIBS facility, Nantes, France
| | | | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| |
Collapse
|
47
|
Biddulph C, Holmes M, Kuballa A, Davies PSW, Koorts P, Carter RJ, Maher J. Human Milk Oligosaccharide Profiles and Associations with Maternal Nutritional Factors: A Scoping Review. Nutrients 2021; 13:965. [PMID: 33802639 PMCID: PMC8002381 DOI: 10.3390/nu13030965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are complex unconjugated glycans associated with positive infant health outcomes. This study has examined current knowledge of the effect of maternal diet and nutritional status on the composition of HMOs in breast milk. Using the PRISMA-ScR guidelines, a comprehensive, systematic literature search was conducted using Scopus, Web of Science, Global Health (CABI), and MEDLINE. Titles and abstracts were screened independently by two reviewers against predefined inclusion and exclusion criteria. Fourteen studies met the inclusion criteria and reported on maternal dietary intake (n = 3), maternal body composition indices (n = 9), and dietary supplementation interventions (n = 2). In total, data from 1388 lactating mothers (4011 milk samples) were included. Design methodologies varied substantially across studies, particularly for milk sample collection, HMO analysis, dietary and body composition assessment. Overall, this review has identified potential associations between maternal dietary intake and nutritional status and the HMO composition of human milk, though an abundance and sufficiency of evidence is lacking. Standardised procedures for human milk sample collection and HMO analysis, along with robust and validated nutrition assessment techniques, should be employed to further investigate the impact of maternal nutritional factors on HMO composition.
Collapse
Affiliation(s)
- Caren Biddulph
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; (M.H.); (A.K.); (J.M.)
| | - Mark Holmes
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; (M.H.); (A.K.); (J.M.)
| | - Anna Kuballa
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; (M.H.); (A.K.); (J.M.)
| | - Peter S. W. Davies
- Child Health Research Centre, University of Queensland (UQ), St Lucia, Queensland 4072, Australia;
| | - Pieter Koorts
- Department of Neonatology, Royal Brisbane and Women’s Hospital, Herston, Queensland 4029, Australia;
| | - Roger J. Carter
- Liaison Librarian, Science, Health, Nursing and Midwifery, and Sport Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia;
| | - Judith Maher
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia; (M.H.); (A.K.); (J.M.)
| |
Collapse
|
48
|
Quin C, Ghosh S, Dai C, Barnett JA, Garner AM, Yoo RKH, Zandberg WF, Botta A, Gorzelak MA, Gibson DL. Maternal Intake of Dietary Fat Pre-Programs Offspring's Gut Ecosystem Altering Colonization Resistance and Immunity to Infectious Colitis in Mice. Mol Nutr Food Res 2021; 65:e2000635. [PMID: 33559319 DOI: 10.1002/mnfr.202000635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/02/2021] [Indexed: 11/10/2022]
Abstract
SCOPE The transgenerational impact of dietary fat remains unclear. Here, the role of maternal fat consumption as a modulator of gut microbial communities and infectious disease outcomes in their offspring is explored. METHODS AND RESULTS C57BL/6 mice are fed isocaloric high-fat diets throughout breeding, gestation and lactation. Diets contained either milk fat (MF), olive oil (OO) or corn oil (CO), with or without fish oil. The pups born to maternally exposed mice are weaned on to chow and raised into adulthood. At 8 weeks, the offsprings are either euthanized for colonic 16S rRNA analysis or challenged with the enteric pathogen, Citrobacter rodentium. Maternal CO exposure resulted in unique clustering of bacterial communities in offspring compared with MF and OO. Diets rich in CO reduced survival in offspring challenged with C. rodentium. The addition of fish oil did not improve mortality caused by CO and worsened disease outcomes when combined with OO. Unlike the unsaturated diets, MF is protective with and without fish oil. CONCLUSIONS Overall, these data reveal that maternal intake of fatty acids do have transgenerational impacts on their offspring's bacteriome and enteric infection risk. Based on this study, saturated fats should be included in maternal diets.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Sanjoy Ghosh
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Chuanbin Dai
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jacqueline A Barnett
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Alexander M Garner
- Department of Chemistry Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Rachael K H Yoo
- Department of Chemistry Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Wesley F Zandberg
- Department of Chemistry Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Amy Botta
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Monika A Gorzelak
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
| | - Deanna L Gibson
- Department of Biology Okanagan campus, University of British Columbia, Kelowna, British Columbia, Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
49
|
Liu Y, Ma J, Shi R, Li T, Yan Q, Jiang Z, Yang S. Biochemical characterization of a β-N-acetylhexosaminidase from Catenibacterium mitsuokai suitable for the synthesis of lacto-N-triose II. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
The Triad Mother-Breast Milk-Infant as Predictor of Future Health: A Narrative Review. Nutrients 2021; 13:nu13020486. [PMID: 33540672 PMCID: PMC7913039 DOI: 10.3390/nu13020486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The benefits of human milk for both mother and infant are widely acknowledged. Human milk could represent a link between maternal and offspring health. The triad mother-breast milk-infant is an interconnected system in which maternal diet and lifestyle might have effects on infant's health outcome. This link could be in part explained by epigenetics, even if the underlining mechanisms have not been fully clarified yet. The aim of this paper is to update the association between maternal diet and human milk, pointing out how maternal diet and lifestyle could be associated with breast-milk composition, hence with offspring's health outcome.
Collapse
|