1
|
Zhou Z, Liu C, Feng S, Chen J, Chen T, Zhu J, Wu S, Zhou C, Huang C, Xue J, Qin X, Zhan X. Identification of novel protein biomarkers and therapeutic targets for ankylosing spondylitis using human circulating plasma proteomics and genome analysis. Anal Bioanal Chem 2024; 416:6357-6366. [PMID: 39254691 PMCID: PMC11541407 DOI: 10.1007/s00216-024-05521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024]
Abstract
The proteome serves as the primary basis for identifying targets for treatment. This study conducted proteomic range two-sample Mendelian randomization (MR) analysis to pinpoint potential protein markers and treatment targets for ankylosing spondylitis (AS). A total of 4907 data points on circulating protein expression were collected from a large-scale protein quantitative trait locus investigation involving 35,559 individuals. Using data from a Finnish study on AS as the outcome, the dataset comprised 166,144 individuals of European ancestry (1462 cases and 164,682 controls), and causal relationships were determined through bidirectional Mendelian randomization of two samples. Proteins were further validated and identified through single-cell expression analysis, certain cells showing enriched expression levels were detected, and possible treatment targets were optimized. Increased HERC5 expression predicted by genes was related to increased AS risk, whereas the expression of the remaining five circulating proteins, AIF1, CREB3L4, MLN, MRPL55, and SPAG11B, was negatively correlated with AS risk. For each increase in gene-predicted protein levels, the ORs of AS were 2.11 (95% CI 1.44-3.09) for HERC5, 0.14 (95% CI 0.05-0.41) for AIF1, 0.48 (95% CI 0.34-0.68) for CREB3L4, 0.54 (95% CI 0.42-0.68) for MLN, 0.23 (95% CI 0.13-0.38) for MRPL55, and 0.26 (95% CI 0.17-0.39) for SPAG11B. The hypothesis of a reverse causal relationship between these six circulating proteins and AS is not supported. Three of the six protein-coding genes were expressed in both the AS and healthy control groups, while CREB3L4, MLN, and SPAG11B were not detected. Increased levels of HERC5 predicted by genes are related to increased AS risk, whereas the levels of the remaining five circulating proteins, AIF1, CREB3L4, MLN, MRPL55, and SPAG11B, negatively correlate with AS risk. HERC5, AIF1, and MRPL55 are potential therapeutic targets for AS. This study advanced the field by employing a novel combination of proteomic range two-sample MR analysis and single-cell expression analysis to identify potential protein markers and therapeutic targets for AS. This approach enabled a comprehensive understanding of the causal relationships between circulating proteins and AS, which has not been extensively explored in previous studies.
Collapse
Affiliation(s)
- Zhongxian Zhou
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Chong Liu
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Sitan Feng
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Jiarui Chen
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Tianyou Chen
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Jichong Zhu
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Shaofeng Wu
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Chenxing Zhou
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Chengqian Huang
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Jiang Xue
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaopeng Qin
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Xinli Zhan
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
2
|
Parvin A, Erabi G, Alemi A, Rezanezhad A, Maleksabet A, Sadeghpour S, Taheri-Anganeh M, Ghasemnejad-Berenji H. Seminal plasma proteomics as putative biomarkers for male infertility diagnosis. Clin Chim Acta 2024; 561:119757. [PMID: 38857670 DOI: 10.1016/j.cca.2024.119757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Male infertility represents a significant global public health issue that is currently emerging as a prominent research focus. Presently, laboratories adhere to the guidelines outlined by the World Health Organization (WHO) manuals for conducting routine semen analysis to diagnose male infertility. However, the accuracy of results in predicting sperm quality and fertility is limited because some individuals with a normal semen analysis report, an unremarkable medical history, and a physical examination may still experience infertility. As a result, the importance of employing more advanced techniques to investigate sperm function and male fertility in the treatment of male infertility and/or subfertility becomes apparent. The standard test for evaluating human semen has been improved by more complex tests that look at things like reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), sperm DNA fragmentation levels, DNA compaction, apoptosis, genetic testing, and the presence and location of anti-sperm antibodies. Recent discoveries of novel biomarkers have significantly enriched our understanding of male fertility. Moreover, the notable biological diversity among samples obtained from the same individual complicates the efficacy of routine semen analysis. Therefore, unraveling the molecular mechanisms involved in fertilization is pivotal in expanding our understanding of factors contributing to male infertility. By understanding how these proteins work and what role they play in sperm activity, we can look at the expression profile in men who can't have children to find diagnostic biomarkers. This review examines the various sperm and seminal plasma proteins associated with infertility, as well as proteins that are either deficient or exhibit aberrant expression, potentially contributing to male infertility causes.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Alemi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arman Rezanezhad
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Rais Y, Drabovich AP. Identification and Quantification of Human Relaxin Proteins by Immunoaffinity-Mass Spectrometry. J Proteome Res 2024; 23:2013-2027. [PMID: 38739617 DOI: 10.1021/acs.jproteome.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The human relaxins belong to the Insulin/IGF/Relaxin superfamily of peptide hormones, and their physiological function is primarily associated with reproduction. In this study, we focused on a prostate tissue-specific relaxin RLN1 (REL1_HUMAN protein) and a broader tissue specificity RLN2 (REL2_HUMAN protein). Due to their structural similarity, REL1 and REL2 proteins were collectively named a 'human relaxin protein' in previous studies and were exclusively measured by immunoassays. We hypothesized that the highly selective and sensitive immunoaffinity-selected reaction monitoring (IA-SRM) assays would reveal the identity and abundance of the endogenous REL1 and REL2 in biological samples and facilitate the evaluation of these proteins for diagnostic applications. High levels of RLN1 and RLN2 transcripts were found in prostate and breast cancer cell lines by RT-PCR. However, no endogenous prorelaxin-1 or mature REL1 were detected by IA-SRM in cell lines, seminal plasma, or blood serum. The IA-SRM assay of REL2 demonstrated its undetectable levels (<9.4 pg/mL) in healthy control female and male sera and relatively high levels of REL2 in maternal sera across different gestational weeks (median 331 pg/mL; N = 120). IA-SRM assays uncovered potential cross-reactivity and nonspecific binding for relaxin immunoassays. The developed IA-SRM assays will facilitate the investigation of the physiological and pathological roles of REL1 and REL2 proteins.
Collapse
Affiliation(s)
- Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
4
|
Parkes R, Garcia TX. Bringing proteomics to bear on male fertility: key lessons. Expert Rev Proteomics 2024; 21:181-203. [PMID: 38536015 PMCID: PMC11426281 DOI: 10.1080/14789450.2024.2327553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Male infertility is a major public health concern globally. Proteomics has revolutionized our comprehension of male fertility by identifying potential infertility biomarkers and reproductive defects. Studies comparing sperm proteome with other male reproductive tissues have the potential to refine fertility diagnostics and guide infertility treatment development. AREAS COVERED This review encapsulates literature using proteomic approaches to progress male reproductive biology. Our search methodology included systematic searches of databases such as PubMed, Scopus, and Web of Science for articles up to 2023. Keywords used included 'male fertility proteomics,' 'spermatozoa proteome,' 'testis proteomics,' 'epididymal proteomics,' and 'non-hormonal male contraception.' Inclusion criteria were robust experimental design, significant contributions to male fertility, and novel use of proteomic technologies. EXPERT OPINION Expert analysis shows a shift from traditional research to an integrative approach that clarifies male reproductive health's molecular intricacies. A gap exists between proteomic discoveries and clinical application. The expert opinions consolidated here not only navigate the current findings but also chart the future proteomic applications for scientific and clinical breakthroughs. We underscore the need for continued investment in proteomic research - both in the technological and collaborative arenas - to further unravel the secrets of male fertility, which will be central to resolving fertility issues in the coming era.
Collapse
Affiliation(s)
- Rachel Parkes
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
| | - Thomas X. Garcia
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
- Scott Department of Urology, Baylor College of Medicine
| |
Collapse
|
5
|
Ghanami Gashti N, Sadighi Gilani MA, Kabodmehri R, Nikmahzar A, Salem M, Abbasi M. Evaluation of PGK2 and ACR proteins in seminal plasma: suggestion of potential new biomarkers for prediction of sperm retrieval in non-obstructive azoospermia patients. HUM FERTIL 2023; 26:1073-1079. [PMID: 35930251 DOI: 10.1080/14647273.2022.2104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/21/2022] [Indexed: 11/04/2022]
Abstract
This study aimed to assess the role of testis-specific proteins, PGK2 and ACR, in the prediction of sperm retrieval results by microdissection testicular sperm extraction (micro-TESE) in men with non-obstructive azoospermia (NOA). This was a case-control study including 48 semen samples of NOA patients undergoing the micro-TESE procedure, 15 semen samples from normozoospermic men as the positive control, and 12 semen samples from obstructive azoospermia/post-vasectomy (OA/PV) as negative controls. We investigated the levels of PGK2 and ACR proteins by ELISA tests in seminal plasma samples. The ELISA results revealed a significantly higher concentration of PGK2 and ACR in the NOA patients with successful sperm retrieval (NOA+) in comparison to NOA patients with failed sperm retrieval (NOA-) group (p = 0.0001 in both cases). For the first time, the data from this study suggests that a seminal PGK2 concentration of 136.3 pg/ml and ACR concentration of 21.75 mIU/ml can be used as cut-off values for the prediction of micro-TESE outcomes in NOA patients. These findings may be useful to avoid unnecessary micro-TESE operations. Overall, the seminal levels of the PGK2 and ACR proteins may be useful in predicting sperm retrieval success by micro-TESE in NOA patients.
Collapse
Affiliation(s)
- Nasrin Ghanami Gashti
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Reproductive Health Research Center, Department of Obstetrics & Gynecology, Al-Zahra Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Urology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Kabodmehri
- Reproductive Health Research Center, Department of Obstetrics & Gynecology, Al-Zahra Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Aghbibi Nikmahzar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Nowicka-Bauer K, Kamieniczna M, Olszewska M, Kurpisz MK. Proteomic approach towards identification of seminal fluid biomarkers from individuals with severe oligozoospermia, cryptozoospermia and non-obstructive azoospermia: a pilot study. Transl Androl Urol 2023; 12:1497-1510. [PMID: 37969768 PMCID: PMC10643378 DOI: 10.21037/tau-23-130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/01/2023] [Indexed: 11/17/2023] Open
Abstract
Background Infertility becomes a global problem that affects to the same extent females and males. As reasons of male infertility can differ among individuals, the accurate diagnostics is essential for effective treatment. The most problematic both in diagnostics and in treatment are disturbances of spermatogenesis. Seminal fluid is rich in proteins that potentially can serve as markers for male infertility and among them, markers of spermatogenesis which are highly desired. Methods To find biomarkers of spermatogenesis, we applied comparative proteomics using nano ultra performance liquid chromatography and tandem mass spectrometry (nanoUPLC-MS/MS) followed by single-sample Western blotting (WB) using seminal fluid samples from males with different types of infertility including non-obstructive azoospermia (NOA), cryptozoospermia (C) and severe oligozoospermia (SO). Then, the extensive survey on the identified proteins and their function in male reproductive system has been done. Results The proteomic approach has enabled to identified five seminal fluid proteins being potential markers of spermatogenesis disorders: ADGRG2, RAB3B, LTF, SLC2A3 and spermine synthase (SMS). Among them ADGRG2 seems to be strongly involved in male infertility. In addition, WB indicated that the distribution of LTF, SLC2A3 and SMS was not coherent among the individuals, especially in a group with NOA. Functional annotation analysis and search in proteomics databases revealed that vast majority of the proteins originated from extracellular environment. Conclusions The presented data point out several proteins that potentially can become biomarkers of male infertility. The data suggest, however, different mechanisms behind the male infertility indicating that the etiology is more complex. We assume that recognition of these mechanisms may lead to the creation of specific protein panel helpful in the management of male infertility and therefore, further studies are required.
Collapse
|
7
|
Walter J, Eludin Z, Drabovich AP. Redefining serological diagnostics with immunoaffinity proteomics. Clin Proteomics 2023; 20:42. [PMID: 37821808 PMCID: PMC10568870 DOI: 10.1186/s12014-023-09431-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Serological diagnostics is generally defined as the detection of specific human immunoglobulins developed against viral, bacterial, or parasitic diseases. Serological tests facilitate the detection of past infections, evaluate immune status, and provide prognostic information. Serological assays were traditionally implemented as indirect immunoassays, and their design has not changed for decades. The advantages of straightforward setup and manufacturing, analytical sensitivity and specificity, affordability, and high-throughput measurements were accompanied by limitations such as semi-quantitative measurements, lack of universal reference standards, potential cross-reactivity, and challenges with multiplexing the complete panel of human immunoglobulin isotypes and subclasses. Redesign of conventional serological tests to include multiplex quantification of immunoglobulin isotypes and subclasses, utilize universal reference standards, and minimize cross-reactivity and non-specific binding will facilitate the development of assays with higher diagnostic specificity. Improved serological assays with higher diagnostic specificity will enable screenings of asymptomatic populations and may provide earlier detection of infectious diseases, autoimmune disorders, and cancer. In this review, we present the major clinical needs for serological diagnostics, overview conventional immunoassay detection techniques, present the emerging immunoassay detection technologies, and discuss in detail the advantages and limitations of mass spectrometry and immunoaffinity proteomics for serological diagnostics. Finally, we explore the design of novel immunoaffinity-proteomic assays to evaluate cell-mediated immunity and advance the sequencing of clinically relevant immunoglobulins.
Collapse
Affiliation(s)
- Jonathan Walter
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Zicki Eludin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
8
|
Ješeta M, Pospíšilová A, Mekiňová L, Franzová K, Ventruba P, Lousová E, Kempisty B, Oždian T, Žáková J, Crha I. Non-Invasive Diagnostics of Male Spermatogenesis from Seminal Plasma: Seminal Proteins. Diagnostics (Basel) 2023; 13:2468. [PMID: 37568830 PMCID: PMC10417070 DOI: 10.3390/diagnostics13152468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
The compounds of seminal plasma have great potential as biomarkers of male fertility and can be used as a diagnostic tool for types of azoospermia. Azoospermia occurs in approximately 1% of the male population, and for an effective therapy of this form of male infertility, it is important to distinguish between obstructive and non-obstructive azoospermia. Proteins in seminal plasma can serve as biomarkers for diagnosing azoospermia. Considering the various types of obstructions, a combination of multiple proteins is advisable for diagnostic purposes. In this context, testicular and epididymal proteins are particularly significant, as they are specific to these tissues and typically absent in ejaculate during most obstructions. A combination of multiple biomarkers is more effective than the analysis of a single protein. This group of markers contains TEX101 and ECM1 proteins, combined detections of these two bring a diagnostic output with a high sensitivity and specificity. Similar results were observed for combined detection of TEX101 and SPAG1. The effective using of specific biomarkers from seminal plasma can significantly improve the existing approaches to diagnosis of the causes of male infertility.
Collapse
Affiliation(s)
- Michal Ješeta
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (L.M.); (K.F.); (P.V.); (E.L.); (J.Ž.); (I.C.)
- Department of Veterinary Sciences, Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Anna Pospíšilová
- Department of Animal Physiology & Immunology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic;
| | - Lenka Mekiňová
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (L.M.); (K.F.); (P.V.); (E.L.); (J.Ž.); (I.C.)
| | - Kateřina Franzová
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (L.M.); (K.F.); (P.V.); (E.L.); (J.Ž.); (I.C.)
| | - Pavel Ventruba
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (L.M.); (K.F.); (P.V.); (E.L.); (J.Ž.); (I.C.)
| | - Eva Lousová
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (L.M.); (K.F.); (P.V.); (E.L.); (J.Ž.); (I.C.)
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Department of Human Morphology and Embryology, Division of Anatomy, Wrocław Medical University, 50-368 Wrocław, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Tomáš Oždian
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic;
| | - Jana Žáková
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (L.M.); (K.F.); (P.V.); (E.L.); (J.Ž.); (I.C.)
| | - Igor Crha
- Center of Assisted Reproduction, Department of Gynecology and Obstetrics, Masaryk University Brno and University Hospital Brno, 62500 Brno, Czech Republic; (L.M.); (K.F.); (P.V.); (E.L.); (J.Ž.); (I.C.)
- Department of Health Sciences, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
9
|
Zhang J, Kanoatov M, Jarvi K, Gauthier-Fisher A, Moskovtsev SI, Librach C, Drabovich AP. Germ cell-specific proteins AKAP4 and ASPX facilitate identification of rare spermatozoa in non-obstructive azoospermia. Mol Cell Proteomics 2023; 22:100556. [PMID: 37087050 DOI: 10.1016/j.mcpro.2023.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023] Open
Abstract
Non-obstructive azoospermia (NOA), the most severe form of male infertility, could be treated with intra-cytoplasmic sperm injection, providing spermatozoa were retrieved with the microdissection testicular sperm extraction (mTESE). We hypothesized that testis- and germ cell-specific proteins would facilitate flow cytometry-assisted identification of rare spermatozoa in semen cell pellets of NOA patients, thus enabling non-invasive diagnostics prior to mTESE. Data mining, targeted proteomics, and immunofluorescent microscopy identified and verified a panel of highly testis-specific proteins expressed at the continuum of germ cell differentiation. Late germ cell-specific proteins AKAP4_HUMAN and ASPX_HUMAN (ACRV1 gene) revealed exclusive localization in spermatozoa tails and acrosomes, respectively. A multiplex imaging flow cytometry assay facilitated fast and unambiguous identification of rare but morphologically intact AKAP4+/ASPX+/Hoechst+ spermatozoa within debris-laden semen pellets of NOA patients. While the previously suggested markers for spermatozoa retrieval suffered from low diagnostic specificity, the multi-step gating strategy and visualization of AKAP4+/ASPX+/Hoechst+ cells with elongated tails and acrosome-capped nuclei facilitated fast and unambiguous identification of the mature intact spermatozoa. AKAP4+/ASPX+/Hoechst+ assay may emerge as a non-invasive test to predict retrieval of morphologically intact spermatozoa by mTESE, thus improving diagnostics and treatment of severe forms of male infertility.
Collapse
Affiliation(s)
| | - Mirzo Kanoatov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Surgery, Division of Urology, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Sergey I Moskovtsev
- CReATe Fertility Centre, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Clifford Librach
- CReATe Fertility Centre, Toronto, ON, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Preianò M, Correnti S, Butt TA, Viglietto G, Savino R, Terracciano R. Mass Spectrometry-Based Untargeted Approaches to Reveal Diagnostic Signatures of Male Infertility in Seminal Plasma: A New Laboratory Perspective for the Clinical Management of Infertility? Int J Mol Sci 2023; 24:4429. [PMID: 36901856 PMCID: PMC10002484 DOI: 10.3390/ijms24054429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Male infertility has been recognized as a global health problem. Semen analysis, although considered the golden standard, may not provide a confident male infertility diagnosis alone. Hence, there is the urgent request for an innovative and reliable platform to detect biomarkers of infertility. The rapid expansion of mass spectrometry (MS) technology in the field of the 'omics' disciplines, has incredibly proved the great potential of MS-based diagnostic tests to revolutionize the future of pathology, microbiology and laboratory medicine. Despite the increasing success in the microbiology area, MS-biomarkers of male infertility currently remain a proteomic challenge. In order to address this issue, this review encompasses proteomics investigations by untargeted approaches with a special focus on experimental designs and strategies (bottom-up and top-down) for seminal fluid proteome profiling. The studies reported here witness the efforts of the scientific community to address these investigations aimed at the discovery of MS-biomarkers of male infertility. Proteomics untargeted approaches, depending on the study design, might provide a great plethora of biomarkers not only for a male infertility diagnosis, but also to address a new MS-biomarkers classification of infertility subtypes. From the early detection to the evaluation of infertility grade, new MS-derived biomarkers might also predict long-term outcomes and clinical management of infertility.
Collapse
Affiliation(s)
| | - Serena Correnti
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Tahreem Arshad Butt
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100 Catanzaro, Italy
| | - Rocco Savino
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100 Catanzaro, Italy
| |
Collapse
|
11
|
Nixon B, Schjenken JE, Burke ND, Skerrett-Byrne DA, Hart HM, De Iuliis GN, Martin JH, Lord T, Bromfield EG. New horizons in human sperm selection for assisted reproduction. Front Endocrinol (Lausanne) 2023; 14:1145533. [PMID: 36909306 PMCID: PMC9992892 DOI: 10.3389/fendo.2023.1145533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Male infertility is a commonly encountered pathology that is estimated to be a contributory factor in approximately 50% of couples seeking recourse to assisted reproductive technologies. Upon clinical presentation, such males are commonly subjected to conventional diagnostic andrological practices that rely on descriptive criteria to define their fertility based on the number of morphologically normal, motile spermatozoa encountered within their ejaculate. Despite the virtual ubiquitous adoption of such diagnostic practices, they are not without their limitations and accordingly, there is now increasing awareness of the importance of assessing sperm quality in order to more accurately predict a male's fertility status. This realization raises the important question of which characteristics signify a high-quality, fertilization competent sperm cell. In this review, we reflect on recent advances in our mechanistic understanding of sperm biology and function, which are contributing to a growing armory of innovative approaches to diagnose and treat male infertility. In particular we review progress toward the implementation of precision medicine; the robust clinical adoption of which in the setting of fertility, currently lags well behind that of other fields of medicine. Despite this, research shows that the application of advanced technology platforms such as whole exome sequencing and proteomic analyses hold considerable promise in optimizing outcomes for the management of male infertility by uncovering and expanding our inventory of candidate infertility biomarkers, as well as those associated with recurrent pregnancy loss. Similarly, the development of advanced imaging technologies in tandem with machine learning artificial intelligence are poised to disrupt the fertility care paradigm by advancing our understanding of the molecular and biological causes of infertility to provide novel avenues for future diagnostics and treatments.
Collapse
Affiliation(s)
- Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Brett Nixon,
| | - John E. Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nathan D. Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hanah M. Hart
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jacinta H. Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
12
|
Rusevski A, Plaseska-Karanfilska D, Davalieva K. Proteomics of azoospermia: Towards the discovery of reliable markers for non-invasive diagnosis. Proteomics Clin Appl 2023; 17:e2200060. [PMID: 36177695 DOI: 10.1002/prca.202200060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE Azoospermia, as the most severe form of male infertility, no longer indicates sterility due to modern medical advancements. The current diagnostic procedure based on testicular biopsy has several drawbacks which urges the development of novel, non-invasive diagnostic procedures based on biomarkers. In the last two decades, there have been many proteomics studies investigating potential azoospermia biomarkers. In this review, we aimed to provide a critical evaluation of these studies. EXPERIMENTAL DESIGN Published articles were gathered by systematic literature search using Pubmed, Science Direct, and Google Scholar databases until March 2022 and were further preselected to include only studies on human samples. RESULTS A detailed review of these studies encompassed the proteomics platforms, sources of material, proposed candidate biomarkers, and their potential diagnostic specificity and sensitivity. In addition, emphasis was put on the top, most identified and validated biomarker candidates and their potential for discriminating azoospermia types and subtypes as well as predicting sperm retrieval success rate. CONCLUSIONS Proteomics research of azoospermia has laid the groundwork for the development of a more streamlined biomarker testing. The future research should be focused on well-designed studies including samples from all types/subtypes as well as further testing of the most promising biomarkers identified so far.
Collapse
Affiliation(s)
- Aleksandar Rusevski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| |
Collapse
|
13
|
Fu Z, Rais Y, Dara D, Jackson D, Drabovich AP. Rational Design and Development of SARS-CoV-2 Serological Diagnostics by Immunoprecipitation-Targeted Proteomics. Anal Chem 2022; 94:12990-12999. [PMID: 36095284 PMCID: PMC9523617 DOI: 10.1021/acs.analchem.2c01325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Current design of serological tests utilizes conservative
immunoassay
approaches and is focused on fast and convenient assay development,
throughput, straightforward measurements, and affordability. Limitations
of common serological assays include semiquantitative measurements,
cross-reactivity, lack of reference standards, and no differentiation
between human immunoglobulin subclasses. In this study, we suggested
that a combination of immunoaffinity enrichments with targeted proteomics
would enable rational design and development of serological assays
of infectious diseases, such as COVID-19. Immunoprecipitation-targeted
proteomic assays allowed for sensitive and specific measurements of
NCAP_SARS2 protein with a limit of detection of 313 pg/mL in serum
and enabled differential quantification of anti-SARS-CoV-2 antibody
isotypes (IgG, IgA, IgM, IgD, and IgE) and individual subclasses (IgG1-4
and IgA1-2) in plasma and saliva. Simultaneous evaluation of the numerous
antigen–antibody subclass combinations revealed a receptor-binding
domain (RBD)-IgG1 as a combination with the highest diagnostic performance.
Further validation revealed that anti-RBD IgG1, IgG3, IgM, and IgA1
levels were significantly elevated in convalescent plasma, while IgG2,
IgG4, and IgA2 were not informative. Anti-RBD IgG1 levels in convalescent
(2138 ng/mL) vs negative (95 ng/mL) plasma revealed 385 ng/mL as a
cutoff to detect COVID-19 convalescent plasma. Immunoprecipitation-targeted
proteomic assays will facilitate improvement and standardization of
the existing serological tests, enable rational design of novel tests,
and offer tools for the comprehensive investigation of immunoglobulin
subclass cooperation in immune response.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Delaram Dara
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Dana Jackson
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
14
|
Davalieva K, Rusevski A, Velkov M, Noveski P, Kubelka-Sabit K, Filipovski V, Plaseski T, Dimovski A, Plaseska-Karanfilska D. Comparative proteomics analysis of human FFPE testicular tissues reveals new candidate biomarkers for distinction among azoospermia types and subtypes. J Proteomics 2022; 267:104686. [PMID: 35914715 DOI: 10.1016/j.jprot.2022.104686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
Understanding molecular mechanisms that underpin azoospermia and discovery of biomarkers that could enable reliable, non-invasive diagnosis is highly needed. Using label-free data-independent LC-MS/MS acquisition coupled with ion mobility, we compared the FFPE testicular proteome of patients with obstructive (OA) and non-obstructive azoospermia (NOA) subtypes hypospermatogenesis (Hyp) and Sertoli cell-only syndrome (SCO). Out of 2044 proteins identified based on ≥2 peptides, 61 proteins had the power to quantitatively discriminate OA from NOA and 30 to quantitatively discriminate SCO from Hyp and OA. Among these, H1-6, RANBP1 and TKTL2 showed superior potential for quantitative discrimination among OA, Hyp and SCO. Integrin signaling pathway, adherens junction, planar cell polarity/convergent extension pathway and Dectin-1 mediated noncanonical NF-kB signaling were significantly associated with the proteins that could discriminate OA from NOA. Comparison with 2 transcriptome datasets revealed 278 and 55 co-differentially expressed proteins/genes with statistically significant positive correlation. Gene expression analysis by qPCR of 6 genes (H1-6, RANBP1, TKTL2, TKTL1, H2BC1, and ACTL7B) with the highest discriminatory power on protein level and the same regulation trend with transcriptomic datasets, confirmed proteomics results. In summary, our results suggest some underlying pathways in azoospermia and broaden the range of potential novel candidates for diagnosis. SIGNIFICANCE: Using a comparative proteomics approach on testicular tissue we have identified several pathways associated with azoospermia and a number of testis-specific and germ cell-specific proteins that have the potential to pinpoint the type of spermatogenesis failure. Furthermore, comparison with transcriptomics datasets based on genome-wide gene expression analyses of human testis specimens from azoospermia patients identified proteins that could discriminate between obstructive and non-obstructive azoospermia subtypes on both protein and mRNA levels. Up to our knowledge, this is the first integrated comparative analysis of proteomics and transcriptomics data from testicular tissues. We believe that the data from our study contributes significantly to increase the knowledge of molecular mechanisms of azoospermia and pave the way for new investigations in regards to non-invasive diagnosis.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia.
| | - Aleksandar Rusevski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia
| | - Milan Velkov
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia
| | - Predrag Noveski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia
| | - Katerina Kubelka-Sabit
- Laboratory for Histopathology, Clinical Hospital "Sistina", 1000 Skopje, North Macedonia, Macedonia
| | - Vanja Filipovski
- Laboratory for Histopathology, Clinical Hospital "Sistina", 1000 Skopje, North Macedonia, Macedonia
| | - Toso Plaseski
- Faculty of Medicine, Endocrinology and Metabolic Disorders Clinic, 1000 Skopje, North Macedonia, Macedonia
| | - Aleksandar Dimovski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia; Faculty of Pharmacy, University "St. Cyril and Methodius", 1000 Skopje, North Macedonia, Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia.
| |
Collapse
|
15
|
Nowicka-Bauer K, Malcher A, Włoczkowska O, Kamieniczna M, Olszewska M, Kurpisz MK. Evaluation of seminal plasma HSPA2 protein as a biomarker of human spermatogenesis status. Reprod Biol 2021; 22:100597. [PMID: 34959194 DOI: 10.1016/j.repbio.2021.100597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
Abstract
In mammals, testicular Heat shock-related 70 kDa protein 2 (HSPA2) is a chaperon strictly linked to spermatogenesis status, whereas its presence in spermatozoa ensures successful oocyte fertilization. However, there is little information on this protein in seminal plasma in infertile males. Based on our previous two independent studies, we have selected HSPA2 to evaluate this seminal plasma protein is a potential biomarker of correct spermatogenesis. Using immunoblotting and mass spectrometry (MS) we have screened human seminal plasma samples for the presence of HSPA2. Samples were obtained from individuals with normozoospermia, cryptozoospermia, non-obstructive and obstructive azoospermia. Our results showed a lack of HSPA2 in seminal plasma in all azoospermic males however, in cryptozoospermia the results were extremely diversified. Additionally, the application of 2-dimensional gel electrophoresis (2-DE) indicated the presence of additional protein isoforms suggesting possible mechanisms underlying the male infertility. Our findings suggest seminal plasma HSPA2 protein as a possible biomarker not only of spermatogenesis status, especially in cryptozoospermic males, but also as a biomarker predicting the success of reproductive treatment including assisted reproductive techniques (ART).
Collapse
Affiliation(s)
| | - Agnieszka Malcher
- Institute of Human Genetics Polish Academy of Sciences, Poznan, Poland
| | - Olga Włoczkowska
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznan, Poland
| | | | - Marta Olszewska
- Institute of Human Genetics Polish Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
16
|
Kaddour H, Kopcho S, Lyu Y, Shouman N, Paromov V, Pratap S, Dash C, Kim EY, Martinson J, McKay H, Epeldegui M, Margolick JB, Stapleton JT, Okeoma CM. HIV-infection and cocaine use regulate semen extracellular vesicles proteome and miRNAome in a manner that mediates strategic monocyte haptotaxis governed by miR-128 network. Cell Mol Life Sci 2021; 79:5. [PMID: 34936021 PMCID: PMC9134786 DOI: 10.1007/s00018-021-04068-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) are regulators of cell-cell interactions and mediators of horizontal transfer of bioactive molecules between cells. EV-mediated cell-cell interactions play roles in physiological and pathophysiological processes, which maybe modulated by exposure to pathogens and cocaine use. However, the effect of pathogens and cocaine use on EV composition and function are not fully understood. RESULTS Here, we used systems biology and multi-omics analysis to show that HIV infection (HIV +) and cocaine (COC) use (COC +) promote the release of semen-derived EVs (SEV) with dysregulated extracellular proteome (exProtein), miRNAome (exmiR), and exmiR networks. Integrating SEV proteome and miRNAome revealed a significant decrease in the enrichment of disease-associated, brain-enriched, and HIV-associated miR-128-3p (miR-128) in HIV + COC + SEV with a concomitant increase in miR-128 targets-PEAK1 and RND3/RhoE. Using two-dimensional-substrate single cell haptotaxis, we observed that in the presence of HIV + COC + SEV, contact guidance provided by the extracellular matrix (ECM, collagen type 1) network facilitated far-ranging haptotactic cues that guided monocytes over longer distances. Functionalizing SEV with a miR-128 mimic revealed that the strategic changes in monocyte haptotaxis are in large part the result of SEV-associated miR-128. CONCLUSIONS We propose that compositionally and functionally distinct HIV + COC + and HIV-COC- SEVs and their exmiR networks may provide cells relevant but divergent haptotactic guidance in the absence of chemotactic cues, under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Steven Kopcho
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Yuan Lyu
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Nadia Shouman
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Victor Paromov
- CRISALIS, School of Graduate Studies and Research, Proteomics Core, Meharry Medical College, Nashville, TN, 37208, USA
| | - Siddharth Pratap
- CRISALIS, School of Graduate Studies and Research, Bioinformatics Core, Meharry Medical College, Nashville, TN, 37208, USA
| | - Chandravanu Dash
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Heather McKay
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Marta Epeldegui
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, UCLA AIDS Institute and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, USA
- David Geffen School of Medicine at UCLA, UCLA AIDS Institute, Los Angeles, USA
- UCLA Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21207, USA
| | - Jack T Stapleton
- Departments of Internal Medicine, Microbiology and Immunology, University of Iowa and Iowa City Veterans Administration Healthcare, Iowa City, IA, 52242-1081, USA
| | - Chioma M Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA.
| |
Collapse
|
17
|
Araujo SC, Bertolla RP. Protein markers of spermatogenesis and their potential use in the management of azoospermia. Expert Rev Proteomics 2021; 18:939-948. [PMID: 34812697 DOI: 10.1080/14789450.2021.2010548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Azoospermia, absence of sperm in the ejaculate is classified as obstructive (OA) and non-obstructive azoospermia (NOA). In OA, sperm are produced, but due to physical obstruction in the male reproductive tract, they are not released in the ejaculate. NOA, on the other hand, is defined as the absence of sperm in the ejaculate due to testicular dysfunction. In NOA, spermatogenesis is frequently preserved in specific sites, and proteomics studies have been employed in order to identify men with preserved spermatogenesis. AREAS COVERED Differential protein expression in patients with male infertility is an indicator of impaired spermatogenesis. Here, we reviewed proteins with a potential role as biomarkers of spermatogenesis that could help in the management of non-obstructive and obstructive azoospermia. The following keywords were used for bibliographic research: seminal plasma, proteomics, male infertility, nonobstructive, obstructive, azoospermia, oligospermia. EXPERT OPINION Biopsy is an invasive and potentially harmful technique for detecting spermatogenesis in men with OA and NOA. Seminal plasma proteins are highly promising as biomarkers for spermatogenesis. Current literature presents a number of potential candidate biomarkers for determining preserved spermatogenesis.
Collapse
Affiliation(s)
- Sophia Costa Araujo
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Rais Y, Fu Z, Drabovich AP. Mass spectrometry-based proteomics in basic and translational research of SARS-CoV-2 coronavirus and its emerging mutants. Clin Proteomics 2021; 18:19. [PMID: 34384361 PMCID: PMC8358260 DOI: 10.1186/s12014-021-09325-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023] Open
Abstract
Molecular diagnostics of the coronavirus disease of 2019 (COVID-19) now mainly relies on the measurements of viral RNA by RT-PCR, or detection of anti-viral antibodies by immunoassays. In this review, we discussed the perspectives of mass spectrometry-based proteomics as an analytical technique to identify and quantify proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and to enable basic research and clinical studies on COVID-19. While RT-PCR and RNA sequencing are indisputably powerful techniques for the detection of SARS-CoV-2 and identification of the emerging mutations, proteomics may provide confirmatory diagnostic information and complimentary biological knowledge on protein abundance, post-translational modifications, protein-protein interactions, and the functional impact of the emerging mutations. Pending advances in sensitivity and throughput of mass spectrometry and liquid chromatography, shotgun and targeted proteomic assays may find their niche for the differential quantification of viral proteins in clinical and environmental samples. Targeted proteomic assays in combination with immunoaffinity enrichments also provide orthogonal tools to evaluate cross-reactivity of serology tests and facilitate development of tests with the nearly perfect diagnostic specificity, this enabling reliable testing of broader populations for the acquired immunity. The coronavirus pandemic of 2019-2021 is another reminder that the future global pandemics may be inevitable, but their impact could be mitigated with the novel tools and assays, such as mass spectrometry-based proteomics, to enable continuous monitoring of emerging viruses, and to facilitate rapid response to novel infectious diseases.
Collapse
Affiliation(s)
- Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Omics in Seminal Plasma: An Effective Strategy for Predicting Sperm Retrieval Outcome in Non-obstructive Azoospermia. Mol Diagn Ther 2021; 25:315-325. [PMID: 33860468 DOI: 10.1007/s40291-021-00524-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Non-obstructive azoospermia (NOA) is a severe form of male factor infertility resulting from the impairment of sperm production. Surgical sperm retrieval followed by intracytoplasmic sperm injection (ICSI) is the only alternative for NOA patients to have their own genetic children. Nevertheless, due to an approximately 50% chance of success, harvesting sperm from these patients remains challenging. Thus, discovering noninvasive biomarkers, which are able to reliably predict the probability of sperm acquisition, not only can eliminate the risk of surgery but also can lower the costs of NOA diagnosis and treatment. Seminal plasma is the non-cellular and liquid portion of the ejaculate that consists of the secretions originating from testes and male accessory glands. In past years, a wide range of biomolecules including DNAs, RNAs, proteins, and metabolic intermediates have been identified by omics techniques in human seminal plasma. The current review aimed to briefly describe genomic, transcriptomic, proteomic, and metabolomic profiles of human seminal plasma in an attempt to introduce potential candidate noninvasive biomarkers for sperm-retrieval success in men with NOA.
Collapse
|
20
|
Fu Z, Rais Y, Bismar TA, Hyndman ME, Le XC, Drabovich AP. Mapping Isoform Abundance and Interactome of the Endogenous TMPRSS2-ERG Fusion Protein by Orthogonal Immunoprecipitation-Mass Spectrometry Assays. Mol Cell Proteomics 2021; 20:100075. [PMID: 33771697 PMCID: PMC8102805 DOI: 10.1016/j.mcpro.2021.100075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 01/02/2023] Open
Abstract
TMPRSS2-ERG gene fusion, a molecular alteration found in nearly half of primary prostate cancer cases, has been intensively characterized at the transcript level. However limited studies have explored the molecular identity and function of the endogenous fusion at the protein level. Here, we developed immunoprecipitation-mass spectrometry assays for the measurement of a low-abundance T1E4 TMPRSS2-ERG fusion protein, its isoforms, and its interactome in VCaP prostate cancer cells. Our assays quantified total ERG (∼27,000 copies/cell) and its four unique isoforms and revealed that the T1E4-ERG isoform accounted for 52 ± 3% of the total ERG protein in VCaP cells, and 50 ± 11% in formalin-fixed paraffin-embedded prostate cancer tissues. For the first time, the N-terminal peptide (methionine-truncated and N-acetylated TASSSSDYGQTSK) unique for the T1/E4 fusion was identified. ERG interactome profiling with the C-terminal, but not the N-terminal, antibodies identified 29 proteins, including mutually exclusive BRG1- and BRM-associated canonical SWI/SNF chromatin remodeling complexes. Our sensitive and selective IP-SRM assays present alternative tools to quantify ERG and its isoforms in clinical samples, thus paving the way for development of more accurate diagnostics of prostate cancer.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, and Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - M Eric Hyndman
- Division of Urology, Department of Surgery, Southern Alberta Institute of Urology, University of Calgary, Alberta, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Willforss J, Morrell JM, Resjö S, Hallap T, Padrik P, Siino V, de Koning DJ, Andreasson E, Levander F, Humblot P. Stable bull fertility protein markers in seminal plasma. J Proteomics 2021; 236:104135. [PMID: 33540068 DOI: 10.1016/j.jprot.2021.104135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Bull fertility is an important trait in breeding as the semen of one bull can, potentially, be used to perform thousands of inseminations. The high number of inseminations needed to obtain reliable measures from Non-Return Rates to oestrus creates difficulties in assessing fertility accurately. Improving molecular knowledge of seminal properties may provide ways to facilitate selection of bulls with good semen quality. In this study, liquid chromatography mass spectrometry (LC-MS/MS) was used to analyze the protein content from the seminal plasma of 20 bulls with Non-Return Rates between 35 and 60%, sampled across three seasons. Overall, 1343 proteins were identified and proteins with consistent correlation to fertility across multiple seasons found. From these, nine protein groups had a significant Pearson correlation (p < 0.1) with fertility in all three seasons and 34 protein groups had a similar correlation in at least two seasons. Among notable proteins showing a high and consistent correlation across seasons were Osteopontin, a lipase (LIPA) and N-acetylglucosamine-1phosphotransferase subunit gamma. Three proteins were combined in a multiple linear regression to predict fertility (r = 0.81). These sets of proteins represent potential markers, which could be used by the breeding industry to phenotype bull fertility. SIGNIFICANCE: The ability of bull spermatozoa to fertilize oocytes is crucial for breeding efficiency. However, the reliability of this trait from field measures is relatively low and the prediction of fertility given by conventional methods to evaluate sperm quality is currently not very accurate. In this work, we identify sets of proteins in bull seminal plasma from repeated samples collected at different times of the year that correlate to fertility in a consistent way. We combined these individual proteins to build a molecular signature predictive of fertility. This study provides an overview of proteins linked to fertility in seminal plasma, thereby increasing knowledge of the bull seminal plasma proteome. Protein signatures from the latter, potentially related to fertility, may be of use to predict fertility for individual bulls.
Collapse
Affiliation(s)
- J Willforss
- Department of Immunotechnology, Lund University, Lund, Sweden.
| | - J M Morrell
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S Resjö
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - T Hallap
- Estonian University of Life Sciences, Tartu, Estonia
| | - P Padrik
- Animal Breeders' Association of Estonia, Raplamaa, Estonia
| | - V Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - D J de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - E Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - F Levander
- Department of Immunotechnology, Lund University, Lund, Sweden.
| | - P Humblot
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
22
|
Jain P, Ojha SK, Kumar V, Bakhshi S, Singh S, Yadav S. Differential seminal plasma proteome signatures of acute lymphoblastic leukemia survivors. Reprod Biol 2019; 19:322-328. [PMID: 31711845 DOI: 10.1016/j.repbio.2019.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
Abstract
With advances in therapeutic methods, there is a high survival rate among leukemia patients, of an extent more than 80%. However, chemotherapeutic drugs used to treat these patients have adverse effects on their overall health profile including fertility. The primary aim of this study was to identify differentially expressed proteins in seminal plasma of acute lymphoblastic leukemia (ALL) survivors compared to age-matched healthy controls, which can provide molecular basis of idiopathic infertility in such survivors. Differential proteome profiling was performed by 2D-differential in-gel electrophoresis, protein spots were identified by mass spectrometry and selective differentially expressed proteins (DEPs) were validated by western blotting and ELISA method. Out of eight DEPs identified, five proteins (isocitrate dehydrogenase 1, semenogelin 1, lactoferrin, prolactin-inducible protein, and human serum albumin) were upregulated and three (pepsinogen, prostate specific antigen and prostatic acid phosphatase) were downregulated. Expression profiles of these proteins are suggestive of reduction in semen quality in ALL survivors and can further be explored to determine their fertility status.
Collapse
Affiliation(s)
- Paras Jain
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanjay Kumar Ojha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vikrant Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, IRCH, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sarman Singh
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India; All India Institute of Medical Sciences, Bhopal, 462020, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
23
|
Cui Z, Chen Y, Hu M, Lin Y, Zhang S, Kong L, Chen Y. Diagnostic and prognostic value of the cancer-testis antigen lactate dehydrogenase C4 in breast cancer. Clin Chim Acta 2019; 503:203-209. [PMID: 31794764 DOI: 10.1016/j.cca.2019.11.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Lactate dehydrogenase C4 (LDH-C4) as a cancer/testis antigen (CTA) is abnormally expressed in some malignant tumors. However, the expression and clinical significance of LDH-C4 in breast cancer (BC) has not been characterized. METHODS We determined LDHC mRNA expression in serum and serum-derived exosomes of BC patients by quantitative RT-PCR. We also evaluated the protein expression of LDH-C4 in BC tissues using high-throughput tissue microarray analysis and immunohistochemistry. RESULTS Our results showed high mRNA expression level of LDHC in serum and serum-derived exosomes of BC patients. The LDHC level in serum and exosomes could distinguish BC cases from healthy individuals based on their AUCs of 0.9587 and 0.9464, respectively. Besides, the LDHC level in exosomes of BC patients associated with tumor size, and positively correlated with HER2 and Ki-67 expressions (all with P < 0.05). Serum and exosomal level of LDHC negatively correlated with medical treatment and positively with the recurrence of BC. Survival analysis showed that LDH-C4 expression negatively correlated with BC prognosis. CONCLUSION Serum and exosomal LDHC may be an effective indicator for the diagnosis, efficacy evaluation, and monitoring the recurrence of BC. LDH-C4 may act as a biomarker that predicts BC prognosis.
Collapse
Affiliation(s)
- Zhaolei Cui
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Provincial Key Laboratory of Tumor Biotherapy, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, PR China
| | - Yansong Chen
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Provincial Key Laboratory of Tumor Biotherapy, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, PR China
| | - Minhua Hu
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Provincial Key Laboratory of Tumor Biotherapy, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, PR China
| | - Yingfeng Lin
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Provincial Key Laboratory of Tumor Biotherapy, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, PR China
| | - Shuyu Zhang
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Provincial Key Laboratory of Tumor Biotherapy, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, PR China
| | - Lingying Kong
- Department of Pathology, Fujian University of Traditional Chinese Medicine Affiliated People's Hospital, Fuzhou, Fujian, PR China.
| | - Yan Chen
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Provincial Key Laboratory of Tumor Biotherapy, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, PR China.
| |
Collapse
|
24
|
Drabovich AP, Saraon P, Drabovich M, Karakosta TD, Dimitromanolakis A, Hyndman ME, Jarvi K, Diamandis EP. Multi-omics Biomarker Pipeline Reveals Elevated Levels of Protein-glutamine Gamma-glutamyltransferase 4 in Seminal Plasma of Prostate Cancer Patients. Mol Cell Proteomics 2019; 18:1807-1823. [PMID: 31249104 PMCID: PMC6731075 DOI: 10.1074/mcp.ra119.001612] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 11/06/2022] Open
Abstract
Seminal plasma, because of its proximity to prostate, is a promising fluid for biomarker discovery and noninvasive diagnostics. In this study, we investigated if seminal plasma proteins could increase diagnostic specificity of detecting primary prostate cancer and discriminate between high- and low-grade cancers. To select 147 most promising biomarker candidates, we combined proteins identified through five independent experimental or data mining approaches: tissue transcriptomics, seminal plasma proteomics, cell line secretomics, tissue specificity, and androgen regulation. A rigorous biomarker development pipeline based on selected reaction monitoring assays was designed to evaluate the most promising candidates. As a result, we qualified 76, and verified 19 proteins in seminal plasma of 67 negative biopsy and 152 prostate cancer patients. Verification revealed a prostate-specific, secreted and androgen-regulated protein-glutamine gamma-glutamyltransferase 4 (TGM4), which predicted prostate cancer on biopsy and outperformed age and serum Prostate-Specific Antigen (PSA). A machine-learning approach for data analysis provided improved multi-marker combinations for diagnosis and prognosis. In the independent verification set measured by an in-house immunoassay, TGM4 protein was upregulated 3.7-fold (p = 0.006) and revealed AUC = 0.66 for detecting prostate cancer on biopsy for patients with serum PSA ≥4 ng/ml and age ≥50. Very low levels of TGM4 (120 pg/ml) were detected in blood serum. Collectively, our study demonstrated rigorous evaluation of one of the remaining and not well-explored prostate-specific proteins within the medium-abundance proteome of seminal plasma. Performance of TGM4 warrants its further investigation within the distinct genomic subtypes and evaluation for the inclusion into emerging multi-biomarker panels.
Collapse
Affiliation(s)
- Andrei P Drabovich
- ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5T 3L9 Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, M5T 3L9 Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5T 3L9 Canada.
| | - Punit Saraon
- ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5T 3L9 Canada
| | | | - Theano D Karakosta
- §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, M5T 3L9 Canada
| | | | - M Eric Hyndman
- **Department of Surgery, Division of Urology, Southern Alberta Institute of Urology, University of Calgary, Calgary, AB T2V 1P9, Canada
| | - Keith Jarvi
- ‡‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5T 3L9 Canada; §§Department of Surgery, Division of Urology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, M5T 3L9 Canada.
| | - Eleftherios P Diamandis
- ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5T 3L9 Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, M5T 3L9 Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5T 3L9 Canada; ‡‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5T 3L9 Canada.
| |
Collapse
|
25
|
Liu X, Liu G, Zhu P, Wang Y, Wang J, Zhang W, Wang W, Li N, Wang X, Zhang C, Liu J, Shen X, Liu F. Characterization of seminal plasma proteomic alterations associated with the IVF and rescue-ICSI pregnancy in assisted reproduction. Andrology 2019; 8:407-420. [PMID: 31364287 DOI: 10.1111/andr.12687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Seminal plasma is a promising diagnostic fluid for male infertility. In assisted reproduction, the seminal plasma-based characteristics of normozoospermic men achieving successful clinical pregnancy through rescue intracytoplasmic sperm injection after in vitro fertilization failure remain unclear. OBJECTIVE To identify potential seminal plasma proteins to contribute to a new understanding of unexplained male factor infertility. MATERIALS AND METHODS An approach with isobaric tags for relative and absolute quantification labeling coupled with liquid chromatography matrix-assisted laser desorption ionization mass spectrometry was applied to investigate differentially expressed proteins in the seminal plasma of a rescue intracytoplasmic sperm injection pregnancy group versus an in vitro fertilization pregnancy group of normozoospermic men. RESULT(S) The present work revealed seventy-three differentially expressed seminal plasma proteins between the in vitro fertilization and rescue intracytoplasmic sperm injection groups. Forty-five proteins were upregulated, and 28 proteins were downregulated in the rescue intracytoplasmic sperm injection group compared with the in vitro fertilization group. Bioinformatics analyses showed that these altered proteins were involved in various functions, including the kallikrein-related proteolytic cascade, immune response, and heparin binding. Furthermore, the validity of the proteomic results was verified by Western blot analysis of the proteins (lactoferrin [LTF], fibronectin [FN1], creatine kinase B type [CKB], kallikrein-2 [KLK2], aminopeptidase N [ANPEP], extracellular matrix protein 1 [ECM1], glycodelin [PAEP], alpha-1-antitrypsin [SERPINA1], and semenogelin-1 [SEMG1]) and immunofluorescence. Moreover, 16% of the seminal plasma proteins identified in the present work have not been reported in previous studies. DISCUSSION This panel of altered seminal plasma proteins associated with unexplained male factor infertility might have clinical relevance and may be useful in the diagnosis and prognosis of idiopathic infertility in in vitro fertilization. CONCLUSIONS Our work not only provides a new complementary high-confidence dataset of seminal plasma proteins but also shines new light onto the molecular characteristics of seminal plasma from normozoospermic men with different assisted reproductive outcomes.
Collapse
Affiliation(s)
- X Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - G Liu
- Reproductive Center, Tianjin Aiwei Hospital, Tianjin, China
| | - P Zhu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Y Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - J Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - W Zhang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - W Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - N Li
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - X Wang
- Department of Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - C Zhang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - J Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - X Shen
- Reproductive Center, Beijing BaoDao Obstetrics and Gynecology Hospital, Beijing, China
| | - F Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
26
|
Barrachina F, Jodar M, Delgado-Dueñas D, Soler-Ventura A, Estanyol JM, Mallofré C, Ballescà JL, Oliva R. Stable-protein Pair Analysis as A Novel Strategy to Identify Proteomic Signatures: Application To Seminal Plasma From Infertile Patients. Mol Cell Proteomics 2019; 18:S77-S90. [PMID: 30518674 PMCID: PMC6427235 DOI: 10.1074/mcp.ra118.001248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Our aim was to define seminal plasma proteome signatures of infertile patients categorized according to their seminal parameters using TMT-LC-MS/MS. To that extent, quantitative proteomic data was analyzed following two complementary strategies: (1) the conventional approach based on standard statistical analyses of relative protein quantification values; and (2) a novel strategy focused on establishing stable-protein pairs. By conventional analyses, the abundance of some seminal plasma proteins was found to be positively correlated with sperm concentration. However, this correlation was not found for all the peptides within a specific protein, bringing to light the high heterogeneity existing in the seminal plasma proteome because of both the proteolytic fragments and/or the post-translational modifications. This issue was overcome by conducting the novel stable-protein pairs analysis proposed herein. A total of 182 correlations comprising 24 different proteins were identified in the normozoospermic-control population, whereas this proportion was drastically reduced in infertile patients with altered seminal parameters (18 in patients with reduced sperm motility, 0 in patients with low sperm concentration and 3 in patients with no sperm in the ejaculate). These results suggest the existence of multiple etiologies causing the same alteration in seminal parameters. Additionally, the repetition of the stable-protein pair analysis in the control group by adding the data from a single patient at a time enabled to identify alterations in the stable-protein pairs profile of individual patients with altered seminal parameters. These results suggest potential underlying pathogenic mechanisms in individual infertile patients, and might open up a window to its application in the personalized diagnostic of male infertility.
Collapse
Affiliation(s)
- Ferran Barrachina
- From the ‡Molecular Biology of Reproduction and Development Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain and Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| | - Meritxell Jodar
- From the ‡Molecular Biology of Reproduction and Development Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain and Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| | - David Delgado-Dueñas
- From the ‡Molecular Biology of Reproduction and Development Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain and Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| | - Ada Soler-Ventura
- From the ‡Molecular Biology of Reproduction and Development Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain and Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain
| | - Josep Maria Estanyol
- Proteomics Unit, Scientific Technical Services, University of Barcelona, Barcelona, Spain
| | - Carme Mallofré
- Department of Pathology, University of Barcelona, Hospital Clínic, Barcelona, Spain
| | - Josep Lluís Ballescà
- Clinic Institute of Gynaecology, Obstetrics and Neonatology, Hospital Clínic, Barcelona, Spain
| | - Rafael Oliva
- From the ‡Molecular Biology of Reproduction and Development Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain and Biochemistry and Molecular Genetics Service, Hospital Clínic, Barcelona, Spain;.
| |
Collapse
|
27
|
Quantitative Proteomic Analysis of Human Seminal Plasma from Normozoospermic and Asthenozoospermic Individuals. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2735038. [PMID: 30984777 PMCID: PMC6431472 DOI: 10.1155/2019/2735038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/02/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
Seminal plasma is a complex mixture of secretions from various glands in the male genital tract. Compared to sperm cells, it contains important proteins that are both directly and indirectly associated with sperm motility. Here, we constructed quantitative proteomes of human seminal plasma from three normozoospermic and asthenozoospermic individuals. A total of 524 proteins were identified, and 366 of them were found to be quantified in all six samples. We first investigated the absolute expression features of these proteins and found that the variations of protein identification among different samples and other published datasets were mainly due to some lowly expressed proteins. By integration of various proteomic datasets and bioinformatics databases, we comprehensively annotated the biological functions, physiological originations, and disease associations of these proteins. We found that our dataset could benefit the studies of both male infertility and other male diseases. Finally, based on the relative expression values determined by chemical labeling, we identified a total of 29 differentially expressed proteins, which could be used as candidate targets for studying the molecular bases of sperm motility or developing precise diagnostic biomarkers of asthenozoospermia. We further successfully verified the expression trends of four representative proteins by Western blotting. Compared to a previous dataset based on label-free quantification, our results showed that most of the important proteins could be identified in the sample collected only once for each individual, providing the bases for personalized examination of seminal plasma proteins in clinic.
Collapse
|
28
|
Welch JL, Stapleton JT, Okeoma CM. Vehicles of intercellular communication: exosomes and HIV-1. J Gen Virol 2019; 100:350-366. [PMID: 30702421 PMCID: PMC7011712 DOI: 10.1099/jgv.0.001193] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
The terms extracellular vesicles, microvesicles, oncosomes, or exosomes are often used interchangeably as descriptors of particles that are released from cells and comprise a lipid membrane that encapsulates nucleic acids and proteins. Although these entities are defined based on a specific size range and/or mechanism of release, the terminology is often ambiguous. Nevertheless, these vesicles are increasingly recognized as important modulators of intercellular communication. The generic characterization of extracellular vesicles could also be used as a descriptor of enveloped viruses, highlighting the fact that extracellular vesicles and enveloped viruses are similar in both composition and function. Their high degree of similarity makes differentiating between vesicles and enveloped viruses in biological specimens particularly difficult. Because viral particles and extracellular vesicles are produced simultaneously in infected cells, it is necessary to separate these populations to understand their independent functions. We summarize current understanding of the similarities and differences of extracellular vesicles, which henceforth we will refer to as exosomes, and the enveloped retrovirus, HIV-1. Here, we focus on the presence of these particles in semen, as these are of particular importance during HIV-1 sexual transmission. While there is overlap in the terminology and physical qualities between HIV-1 virions and exosomes, these two types of intercellular vehicles may differ depending on the bio-fluid source. Recent data have demonstrated that exosomes from human semen serve as regulators of HIV-1 infection that may contribute to the remarkably low risk of infection per sexual exposure.
Collapse
Affiliation(s)
- Jennifer L. Welch
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Jack T. Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Chioma M. Okeoma
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacologic Sciences, Basic Sciences Tower, Rm 8-142, Stony Brook, University School of Medicine, Stony Brook, NY 11794-8651, USA
| |
Collapse
|
29
|
Schiza C, Korbakis D, Jarvi K, Diamandis EP, Drabovich AP. Identification of TEX101-associated Proteins Through Proteomic Measurement of Human Spermatozoa Homozygous for the Missense Variant rs35033974. Mol Cell Proteomics 2019; 18:338-351. [PMID: 30429210 PMCID: PMC6356071 DOI: 10.1074/mcp.ra118.001170] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 01/19/2023] Open
Abstract
TEX101 is a germ-cell-specific protein and a validated biomarker of male infertility. Mouse TEX101 was found essential for male fertility and was suggested to function as a cell surface chaperone involved in maturation of proteins required for sperm migration and sperm-oocyte interaction. However, the precise functional role of human TEX101 is not known and cannot be studied in vitro due to the lack of human germ cell lines. Here, we genotyped 386 men for a common missense variant rs35033974 of TEX101 and identified 52 heterozygous and 4 homozygous men. We then discovered by targeted proteomics that the variant allele rs35033974 was associated with the near-complete degradation (>97%) of the corresponding G99V TEX101 form and suggested that spermatozoa of homozygous men could serve as a knockdown model to study TEX101 function in humans. Differential proteomic profiling with label-free quantification measured 8,046 proteins in spermatozoa of eight men and identified eight cell-surface and nine secreted testis-specific proteins significantly down-regulated in four patients homozygous for rs35033974. Substantially reduced levels of testis-specific cell-surface proteins potentially involved in sperm migration and sperm-oocyte interaction (including LY6K and ADAM29) were confirmed by targeted proteomics and Western blotting assays. Because recent population-scale genomic data revealed homozygous fathers with biological children, rs35033974 is not a monogenic factor of male infertility in humans. However, median TEX101 levels in seminal plasma were found fivefold lower (p = 0.0005) in heterozygous than in wild-type men of European ancestry. We conclude that spermatozoa of rs35033974 homozygous men have substantially reduced levels of TEX101 and could be used as a model to elucidate the precise TEX101 function, which will advance biology of human reproduction.
Collapse
Affiliation(s)
- Christina Schiza
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada;; Department of Pathology and Laboratory Medicine
| | - Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada;; Lunenfeld-Tanenbaum Research Institute
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute,; Department of Surgery, Division of Urology, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada;; Department of Pathology and Laboratory Medicine,; Lunenfeld-Tanenbaum Research Institute,; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada;; Department of Pathology and Laboratory Medicine,; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
30
|
Panner Selvam MK, Baskaran S, Agarwal A. Proteomics of reproduction: Prospects and perspectives. Adv Clin Chem 2019; 92:217-243. [PMID: 31472755 DOI: 10.1016/bs.acc.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, proteomics has been used widely in reproductive research in order to understand the molecular mechanisms related to gametes at the cellular level and the role of proteins involved in fertilization. Network and pathway analysis using bioinformatic tools have paved way to obtain a wider picture on the possible pathways associated with the key differentially expressed proteins (DEPs) and its implication in various infertility scenarios. A brief overview of advanced techniques and bioinformatic tools used for reproductive proteomics is presented. Key findings of proteomic-based studies on male and female reproduction are also presented. Furthermore, the chapter sheds light on the cellular pathways and potential biomarkers associated with male and female infertility. Proteomics coupled with bioinformatic analysis provides an ideal platform for non-invasive management of infertility in couples.
Collapse
|
31
|
Schiza C, Korbakis D, Panteleli E, Jarvi K, Drabovich AP, Diamandis EP. Discovery of a Human Testis-specific Protein Complex TEX101-DPEP3 and Selection of Its Disrupting Antibodies. Mol Cell Proteomics 2018; 17:2480-2495. [PMID: 30097533 DOI: 10.1074/mcp.ra118.000749] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/11/2018] [Indexed: 01/01/2023] Open
Abstract
TEX101 is a testis-specific protein expressed exclusively in male germ cells and is a validated biomarker of male infertility. Studies in mice suggest that TEX101 is a cell-surface chaperone which regulates, through protein-protein interactions, the maturation of proteins involved in spermatozoa transit and oocyte binding. Male TEX101-null mice are sterile. Here, we identified by co-immunoprecipitation-mass spectrometry the interactome of human TEX101 in testicular tissues and spermatozoa. The testis-specific cell-surface dipeptidase 3 (DPEP3) emerged as the top hit. We further validated the TEX101-DPEP3 complex by using hybrid immunoassays. Combinations of antibodies recognizing different epitopes of TEX101 and DPEP3 facilitated development of a simple immunoassay to screen for disruptors of TEX101-DPEP3 complex. As a proof-of-a-concept, we demonstrated that anti-TEX101 antibody T4 disrupted the native TEX101-DPEP3 complex. Disrupting antibodies may be used to study the human TEX101-DPEP3 complex, and to develop modulators for male fertility.
Collapse
Affiliation(s)
- Christina Schiza
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Efstratia Panteleli
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Surgery, Division of Urology, Mount Sinai Hospital, Toronto, Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
32
|
Yang C, Guo WB, Zhang WS, Bian J, Yang JK, Zhou QZ, Chen MK, Peng W, Qi T, Wang CY, Liu CD. Comprehensive proteomics analysis of exosomes derived from human seminal plasma. Andrology 2018; 5:1007-1015. [PMID: 28914500 PMCID: PMC5639412 DOI: 10.1111/andr.12412] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 06/18/2017] [Accepted: 07/11/2017] [Indexed: 01/30/2023]
Abstract
Exosomes are membranous nanovesicles of endocytic origin that carry and transfer regulatory bioactive molecules and mediate intercellular communication between cells and tissues. Although seminal exosomes have been identified in human seminal plasma, their exact composition and possible physiologic function remain unknown. The objective of this study was to perform a comprehensive proteomics analysis of exosomes derived from human seminal plasma. Seminal exosomes were isolated and purified from 12 healthy donors using a 30% sucrose cushion‐based exosome‐isolation protocol, followed by characterization by western blot, transmission electron microscopy, and nanoparticle tracking analysis before performing extensive liquid chromatography tandem mass spectrometry proteomics analysis. The identified proteins were analyzed by bioinformatics analysis, and seminal exosomes‐associated proteins were selectively validated by western blot. A total of 1474 proteins were identified in all seminal exosomes samples, with Gene Ontology analysis demonstrating that these identified seminal exosomes‐associated proteins were mostly linked to ‘exosomes,’ ‘cytoplasm,’ and ‘cytosol.’ Bioinformatics analysis indicated that these proteins were mainly involved in biologic processes, including metabolism, energy pathways, protein metabolism, cell growth and maintenance, and transport. Of these identified proteins, PHGDH, LGALS3BP, SEMG1, ACTB, GAPDH, and the exosomal‐marker protein ALIX were validated by western blot. This study provided a more comprehensive description of the seminal exosomes proteome and could also be a resource for further screening of biomarkers and comparative proteomics studies, including those associated with male infertility and prostate cancer.
Collapse
Affiliation(s)
- C Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - W-B Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - W-S Zhang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - J Bian
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - J-K Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Q-Z Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - M-K Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - W Peng
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - T Qi
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - C-Y Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - C-D Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Camargo M, Intasqui P, Bertolla RP. Understanding the seminal plasma proteome and its role in male fertility. Basic Clin Androl 2018; 28:6. [PMID: 29881623 PMCID: PMC5985566 DOI: 10.1186/s12610-018-0071-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/08/2018] [Indexed: 01/10/2023] Open
Abstract
Seminal plasma is a complex fluid comprised of secretions from the seminal vesicles, the prostate, bulbourethral glands and from the seminiferous tubule lumen / epididymides / vasa deferentia. While it has been established that seminal plasma serves not only as a medium to carry, protect, and nourish sperm after ejaculation up to fertilization, but also as a functional modulator of sperm function, there is still a need to properly characterize the molecular make-up of seminal plasma in fertile men, and to understand how this is altered in different causes of male infertility. The main purpose of this manuscript was to review articles that studied the human seminal plasma proteome, ranging from characterizing a fertile seminal plasma proteomic map to studies comparing seminal plasma from fertile and infertile men, and comparing seminal plasma of fertile or normozoospermic men to a diverse range of biological causes for male infertility. Finally, this review has focused on the association between semen and sperm functional quality and the seminal plasma proteome, in order to demonstrate cellular and molecular mechanisms of male infertility. Due to the untargeted nature of the majority of the studies presented in this review, and to the diverse range of techniques utilized to study the seminal plasma proteomic composition, many differentially expressed proteins were observed. However, in general, it seems that there is a seminal plasma proteome associated to male fertility, and that different biological conditions or cellular phenotypes shift its pathways away from its homeostatic condition to altered energy production pathways. Moreover, it seems there is an inflammatory component to the seminal plasma of infertile men. In conclusion, there are a number of studies focused on the proteomic composition of human seminal plasma; downstream confirmatory studies will help to understand specific pathways of infertility in different biological conditions.
Collapse
Affiliation(s)
- Mariana Camargo
- 1Department of Surgery, Division of Urology, Universidade Federal de São Paulo, R Embau, 231, Sao Paulo, SP 04039-060 Brazil
| | - Paula Intasqui
- 1Department of Surgery, Division of Urology, Universidade Federal de São Paulo, R Embau, 231, Sao Paulo, SP 04039-060 Brazil
| | - Ricardo Pimenta Bertolla
- 1Department of Surgery, Division of Urology, Universidade Federal de São Paulo, R Embau, 231, Sao Paulo, SP 04039-060 Brazil.,2Hospital São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Samanta L, Parida R, Dias TR, Agarwal A. The enigmatic seminal plasma: a proteomics insight from ejaculation to fertilization. Reprod Biol Endocrinol 2018; 16:41. [PMID: 29704899 PMCID: PMC5923003 DOI: 10.1186/s12958-018-0358-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/20/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The 'omics' approach for a noninvasive diagnosis of male reproductive system disorders has gained momentum during the last decade, particularly from a screening and prognosis point of view. Due to the rapid development in assisted reproductive technologies (ART) over the years, the major focus of proteomic studies has been around the ejaculated spermatozoa. Although seminal plasma is not a requirement for ART, the question arose whether the role of seminal plasma is merely to transport spermatozoa. MAIN BODY Seminal plasma (SP) contains a large diversity of proteins that are essential not only for sperm transport, but also for sperm protection and maturation. Most of the proteins bind to sperm surface through exosomes (epididymosomes and prostasomes), modulating sperm function, interaction with the female reproductive tract and finally fertilization. This review focuses on the state-of-art discoveries regarding SP proteome and its role in fertilization. CONCLUSION Tissue-specific proteins in the SP have emerged as fundamental contributors for protein biomarker discovery. This is important for a noninvasive diagnosis of male infertility and development of new therapeutic approaches. Moreover, ART success rates may be improved by taking into account the critical role of seminal proteome in fertilization.
Collapse
Affiliation(s)
- Luna Samanta
- American Center for Reproductive Medicine, Cleveland Clinic, 10681 Carnegie Avenue, Desk X11, Cleveland, OH, 44195, USA
- Redox Biology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, 753003, India
| | - Rajeshwari Parida
- Redox Biology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, 753003, India
| | - Tania R Dias
- American Center for Reproductive Medicine, Cleveland Clinic, 10681 Carnegie Avenue, Desk X11, Cleveland, OH, 44195, USA
- Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, 4050-313, Porto, Portugal
- LAQV/REQUIMTE - Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, 10681 Carnegie Avenue, Desk X11, Cleveland, OH, 44195, USA.
| |
Collapse
|
35
|
Cui Z, Agarwal A, da Silva BF, Sharma R, Sabanegh E. Evaluation of seminal plasma proteomics and relevance of FSH in identification of nonobstructive azoospermia: A preliminary study. Andrologia 2018. [PMID: 29528137 DOI: 10.1111/and.12999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nonobstructive azoospermia (NOA) patients present with high levels of serum FSH. At the protein level, the aetiology and pathways underlying different subtypes of NOA are unclear. The aim was to evaluate quantitatively differences in proteomic profiles of NOA patients presenting with normal serum FSH and normal testicular volume and high serum FSH and small testicular volume. The study comprised of 14 nonobstructive azoospermic men (N = 4; normal FSH and normal testicular volume and N = 10; high FSH and small testicular volume) and seven normozoospermic men. Proteomic analysis was done using LC-MS. GSTM3 and PGK2 were less abundant in the normal and high FSH group compared to controls. HSPA4L and HSPA4 were exclusively present in control group whereas HSP90AB1, HSPA1B, HSP90AA1 and HSPA2 were less abundant and exclusive to the normal and high FSH group. We have identified six heat-shock proteins that may have a role in the pathology of NOA. FSH and testicular volume by itself are not good markers of NOA. The inverse association of GSTM3 and PGK2 regulation with FSH levels along with 12 proteins exclusively in NOA groups suggests further evaluation of their predictive potential in a larger cohort of patients.
Collapse
Affiliation(s)
- Z Cui
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Institute of Toxicology, Third Military Medical University, Chongqing, China
| | - A Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - B F da Silva
- Human Reproduction Section, Division of Urology, Department of Surgery, São Paulo Federal University, São Paulo, Brazil
| | - R Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - E Sabanegh
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
36
|
Update on the proteomics of male infertility: A systematic review. Arab J Urol 2017; 16:103-112. [PMID: 29713541 PMCID: PMC5922221 DOI: 10.1016/j.aju.2017.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 02/07/2023] Open
Abstract
Objective To assess the role of differentially expressed proteins as a resource for potential biomarker identification of infertility, as male infertility is of rising concern in reproductive medicine and evidence pertaining to its aetiology at a molecular level particularly proteomic as spermatozoa lack transcription and translation. Proteomics is considered as a major field in molecular biology to validate the target proteins in a pathophysiological state. Differential expression analysis of sperm proteins in infertile men and bioinformatics analysis offer information about their involvement in biological pathways. Materials and methods Literature search was performed on PubMed, Medline, and Science Direct databases using the keywords ‘sperm proteomics’ and ‘male infertility’. We also reviewed the relevant cross references of retrieved articles and included them in the review process. Articles written in any language other than English were excluded. Results Of 575 articles identified, preliminary screening for relevant studies eliminated 293 articles. At the next level of selection, from 282 studies only 80 articles related to male infertility condition met the selection criteria and were included in this review. Conclusion In this molecular era, sperm proteomics has created a platform for enhanced understanding of male reproductive physiology as a potential tool for identification of novel protein biomarkers related to sperm function in infertile men. Therefore, it is believed that proteomic biomarkers can overcome the gaps in information from conventional semen analysis that are of limited clinical utility.
Collapse
|
37
|
Borràs E, Sabidó E. What is targeted proteomics? A concise revision of targeted acquisition and targeted data analysis in mass spectrometry. Proteomics 2017; 17. [PMID: 28719092 DOI: 10.1002/pmic.201700180] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022]
Abstract
Targeted proteomics has gained significant popularity in mass spectrometry-based protein quantification as a method to detect proteins of interest with high sensitivity, quantitative accuracy and reproducibility. However, with the emergence of a wide variety of targeted proteomics methods, some of them with high-throughput capabilities, it is easy to overlook the essence of each method and to determine what makes each of them a targeted proteomics method. In this viewpoint, we revisit the main targeted proteomics methods and classify them in four categories differentiating those methods that perform targeted data acquisition from targeted data analysis, and those methods that are based on peptide ion data (MS1 targeted methods) from those that rely on the peptide fragments (MS2 targeted methods).
Collapse
Affiliation(s)
- Eva Borràs
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
38
|
|
39
|
Korbakis D, Schiza C, Brinc D, Soosaipillai A, Karakosta TD, Légaré C, Sullivan R, Mullen B, Jarvi K, Diamandis EP, Drabovich AP. Preclinical evaluation of a TEX101 protein ELISA test for the differential diagnosis of male infertility. BMC Med 2017; 15:60. [PMID: 28330469 PMCID: PMC5363040 DOI: 10.1186/s12916-017-0817-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND TEX101 is a cell membrane protein exclusively expressed by testicular germ cells and shed into seminal plasma. We previously verified human TEX101 as a biomarker for the differential diagnosis of azoospermia, and developed a first-of-its-kind TEX101 ELISA. To demonstrate the clinical utility of TEX101, in this work we aimed at evaluating ELISA performance in a large population of fertile, subfertile, and infertile men. METHODS Mass spectrometry, size-exclusion chromatography, ultracentrifugation, and immunohistochemistry were used to characterize TEX101 protein as an analyte in seminal plasma. Using the optimized protocol for seminal plasma pretreatment, TEX101 was measured by ELISA in 805 seminal plasma samples. RESULTS We demonstrated that TEX101 was present in seminal plasma mostly in a free soluble form and that its small fraction was associated with seminal microvesicles. TEX101 median values were estimated in healthy, fertile pre-vasectomy men (5436 ng/mL, N = 64) and in patients with unexplained infertility (4967 ng/mL, N = 277), oligospermia (450 ng/mL, N = 270), and azoospermia (0.5 ng/mL, N = 137). Fertile post-vasectomy men (N = 57) and patients with Sertoli cell-only syndrome (N = 13) and obstructive azoospermia (N = 36) had undetectable levels of TEX101 (≤0.5 ng/mL). A cut-off value of 0.9 ng/mL provided 100% sensitivity at 100% specificity for distinguishing pre- and post-vasectomy men. The combination of a concentration of TEX101 > 0.9 ng/mL and epididymis-specific protein ECM1 > 2.3 μg/mL provided 81% sensitivity at 100% specificity for differentiating between non-obstructive and obstructive azoospermia, thus eliminating the majority of diagnostic testicular biopsies. In addition, a cut-off value of ≥0.6 ng/mL provided 73% sensitivity at 64% specificity for predicting sperm or spermatid retrieval in patients with non-obstructive azoospermia. CONCLUSIONS We demonstrated the clinical utility of TEX101 ELISA as a test to evaluate vasectomy success, to stratify azoospermia forms, and to better select patients for sperm retrieval.
Collapse
Affiliation(s)
- Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Christina Schiza
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Davor Brinc
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Theano D Karakosta
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Christine Légaré
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Département d'Obstétrique, Gynécologie et Reproduction, Faculté de Medicine, Université Laval, Québec, Canada
| | - Robert Sullivan
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Département d'Obstétrique, Gynécologie et Reproduction, Faculté de Medicine, Université Laval, Québec, Canada
| | - Brendan Mullen
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada.,Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada. .,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada. .,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
40
|
Bieniek JM, Drabovich AP, Lo KC. Seminal biomarkers for the evaluation of male infertility. Asian J Androl 2017; 18:426-33. [PMID: 26975492 PMCID: PMC4854096 DOI: 10.4103/1008-682x.175781] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For men struggling to conceive with their partners, diagnostic tools are limited and often consist of only a standard semen analysis. This baseline test serves as a crude estimation of male fertility, leaving patients and clinicians in need of additional diagnostic biomarkers. Seminal fluid contains the highest concentration of molecules from the male reproductive glands, therefore, this review focuses on current and novel seminal biomarkers in certain male infertility scenarios, including natural fertility, differentiating azoospermia etiologies, and predicting assisted reproductive technique success. Currently available tests include antisperm antibody assays, DNA fragmentation index, sperm fluorescence in situ hybridization, and other historical sperm functional tests. The poor diagnostic ability of current assays has led to continued efforts to find more predictive biomarkers. Emerging research in the fields of genomics, epigenetics, proteomics, transcriptomics, and metabolomics holds promise for the development of novel male infertility biomarkers. Seminal protein-based assays of TEX101, ECM1, and ACRV1 are already available or under final development for clinical use. Additional panels of DNA, RNA, proteins, or metabolites are being explored as we attempt to understand the pathophysiologic processes of male infertility. Future ventures will need to continue data integration and validation for the development of clinically useful infertility biomarkers to aid in male infertility diagnosis, treatment, and counseling.
Collapse
|
41
|
Camargo M, Intasqui P, Bertolla RP. Proteomic profile of seminal plasma in adolescents and adults with treated and untreated varicocele. Asian J Androl 2016; 18:194-201. [PMID: 26643563 PMCID: PMC4770485 DOI: 10.4103/1008-682x.168788] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Varicocele, the most important treatable cause of male infertility, is present in 15% of adult males, 35% of men with primary infertility, and 80% of men with secondary infertility. On the other hand, 80% of these men will not present infertility. Therefore, there is a need to differentiate a varicocele that is exerting a deleterious effect that is treatable from a “silent” varicocele. Despite the growing evidence of the cellular effects of varicocele, its underlying molecular mechanisms are still eluding. Proteomics has become a promising area to determine the reproductive biology of semen as well as to improve diagnosis of male infertility. This review aims to discuss the state-of-art in seminal plasma proteomics in patients with varicocele to discuss the challenges in undertaking these studies, as well as the future outlook derived from the growing body of evidence on the seminal proteome.
Collapse
Affiliation(s)
| | | | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, R. Embau, 231, 04039-060; Sao Paulo Hospital, Sao Paulo, Brazil
| |
Collapse
|
42
|
Konvalinka A, Batruch I, Tokar T, Dimitromanolakis A, Reid S, Song X, Pei Y, Drabovich AP, Diamandis EP, Jurisica I, Scholey JW. Quantification of angiotensin II-regulated proteins in urine of patients with polycystic and other chronic kidney diseases by selected reaction monitoring. Clin Proteomics 2016; 13:16. [PMID: 27499720 PMCID: PMC4974759 DOI: 10.1186/s12014-016-9117-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/23/2016] [Indexed: 12/24/2022] Open
Abstract
Background Angiotensin-II (Ang II) mediates progression of autosomal-dominant polycystic kidney disease (ADPKD) and other chronic kidney diseases (CKD). However, markers of kidney Ang II activity are lacking. We previously defined 83 Ang II-regulated proteins in vitro, which reflected kidney Ang II activity in vivo. Methods In this study, we developed selected reaction monitoring (SRM) assays for quantification of Ang II-regulated proteins in urine of ADPKD and CKD patients. We demonstrated that 47 of 83 Ang II-regulated transcripts were differentially expressed in cystic compared to normal kidney tissue. We then developed SRM assays for 18 Ang II-regulated proteins overexpressed in cysts and/or secreted in urine. Methods that yielded CV ≤ 6 % for control proteins, and recovery ~100 % were selected. Heavy-labeled peptides corresponding to 13 identified Ang II-regulated peptides were spiked into urine samples of 17 ADPKD patients, 9 patients with CKD predicted to have high kidney Ang II activity and 11 healthy subjects. Samples were then digested and analyzed on triple-quadrupole mass spectrometer in duplicates. Resluts Calibration curves demonstrated linearity (R2 > 0.99) and within-run CVs < 9 % in the concentration range of 7/13 peptides. Peptide concentrations were normalized by urine creatinine. Deamidated peptide forms were monitored, and accounted for <15 % of the final concentrations. Urine excretion rates of proteins BST1, LAMB2, LYPA1, RHOB and TSP1 were significantly different (p < 0.05, one-way ANOVA) between patients with CKD, those with ADPKD and healthy controls. Urine protein excretion rates were highest in CKD patients and lowest in ADPKD patients. Univariate analysis demonstrated significant association between urine protein excretion rates of most proteins and disease group (p < 0.05, ANOVA) as well as sex (p < 0.05, unpaired t test). Multivariate analysis across protein concentration, age and sex demonstrated good separation between ADPKD and CKD patients. Conclusions We have optimized methods for quantification of Ang II-regulated proteins, and we demonstrated that they reflected differences in underlying kidney disease in this pilot study. High urine excretion of Ang II-regulated proteins in CKD patients likely reflects high kidney Ang II activity. Low excretion in ADPKD appears related to lack of communication between cysts and tubules. Future studies will determine whether urine excretion rate of Ang II-regulated proteins correlates with kidney Ang II activity in larger cohorts of chronic kidney disease patients. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9117-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Konvalinka
- Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, 11-PMB-189, 585 University Avenue, Toronto, ON M5G 2N2 Canada ; Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Tomas Tokar
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Apostolos Dimitromanolakis
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Shelby Reid
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Xuewen Song
- Division of Genomic Medicine, University Health Network, University of Toronto, Toronto, Canada
| | - York Pei
- Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, 11-PMB-189, 585 University Avenue, Toronto, ON M5G 2N2 Canada ; Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada ; Department of Clinical Biochemistry, University Health Network, University of Toronto, Toronto, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada ; Departments of Medical Biophysics and Computer Science, University Health Network, University of Toronto, Toronto, Canada
| | - James W Scholey
- Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, 11-PMB-189, 585 University Avenue, Toronto, ON M5G 2N2 Canada ; Toronto General Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
43
|
Karakosta TD, Soosaipillai A, Diamandis EP, Batruch I, Drabovich AP. Quantification of Human Kallikrein-Related Peptidases in Biological Fluids by Multiplatform Targeted Mass Spectrometry Assays. Mol Cell Proteomics 2016; 15:2863-76. [PMID: 27371727 DOI: 10.1074/mcp.m115.057695] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 12/30/2022] Open
Abstract
Human kallikrein-related peptidases (KLKs) are a group of 15 secreted serine proteases encoded by the largest contiguous cluster of protease genes in the human genome. KLKs are involved in coordination of numerous physiological functions including regulation of blood pressure, neuronal plasticity, skin desquamation, and semen liquefaction, and thus represent promising diagnostic and therapeutic targets. Until now, quantification of KLKs in biological and clinical samples was accomplished by enzyme-linked immunosorbent assays (ELISA). Here, we developed multiplex targeted mass spectrometry assays for the simultaneous quantification of all 15 KLKs. Proteotypic peptides for each KLK were carefully selected based on experimental data and multiplexed in single assays. Performance of assays was evaluated using three different mass spectrometry platforms including triple quadrupole, quadrupole-ion trap, and quadrupole-orbitrap instruments. Heavy isotope-labeled synthetic peptides with a quantifying tag were used for absolute quantification of KLKs in sweat, cervico-vaginal fluid, seminal plasma, and blood serum, with limits of detection ranging from 5 to 500 ng/ml. Analytical performance of assays was evaluated by measuring endogenous KLKs in relevant biological fluids, and results were compared with selected ELISAs. The multiplex targeted proteomic assays were demonstrated to be accurate, reproducible, sensitive, and specific alternatives to antibody-based assays. Finally, KLK4, a highly prostate-specific protein and a speculated biomarker of prostate cancer, was unambiguously detected and quantified by immunoenrichment-SRM assay in seminal plasma and blood serum samples from individuals with confirmed prostate cancer and negative biopsy. Mass spectrometry revealed exclusively the presence of a secreted isoform and thus unequivocally resolved earlier disputes about KLK4 identity in seminal plasma. Measurements of KLK4 in either 41 seminal plasma or 58 blood serum samples revealed no statistically significant differences between patients with confirmed prostate cancer and negative biopsy. The presented multiplex targeted proteomic assays are an alternative analytical tool to study the biological and pathological roles of human KLKs.
Collapse
Affiliation(s)
- Theano D Karakosta
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Antoninus Soosaipillai
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eleftherios P Diamandis
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ihor Batruch
- ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andrei P Drabovich
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada;
| |
Collapse
|
44
|
Antoniassi MP, Intasqui P, Camargo M, Zylbersztejn DS, Carvalho VM, Cardozo KHM, Bertolla RP. Analysis of the functional aspects and seminal plasma proteomic profile of sperm from smokers. BJU Int 2016; 118:814-822. [DOI: 10.1111/bju.13539] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mariana Pereira Antoniassi
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University; Sao Paulo Brazil
| | - Paula Intasqui
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University; Sao Paulo Brazil
| | - Mariana Camargo
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University; Sao Paulo Brazil
| | - Daniel Suslik Zylbersztejn
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University; Sao Paulo Brazil
| | | | | | - Ricardo Pimenta Bertolla
- Department of Surgery; Division of Urology; Human Reproduction Section; Sao Paulo Federal University; Sao Paulo Brazil
- Hospital Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
45
|
Begcevic I, Brinc D, Drabovich AP, Batruch I, Diamandis EP. Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the Human Protein Atlas. Clin Proteomics 2016; 13:11. [PMID: 27186164 PMCID: PMC4868024 DOI: 10.1186/s12014-016-9111-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/19/2016] [Indexed: 12/21/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) is a proximal fluid which communicates closely with brain tissue, contains numerous brain-derived proteins and thus represents a promising fluid for discovery of biomarkers of central nervous system (CNS) diseases. The main purpose of this study was to generate an extensive CSF proteome and define brain-related proteins identified in CSF, suitable for development of diagnostic assays. Methods Six non-pathological CSF samples from three female and three male individuals were selected for CSF analysis. Samples were first subjected to strong cation exchange chromatography, followed by LC-MS/MS analysis. Secreted and membrane-bound proteins enriched in the brain tissues were retrieved from the Human Protein Atlas. Results In total, 2615 proteins were identified in the CSF. The number of proteins identified per individual sample ranged from 1109 to 1421, with inter-individual variability between six samples of 21 %. Based on the Human Protein Atlas, 78 brain-specific proteins found in CSF samples were proposed as a signature of brain-enriched proteins in CSF. Conclusion A combination of Human Protein Atlas database and experimental search of proteins in specific body fluid can be applied as an initial step in search for disease biomarkers specific for a particular tissue. This signature may be of significant interest for development of novel diagnostics of CNS diseases and identification of drug targets. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9111-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ilijana Begcevic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Davor Brinc
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada ; Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| | - Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada ; Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| |
Collapse
|
46
|
Drabovich AP, Pavlou MP, Schiza C, Diamandis EP. Dynamics of Protein Expression Reveals Primary Targets and Secondary Messengers of Estrogen Receptor Alpha Signaling in MCF-7 Breast Cancer Cells. Mol Cell Proteomics 2016; 15:2093-107. [PMID: 27067054 DOI: 10.1074/mcp.m115.057257] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptor alpha (ERα)-mediated proliferation of breast cancer cells is facilitated through expression of multiple primary target genes, products of which induce a secondary response to stimulation. To differentiate between the primary and secondary target proteins of ERα signaling, we measured dynamics of protein expression induced by 17β-estradiol in MCF-7 breast cancer cells. Measurement of the global proteomic effects of estradiol by stable isotope labeling by amino acids in cell culture (SILAC) resulted in identification of 103 estrogen-regulated proteins, with only 40 of the corresponding genes having estrogen response elements. Selected reaction monitoring (SRM) assays were used to validate the differential expression of 19 proteins and measure the dynamics of their expression within 72 h after estradiol stimulation, and in the absence or presence of 4-hydroxytamoxifen, to confirm ERα-mediated signaling. Dynamics of protein expression unambiguously revealed early and delayed response proteins and well correlated with presence or absence of estrogen response elements in the corresponding genes. Finally, we quantified dynamics of protein expression in a rarely studied network of transcription factors with a negative feedback loop (ERα-EGR3-NAB2). Because NAB2 protein is a repressor of EGR3-induced transcription, siRNA-mediated silencing of NAB2 resulted in the enhanced expression of the EGR3-induced protein ITGA2. To conclude, we provided a high-quality proteomic resource to supplement genomic and transcriptomic studies of ERα signaling.
Collapse
Affiliation(s)
- Andrei P Drabovich
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5T3L9; §Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada, M5T3L9;
| | - Maria P Pavlou
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5T3L9; ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada, M5T3L9
| | - Christina Schiza
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5T3L9; ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada, M5T3L9
| | - Eleftherios P Diamandis
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5T3L9; §Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada, M5T3L9; ¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada, M5T3L9; ‖Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada, M5T3L9
| |
Collapse
|
47
|
Intasqui P, Camargo M, Antoniassi MP, Cedenho AP, Carvalho VM, Cardozo KHM, Zylbersztejn DS, Bertolla RP. Association between the seminal plasma proteome and sperm functional traits. Fertil Steril 2016; 105:617-628. [DOI: 10.1016/j.fertnstert.2015.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/07/2015] [Accepted: 11/02/2015] [Indexed: 01/11/2023]
|
48
|
Chan PPY, Wasinger VC, Leong RW. Current application of proteomics in biomarker discovery for inflammatory bowel disease. World J Gastrointest Pathophysiol 2016; 7:27-37. [PMID: 26909226 PMCID: PMC4753187 DOI: 10.4291/wjgp.v7.i1.27] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/13/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Recently, the field of proteomics has rapidly expanded in its application towards clinical research with objectives ranging from elucidating disease pathogenesis to discovering clinical biomarkers. As proteins govern and/or reflect underlying cellular processes, the study of proteomics provides an attractive avenue for research as it allows for the rapid identification of protein profiles in a biological sample. Inflammatory bowel disease (IBD) encompasses several heterogeneous and chronic conditions of the gastrointestinal tract. Proteomic technology provides a powerful means of addressing major challenges in IBD today, especially for identifying biomarkers to improve its diagnosis and management. This review will examine the current state of IBD proteomics research and its use in biomarker research. Furthermore, we also discuss the challenges of translating proteomic research into clinically relevant tools. The potential application of this growing field is enormous and is likely to provide significant insights towards improving our future understanding and management of IBD.
Collapse
|
49
|
Camargo M, Intasqui P, Bertolla RP. Proteomic profile of seminal plasma in adolescents and adults with treated and untreated varicocele. Asian J Androl 2015. [PMID: 26643563 DOI: 10.4103/1008-682χ.168788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Varicocele, the most important treatable cause of male infertility, is present in 15% of adult males, 35% of men with primary infertility, and 80% of men with secondary infertility. On the other hand, 80% of these men will not present infertility. Therefore, there is a need to differentiate a varicocele that is exerting a deleterious effect that is treatable from a "silent" varicocele. Despite the growing evidence of the cellular effects of varicocele, its underlying molecular mechanisms are still eluding. Proteomics has become a promising area to determine the reproductive biology of semen as well as to improve diagnosis of male infertility. This review aims to discuss the state-of-art in seminal plasma proteomics in patients with varicocele to discuss the challenges in undertaking these studies, as well as the future outlook derived from the growing body of evidence on the seminal proteome.
Collapse
Affiliation(s)
| | | | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, R. Embau, 231, 04039-060; Sao Paulo Hospital, Sao Paulo, Brazil
| |
Collapse
|
50
|
Agarwal A, Ayaz A, Samanta L, Sharma R, Assidi M, Abuzenadah AM, Sabanegh E. Comparative proteomic network signatures in seminal plasma of infertile men as a function of reactive oxygen species. Clin Proteomics 2015; 12:23. [PMID: 26321892 PMCID: PMC4552280 DOI: 10.1186/s12014-015-9094-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/12/2015] [Indexed: 11/24/2022] Open
Abstract
Background Reactive oxygen species (ROS) plays a major role in the pathology of male infertility. It is an independent biomarker of sperm function. Seminal plasma is a natural reservoir of antioxidants responsible for the nourishment, protection, capacitation, and motility of sperm within the female reproductive tract resulting in successful fertilization and implantation of the embryo. A comparative proteomic analysis of seminal plasma proteins from fertile men and infertile men with varying levels of ROS was carried out to identify signature proteins involved in ROS-mediated reproductive dysfunction. Methods A total of 42 infertile men presenting with infertility and 17 proven fertile donors were enrolled in the study. ROS levels were measured in the seminal ejaculates by chemiluminescence assay. Infertile men were subdivided into Low ROS (0–<93 RLU/s/106 sperm; n = 11), Medium ROS (>93–500 RLU/s/106 sperm; n = 17) and High ROS (>500 RLU/s/106 sperm; n = 14) groups and compared with fertile men (4–50 RLU/s/106 sperm). 4 subjects from fertile group and 4 each from the Low, Medium and High ROS were pooled. 1D gel electrophoresis followed by in-gel digestion and LC/MS–MS in a LTQ-Orbitrap Elite hybrid mass spectrometer system was used for proteome analysis. Identification of differentially expressed proteins (DEPs), their cellular localization and involvement in different pathways were examined utilizing bioinformatics tools. Results The results indicate that proteins involved in biomolecule metabolism, protein folding and protein degradation are differentially modulated in all three infertile patient groups in comparison to fertile controls. Membrane metallo-endopeptidase (MME) was uniformly overexpressed (>2 fold) in all infertile groups. Pathway involving 35 focus proteins in post-translational modification of proteins, protein folding (heat shock proteins, molecular chaperones) and developmental disorder was overexpressed in the High ROS group compared with fertile control group. MME was one of the key proteins in the pathway. FAM3D was uniquely expressed in fertile group. Conclusion We have for the first time demonstrated the presence of 35 DEPs of a single pathway that may lead to impairment of sperm function in men with Low, Medium or High ROS levels by altering protein turn over. MME and FAM3D along with ROS levels in the seminal plasma may serve as good markers for diagnosis of male infertility. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9094-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Ahmet Ayaz
- American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Luna Samanta
- American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, Cleveland, OH 44195 USA ; Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha 751003 India
| | - Rakesh Sharma
- American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, Saudi Arabia ; KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, Saudi Arabia ; KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia
| | - Edmund Sabanegh
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|