1
|
Xu Z, Liu Y, Li F, Yang Y, Zhang H, Meng F, Liu X, Xie X, Chen X, Shi Y, Zhang L. Phase separation of hnRNPA1 and TERRA regulates telomeric stability. J Mol Cell Biol 2025; 16:mjae037. [PMID: 39313323 PMCID: PMC12019227 DOI: 10.1093/jmcb/mjae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024] Open
Abstract
Telomeres are the complexes composed of repetitive DNA sequences and associated proteins located at the end of chromatin. As a result of the DNA replication ending issue, telomeric DNA shortens during each cell cycle. The shelterin protein complex caps telomeric ends and forms a high-order protein-DNA structure to protect telomeric DNA. The stability of telomeres is critical for cellular function and related to the progression of many human diseases. Telomeric repeat-containing RNA (TERRA) is a noncoding RNA transcribed from telomeric DNA regions. TERRA plays an essential role in regulating and maintaining the stability of telomeres. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-binding proteins associated with complex and diverse biological processes. hnRNPA1 can recognize both TERRA and telomeric DNA. Previous research reported that hnRNPA1, TERRA, and POT1, a component of the shelterin complex, work coordinately and displace replication protein A from telomeric single-stranded DNA after DNA replication, promoting telomere capping to preserve genomic integrity. However, the detailed molecular mechanism has remained unclear for >20 years. Here, our study revealed the molecular structure through which the hnRNPA1 UP1 domain interacts with TERRA and identified critical residues on the interacting surface between UP1 and TERRA. Furthermore, we proved that nucleic acids significantly increase the phase-separating ability of hnRNPA1, while disrupting the UP1-TERRA interaction extraordinarily affects hnRNPA1 droplet formation both in vitro and in vivo. Taken together, these data reveal the molecular mechanism of the phase separation of hnRNPA1 and TERRA and the potential contribution of the droplets to maintaining genomic stability.
Collapse
Affiliation(s)
- Ziyan Xu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yongrui Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fudong Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yi Yang
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feilong Meng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xin Xie
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xianjun Chen
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yunyu Shi
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Liang Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross-disciplinary Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
2
|
Zhang Y, Wu Y, Pei B, Sun Q, Zhang C, Yang Q, Jin Y, Wu J, Li X. Piwei Peiyuan Prescription Attenuates the Progression of Chronic Atrophic Gastritis by Eliciting MAPK10-Mediated Mitochondrial Autophagy. Cell Biol Int 2025. [PMID: 40103313 DOI: 10.1002/cbin.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Piwei Peiyuan (PWPY) prescription is a traditional Chinese medicine prescription and has been efficiently used in the clinics to treat chronic atrophic gastritis (CAG) for many years. However, the mechanism of action underlying PWPY for treating CAG remains elusive. A CAG rat animal and cell model was constructed in this study to explore the action mechanism of PWPY prescription in treating CAG. Here we show that PWPY attenuates the progression of CAG by eliciting MAPK10-mediated mitochondrial autophagy. Experimental model of CAG was introduced using N-methyl-n'-nitro-n-nitroguanidine (MNNG). Our histological analyses reveal that MNNG-induced CAG in rat undergoes classical morphological alterations judged by immunohistochemistry and serum level of PGⅠ, PGⅡ, and G17. Importantly, PWPY treatment prevents the progression of MNNG-induced CAG judged by serum level of PGⅠ, PGⅡ, and G17. Interestingly, PWPY treatment inhibits MAPK10 activity judged by biochemical assays and promotes mitochondrial autophagy judged by electron microscopic analyses. Thus, we conclude that PWPY attenuates the progression of MNNG-induced CAG and prevents precancerous lesions by harnessing MAPK10-elicited mitochondrial autophagy. The MNNG-induced experimental CAG model provides a robust platform for further delineating therapeutic targets underlying PWPY regimen.
Collapse
Affiliation(s)
- Yi Zhang
- The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Ying Wu
- The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Bei Pei
- The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Qin Sun
- The Department of Spleen and Stomach, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Cheng Zhang
- The Research Department, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Qi Yang
- The Department of Spleen and Stomach, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Yueping Jin
- The Department of Spleen and Stomach, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Jing Wu
- The Department of Spleen and Stomach, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Xuejun Li
- The Department of Spleen and Stomach, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
3
|
Rafiq M, Hu C, Gao X, Wang Z, Schenkman S, Merdes A, Liu X. Decoding dynamic molecular interactions in cells. Cell Biol Int 2025; 49:121-128. [PMID: 39688019 DOI: 10.1002/cbin.12262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Affiliation(s)
- Mussarat Rafiq
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Chengcheng Hu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Xinjiao Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Zhikai Wang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andreas Merdes
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS & Université Toulouse III, Toulouse, France
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Zheng Y, Wang W, Chen J, Peng K, Chen X, Shen Q, Liang B, Mao Z, Tan C. Ruthenium(II) Lipid-Mimics Drive Lipid Phase Separation to Arouse Autophagy-Ferroptosis Cascade for Photoimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411629. [PMID: 39575543 PMCID: PMC11744722 DOI: 10.1002/advs.202411629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Indexed: 01/21/2025]
Abstract
Lipid-mediated phase separation is crucial for the formation of lipophilic spontaneous domain to regulate lipid metabolism and homeostasis, furtherly contributing to multiple cell death pathways. Herein, a series of Ru(II) lipid-mimics based on short chains or midchain lipids are developed. Among them, Ru-LipM with two dodecyl chains significantly induces natural lipid phase separation via hydrocarbon chain-melting phase transitions. Accompanied by the aggregation of Ru-LipM-labeled lipophilic membrane-less compartments, most polyunsaturated lipids are increased and the autophagic flux is retarded with the adaptor protein sequestosome 1 (p62). Upon low-dose irradiation, Ru-LipM further drives ferritinophagy, providing an additional source of labile iron and rendering cells more sensitive to ferroptosis. Meanwhile, the peroxidation of polyunsaturated lipids occurs due to the deactivation of glutathione peroxidase 4 (GPX4) and the overexpression of acyl-CoA synthetase long-chain family member 4 (ACSL4), leading to the immunogenic ferroptosis. Ultimately, both innate and adaptive immunity are invigorated, indicating the tremendous antitumor capability of Ru-LipM in vivo. This study presents an unprecedented discovery of small molecules capable of inducing and monitoring lipid phase separation, thereby eliciting robust immune responses in living cells. It provides a biosimulation strategy for constructing efficient metal-based immune activators.
Collapse
Affiliation(s)
- Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, School of Bioscience and BiopharmaceuticsGuangdong Pharmaceutical UniversityGuangzhou510006P. R. China
| | - Wen‐Jin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Jing‐Xin Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Kun Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Xiao‐Xiao Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Qing‐Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Bing‐Bing Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti‐Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of ChemistrySun Yat‐Sen UniversityGuangzhou510006P. R. China
| |
Collapse
|
5
|
Bellah SF, Yang F, Xiong F, Dou Z, Yao X, Liu X. ZW10: an emerging orchestrator of organelle dynamics during the cell division cycle. J Mol Cell Biol 2024; 16:mjae026. [PMID: 38830800 PMCID: PMC11757092 DOI: 10.1093/jmcb/mjae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Accepted: 06/02/2024] [Indexed: 06/05/2024] Open
Abstract
Zeste white 10 (ZW10) was first identified as a centromere/kinetochore protein encoded by the ZW10 gene in Drosophila. ZW10 guides the spindle assembly checkpoint signaling during mitotic chromosome segregation in metazoans. Recent studies have shown that ZW10 is also involved in membrane-bound organelle interactions during interphase and plays a vital role in membrane transport between the endoplasmic reticulum and Golgi apparatus. Despite these findings, the precise molecular mechanisms by which ZW10 regulates interactions between membrane-bound organelles in interphase and the assembly of membraneless organelle kinetochore in mitosis remain elusive. Here, we highlight how ZW10 forms context-dependent protein complexes during the cell cycle. These complexes are essential for mediating membrane trafficking in interphase and ensuring the accurate segregation of chromosomes in mitosis.
Collapse
Affiliation(s)
- Sm Faysal Bellah
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| |
Collapse
|
6
|
Sasankan D, Mohan R. End Binding Proteins: Drivers of Cancer Progression. Cytoskeleton (Hoboken) 2024. [PMID: 39699076 DOI: 10.1002/cm.21972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Cancer, a complex and heterogeneous disease, continues to be a major global health concern. Despite advancements in diagnostics and therapeutics, the aggressive nature of certain cancers remain a significant challenge, necessitating a deeper understanding of the underlying molecular mechanisms driving their severity and progression. Cancer severity and progression depend on cellular properties such as cell migration, cell division, cell shape changes, and intracellular transport, all of which are driven by dynamic cellular microtubules. Dynamic properties of microtubules, in turn, are regulated by an array of proteins that influence their stability and growth. Among these regulators, End Binding (EB) proteins stand out as critical orchestrators of microtubule dynamics at their growing plus ends. Beyond their fundamental role in normal cellular functions, recent research has uncovered compelling evidence linking EB proteins to the pathogenesis of various diseases, including cancer progression. As the field of cancer research advances, the clinical implication of EB proteins role in cancer severity and aggressiveness become increasingly evident. This review aims to comprehensively explore the role of microtubule-associated EB proteins in influencing the severity and aggressiveness of cancer. We also discuss the potential significance of EB as a clinical biomarker for cancer diagnosis and prognosis and as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Dhakshmi Sasankan
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, India
| | - Renu Mohan
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, India
| |
Collapse
|
7
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 PMCID: PMC11550616 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
8
|
Qian Y, Ma S, Qiu R, Sun Z, Liu W, Wu F, Lam SM, Xia Z, Wang K, Fang L, Shui G, Cao X. Golgi protein ACBD3 downregulation sensitizes cells to ferroptosis. Cell Biol Int 2024; 48:1559-1572. [PMID: 38953242 DOI: 10.1002/cbin.12213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, is emerging as a promising target in cancer therapy. It is regulated by a network of molecules and pathways that modulate lipid metabolism, iron homeostasis and redox balance, and related processes. However, there are still numerous regulatory molecules intricately involved in ferroptosis that remain to be identified. Here, we indicated that suppression of Golgi protein acyl-coenzyme A binding domain A containing 3 (ACBD3) increased the sensitivity of Henrieta Lacks and PANC1 cells to ferroptosis. ACBD3 knockdown increases labile iron levels by promoting ferritinophagy. This increase in free iron, coupled with reduced levels of glutathione peroxidase 4 due to ACBD3 knockdown, leads to the accumulation of reactive oxygen species and lipid peroxides. Moreover, ACBD3 knockdown also results in elevated levels of polyunsaturated fatty acid-containing glycerophospholipids through mechanisms that remain to be elucidated. Furthermore, inhibition of ferrtinophagy in ACBD3 downregulated cells by knocking down the nuclear receptor co-activator 4 or Bafilomycin A1 treatment impeded ferroptosis. Collectively, our findings highlight the pivotal role of ACBD3 in governing cellular resistance to ferroptosis and suggest that pharmacological manipulation of ACBD3 levels is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Ying Qian
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Shanchuan Ma
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Rong Qiu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Zhiyang Sun
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Wei Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Fan Wu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhengguo Xia
- Department of Wound Repair and Plastic and Aesthetic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Linshen Fang
- Department of Wound Repair and Plastic and Aesthetic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinwang Cao
- School of Life Sciences, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Breimann S, Kamp F, Steiner H, Frishman D. AAontology: An Ontology of Amino Acid Scales for Interpretable Machine Learning. J Mol Biol 2024; 436:168717. [PMID: 39053689 DOI: 10.1016/j.jmb.2024.168717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Amino acid scales are crucial for protein prediction tasks, many of them being curated in the AAindex database. Despite various clustering attempts to organize them and to better understand their relationships, these approaches lack the fine-grained classification necessary for satisfactory interpretability in many protein prediction problems. To address this issue, we developed AAontology-a two-level classification for 586 amino acid scales (mainly from AAindex) together with an in-depth analysis of their relations-using bag-of-word-based classification, clustering, and manual refinement over multiple iterations. AAontology organizes physicochemical scales into 8 categories and 67 subcategories, enhancing the interpretability of scale-based machine learning methods in protein bioinformatics. Thereby it enables researchers to gain a deeper biological insight. We anticipate that AAontology will be a building block to link amino acid properties with protein function and dysfunctions as well as aid informed decision-making in mutation analysis or protein drug design.
Collapse
Affiliation(s)
- Stephan Breimann
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany; Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Frits Kamp
- Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany
| | - Harald Steiner
- Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
10
|
Meng Z, Yang Y, Li S, Huang L, Yao Z, Chen Y, Wang J, Shen Y, Liang P, Zhang H, Wang W, Wang F. GSE1 promotes the proliferation and migration of lung adenocarcinoma cells by downregulating KLF6 expression. Cell Biol Int 2024; 48:1490-1506. [PMID: 38886911 DOI: 10.1002/cbin.12208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lung cancer is one of the most prevalent human cancers with a high lethality rate worldwide. In this study, we demonstrated that GSE1 (genetic suppressor element 1) expression is aberrantly upregulated in lung adenocarcinoma and that GSE1 depletion inhibits the proliferation and migration of both A549 and H1299 cells. Immunoprecipitation assays demonstrated that GSE1 interacts with histone deacetylase 1 (HDAC1) and other BRAF-HDAC complex (BHC) components in cells. The transcriptome of GSE1-knockdown A549 cells indicated that 207 genes were upregulated and 159 were downregulated based on a p-value < .05 and fold change ≥ 1.5. Bioinformatics analysis suggested that 140 differentially expressed genes harbor binding sites for HDAC1, including the tumor suppressor gene KLF6 (Kruppel-like factor 6). Indeed, quantitative reverse-transcription polymerase chain reaction and western blot analysis revealed that GSE1 could inhibit the transcription of KLF6 in lung cancer cells. In conclusion, GSE1 cooperates with HDAC1 to promote the proliferation and metastasis of non-small cell lung cancer cells through the downregulation of KLF6 expression.
Collapse
Affiliation(s)
- Ziyu Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Yingqian Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Shupei Li
- College of Life Science, Anhui Medical University, Hefei, China
| | - Liguo Huang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Zhoujuan Yao
- College of Life Science, Anhui Medical University, Hefei, China
| | - Yixuan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Junkun Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Yiru Shen
- College of Life Science, Anhui Medical University, Hefei, China
| | - Pingping Liang
- College of Life Science, Anhui Medical University, Hefei, China
| | - Hui Zhang
- College of Life Science, Anhui Medical University, Hefei, China
| | - Wenbin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Fengsong Wang
- College of Life Science, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J Mol Cell Biol 2024; 16:mjae016. [PMID: 38710586 PMCID: PMC11487160 DOI: 10.1093/jmcb/mjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome mis-segregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.
Collapse
Affiliation(s)
- Umer Ejaz
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Phil Y Yao
- University of California San Diego School of Medicine, San Diego, CA 92103, USA
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
12
|
Zhang T, Liu S, Durojaye O, Xiong F, Fang Z, Ullah T, Fu C, Sun B, Jiang H, Xia P, Wang Z, Yao X, Liu X. Dynamic phosphorylation of FOXA1 by Aurora B guides post-mitotic gene reactivation. Cell Rep 2024; 43:114739. [PMID: 39276350 DOI: 10.1016/j.celrep.2024.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/10/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
FOXA1 serves as a crucial pioneer transcription factor during developmental processes and plays a pivotal role as a mitotic bookmarking factor to perpetuate gene expression profiles and maintain cellular identity. During mitosis, the majority of FOXA1 dissociates from specific DNA binding sites and redistributes to non-specific binding sites; however, the regulatory mechanisms governing molecular dynamics and activity of FOXA1 remain elusive. Here, we show that mitotic kinase Aurora B specifies the different DNA binding modes of FOXA1 and guides FOXA1 biomolecular condensation in mitosis. Mechanistically, Aurora B kinase phosphorylates FOXA1 at Serine 221 (S221) to liberate the specific, but not the non-specific, DNA binding. Interestingly, the phosphorylation of S221 attenuates the FOXA1 condensation that requires specific DNA binding. Importantly, perturbation of the dynamic phosphorylation impairs accurate gene reactivation and cell proliferation, suggesting that reversible mitotic protein phosphorylation emerges as a fundamental mechanism for the spatiotemporal control of mitotic bookmarking.
Collapse
Affiliation(s)
- Ting Zhang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Shuaiyu Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Olanrewaju Durojaye
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230027, China
| | - Zhiyou Fang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230027, China
| | - Tahir Ullah
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Hao Jiang
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Xia
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Institute of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China.
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China.
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
13
|
Liu W, Dou Z, Wang C, Zhao G, Wu F, Wang C, Aikhionbare F, Ye M, Sedzro DM, Yang Z, Fu C, Wang Z, Gao X, Yao X, Song X, Liu X. Aurora B promotes the CENP-T-CENP-W interaction to guide accurate chromosome segregation in mitosis. J Mol Cell Biol 2024; 16:mjae001. [PMID: 38200711 PMCID: PMC11337009 DOI: 10.1093/jmcb/mjae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 04/06/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Accurate chromosome segregation in mitosis depends on kinetochores that connect centromeric chromatin to spindle microtubules. Centromeres are captured by individual microtubules via a kinetochore constitutive centromere-associated network (CCAN) during chromosome segregation. CCAN contains 16 subunits, including CENP-W and CENP-T. However, the molecular recognition and mitotic regulation of the CCAN assembly remain elusive. Here, we revealed that CENP-W binds to the histone fold domain and an uncharacterized N-terminal region of CENP-T. Aurora B phosphorylates CENP-W at threonine 60, which enhances the interaction between CENP-W and CENP-T to ensure robust metaphase chromosome alignment and accurate chromosome segregation in mitosis. These findings delineate a conserved signaling cascade that integrates protein phosphorylation with CCAN integrity for the maintenance of genomic stability.
Collapse
Affiliation(s)
- Wei Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Keck Center for Cellular Dynamics and Organoids Plasticity, Atlanta, GA 30310, USA
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230026, China
| | - Chunyue Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Gangyin Zhao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Fengge Wu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Chunli Wang
- National Chromatographic Research and Analysis Center, Chinese Academy of Sciences, Dalian 116023, China
| | - Felix Aikhionbare
- Keck Center for Cellular Dynamics and Organoids Plasticity, Atlanta, GA 30310, USA
| | - Mingliang Ye
- National Chromatographic Research and Analysis Center, Chinese Academy of Sciences, Dalian 116023, China
| | - Divine Mensah Sedzro
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Zhenye Yang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Keck Center for Cellular Dynamics and Organoids Plasticity, Atlanta, GA 30310, USA
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230026, China
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230026, China
| | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230026, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230026, China
| |
Collapse
|
14
|
Bellah SF, Xiong F, Dou Z, Yang F, Liu X, Yao X, Gao X, Zhang L. PLK1 phosphorylation of ZW10 guides accurate chromosome segregation in mitosis. J Mol Cell Biol 2024; 16:mjae008. [PMID: 38402459 PMCID: PMC11328731 DOI: 10.1093/jmcb/mjae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/09/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024] Open
Abstract
Stable transmission of genetic information during cell division requires faithful chromosome segregation. Mounting evidence has demonstrated that polo-like kinase 1 (PLK1) dynamics at kinetochores control correct kinetochore-microtubule attachments and subsequent silencing of the spindle assembly checkpoint. However, the mechanisms underlying PLK1-mediated silencing of the spindle checkpoint remain elusive. Here, we identified a regulatory mechanism by which PLK1-elicited zeste white 10 (ZW10) phosphorylation regulates spindle checkpoint silencing in mitosis. ZW10 is a cognate substrate of PLK1, and the phosphorylation of ZW10 at Ser12 enables dynamic ZW10-Zwint1 interactions. Inhibition of ZW10 phosphorylation resulted in misaligned chromosomes, while persistent expression of phospho-mimicking ZW10 mutant caused premature anaphase, in which sister chromatids entangled as cells entered anaphase. These findings reveal the previously uncharacterized PLK1-ZW10 interaction through which dynamic phosphorylation of ZW10 fine-tunes accurate chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Sm Faysal Bellah
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xinjiao Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Liangyu Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| |
Collapse
|
15
|
Wang Z, Wang W, Liu S, Yang F, Liu X, Hua S, Zhu L, Xu A, Hill DL, Wang D, Jiang K, Lippincott-Schwartz J, Liu X, Yao X. CSPP1 stabilizes microtubules by capping both plus and minus ends. J Mol Cell Biol 2024; 16:mjae007. [PMID: 38389254 PMCID: PMC11285173 DOI: 10.1093/jmcb/mjae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/11/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Although the dynamic instability of microtubules (MTs) is fundamental to many cellular functions, quiescent MTs with unattached free distal ends are commonly present and play important roles in various events to power cellular dynamics. However, how these free MT tips are stabilized remains poorly understood. Here, we report that centrosome and spindle pole protein 1 (CSPP1) caps and stabilizes both plus and minus ends of static MTs. Real-time imaging of laser-ablated MTs in live cells showed deposition of CSPP1 at the newly generated MT ends, whose dynamic instability was concomitantly suppressed. Consistently, MT ends in CSPP1-overexpressing cells were hyper-stabilized, while those in CSPP1-depleted cells were much more dynamic. This CSPP1-elicited stabilization of MTs was demonstrated to be achieved by suppressing intrinsic MT catastrophe and restricting polymerization. Importantly, CSPP1-bound MTs were resistant to mitotic centromere-associated kinesin-mediated depolymerization. These findings delineate a previously uncharacterized CSPP1 activity that integrates MT end capping to orchestrate quiescent MTs.
Collapse
Affiliation(s)
- Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Wenwen Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Shuaiyu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Shasha Hua
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Lijuan Zhu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Aoqing Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Donald L Hill
- Comprehensive Cancer Center, University of Alabama, Birmingham, AL 35233, USA
| | - Dongmei Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Kai Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | | | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
16
|
Zheng H, Zhang Q, Liu X, Shi F, Yang F, Xiang S, Jiang H. Aurora-A condensation mediated by BuGZ aids its mitotic centrosome functions. iScience 2024; 27:109785. [PMID: 38746663 PMCID: PMC11090908 DOI: 10.1016/j.isci.2024.109785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/30/2023] [Accepted: 04/16/2024] [Indexed: 03/17/2025] Open
Abstract
Centrosomes composed of centrioles and the pericentriolar material (PCM), serve as the platform for microtubule polymerization during mitosis. Despite some centriole and PCM proteins have been reported to utilize liquid-liquid phase separation (LLPS) to perform their mitotic functions, whether and how centrosomal kinases exert the coacervation in mitosis is still unknown. Here we reveal that Aurora-A, one key centrosomal kinase in regulating centrosome formation and functions, undergoes phase separation in vitro or in centrosomes from prophase, mediated by the conserved positive-charged residues inside its intrinsic disordered region (IDR) and the intramolecular interaction between its N- and C-terminus. Aurora-A condensation affects centrosome maturation, separation, initial spindle formation from the spindle pole and its kinase activity. Moreover, BuGZ interacts with Aurora-A to enhance its LLPS and centrosome functions. Thus, we propose that Aurora-A collaborates with BuGZ to exhibit the property of LLPS in centrosomes to control its centrosome-dependent functions from prophase.
Collapse
Affiliation(s)
- Hui Zheng
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Qiaoqiao Zhang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Fan Shi
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Shengqi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
17
|
Verrillo G, Obeid AM, Genco A, Scrofani J, Orange F, Hanache S, Mignon J, Leyder T, Michaux C, Kempeneers C, Bricmont N, Herkenne S, Vernos I, Martin M, Mottet D. Non-canonical role for the BAF complex subunit DPF3 in mitosis and ciliogenesis. J Cell Sci 2024; 137:jcs261744. [PMID: 38661008 PMCID: PMC11166463 DOI: 10.1242/jcs.261744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
DPF3, along with other subunits, is a well-known component of the BAF chromatin remodeling complex, which plays a key role in regulating chromatin remodeling activity and gene expression. Here, we elucidated a non-canonical localization and role for DPF3. We showed that DPF3 dynamically localizes to the centriolar satellites in interphase and to the centrosome, spindle midzone and bridging fiber area, and midbodies during mitosis. Loss of DPF3 causes kinetochore fiber instability, unstable kinetochore-microtubule attachment and defects in chromosome alignment, resulting in altered mitotic progression, cell death and genomic instability. In addition, we also demonstrated that DPF3 localizes to centriolar satellites at the base of primary cilia and is required for ciliogenesis by regulating axoneme extension. Taken together, these findings uncover a moonlighting dual function for DPF3 during mitosis and ciliogenesis.
Collapse
Affiliation(s)
- Giulia Verrillo
- University of Liege, GIGA – Research Institute, Molecular Analysis of Gene Expression (MAGE) Laboratory, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Anna Maria Obeid
- University of Liege, GIGA – Research Institute, Molecular Analysis of Gene Expression (MAGE) Laboratory, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Alexia Genco
- University of Liege, GIGA – Research Institute, Molecular Analysis of Gene Expression (MAGE) Laboratory, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Jacopo Scrofani
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - François Orange
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée (CCMA), 06100 Nice, France
| | - Sarah Hanache
- University of Liege, GIGA – Research Institute, Molecular Analysis of Gene Expression (MAGE) Laboratory, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Julien Mignon
- University of Namur, Laboratory of Physical Chemistry of Biomolecules, Unité de Chimie Physique Théorique et Structurale (UCPTS), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Tanguy Leyder
- University of Namur, Laboratory of Physical Chemistry of Biomolecules, Unité de Chimie Physique Théorique et Structurale (UCPTS), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Catherine Michaux
- University of Namur, Laboratory of Physical Chemistry of Biomolecules, Unité de Chimie Physique Théorique et Structurale (UCPTS), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Céline Kempeneers
- University of Liege, Pneumology Laboratory, I3 Group, GIGA Research Center, B-4000 Liège, Belgium
- Division of Respirology, Department of Pediatrics, University Hospital Liège, B-4000 Liège, Belgium
| | - Noëmie Bricmont
- University of Liege, Pneumology Laboratory, I3 Group, GIGA Research Center, B-4000 Liège, Belgium
- Division of Respirology, Department of Pediatrics, University Hospital Liège, B-4000 Liège, Belgium
| | - Stephanie Herkenne
- University of Liege, GIGA-Cancer, Laboratory of Mitochondria and Cell Communication, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Maud Martin
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Denis Mottet
- University of Liege, GIGA – Research Institute, Molecular Analysis of Gene Expression (MAGE) Laboratory, B34, Avenue de l'Hôpital, B-4000 Liège, Belgium
| |
Collapse
|
18
|
Dou Z, Liu R, Gui P, Fu C, Lippincott-Schwartz J, Yao X, Liu X. Fluorescence complementation-based FRET imaging reveals centromere assembly dynamics. Mol Biol Cell 2024; 35:ar51. [PMID: 38381564 PMCID: PMC11064673 DOI: 10.1091/mbc.e23-09-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Visualization of specific molecules and their assembly in real time and space is essential to delineate how cellular dynamics and signaling circuit are orchestrated during cell division cycle. Our recent studies reveal structural insights into human centromere-kinetochore core CCAN complex. Here we introduce a method for optically imaging trimeric and tetrameric protein interactions at nanometer spatial resolution in live cells using fluorescence complementation-based Förster resonance energy transfer (FC-FRET). Complementary fluorescent protein molecules were first used to visualize dimerization followed by FRET measurements. Using FC-FRET, we visualized centromere CENP-SXTW tetramer assembly dynamics in live cells, and dimeric interactions between CENP-TW dimer and kinetochore protein Spc24/25 dimer in dividing cells. We further delineated the interactions of monomeric CENP-T with Spc24/25 dimer in dividing cells. Surprisingly, our analyses revealed critical role of CDK1 kinase activity in the initial recruitment of Spc24/25 by CENP-T. However, interactions between CENP-T and Spc24/25 during chromosome segregation is independent of CDK1. Thus, FC-FRET provides a unique approach to delineate spatiotemporal dynamics of trimerized and tetramerized proteins at nanometer scale and establishes a platform to report the precise regulation of multimeric protein interactions in space and time in live cells.
Collapse
Affiliation(s)
- Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Center for Cross-disciplinary Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ran Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Center for Cross-disciplinary Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ping Gui
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Center for Cross-disciplinary Sciences, University of Science and Technology of China, Hefei 230027, China
- Molecular Imaging Center, Morehouse School of Medicine, Atlanta, GA 30310
- Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chuanhai Fu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Center for Cross-disciplinary Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Center for Cross-disciplinary Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Center for Cross-disciplinary Sciences, University of Science and Technology of China, Hefei 230027, China
- Molecular Imaging Center, Morehouse School of Medicine, Atlanta, GA 30310
| |
Collapse
|
19
|
Ramirez DA, Hough LE, Shirts MR. Coiled-coil domains are sufficient to drive liquid-liquid phase separation in protein models. Biophys J 2024; 123:703-717. [PMID: 38356260 PMCID: PMC10995412 DOI: 10.1016/j.bpj.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/09/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) is thought to be a main driving force in the formation of membraneless organelles. Examples of such organelles include the centrosome, central spindle, and stress granules. Recently, it has been shown that coiled-coil (CC) proteins, such as the centrosomal proteins pericentrin, spd-5, and centrosomin, might be capable of LLPS. CC domains have physical features that could make them the drivers of LLPS, but it is unknown if they play a direct role in the process. We developed a coarse-grained simulation framework for investigating the LLPS propensity of CC proteins, in which interactions that support LLPS arise solely from CC domains. We show, using this framework, that the physical features of CC domains are sufficient to drive LLPS of proteins. The framework is specifically designed to investigate how the number of CC domains, as well as the multimerization state of CC domains, can affect LLPS. We show that small model proteins with as few as two CC domains can phase separate. Increasing the number of CC domains up to four per protein can somewhat increase LLPS propensity. We demonstrate that trimer-forming and tetramer-forming CC domains have a dramatically higher LLPS propensity than dimer-forming coils, which shows that multimerization state has a greater effect on LLPS than the number of CC domains per protein. These data support the hypothesis of CC domains as drivers of protein LLPS, and have implications in future studies to identify the LLPS-driving regions of centrosomal and central spindle proteins.
Collapse
Affiliation(s)
- Dominique A Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Loren E Hough
- Department of Physics and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
20
|
Yang YH, Wei YL, She ZY. Kinesin-7 CENP-E in tumorigenesis: Chromosome instability, spindle assembly checkpoint, and applications. Front Mol Biosci 2024; 11:1366113. [PMID: 38560520 PMCID: PMC10978661 DOI: 10.3389/fmolb.2024.1366113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Kinesin motors are a large family of molecular motors that walk along microtubules to fulfill many roles in intracellular transport, microtubule organization, and chromosome alignment. Kinesin-7 CENP-E (Centromere protein E) is a chromosome scaffold-associated protein that is located in the corona layer of centromeres, which participates in kinetochore-microtubule attachment, chromosome alignment, and spindle assembly checkpoint. Over the past 3 decades, CENP-E has attracted great interest as a promising new mitotic target for cancer therapy and drug development. In this review, we describe expression patterns of CENP-E in multiple tumors and highlight the functions of CENP-E in cancer cell proliferation. We summarize recent advances in structural domains, roles, and functions of CENP-E in cell division. Notably, we describe the dual functions of CENP-E in inhibiting and promoting tumorigenesis. We summarize the mechanisms by which CENP-E affects tumorigenesis through chromosome instability and spindle assembly checkpoints. Finally, we overview and summarize the CENP-E-specific inhibitors, mechanisms of drug resistances and their applications.
Collapse
Affiliation(s)
- Yu-Hao Yang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| |
Collapse
|
21
|
Ray S, Buell AK. Emerging experimental methods to study the thermodynamics of biomolecular condensate formation. J Chem Phys 2024; 160:091001. [PMID: 38445729 DOI: 10.1063/5.0190160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
The formation of biomolecular condensates in vivo is increasingly recognized to underlie a multitude of crucial cellular functions. Furthermore, the evolution of highly dynamic protein condensates into progressively less reversible assemblies is thought to be involved in a variety of disorders, from cancer over neurodegeneration to rare genetic disorders. There is an increasing need for efficient experimental methods to characterize the thermodynamics of condensate formation and that can be used in screening campaigns to identify and rationally design condensate modifying compounds. Theoretical advances in the field are also identifying the key parameters that need to be measured in order to obtain a comprehensive understanding of the underlying interactions and driving forces. Here, we review recent progress in the development of efficient and quantitative experimental methods to study the driving forces behind and the temporal evolution of biomolecular condensates.
Collapse
Affiliation(s)
- Soumik Ray
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Wang X, Liu J, Mao C, Mao Y. Phase separation-mediated biomolecular condensates and their relationship to tumor. Cell Commun Signal 2024; 22:143. [PMID: 38383403 PMCID: PMC10880379 DOI: 10.1186/s12964-024-01518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Phase separation is a cellular phenomenon where macromolecules aggregate or segregate, giving rise to biomolecular condensates resembling "droplets" and forming distinct, membrane-free compartments. This process is pervasive in biological cells, contributing to various essential cellular functions. However, when phase separation goes awry, leading to abnormal molecular aggregation, it can become a driving factor in the development of diseases, including tumor. Recent investigations have unveiled the intricate connection between dysregulated phase separation and tumor pathogenesis, highlighting its potential as a novel therapeutic target. This article provides an overview of recent phase separation research, with a particular emphasis on its role in tumor, its therapeutic implications, and outlines avenues for further exploration in this intriguing field.
Collapse
Affiliation(s)
- Xi Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jiameng Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Yufei Mao
- Department of Ultrasound Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
23
|
Rozen EJ, Wigglesworth K, Shohet JM. A Novel Druggable Dual-Specificity tYrosine-Regulated Kinase3/Calmodulin Kinase-like Vesicle-Associated Signaling Module with Therapeutic Implications in Neuroblastoma. Biomedicines 2024; 12:197. [PMID: 38255303 PMCID: PMC10813661 DOI: 10.3390/biomedicines12010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
High-risk neuroblastoma is a very aggressive pediatric cancer, accounting for ~15% of childhood cancer mortality. Therefore, novel therapeutic strategies for the treatment of neuroblastoma are urgently sought. Here, we focused on the potential implications of the Dual-specificity tYrosine-Regulated Kinase (DYRK) family and downstream signaling pathways. We used bioinformatic analysis of public datasets from neuroblastoma cohorts and cell lines to search correlations between patient survival and expression of DYRK kinases. Additionally, we performed biochemical, molecular, and cellular approaches to validate and characterize our observations, as well as an in vivo orthotopic murine model of neuroblastoma. We identified the DYRK3 kinase as a critical mediator of neuroblastoma cell proliferation and in vivo tumor growth. DYRK3 has recently emerged as a key regulator of several biomolecular condensates and has been linked to the hypoxic response of neuroblastoma cells. Our data suggest a role for DYRK3 as a regulator of the neuroblastoma-specific protein CAMKV, which is also required for neuroblastoma cell proliferation. CAMKV is a very understudied member of the Ca2+/calmodulin-dependent protein kinase family, originally described as a pseudokinase. We show that CAMKV is phosphorylated by DYRK3, and that inhibition of DYRK3 kinase activity induces CAMKV aggregation, probably mediated by its highly disordered C-terminal half. Importantly, we provide evidence that the DYRK3/CAMKV signaling module could play an important role for the function of the mitotic spindle during cell division. Our data strongly support the idea that inhibition of DYRK3 and/or CAMKV in neuroblastoma cells could constitute an innovative and highly specific intervention to fight against this dreadful cancer.
Collapse
Affiliation(s)
- Esteban J. Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01566, USA; (K.W.)
| | - Kim Wigglesworth
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01566, USA; (K.W.)
| | - Jason M. Shohet
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01566, USA; (K.W.)
| |
Collapse
|
24
|
Liu R, Dou Z, Tian T, Gao X, Chen L, Yuan X, Wang C, Hao J, Gui P, Mullen M, Aikhionbare F, Niu L, Bi G, Zou P, Zhang X, Fu C, Yao X, Zang J, Liu X. Dynamic phosphorylation of CENP-N by CDK1 guides accurate chromosome segregation in mitosis. J Mol Cell Biol 2023; 15:mjad041. [PMID: 37365681 PMCID: PMC10799313 DOI: 10.1093/jmcb/mjad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/09/2023] [Accepted: 06/24/2023] [Indexed: 06/28/2023] Open
Abstract
In mitosis, accurate chromosome segregation depends on the kinetochore, a supermolecular machinery that couples dynamic spindle microtubules to centromeric chromatin. However, the structure-activity relationship of the constitutive centromere-associated network (CCAN) during mitosis remains uncharacterized. Building on our recent cryo-electron microscopic analyses of human CCAN structure, we investigated how dynamic phosphorylation of human CENP-N regulates accurate chromosome segregation. Our mass spectrometric analyses revealed mitotic phosphorylation of CENP-N by CDK1, which modulates the CENP-L-CENP-N interaction for accurate chromosome segregation and CCAN organization. Perturbation of CENP-N phosphorylation is shown to prevent proper chromosome alignment and activate the spindle assembly checkpoint. These analyses provide mechanistic insight into a previously undefined link between the centromere-kinetochore network and accurate chromosome segregation.
Collapse
Affiliation(s)
- Ran Liu
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Tian Tian
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Lili Chen
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Chunyue Wang
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Jiahe Hao
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Ping Gui
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - McKay Mullen
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Felix Aikhionbare
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Liwen Niu
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Guoqiang Bi
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xuan Zhang
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Jianye Zang
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| |
Collapse
|
25
|
Piroska L, Fenyi A, Thomas S, Plamont MA, Redeker V, Melki R, Gueroui Z. α-Synuclein liquid condensates fuel fibrillar α-synuclein growth. SCIENCE ADVANCES 2023; 9:eadg5663. [PMID: 37585526 PMCID: PMC10431715 DOI: 10.1126/sciadv.adg5663] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
α-Synuclein (α-Syn) aggregation into fibrils with prion-like features is intimately associated with Lewy pathology and various synucleinopathies. Emerging studies suggest that α-Syn could form liquid condensates through phase separation. The role of these condensates in aggregation and disease remains elusive and the interplay between α-Syn fibrils and α-Syn condensates remains unexplored, possibly due to difficulties in triggering the formation of α-Syn condensates in cells. To address this gap, we developed an assay allowing the controlled assembly/disassembly of α-Syn condensates in cells and studied them upon exposure to preformed α-Syn fibrillar polymorphs. Fibrils triggered the evolution of liquid α-Syn condensates into solid-like structures displaying growing needle-like extensions and exhibiting pathological amyloid hallmarks. No such changes were elicited on α-Syn that did not undergo phase separation. We, therefore, propose a model where α-Syn within condensates fuels exogenous fibrillar seeds growth, thus speeding up the prion-like propagation of pathogenic aggregates.
Collapse
Affiliation(s)
- Leonard Piroska
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Alexis Fenyi
- Institut Francois Jacob (MIRCen), CEA, CNRS, Fontenay-aux-Roses, France
| | - Scott Thomas
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marie-Aude Plamont
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Virginie Redeker
- Institut Francois Jacob (MIRCen), CEA, CNRS, Fontenay-aux-Roses, France
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA, CNRS, Fontenay-aux-Roses, France
| | - Zoher Gueroui
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
26
|
Pokhrel P, Jonchhe S, Pan W, Mao H. Single-Molecular Dissection of Liquid-Liquid Phase Transitions. J Am Chem Soc 2023; 145:17143-17150. [PMID: 37494702 PMCID: PMC10528544 DOI: 10.1021/jacs.3c03812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Interaction between peptides and nucleic acids is a ubiquitous process that drives many cellular functions, such as replications, transcriptions, and translations. Recently, this interaction has been found in liquid-liquid phase separation (LLPS), a process responsible for the formation of newly discovered membraneless organelles with a variety of biological functions inside cells. In this work, we studied the molecular interaction between the poly-l-lysine (PLL) peptide and nucleic acids during the early stage of an LLPS process at the single-molecule level using optical tweezers. By monitoring the mechanical tension of individual nucleic acid templates upon PLL addition, we revealed a multistage LLPS process mediated by the long-range interactions between nucleic acids and polyelectrolytes. By varying different types (ssDNA, ssRNA, and dsDNA) and sequences (A-, T-, G-, or U-rich) of nucleic acids, we pieced together transition diagrams of the PLL-nucleic acid condensates from which we concluded that the propensity to form rigid nucleic acid-PLL complexes reduces the condensate formation during the LLPS process. We anticipate that these results are instrumental in understanding the transition mechanism of LLPS condensates, which allows new strategies to interfere with the biological functions of LLPS condensates inside cells.
Collapse
Affiliation(s)
- Pravin Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Sagun Jonchhe
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Wei Pan
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
27
|
Ramirez DA, Hough LE, Shirts MR. Coiled-coil domains are sufficient to drive liquid-liquid phase separation of proteins in molecular models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543124. [PMID: 37398035 PMCID: PMC10312653 DOI: 10.1101/2023.05.31.543124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) is thought to be a main driving force in the formation of membraneless organelles. Examples of such organelles include the centrosome, central spindle, and stress granules. Recently, it has been shown that coiled-coil (CC) proteins, such as the centrosomal proteins pericentrin, spd-5, and centrosomin, might be capable of LLPS. CC domains have physical features that could make them the drivers of LLPS, but it is unknown if they play a direct role in the process. We developed a coarse-grained simulation framework for investigating the LLPS propensity of CC proteins, in which interactions which support LLPS arise solely from CC domains. We show, using this framework, that the physical features of CC domains are sufficient to drive LLPS of proteins. The framework is specifically designed to investigate how the number of CC domains, as well as multimerization state of CC domains, can affect LLPS. We show that small model proteins with as few as two CC domains can phase separate. Increasing the number of CC domains up to four per protein can somewhat increase LLPS propensity. We demonstrate that trimer-forming and tetramer-forming CC domains have a dramatically higher LLPS propensity than dimer-forming coils, which shows that multimerization state has a greater effect on LLPS than the number of CC domains per protein. These data support the hypothesis of CC domains as drivers of protein LLPS, and has implications in future studies to identify the LLPS-driving regions of centrosomal and central spindle proteins.
Collapse
Affiliation(s)
| | - Loren E. Hough
- Department of Physics and BioFrontiers Institute, University of Colorado Boulder, Boulder CO, 80309
| | - Michael R. Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80309
| |
Collapse
|
28
|
Zheng H, Wen W. Protein phase separation: new insights into cell division. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1042-1051. [PMID: 37249333 PMCID: PMC10415187 DOI: 10.3724/abbs.2023093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/15/2023] [Indexed: 05/31/2023] Open
Abstract
As the foundation for the development of multicellular organisms and the self-renewal of single cells, cell division is a highly organized event which segregates cellular components into two daughter cells equally or unequally, thus producing daughters with identical or distinct fates. Liquid-liquid phase separation (LLPS), an emerging biophysical concept, provides a new perspective for us to understand the mechanisms of a wide range of cellular events, including the organization of membrane-less organelles. Recent studies have shown that several key organelles in the cell division process are assembled into membrane-free structures via LLPS of specific proteins. Here, we summarize the regulatory functions of protein phase separation in centrosome maturation, spindle assembly and polarity establishment during cell division.
Collapse
Affiliation(s)
- Hongdan Zheng
- />Department of NeurosurgeryHuashan Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceNational Center for Neurological DisordersInstitutes of Biomedical SciencesSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Wenyu Wen
- />Department of NeurosurgeryHuashan Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceNational Center for Neurological DisordersInstitutes of Biomedical SciencesSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
29
|
Mercado SAS, Galvis DGV. Paracetamol ecotoxicological bioassay using the bioindicators Lens culinaris Med. and Pisum sativum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61965-61976. [PMID: 36934188 PMCID: PMC10024602 DOI: 10.1007/s11356-023-26475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Paracetamol is one of the most widely used drugs worldwide, yet its environmental presence and hazardous impact on non-target organisms could rapidly increase. In this study, the possible cytotoxic effects of paracetamol were evaluated using two bioindicator plants Lens culinaris and Pisum sativum. Concentrations of 500, 400, 300, 200, 100, 50, 25, 5, 1 mg L-1, and a control (distilled water) were used for a total of 10 treatments, which were subsequently applied on seeds of Lens culinaris Med. and Pisum sativum L.; after 72 h of exposure, root growth, mitotic index, percentage of chromosomal abnormalities, and the presence of micronucleus were evaluated. The cytotoxic effect of paracetamol on L. culinaris and P. sativum was demonstrated, reporting the inhibition of root growth, the presence of abnormalities, and a significant micronucleus index at all concentrations used, which shows that this drug has a high degree of toxicity.
Collapse
|
30
|
Che X, Wu J, Liu H, Su J, Chen X. Cellular liquid-liquid phase separation: Concept, functions, regulations, and detections. J Cell Physiol 2023; 238:847-865. [PMID: 36870067 DOI: 10.1002/jcp.30980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023]
Abstract
Liquid-liquid phase separation is a multicomponent system separated into phases with different compositions and structures. It has been identified and explored in organisms after being introduced from the thermodynamic field. Condensate, the product of phase separation, exists in different scales of cellular structures, such as nucleolus, stress granules, and other organelles in nuclei or cytoplasm. And also play critical roles in different cellular behaviors. Here, we review the concept, thermodynamical and biochemical principles of phase separation. We summarized the main functions including the adjustment of biochemical reaction rates, the regulation of macromolecule folding state, subcellular structural support, the mediation of subcellular location, and intimately linked to different kinds of diseases, such as cancer and neurodegeneration. Advanced detection methods to investigate phase separation are collected and analyzed. We conclude with the discussion of anxiety of phase separation, and thought about how progress can be made to develop precise detection methods and disclose the potential application of condensates.
Collapse
Affiliation(s)
- Xuanlin Che
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Jiajun Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Song X, Yang F, Yang T, Wang Y, Ding M, Li L, Xu P, Liu S, Dai M, Chi C, Xiang S, Xu C, Li D, Wang Z, Li L, Hill DL, Fu C, Yuan K, Li P, Zang J, Hou Z, Jiang K, Shi Y, Liu X, Yao X. Phase separation of EB1 guides microtubule plus-end dynamics. Nat Cell Biol 2023; 25:79-91. [PMID: 36536176 DOI: 10.1038/s41556-022-01033-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
In eukaryotes, end-binding (EB) proteins serve as a hub for orchestrating microtubule dynamics and are essential for cellular dynamics and organelle movements. EB proteins modulate structural transitions at growing microtubule ends by recognizing and promoting an intermediate state generated during GTP hydrolysis. However, the molecular mechanisms and physiochemical properties of the EB1 interaction network remain elusive. Here we show that EB1 formed molecular condensates through liquid-liquid phase separation (LLPS) to constitute the microtubule plus-end machinery. EB1 LLPS is driven by multivalent interactions among different segments, which are modulated by charged residues in the linker region. Phase-separated EB1 provided a compartment for enriching tubulin dimers and other plus-end tracking proteins. Real-time imaging of chromosome segregation in HeLa cells expressing LLPS-deficient EB1 mutants revealed the importance of EB1 LLPS dynamics in mitotic chromosome movements. These findings demonstrate that EB1 forms a distinct physical and biochemical membraneless-organelle via multivalent interactions that guide microtubule dynamics.
Collapse
Affiliation(s)
- Xiaoyu Song
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tongtong Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Yong Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Mingrui Ding
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA
| | - Linge Li
- Anhui Key Laboratory for Chemical Biology & Hefei National Center for Cross-disciplinary Sciences, Hefei, China
| | - Panpan Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Shuaiyu Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Anhui Key Laboratory for Chemical Biology & Hefei National Center for Cross-disciplinary Sciences, Hefei, China
| | - Ming Dai
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Changbiao Chi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Shengqi Xiang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Chao Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Dong Li
- Institute of Biophysics, Beijing, China
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA
| | - Lin Li
- CAS Center of Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Donald L Hill
- Department of Pathology, University of Alabama, Birmingham, AL, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University School of Life Sciences, Changsha, China
| | - Pilong Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianye Zang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Zhonghuai Hou
- Anhui Key Laboratory for Chemical Biology & Hefei National Center for Cross-disciplinary Sciences, Hefei, China
| | - Kai Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yunyu Shi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China. .,Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA, USA.
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China School of Life Sciences, Hefei, China.
| |
Collapse
|
32
|
Ling X, Liu X, Jiang S, Fan L, Ding J. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:42. [PMID: 36539553 PMCID: PMC9768101 DOI: 10.1186/s13619-022-00145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022]
Abstract
Cell fate transition is a fascinating process involving complex dynamics of three-dimensional (3D) chromatin organization and phase separation, which play an essential role in cell fate decision by regulating gene expression. Phase separation is increasingly being considered a driving force of chromatin folding. In this review, we have summarized the dynamic features of 3D chromatin and phase separation during physiological and pathological cell fate transitions and systematically analyzed recent evidence of phase separation facilitating the chromatin structure. In addition, we discuss current advances in understanding how phase separation contributes to physical and functional enhancer-promoter contacts. We highlight the functional roles of 3D chromatin organization and phase separation in cell fate transitions, and more explorations are required to study the regulatory relationship between 3D chromatin organization and phase separation. 3D chromatin organization (shown by Hi-C contact map) and phase separation are highly dynamic and play functional roles during early embryonic development, cell differentiation, somatic reprogramming, cell transdifferentiation and pathogenetic process. Phase separation can regulate 3D chromatin organization directly, but whether 3D chromatin organization regulates phase separation remains unclear.
Collapse
Affiliation(s)
- Xiaoru Ling
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Xinyi Liu
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Shaoshuai Jiang
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Lili Fan
- grid.258164.c0000 0004 1790 3548Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong China
| | - Junjun Ding
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.410737.60000 0000 8653 1072Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China ,grid.13291.380000 0001 0807 1581West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
33
|
Akbar H, Cao J, Wang D, Yuan X, Zhang M, Muthusamy S, Song X, Liu X, Aikhionbare F, Yao X, Gao X, Liu X. Acetylation of Nup62 by TIP60 ensures accurate chromosome segregation in mitosis. J Mol Cell Biol 2022; 14:6747133. [PMID: 36190325 PMCID: PMC9926331 DOI: 10.1093/jmcb/mjac056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022] Open
Abstract
Stable transmission of genetic information during cell division requires faithful mitotic spindle assembly and chromosome segregation. In eukaryotic cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Although a list of mitotic kinases has been implicated in NEBD, how they coordinate their activity to dissolve the nuclear envelope and protein machinery such as nuclear pore complexes was unclear. Here, we identified a regulatory mechanism in which Nup62 is acetylated by TIP60 in human cell division. Nup62 is a novel substrate of TIP60, and the acetylation of Lys432 by TIP60 dissolves nucleoporin Nup62-Nup58-Nup54 complex during entry into mitosis. Importantly, this acetylation-elicited remodeling of nucleoporin complex promotes the distribution of Nup62 to the mitotic spindle, which is indispensable for orchestrating correct spindle orientation. Moreover, suppression of Nup62 perturbs accurate chromosome segregation during mitosis. These results establish a previously uncharacterized regulatory mechanism in which TIP60-elicited nucleoporin dynamics promotes chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Hameed Akbar
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Jun Cao
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Manjuan Zhang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xu Liu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | | | | | - Xing Liu
- Correspondence to: Xing Liu, E-mail:
| |
Collapse
|
34
|
Lee J, Cho H, Kwon I. Phase separation of low-complexity domains in cellular function and disease. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1412-1422. [PMID: 36175485 PMCID: PMC9534829 DOI: 10.1038/s12276-022-00857-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
In this review, we discuss the ways in which recent studies of low-complexity (LC) domains have challenged our understanding of the mechanisms underlying cellular organization. LC sequences, long believed to function in the absence of a molecular structure, are abundant in the proteomes of all eukaryotic organisms. Over the past decade, the phase separation of LC domains has emerged as a fundamental mechanism driving dynamic multivalent interactions of many cellular processes. We review the key evidence showing the role of phase separation of individual proteins in organizing cellular assemblies and facilitating biological function while implicating the dynamics of phase separation as a key to biological validity and functional utility. We also highlight the evidence showing that pathogenic LC proteins alter various phase separation-dependent interactions to elicit debilitating human diseases, including cancer and neurodegenerative diseases. Progress in understanding the biology of phase separation may offer useful hints toward possible therapeutic interventions to combat the toxicity of pathogenic proteins.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| | - Ilmin Kwon
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| |
Collapse
|
35
|
Structural insights into human CCAN complex assembled onto DNA. Cell Discov 2022; 8:90. [PMID: 36085283 PMCID: PMC9463443 DOI: 10.1038/s41421-022-00439-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/19/2022] [Indexed: 11/08/2022] Open
Abstract
In mitosis, accurate chromosome segregation depends on kinetochores that connect centromeric chromatin to spindle microtubules. The centromeres of budding yeast, which are relatively simple, are connected to individual microtubules via a kinetochore constitutive centromere associated network (CCAN). However, the complex centromeres of human chromosomes comprise millions of DNA base pairs and attach to multiple microtubules. Here, by use of cryo-electron microscopy and functional analyses, we reveal the molecular basis of how human CCAN interacts with duplex DNA and facilitates accurate chromosome segregation. The overall structure relates to the cooperative interactions and interdependency of the constituent sub-complexes of the CCAN. The duplex DNA is topologically entrapped by human CCAN. Further, CENP-N does not bind to the RG-loop of CENP-A but to DNA in the CCAN complex. The DNA binding activity is essential for CENP-LN localization to centromere and chromosome segregation during mitosis. Thus, these analyses provide new insights into mechanisms of action underlying kinetochore assembly and function in mitosis.
Collapse
|
36
|
Sedzro DM, Yuan X, Mullen M, Ejaz U, Yang T, Liu X, Song X, Tang YC, Pan W, Zou P, Gao X, Wang D, Wang Z, Dou Z, Liu X, Yao X. Phosphorylation of CENP-R by Aurora B regulates kinetochore-microtubule attachment for accurate chromosome segregation. J Mol Cell Biol 2022; 14:6693714. [PMID: 36069839 PMCID: PMC9802239 DOI: 10.1093/jmcb/mjac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/14/2022] [Accepted: 09/01/2022] [Indexed: 01/14/2023] Open
Abstract
Error-free mitosis depends on accurate chromosome attachment to spindle microtubules via a fine structure called the centromere that is epigenetically specified by the enrichment of CENP-A nucleosomes. Centromere maintenance during mitosis requires CENP-A-mediated deposition of constitutive centromere-associated network that establishes the inner kinetochore and connects centromeric chromatin to spindle microtubules during mitosis. Although previously proposed to be an adaptor of retinoic acid receptor, here, we show that CENP-R synergizes with CENP-OPQU to regulate kinetochore-microtubule attachment stability and ensure accurate chromosome segregation in mitosis. We found that a phospho-mimicking mutation of CENP-R weakened its localization to the kinetochore, suggesting that phosphorylation may regulate its localization. Perturbation of CENP-R phosphorylation is shown to prevent proper kinetochore-microtubule attachment at metaphase. Mechanistically, CENP-R phosphorylation disrupts its binding with CENP-U. Thus, we speculate that Aurora B-mediated CENP-R phosphorylation promotes the correction of improper kinetochore-microtubule attachment in mitosis. As CENP-R is absent from yeast, we reasoned that metazoan evolved an elaborate chromosome stability control machinery to ensure faithful chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Divine Mensah Sedzro
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Xiao Yuan
- Correspondence to: Xiao Yuan, E-mail:
| | - McKay Mullen
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Umer Ejaz
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Tongtong Yang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Xu Liu
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Yun-Chi Tang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Zhen Dou
- Correspondence to: Zhen Dou, E-mail:
| | - Xing Liu
- Correspondence to: Xing Liu, E-mail:
| | | |
Collapse
|
37
|
Maccaroni K, La Torre M, Burla R, Saggio I. Phase Separation in the Nucleus and at the Nuclear Periphery during Post-Mitotic Nuclear Envelope Reformation. Cells 2022; 11:1749. [PMID: 35681444 PMCID: PMC9179440 DOI: 10.3390/cells11111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane-enclosed organelle compartmentalization is not the only way by which cell processes are spatially organized. Phase separation is emerging as a new driver in the organization of membrane-less compartments and biological processes. Liquid-liquid phase separation has been indicated as a new way to control the kinetics of molecular reactions and is based on weak multivalent interactions affecting the stoichiometry of the molecules involved. In the nucleus, liquid-liquid phase separation may represent an ancestral means of controlling genomic activity by forming discrete chromatin regions, regulating transcriptional activity, contributing to the assembly of DNA damage response foci, and controlling the organization of chromosomes. Liquid-liquid phase separation also contributes to chromatin function through its role in the reorganization of the nuclear periphery in the post-mitotic phase. Herein, we describe the basic principles regulating liquid-liquid phase separation, analyze examples of phase separation occurring in the nucleus, and dedicate attention to the implication of liquid-liquid phase separation in the reorganization of the nuclear periphery by the endosomal sorting complexes required for transport (ESCRT) machinery. Although some caution is warranted, current scientific knowledge allows for the hypothesis that many factors and processes in the cell are yet to be discovered which are functionally associated with phase separation.
Collapse
Affiliation(s)
- Klizia Maccaroni
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
- Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
38
|
Phase-Separated Subcellular Compartmentation and Related Human Diseases. Int J Mol Sci 2022; 23:ijms23105491. [PMID: 35628304 PMCID: PMC9141834 DOI: 10.3390/ijms23105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
In live cells, proteins and nucleic acids can associate together through multivalent interactions, and form relatively isolated phases that undertake designated biological functions and activities. In the past decade, liquid–liquid phase separation (LLPS) has gradually been recognized as a general mechanism for the intracellular organization of biomolecules. LLPS regulates the assembly and composition of dozens of membraneless organelles and condensates in cells. Due to the altered physiological conditions or genetic mutations, phase-separated condensates may undergo aberrant formation, maturation or gelation that contributes to the onset and progression of various diseases, including neurodegenerative disorders and cancers. In this review, we summarize the properties of different membraneless organelles and condensates, and discuss multiple phase separation-regulated biological processes. Based on the dysregulation and mutations of several key regulatory proteins and signaling pathways, we also exemplify how aberrantly regulated LLPS may contribute to human diseases.
Collapse
|
39
|
Wang W, Yang F, Lin J, Muthusamy S, Du S, Mullen M, Garba F, Wang W, Liu X, Li T, Yang Z, Ding X, Aikhionbare F, Gao X, Wang Z, Liu X, Yao X. Modeling of COVID-19 disease disparity in gastric organoids reveals the spatiotemporal dynamics of SARS-CoV-2 infectivity. J Mol Cell Biol 2022; 14:6516939. [PMID: 35090026 PMCID: PMC9122654 DOI: 10.1093/jmcb/mjac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenwen Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China.,Keck Center for Organoids Plasticity and Department of Surgery, Morehouse School of Medicine, Atlanta, GA30310, USA
| | - Fengrui Yang
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China.,Keck Center for Organoids Plasticity and Department of Surgery, Morehouse School of Medicine, Atlanta, GA30310, USA.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center of Excellence in Molecular Cell Sciences, Hefei 230027, China
| | - Jie Lin
- Department of Gastroenterology, Beijing University of Chinese Medicine, Beijing 100081, China
| | - Saravanakumar Muthusamy
- Keck Center for Organoids Plasticity and Department of Surgery, Morehouse School of Medicine, Atlanta, GA30310, USA
| | - Shihao Du
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China.,Department of Gastroenterology, Beijing University of Chinese Medicine, Beijing 100081, China
| | - McKay Mullen
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China.,Keck Center for Organoids Plasticity and Department of Surgery, Morehouse School of Medicine, Atlanta, GA30310, USA
| | - Fatima Garba
- Keck Center for Organoids Plasticity and Department of Surgery, Morehouse School of Medicine, Atlanta, GA30310, USA
| | - Wanjuan Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China.,Department of Gastroenterology, Beijing University of Chinese Medicine, Beijing 100081, China
| | - Xu Liu
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China.,Keck Center for Organoids Plasticity and Department of Surgery, Morehouse School of Medicine, Atlanta, GA30310, USA.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center of Excellence in Molecular Cell Sciences, Hefei 230027, China
| | - Tao Li
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China.,Department of Gastroenterology, Beijing University of Chinese Medicine, Beijing 100081, China
| | - Zhihong Yang
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center of Excellence in Molecular Cell Sciences, Hefei 230027, China
| | - Xia Ding
- Department of Gastroenterology, Beijing University of Chinese Medicine, Beijing 100081, China
| | - Felix Aikhionbare
- Keck Center for Organoids Plasticity and Department of Surgery, Morehouse School of Medicine, Atlanta, GA30310, USA
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China.,Keck Center for Organoids Plasticity and Department of Surgery, Morehouse School of Medicine, Atlanta, GA30310, USA
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China.,Keck Center for Organoids Plasticity and Department of Surgery, Morehouse School of Medicine, Atlanta, GA30310, USA
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
40
|
Szabó AL, Sánta A, Pancsa R, Gáspári Z. Charged sequence motifs increase the propensity towards liquid‐liquid phase separation. FEBS Lett 2022; 596:1013-1028. [DOI: 10.1002/1873-3468.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- András László Szabó
- Pázmány Péter Catholic University Faculty of Information Technology and Bionics Práter utca 50/A 1083 Budapest Hungary
| | - Anna Sánta
- Pázmány Péter Catholic University Faculty of Information Technology and Bionics Práter utca 50/A 1083 Budapest Hungary
| | - Rita Pancsa
- Institute of Enzymology Research Centre for Natural Sciences 1117 Budapest Hungary
| | - Zoltán Gáspári
- Pázmány Péter Catholic University Faculty of Information Technology and Bionics Práter utca 50/A 1083 Budapest Hungary
| |
Collapse
|
41
|
Zheng S, Zheng B, Liu Z, Ma X, Liu X, Yao X, Wei W, Fu C. The Cdc42 GTPase activating protein Rga6 promotes the cortical localization of Septin. J Cell Sci 2022; 135:274388. [DOI: 10.1242/jcs.259228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Septins are a family of filament-forming GTP-binding proteins that regulate fundamental cellular activities such as cytokinesis and cell polarity. In general, Septin filaments function as barriers and scaffolds on the cell cortex. However, little is known about the mechanism that governs the recruitment and localization of the Septin complex to the cell cortex. Here, we identified the Cdc42 GTPase activating protein Rga6 as a key protein involved in promoting the localization of the Septin complex to the cell cortex in the fission yeast Schizosaccharomyces pombe. Rga6 interacts with the Septin complex and partially colocalizes with the Septin complex on the cell cortex. Live-cell microscopic analysis further showed Septin enrichment at the cortical regions adjacent to the growing cell tip. The Septin enrichment likely plays a crucial role in confining active Cdc42 to the growing cell tip. Hence, our findings support a model that Rga6 regulates polarized cell growth partly through promoting targeted localization of the Septin complex on the cell cortex.
Collapse
Affiliation(s)
- Shengnan Zheng
- Ministry of Education Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Biyu Zheng
- Ministry of Education Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Zhenbang Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Xiaopeng Ma
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Xing Liu
- Ministry of Education Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Xuebiao Yao
- Ministry of Education Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Wenfan Wei
- Ministry of Education Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| | - Chuanhai Fu
- Ministry of Education Key Laboratory for Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, P.R. China
| |
Collapse
|
42
|
Wang X, Wang M, Dai X, Han X, Zhou Y, Lai W, Zhang L, Yang Y, Chen Y, Wang H, Zhao YL, Shen B, Zhang Y, Huang Y, Yang YG. RNA 5-methylcytosine regulates YBX2-dependent liquid-liquid phase separation. FUNDAMENTAL RESEARCH 2022; 2:48-55. [PMID: 38933916 PMCID: PMC11197489 DOI: 10.1016/j.fmre.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
5-Methylcytosine (m5C) is one of the most prevalent internal modifications of messenger RNA (mRNA) in higher eukaryotes. Here we report that Y box protein 2 (YBX2) serves as a novel mammalian m5C binding protein to undergo liquid-liquid phase separation (LLPS) both in vivo and in vitro, and this YBX2-dependent LLPS is enhanced by m5C marked RNA. Furthermore, the crystal structure assay revealed that W100, as a distinct m5C binding site of YBX2, is critical in mediating YBX2 phase separation. Our study resolved the relationship between RNA m5C and phase separation, providing a clue for a new regulatory layer of epigenetics.
Collapse
Affiliation(s)
- Xiuzhi Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengke Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Weiyi Lai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liyuan Zhang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Yusheng Chen
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Liang Zhao
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yuhan Zhang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
43
|
Spegg V, Altmeyer M. Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair (Amst) 2021; 106:103179. [PMID: 34311273 PMCID: PMC7612016 DOI: 10.1016/j.dnarep.2021.103179] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
Protein recruitment to DNA break sites is an integral part of the DNA damage response (DDR). Elucidation of the hierarchy and temporal order with which DNA damage sensors as well as repair and signaling factors assemble around chromosome breaks has painted a complex picture of tightly regulated macromolecular interactions that build specialized compartments to facilitate repair and maintenance of genome integrity. While many of the underlying interactions, e.g. between repair factors and damage-induced histone marks, can be explained by lock-and-key or induced fit binding models assuming fixed stoichiometries, structurally less well defined interactions, such as the highly dynamic multivalent interactions implicated in phase separation, also participate in the formation of multi-protein assemblies in response to genotoxic stress. Although much remains to be learned about these types of cooperative and highly dynamic interactions and their functional roles, the rapidly growing interest in material properties of biomolecular condensates and in concepts from polymer chemistry and soft matter physics to understand biological processes at different scales holds great promises. Here, we discuss nuclear condensates in the context of genome integrity maintenance, highlighting the cooperative potential between clustered stoichiometric binding and phase separation. Rather than viewing them as opposing scenarios, their combined effects can balance structural specificity with favorable physicochemical properties relevant for the regulation and function of multilayered nuclear condensates.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
44
|
Zhang M, Yang F, Wang W, Wang X, Wang D, Dou Z, Song X, Liu X, Yao X. SKAP interacts with Aurora B to guide end-on capture of spindle microtubules via phase separation. J Mol Cell Biol 2021; 13:841-852. [PMID: 34554241 PMCID: PMC8800532 DOI: 10.1093/jmcb/mjab058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
Chromosome segregation in mitosis is orchestrated by the dynamic interactions between the kinetochore and spindle microtubules. Our recent studies show that mitotic motor CENP-E cooperates with SKAP and forms a link between kinetochore core MIS13 complex and spindle microtubule plus-ends to achieve accurate chromosome alignment in mitosis. However, it remains elusive how SKAP regulates kinetochore attachment from lateral association to end-on attachment during metaphase alignment. Here, we identify a novel interaction between Aurora B and SKAP that orchestrates accurate interaction between the kinetochore and dynamic spindle microtubules. Interestingly, SKAP spontaneously phase-separates in vitro via weak, multivalent interactions into droplets with fast internal dynamics. SKAP and Aurora B form heterogeneous coacervates in vitro, which recapitulate the dynamics and behavior of SKAP comets in vivo. Importantly, SKAP interaction with Aurora B via phase separation is essential for accurate chromosome segregation and alignment. Based on those findings, we reason that SKAP–Aurora B interaction via phase separation constitutes a dynamic pool of Aurora B activity during the lateral to end-on conversion of kinetochore–microtubule attachments to achieve faithful cell division.
Collapse
Affiliation(s)
- Manjuan Zhang
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Wenwen Wang
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Xiwei Wang
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
45
|
Abstract
Actin filaments and microtubules are cytoskeletal polymers that participate in many vital cell functions including division, morphogenesis, phagocytosis, and motility. Despite the persistent dogma that actin filament and microtubule networks are distinct in localization, structure, and function, a growing body of evidence shows that these elements are choreographed through intricate mechanisms sensitive to either polymer. Many proteins and cellular signals that mediate actin–microtubule interactions have already been identified. However, the impact of these regulators is typically assessed with actin filament or microtubule polymers alone, independent of the other system. Further, unconventional modes and regulators coordinating actin–microtubule interactions are still being discovered. Here we examine several methods of actin–microtubule crosstalk with an emphasis on the molecular links between both polymer systems and their higher-order interactions.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Jessica L Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210.,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
46
|
Ismail H, Liu X, Yang F, Li J, Zahid A, Dou Z, Liu X, Yao X. Mechanisms and regulation underlying membraneless organelle plasticity control. J Mol Cell Biol 2021; 13:239-258. [PMID: 33914074 PMCID: PMC8339361 DOI: 10.1093/jmcb/mjab028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Evolution has enabled living cells to adopt their structural and functional complexity by organizing intricate cellular compartments, such as membrane-bound and membraneless organelles (MLOs), for spatiotemporal catalysis of physiochemical reactions essential for cell plasticity control. Emerging evidence and view support the notion that MLOs are built by multivalent interactions of biomolecules via phase separation and transition mechanisms. In healthy cells, dynamic chemical modifications regulate MLO plasticity, and reversible phase separation is essential for cell homeostasis. Emerging evidence revealed that aberrant phase separation results in numerous neurodegenerative disorders, cancer, and other diseases. In this review, we provide molecular underpinnings on (i) mechanistic understanding of phase separation, (ii) unifying structural and mechanistic principles that underlie this phenomenon, (iii) various mechanisms that are used by cells for the regulation of phase separation, and (iv) emerging therapeutic and other applications.
Collapse
Affiliation(s)
- Hazrat Ismail
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Junying Li
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Ayesha Zahid
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| |
Collapse
|
47
|
Yao X. Orchestration of cell plasticity by phase separation. J Mol Cell Biol 2021; 13:237-238. [PMID: 34350457 PMCID: PMC8339358 DOI: 10.1093/jmcb/mjab029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China E-mail:
| |
Collapse
|
48
|
Xu L, Ali M, Duan W, Yuan X, Garba F, Mullen M, Sun B, Poser I, Duan H, Lu J, Tian R, Ge Y, Chu L, Pan W, Wang D, Hyman A, Green H, Li L, Dou Z, Liu D, Liu X, Yao X. Feedback control of PLK1 by Apolo1 ensures accurate chromosome segregation. Cell Rep 2021; 36:109343. [PMID: 34260926 PMCID: PMC8358895 DOI: 10.1016/j.celrep.2021.109343] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/01/2020] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stable transmission of genetic material during cell division requires accurate chromosome segregation. PLK1 dynamics at kinetochores control establishment of correct kinetochore-microtubule attachments and subsequent silencing of the spindle checkpoint. However, the regulatory mechanism responsible for PLK1 activity in prometaphase has not yet been affirmatively identified. Here we identify Apolo1, which tunes PLK1 activity for accurate kinetochore-microtubule attachments. Apolo1 localizes to kinetochores during early mitosis, and suppression of Apolo1 results in misaligned chromosomes. Using the fluorescence resonance energy transfer (FRET)-based PLK1 activity reporter, we found that Apolo1 sustains PLK1 kinase activity at kinetochores for accurate attachment during prometaphase. Apolo1 is a cognate substrate of PLK1, and the phosphorylation enables PP1γ to inactivate PLK1 by dephosphorylation. Mechanistically, Apolo1 constitutes a bridge between kinase and phosphatase, which governs PLK1 activity in prometaphase. These findings define a previously uncharacterized feedback loop by which Apolo1 provides fine-tuning for PLK1 to guide chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Leilei Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mahboob Ali
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China
| | - Wenxiu Duan
- Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Fatima Garba
- Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - McKay Mullen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Binwen Sun
- National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Ina Poser
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Hequan Duan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA; Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China
| | - Jianlin Lu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yushu Ge
- Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China
| | - Lingluo Chu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Weijun Pan
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongmei Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China
| | - Anthony Hyman
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Hadiyah Green
- Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Lin Li
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China.
| | - Dan Liu
- Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China.
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| |
Collapse
|
49
|
Wang X, Wang W, Wang X, Wang M, Zhu L, Garba F, Fu C, Zieger B, Liu X, Liu X, Yao X. The septin complex links the catenin complex to the actin cytoskeleton for establishing epithelial cell polarity. J Mol Cell Biol 2021; 13:395-408. [PMID: 34143183 PMCID: PMC8436676 DOI: 10.1093/jmcb/mjab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cell polarity is essential for spatially regulating of physiological processes in metazoans by which hormonal stimulation‒secretion coupling is precisely coupled for tissue homeostasis and organ communications. However, the molecular mechanisms underlying epithelial cell polarity establishment remain elusive. Here, we show that septin cytoskeleton interacts with catenin complex to organize a functional domain to separate apical from basal membranes in polarized epithelial cells. Using polarized epithelial cell monolayer as a model system with transepithelial electrical resistance as functional readout, our studies show that septins are essential for epithelial cell polarization. Our proteomic analyses discovered a novel septin‒catenin complex during epithelial cell polarization. The functional relevance of septin‒catenin complex was then examined in three-dimensional (3D) culture in which suppression of septins resulted in deformation of apical lumen in cysts, a hallmark seen in polarity-deficient 3D cultures and animals. Mechanistically, septin cytoskeleton stabilizes the association of adherens catenin complex with actin cytoskeleton, and depletion or disruption of septin cytoskeleton liberates adherens junction and polarity complexes into the cytoplasm. Together, these findings reveal a previously unrecognized role for septin cytoskeleton in the polarization of the apical‒basal axis and lumen formation in polarized epithelial cells.
Collapse
Affiliation(s)
- Xueying Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Wenwen Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Xiwei Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Ming Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Lijuan Zhu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Fatima Garba
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| |
Collapse
|
50
|
Li J, Zhang Y, Chen X, Ma L, Li P, Yu H. Protein phase separation and its role in chromatin organization and diseases. Biomed Pharmacother 2021; 138:111520. [PMID: 33765580 DOI: 10.1016/j.biopha.2021.111520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
In the physical sciences, solid, liquid, and gas are the most familiar phase states, whose essence is their existence reflecting the different spatial distribution of molecular components. The biological molecules in the living cell also have differences in spatial distribution. The molecules organized in the form of membrane-bound organelles are well recognized. However, the biomolecules organized in membraneless compartments called biomolecular condensates remain elusive. The liquid-liquid phase separation (LLPS), as a new emerging scientific breakthrough, describes the biomolecules assembled in special distribution and appeared as membraneless condensates in the form of a new "phase" compared with the surrounding liquid milieu. LLPS provides an important theoretical basis for explaining the composition of biological molecules and related biological reactions. Mounting evidence has emerged recently that phase-separated condensates participate in various biological activities. This article reviews the occurrence of LLPS and underlying regulatory mechanisms for understanding how multivalent molecules drive phase transitions to form the biomolecular condensates. And, it also summarizes recent major progress in elucidating the roles of LLPS in chromatin organization and provides clues for the development of new innovative therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Jiaqi Li
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yao Zhang
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Xi Chen
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Lijuan Ma
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Haijie Yu
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China.
| |
Collapse
|