1
|
Christodoulou M, Papagiannis D. Q Fever Vaccines: Unveiling the Historical Journey and Contemporary Innovations in Vaccine Development. Vaccines (Basel) 2025; 13:151. [PMID: 40006698 PMCID: PMC11861857 DOI: 10.3390/vaccines13020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Q fever is a zoonotic disease caused by the obligate intracellular bacterium Coxiella burnetii that presents significant challenges for global public health control. Current prevention relies primarily on the whole-cell vaccine "Q-VAX", which despite its effectiveness, faces important limitations including pre-screening requirements and reactogenicity issues in previously sensitized individuals. This comprehensive review examines the complex interplay between pathogen characteristics, host immune responses, and vaccine development strategies. We analyze recent advances in understanding C. burnetii's molecular pathogenesis and host-pathogen interactions that have informed vaccine design. The evolution of vaccine approaches is evaluated, from traditional whole-cell preparations to modern subunit, DNA, and multi-epitope designs. Particular attention is given to innovative technologies, including reverse vaccinology and immunoinformatics, that have enabled the identification of novel antigenic targets. Recent clinical data demonstrating the safety and immunogenicity of next-generation vaccine candidates are presented, alongside manufacturing and implementation considerations. While significant progress has been made in overcoming the limitations of first-generation vaccines, challenges remain in optimizing immunogenicity while ensuring safety across diverse populations. This review provides a critical analysis of current evidence and future directions in Q fever vaccine development, highlighting promising strategies for achieving more effective and broadly applicable vaccines.
Collapse
Affiliation(s)
| | - Dimitrios Papagiannis
- Public Health & Adults Immunization Laboratory, Department of Nursing, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| |
Collapse
|
2
|
Lin CC, Chen CS. Bacterial proteome microarray technology in biomedical research. Trends Biotechnol 2025:S0167-7799(24)00361-5. [PMID: 39755450 DOI: 10.1016/j.tibtech.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
Bacterial proteome microarrays are high-throughput, adaptable tools that allow the simultaneous investigation of thousands of proteins from various bacterial species. These arrays are used to explore bacterial pathogenicity, pathogen-host interactions, and clinical diseases. Recent advancements have expanded their application to profiling human antibodies, identifying biomarkers for infectious and autoimmune diseases, and studying antimicrobial peptides (AMPs). This review highlights significant outcomes from recent studies, focusing on their diverse applications in biomedical research. Notable findings include the identification of novel antigens and diagnostic markers for gastrointestinal infections, autoimmune diseases, and mental health disorders. This technology promises to further elucidate the complex relationship between bacteria and their hosts, ultimately informing the development of new diagnostic, therapeutic, and preventive strategies.
Collapse
Affiliation(s)
- Chia-Chi Lin
- School of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Luo T, Patel JG, Zhang X, McBride JW. Antibody reactive immunomes of Ehrlichia chaffeensis and E. canis are diverse and defined by conformational antigenic determinants. Front Cell Infect Microbiol 2024; 13:1321291. [PMID: 38264730 PMCID: PMC10803646 DOI: 10.3389/fcimb.2023.1321291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
For decades, the defined antibody reactive proteins of Ehrlichia chaffeensis and E. canis were limited to a small group with linear antibody epitopes. Recently, our laboratory has utilized an immunomics-based approach to rapidly screen and identify undefined Ehrlichia chaffeensis and E. canis antigenic proteins and antibody epitopes. In this study, we analyzed the remaining portion (~50%) of the E. chaffeensis and E. canis proteomes (n = 444 and n = 405 proteins, respectively), that were not examined in previous studies, to define the complete immunomes of these important pathogens. Almost half of the E. chaffeensis proteins screened (196/444) reacted with antibodies in convalescent HME patient sera, while only 43 E. canis proteins reacted with CME dog sera. New major immunoreactive proteins were identified in E. chaffeensis (n = 7) and E. canis (n = 1), increasing the total number of E. chaffeensis (n = 14) and E. canis proteins (n = 18) that exhibited antibody reactivity comparable to well-defined major antigenic proteins (TRP120 and TRP19). All of the E. chaffeensis but only some E. canis major immunoreactive proteins contained major conformation-dependent antibody epitopes. The E. chaffeensis immunoreactive proteins were generally small (< 250 amino acids; ~27kDa) and the E. canis proteins were slightly larger (> 320 amino acids; ~35 kDa). The majority of these new Ehrlichia major immunoreactive proteins were predicted to be type I secreted effectors, some of which contained transmembrane domains. Characterization of the immunomes of E. chaffeensis and E. canis and understanding the host specific Ehrlichia immune responses will facilitate identification of protective antigens and define the biophysical epitope characteristics vital to effective vaccine development for the ehrlichioses.
Collapse
Affiliation(s)
- Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaofeng Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
4
|
Kodori M, Amani J, Ahmadi A. Unveiling promising immunogenic targets in Coxiella burnetii through in silico analysis: paving the way for novel vaccine strategies. BMC Infect Dis 2023; 23:902. [PMID: 38129801 PMCID: PMC10740251 DOI: 10.1186/s12879-023-08904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Coxiella burnetii, an intracellular pathogen, serves as the causative agent of zoonotic Q fever. This pathogen presents a significant threat due to its potential for airborne transmission, environmental persistence, and pathogenicity. The current whole-cell vaccine (WCV) utilized in Australia to combat Q fever exhibits notable limitations, including severe adverse reactions and limited regulatory approval for human use. This research employed the reverse vaccinology (RV) approach to uncover antigenic proteins and epitopes of C. burnetii, facilitating the development of more potent vaccine candidates. METHODS The potential immunogenic proteins derived from C. burnetii RSA493/Nine Mile phase I (NMI) were extracted through manual, automated RV, and virulence factor database (VFDB) methods. Web tools and bioinformatics were used to evaluate physiochemical attributes, subcellular localization, antigenicity, allergenicity, human homology, B-cell epitopes, MHC I and II binding ratios, functional class scores, adhesion probabilities, protein-protein interactions, and molecular docking. RESULTS Out of the 1850 proteins encoded by RSA493/NMI, a subset of 178 demonstrated the potential for surface or membrane localization. Following a series of analytical iterations, 14 putative immunogenic proteins emerged. This collection included nine proteins (57.1%) intricately involved in cell wall/membrane/envelope biogenesis processes (CBU_0197 (Q83EW1), CBU_0311 (Q83EK8), CBU_0489 (Q83E43), CBU_0939 (Q83D08), CBU_1190 (P39917), CBU_1829 (Q83AQ2), CBU_1412 (Q83BU0), CBU_1414 (Q83BT8), and CBU_1600 (Q83BB2)). The CBU_1627 (Q83B86 ) (7.1%) implicated in intracellular trafficking, secretion, and vesicular transport, and CBU_0092 (Q83F57) (7.1%) contributing to cell division. Additionally, three proteins (21.4%) displayed uncharacterized functions (CBU_0736 (Q83DJ4), CBU_1095 (Q83CL9), and CBU_2079 (Q83A32)). The congruent results obtained from molecular docking and immune response stimulation lend support to the inclusion of all 14 putative proteins as potential vaccine candidates. Notably, seven proteins with well-defined functions stand out among these candidates. CONCLUSIONS The outcomes of this study introduce promising proteins and epitopes for the forthcoming formulation of subunit vaccines against Q fever, with a primary emphasis on cellular processes and the virulence factors of C. burnetii.
Collapse
Affiliation(s)
- Mansoor Kodori
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Non Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Sam G, Stenos J, Graves SR, Rehm BHA. Q fever immunology: the quest for a safe and effective vaccine. NPJ Vaccines 2023; 8:133. [PMID: 37679410 PMCID: PMC10484952 DOI: 10.1038/s41541-023-00727-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Q fever is an infectious zoonotic disease, caused by the Gram-negative bacterium Coxiella burnetii. Transmission occurs from livestock to humans through inhalation of a survival form of the bacterium, the Small Cell Variant, often via handling of animal parturition products. Q fever manifests as an acute self-limiting febrile illness or as a chronic disease with complications such as vasculitis and endocarditis. The current preventative human Q fever vaccine Q-VAX poses limitations on its worldwide implementation due to reactogenic responses in pre-sensitized individuals. Many strategies have been undertaken to develop a universal Q fever vaccine but with little success to date. The mechanisms of the underlying reactogenic responses remain only partially understood and are important factors in the development of a safe Q fever vaccine. This review provides an overview of previous and current experimental vaccines developed for use against Q fever and proposes approaches to develop a vaccine that establishes immunological memory while eliminating harmful reactogenic responses.
Collapse
Affiliation(s)
- Gayathri Sam
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital, Geelong, VIC, 3220, Australia
| | - Stephen R Graves
- Australian Rickettsial Reference Laboratory, University Hospital, Geelong, VIC, 3220, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2567, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
6
|
Jan S, Fratzke AP, Felgner J, Hernandez-Davies JE, Liang L, Nakajima R, Jasinskas A, Supnet M, Jain A, Felgner PL, Davies DH, Gregory AE. Multivalent vaccines demonstrate immunogenicity and protect against Coxiella burnetii aerosol challenge. Front Immunol 2023; 14:1192821. [PMID: 37533862 PMCID: PMC10390735 DOI: 10.3389/fimmu.2023.1192821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Vaccines are among the most cost-effective public health measures for controlling infectious diseases. Coxiella burnetii is the etiological agent of Q fever, a disease with a wide clinical spectrum that ranges from mild symptoms, such as fever and fatigue, to more severe disease, such as pneumonia and endocarditis. The formalin-inactivated whole-cell vaccine Q-VAX® contains hundreds of antigens and confers lifelong protection in humans, but prior sensitization from infection or vaccination can result in deleterious reactogenic responses to vaccination. Consequently, there is great interest in developing non-reactogenic alternatives based on adjuvanted recombinant proteins. In this study, we aimed to develop a multivalent vaccine that conferred protection with reduced reactogenicity. We hypothesized that a multivalent vaccine consisting of multiple antigens would be more immunogenic and protective than a monovalent vaccine owing to the large number of potential protective antigens in the C. burnetii proteome. To address this, we identified immunogenic T and B cell antigens, and selected proteins were purified to evaluate with a combination adjuvant (IVAX-1), with or without C. burnetii lipopolysaccharide (LPS) in immunogenicity studies in vivo in mice and in a Hartley guinea pig intratracheal aerosol challenge model using C. burnetii strain NMI RSA 493. The data showed that multivalent vaccines are more immunogenic than monovalent vaccines and more closely emulate the protection achieved by Q-VAX. Although six antigens were the most immunogenic, we also discovered that multiplexing beyond four antigens introduces detectable reactogenicity, indicating that there is an upper limit to the number of antigens that can be safely included in a multivalent Q-fever vaccine. C. burnetii LPS also demonstrates efficacy as a vaccine antigen in conferring protection in an otherwise monovalent vaccine formulation, suggesting that its addition in multivalent vaccines, as demonstrated by a quadrivalent formulation, would improve protective responses.
Collapse
Affiliation(s)
- Sharon Jan
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Alycia P. Fratzke
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
- Department of Pathology, Charles River Laboratories, Reno, NV, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jenny E. Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Li Liang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Medalyn Supnet
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Philip L. Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - D. Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Anthony E. Gregory
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Fratzke AP, van Schaik EJ, Samuel JE. Immunogenicity and Reactogenicity in Q Fever Vaccine Development. Front Immunol 2022; 13:886810. [PMID: 35693783 PMCID: PMC9177948 DOI: 10.3389/fimmu.2022.886810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterium which, in humans, causes the disease Q fever. Although Q fever is most often a mild, self-limiting respiratory disease, it can cause a range of severe syndromes including hepatitis, myocarditis, spontaneous abortion, chronic valvular endocarditis, and Q fever fatigue syndrome. This agent is endemic worldwide, except for New Zealand and Antarctica, transmitted via aerosols, persists in the environment for long periods, and is maintained through persistent infections in domestic livestock. Because of this, elimination of this bacterium is extremely challenging and vaccination is considered the best strategy for prevention of infection in humans. Many vaccines against C. burnetii have been developed, however, only a formalin-inactivated, whole cell vaccine derived from virulent C. burnetii is currently licensed for use in humans. Unfortunately, widespread use of this whole cell vaccine is impaired due to the severity of reactogenic responses associated with it. This reactogenicity continues to be a major barrier to access to preventative vaccines against C. burnetii and the pathogenesis of this remains only partially understood. This review provides an overview of past and current research on C. burnetii vaccines, our knowledge of immunogenicity and reactogenicity in C. burnetii vaccines, and future strategies to improve the safety of vaccines against C. burnetii.
Collapse
Affiliation(s)
- Alycia P. Fratzke
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Erin J. van Schaik
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - James E. Samuel
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
8
|
Ferrara G, Colitti B, Pagnini U, Iovane G, Rosati S, Montagnaro S. Characterization of recombinant Ybgf protein for the detection of Coxiella antibodies in ruminants. J Vet Diagn Invest 2022; 34:646-653. [PMID: 35610946 DOI: 10.1177/10406387221093581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Q fever remains a One Health problem, posing a zoonotic threat and causing significant economic losses to the livestock industry. The advancement of detection tools is critical to the effective control of infection. In humans, laboratory investigations depend largely on the immunofluorescence assay, considered the gold standard. In contrast, serologic tools routinely used for veterinary screening have several gaps, resulting in interpretations that are frequently misleading. We investigated the potential application of recombinant Ybgf antigen (r-Ybgf), a periplasmic protein described as one of the most immunodominant antigens in humans, in an indirect ELISA. Following successful expression in the prokaryotic system and the preliminary evaluation of immunoreactivity in western blot, we used r-Ybgf to develop an in-house ELISA using serum samples from sheep, goats, and cattle, which were tested in parallel with an Idexx ELISA kit. The results obtained with the 2 tests were compared, and r-Ybgf performed favorably, with 81.8% sensitivity and 90.1% specificity and substantial agreement, as revealed by receiver operating characteristic analysis. Moreover, we evaluated the serologic response against phase I (PhI) and phase II (PhII) antigens, and r-Ybgf antigen induced by vaccination, using phase-specific ELISAs. The dynamics of antibody response showed a significant increase in reactivity against PhI and PhII, but not against r-Ybgf, antigens. This property may be very useful given the absence of a protocol for the differentiation of infected from vaccinated animals.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples, "Federico II", Naples, Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Grugliasco, TO, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples, "Federico II", Naples, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples, "Federico II", Naples, Italy
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Grugliasco, TO, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples, "Federico II", Naples, Italy
| |
Collapse
|
9
|
Jeske R, Dangel L, Sauerbrey L, Frangoulidis D, Teras LR, Fischer SF, Waterboer T. Development of High-Throughput Multiplex Serology to Detect Serum Antibodies against Coxiella burnetii. Microorganisms 2021; 9:microorganisms9112373. [PMID: 34835498 PMCID: PMC8623512 DOI: 10.3390/microorganisms9112373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
The causative agent of Q fever, the bacterium Coxiella burnetii (C. burnetii), has gained increasing interest due to outbreak events and reports about it being a potential risk factor for the development of lymphomas. In order to conduct large-scale studies for population monitoring and to investigate possible associations more closely, accurate and cost-effective high-throughput assays are highly desired. To address this need, nine C. burnetii proteins were expressed as recombinant antigens for multiplex serology. This technique enables the quantitative high-throughput detection of antibodies to multiple antigens simultaneously in a single reaction. Based on a reference group of 76 seropositive and 91 seronegative sera, three antigens were able to detect C. burnetii infections. Com1, GroEL, and DnaK achieved specificities of 93%, 69%, and 77% and sensitivities of 64%, 72%, and 47%, respectively. Double positivity to Com1 and GroEL led to a combined specificity of 90% and a sensitivity of 71%. In a subgroup of seropositives with an increased risk for chronic Q fever, the double positivity to these markers reached a specificity of 90% and a sensitivity of 86%. Multiplex serology enables the detection of antibodies against C. burnetii and appears well-suited to investigate associations between C. burnetii infections and the clinical manifestations in large-scale studies.
Collapse
Affiliation(s)
- Rima Jeske
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (L.S.); (T.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence:
| | - Larissa Dangel
- German National Consiliary Laboratory of Coxiella burnetii, 70191 Stuttgart, Germany; (L.D.); (S.F.F.)
- State Health Office Baden-Württemberg, 70565 Stuttgart, Germany
| | - Leander Sauerbrey
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (L.S.); (T.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Dimitrios Frangoulidis
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany;
- Bundeswehr Medical Service Headquarters VI-2, Medical Intelligence & Information (MI2), 80637 Munich, Germany
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, GA 30303-1002, USA;
| | - Silke F. Fischer
- German National Consiliary Laboratory of Coxiella burnetii, 70191 Stuttgart, Germany; (L.D.); (S.F.F.)
- State Health Office Baden-Württemberg, 70565 Stuttgart, Germany
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (L.S.); (T.W.)
| |
Collapse
|
10
|
Q Fever Vaccine Development: Current Strategies and Future Considerations. Pathogens 2021; 10:pathogens10101223. [PMID: 34684172 PMCID: PMC8539696 DOI: 10.3390/pathogens10101223] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Q fever is a zoonotic disease caused by the intracellular pathogen Coxiella burnetii. This disease typically manifests as a self-limiting, febrile illness known as acute Q fever. Due to the aerosol transmissibility, environmental persistence, and infectivity of C. burnetii, this pathogen is a notable bioterrorism threat. Despite extensive efforts to develop next-generation human Q fever vaccines, only one vaccine, Q-Vax®, is commercially available. Q-Vax® is a phase I whole-cell vaccine, and its licensed use is limited to Australia, presumably due to the potential for a post-vaccination hypersensitivity response. Pre-clinical Q fever vaccine development is a major area of interest, and diverse approaches have been undertaken to develop an improved Q fever vaccine. Following a brief history of Q fever vaccine development, current approaches will be discussed along with future considerations for an improved Q fever vaccine.
Collapse
|
11
|
Abstract
The protein array is a powerful platform to study humoral responses to infectious agents using small sample volumes [<3 μL]. Its success can be largely attributed to the development of new strategies for high-throughput cloning and expression, and improved manufacturing techniques for the construction of arrays. Here, we describe a method to hybridize protein arrays with malaria patients' sera in order to identify seroreactive antigens, some of which may have a high potential of conferring protection from severe forms of malaria.
Collapse
|
12
|
Immunoreactive Protein Repertoires of Ehrlichia chaffeensis and E. canis Reveal the Dominance of Hypothetical Proteins and Conformation-dependent Antibody Epitopes. Infect Immun 2021; 89:e0022421. [PMID: 34370510 DOI: 10.1128/iai.00224-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunomes of Ehrlichia chaffeensis (E. ch.) and E. canis (E. ca.) have recently be revised to include immunodominant hypothetical proteins with conformational antibody epitopes. In this study, we examined 216 E. ch. and 190 E. ca. highly antigenic proteins according to ANTIGENpro and also performed a genome-wide hypothetical protein analysis (E. ch. n=104; E. ca. n=124) for immunoreactivity. Using cell-free protein expression and immunoanalysis, 118 E. ch. and 39 E. ca. proteins reacted with sera from naturally E. ch.-infected patients or E. ca.-infected dogs. Moreover, 22 E. ch. and 18 E. ca. proteins consistently and strongly reacted with a panel of patient or canine sera. A subset of E. ch. (n=18) and E. ca. (n=9) proteins were identified as immunodominant. Consistent with our previous study, most proteins were classified as hypothetical and the antibody epitopes exhibited complete or partial conformation-dependence. The majority (28/40; 70%) of E. ch. and E. ca. proteins contained transmembrane domains and 19 (48%) were predicted to be secreted effectors. The antigenic repertoires of E. ch. and E. ca. were mostly diverse and suggest that the immunomes of these closely related ehrlichiae are dominated by species-specific conformational antibody epitopes. This study reveals a significant group of previously undefined E. ch. and E. ca. antigens and reaffirms the importance of conformation-dependent epitopes as targets of anti-Ehrlichia immune responses. These findings substantially expand our understanding of host-Ehrlichia immune responses, advance efforts to define the molecular features of protective proteins and improve prospects for effective vaccines for the ehrlichioses.
Collapse
|
13
|
Ricci AD, Brunner M, Ramoa D, Carmona SJ, Nielsen M, Agüero F. APRANK: Computational Prioritization of Antigenic Proteins and Peptides From Complete Pathogen Proteomes. Front Immunol 2021; 12:702552. [PMID: 34335615 PMCID: PMC8320365 DOI: 10.3389/fimmu.2021.702552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 01/09/2023] Open
Abstract
Availability of highly parallelized immunoassays has renewed interest in the discovery of serology biomarkers for infectious diseases. Protein and peptide microarrays now provide a rapid, high-throughput platform for immunological testing and validation of potential antigens and B-cell epitopes. However, there is still a need for tools to prioritize and select relevant probes when designing these arrays. In this work we describe a computational method called APRANK (Antigenic Protein and Peptide Ranker) which integrates multiple molecular features to prioritize potentially antigenic proteins and peptides in a given pathogen proteome. These features include subcellular localization, presence of repetitive motifs, natively disordered regions, secondary structure, transmembrane spans and predicted interaction with the immune system. We trained and tested this method with a number of bacteria and protozoa causing human diseases: Borrelia burgdorferi (Lyme disease), Brucella melitensis (Brucellosis), Coxiella burnetii (Q fever), Escherichia coli (Gastroenteritis), Francisella tularensis (Tularemia), Leishmania braziliensis (Leishmaniasis), Leptospira interrogans (Leptospirosis), Mycobacterium leprae (Leprae), Mycobacterium tuberculosis (Tuberculosis), Plasmodium falciparum (Malaria), Porphyromonas gingivalis (Periodontal disease), Staphylococcus aureus (Bacteremia), Streptococcus pyogenes (Group A Streptococcal infections), Toxoplasma gondii (Toxoplasmosis) and Trypanosoma cruzi (Chagas Disease). We have evaluated this integrative method using non-parametric ROC-curves and made an unbiased validation using Onchocerca volvulus as an independent data set. We found that APRANK is successful in predicting antigenicity for all pathogen species tested, facilitating the production of antigen-enriched protein subsets. We make APRANK available to facilitate the identification of novel diagnostic antigens in infectious diseases.
Collapse
Affiliation(s)
- Alejandro D Ricci
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde" (IIB), Universidad de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mauricio Brunner
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde" (IIB), Universidad de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Ramoa
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde" (IIB), Universidad de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Santiago J Carmona
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde" (IIB), Universidad de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde" (IIB), Universidad de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Department of Health Technology, The Technical University of Denmark, Lyngby, Denmark
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde" (IIB), Universidad de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Sharma A, Sanduja P, Anand A, Mahajan P, Guzman CA, Yadav P, Awasthi A, Hanski E, Dua M, Johri AK. Advanced strategies for development of vaccines against human bacterial pathogens. World J Microbiol Biotechnol 2021; 37:67. [PMID: 33748926 PMCID: PMC7982316 DOI: 10.1007/s11274-021-03021-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Infectious diseases are one of the main grounds of death and disabilities in human beings globally. Lack of effective treatment and immunization for many deadly infectious diseases and emerging drug resistance in pathogens underlines the need to either develop new vaccines or sufficiently improve the effectiveness of currently available drugs and vaccines. In this review, we discuss the application of advanced tools like bioinformatics, genomics, proteomics and associated techniques for a rational vaccine design.
Collapse
Affiliation(s)
- Abhinay Sharma
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Sanduja
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Carlos A Guzman
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendragarh, Harayana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad-Gurgaon Expressway, PO box #04, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121001, India
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
15
|
Fratzke AP, Jan S, Felgner J, Liang L, Nakajima R, Jasinskas A, Manna S, Nihesh FN, Maiti S, Albin TJ, Esser-Kahn AP, Davies DH, Samuel JE, Felgner PL, Gregory AE. Subunit Vaccines Using TLR Triagonist Combination Adjuvants Provide Protection Against Coxiella burnetii While Minimizing Reactogenic Responses. Front Immunol 2021; 12:653092. [PMID: 33815413 PMCID: PMC8010241 DOI: 10.3389/fimmu.2021.653092] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Q fever is caused by the obligate intracellular bacterium, Coxiella burnetii, a designated potential agent of bioterrorism because of its route of transmission, resistance to disinfectants, and low infectious dose. The only vaccine licensed for human use is Q-VAX® (Seqirus, licensed in Australia), a formalin-inactivated whole-cell vaccine, which produces severe local and systemic reactogenic responses in previously sensitized individuals. Accordingly, the U.S. Food and Drug Administration and other regulatory bodies around the world, have been reluctant to approve Q-VAX for widespread use. To obviate these adverse reactions, we prepared recombinant protein subunit vaccine candidates containing purified CBU1910, CBU0307, CBU0545, CBU0612, CBU0891, and CBU1398 proteins and TLR triagonist adjuvants. TLR triagonist adjuvants combine different TLR agonists to enhance immune responses to vaccine antigens. We tested both the protective efficacy and reactogenicity of our vaccine candidates in Hartley guinea pigs using intratracheal infection with live C. burnetii. While all of our candidates showed varying degrees of protection during challenge, local reactogenic responses were significantly reduced for one of our vaccine candidates when compared with a formalin-inactivated whole-cell vaccine. Our findings show that subunit vaccines combined with novel TLR triagonist adjuvants can generate protective immunity to C. burnetii infection while reducing reactogenic responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/pharmacology
- Antigens, Bacterial/therapeutic use
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Vaccines/genetics
- Bacterial Vaccines/pharmacology
- Bacterial Vaccines/therapeutic use
- Coxiella burnetii/immunology
- Disease Models, Animal
- Guinea Pigs
- Humans
- Immunogenicity, Vaccine
- Q Fever/immunology
- Q Fever/microbiology
- Q Fever/prevention & control
- Recombinant Proteins/genetics
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Toll-Like Receptors/antagonists & inhibitors
- Vaccines, Subunit/genetics
- Vaccines, Subunit/pharmacology
- Vaccines, Subunit/therapeutic use
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/pharmacology
- Vaccines, Synthetic/therapeutic use
Collapse
Affiliation(s)
- Alycia P. Fratzke
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
| | - Sharon Jan
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Li Liang
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Algis Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Saikat Manna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Fnu N. Nihesh
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Sampa Maiti
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Tyler J. Albin
- Department of Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - D. Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
| | - Philip L. Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Anthony E. Gregory
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
Miller HK, Kersh GJ. Analysis of recombinant proteins for Q fever diagnostics. Sci Rep 2020; 10:20934. [PMID: 33262373 PMCID: PMC7708433 DOI: 10.1038/s41598-020-77343-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
Serology is essential for Q fever diagnostics, a disease caused by the bacterial pathogen Coxiella burnetii. The gold standard test is an immunofluorescence assay utilizing whole cell antigens, which are both dangerous and laborious to produce. Complexities of the antigen coupled with the subjective nature of the assay lead to decreased uniformity of test results and underscore the need for improved methodologies. Thirty-three C. burnetii proteins, previously identified as immunoreactive, were screened for reactivity to naturally infected goat serum. Based on reactivity, 10 proteins were analyzed in a secondary screen against human serum from healthy donors. Assay sensitivity and specificity ranged from 21 to 71% and 90 to 100%, respectively. Three promising antigens were identified based on receiver operating characteristic curve analysis (CBU_1718, CBU_0307, and CBU_1398). Five multiplex assays failed to outperform the individual proteins, with sensitivities and specificities ranging from 29 to 57% and 90 to 100%, respectively. Truncating the top antigen, CBU_1718, had no effect on specificity (90%); yet sensitivity decreased dramatically (71% to 21%). Through this study, we have expanded the subset of C. burnetii immunoreactive proteins validated by enzyme-linked immunosorbent assay and demonstrate the effect of novel antigen combinations and protein truncations on assay performance.
Collapse
Affiliation(s)
- Halie K Miller
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Gilbert J Kersh
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
17
|
Ehrlichia chaffeensis and E. canis hypothetical protein immunoanalysis reveals small secreted immunodominant proteins and conformation-dependent antibody epitopes. NPJ Vaccines 2020; 5:85. [PMID: 32963815 PMCID: PMC7486380 DOI: 10.1038/s41541-020-00231-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
Immunomolecular characterization of Ehrlichia chaffeensis (E. ch.) and E. canis (E. ca.) has defined protein orthologs, including tandem repeat proteins (TRPs) that have immunodominant linear antibody epitopes. In this study, we combined bioinformatic analysis and cell-free protein expression to identify undiscovered immunoreactive E. ch. and E. ca. hypothetical proteins. Antigenicity of the E. ch. and E. ca. ORFeomes (n = 1105 and n = 925, respectively) was analyzed by the sequence-based prediction model ANTIGENpro, and we identified ~250 ORFs in each respective ORFeome as highly antigenic. The hypothetical proteins (E. ch. n = 93 and E. ca. n = 98) present in the top 250 antigenic ORFs were further investigated in this study. By ELISA, 46 E. ch. and 30 E. ca. IVTT-expressed hypothetical proteins reacted with antibodies in sera from naturally E. ch.-infected patients or E. ca.-infected dogs. Moreover, 15 E. ch. and 16 E. ca. proteins consistently reacted with a panel of sera from patients or dogs, including many that revealed the immunoreactivity of “gold standard” TRPs. Antibody epitopes in most (>70%) of these proteins exhibited partial or complete conformation-dependence. The majority (23/31; 74%) of the major immunoreactive proteins identified were small (≤250 aa), and 20/31 (65%) were predicted to be secreted effectors. Unlike the strong linear antibody epitopes previously identified in TRP and OMP orthologs, there were contrasting differences in the E. ch. and E. ca. antigenic repertoires, epitopes and ortholog immunoreactivity. This study reveals numerous previously undefined immunodominant and subdominant antigens, and illustrates the breadth, complexity, and diversity of immunoreactive proteins/epitopes in Ehrlichia.
Collapse
|
18
|
Gilkes AP, Albin TJ, Manna S, Supnet M, Ruiz S, Tom J, Badten AJ, Jain A, Nakajima R, Felgner J, Davies DH, Stetkevich SA, Zlotnik A, Pearlman E, Nalca A, Felgner PL, Esser-Kahn AP, Burkhardt AM. Tuning Subunit Vaccines with Novel TLR Triagonist Adjuvants to Generate Protective Immune Responses against Coxiella burnetii. THE JOURNAL OF IMMUNOLOGY 2019; 204:611-621. [PMID: 31871024 DOI: 10.4049/jimmunol.1900991] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/16/2019] [Indexed: 12/11/2022]
Abstract
Coxiella burnetii is an obligate intracellular bacterium and the causative agent of Q fever. C. burnetii is considered a potential bioterrorism agent because of its low infectious dose; resistance to heat, drying, and common disinfectants; and lack of prophylactic therapies. Q-Vax, a formalin-inactivated whole-bacteria vaccine, is currently the only prophylactic measure that is protective against C. burnetii infections but is not U.S. Food and Drug Administration approved. To overcome the safety concerns associated with the whole-bacteria vaccine, we sought to generate and evaluate recombinant protein subunit vaccines against C. burnetii To accomplish this, we formulated C. burnetii Ags with a novel TLR triagonist adjuvant platform, which used combinatorial chemistry to link three different TLR agonists together to form one adjuvanting complex. We evaluated the immunomodulatory activity of a panel of TLR triagonist adjuvants and found that they elicited unique Ag-specific immune responses both in vitro and in vivo. We evaluated our top candidates in a live C. burnetii aerosol challenge model in C56BL/6 mice and found that several of our novel vaccine formulations conferred varying levels of protection to the challenged animals compared with sham immunized mice, although none of our candidates were as protective as the commercial vaccine across all protection criteria that were analyzed. Our findings characterize a novel adjuvant platform and offer an alternative approach to generating protective and effective vaccines against C. burnetii.
Collapse
Affiliation(s)
- Adrienne P Gilkes
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Tyler J Albin
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Saikat Manna
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697.,The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637; and
| | - Medalyn Supnet
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Sara Ruiz
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702
| | - Janine Tom
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Alexander J Badten
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Aarti Jain
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Rie Nakajima
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Jiin Felgner
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - D Huw Davies
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | | | - Albert Zlotnik
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Eric Pearlman
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Aysegul Nalca
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702
| | - Philip L Felgner
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Aaron P Esser-Kahn
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697; .,The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637; and
| | - Amanda M Burkhardt
- Vaccine Research and Design Center, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697; .,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
19
|
Com1 as a Promising Protein for the Differential Diagnosis of the Two Forms of Q Fever. Pathogens 2019; 8:pathogens8040242. [PMID: 31752191 PMCID: PMC6963606 DOI: 10.3390/pathogens8040242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Coxiella burnetii is the causative agent of acute and chronic Q fever in humans. Although the isolates studied so far showed a difference in virulence potential between those causing the two forms of the disease, implying a difference in their proteomic profile, the methods used so far to diagnose the two forms of the disease do not provide sufficient discriminatory capability, and human infections may be often misdiagnosed. The aim of the current study was to identify the outer membrane Com1 (CBU_1910) as a candidate protein for serodiagnostics of Q fever. The protein was cloned, expressed, purified, and used as an antigen in ELISA. The protein was then used for the screening of sera from patients suffering from chronic Q fever endocarditis, patients whose samples were negative for phase I immunoglobulin G (IgG), patients for whom at least one sample was positive for phase I IgG, and patients suffering from any kind of rheumatoid disease. Blood donors were used as the control group. Following statistical analysis, 92.4% (122/132) of the samples tested agreed with the negative clinical diagnosis, and 72.2% (26/36) agreed with the positive clinical diagnosis. Moreover, a significant correlation to the presence of the disease (p = 0.00) was calculated. The results support the idea that a Com1 antigen-based serodiagnostic test may be useful for differential diagnosis of chronic Q fever. Further studies are required to compare more immunogenic proteins of the bacterium against samples originating from patients suffering from different forms of the disease.
Collapse
|
20
|
Whittaker K, Burgess R, Jones V, Yang Y, Zhou W, Luo S, Wilson J, Huang R. Quantitative proteomic analyses in blood: A window to human health and disease. J Leukoc Biol 2019; 106:759-775. [PMID: 31329329 DOI: 10.1002/jlb.mr1118-440r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | | | | | - Shuhong Luo
- RayBiotech Life Norcross Georgia USA
- RayBiotech Life Guangzhou Guangdong China
- South China Biochip Research Center Guangzhou Guangdong China
| | | | - Ruo‐Pan Huang
- RayBiotech Life Norcross Georgia USA
- RayBiotech Life Guangzhou Guangdong China
- South China Biochip Research Center Guangzhou Guangdong China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Medical University Guangzhou China
- Guangdong Provincial Hospital of Chinese Medicine Guangzhou China
| |
Collapse
|
21
|
Chen C, van Schaik EJ, Gregory AE, Vigil A, Felgner PL, Hendrix LR, Faris R, Samuel JE. Chemokine Receptor 7 Is Essential for Coxiella burnetii Whole-Cell Vaccine-Induced Cellular Immunity but Dispensable for Vaccine-Mediated Protective Immunity. J Infect Dis 2019; 220:624-634. [PMID: 30938819 PMCID: PMC6639598 DOI: 10.1093/infdis/jiz146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/27/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Protective immunity against Coxiella burnetii infection is conferred by vaccination with virulent (PI-WCV), but not avirulent (PII-WCV) whole-cell inactivated bacterium. The only well-characterized antigenic difference between virulent and avirulent C. burnetii is they have smooth and rough lipopolysaccharide (LPS), respectively. METHODS Mice were vaccinated with PI-WCV and PII-WCV. Humoral and cellular responses were evaluated using protein chip microarrays and ELISpots, respectively. Dendritic cell (DC) maturation after stimulation with PI-WVC and PII-WVC was evaluated using flow cytometry. Vaccine-challenge studies were performed to validate the importance of the receptor CCR7. RESULTS Other than specific antibody response to PI-LPS, similar antibody profiles were observed but IgG titers were significantly higher after vaccination with PI-WCV. Furthermore, higher frequency of antigen-specific CD4+ T cells was detected in mice immunized with PI-WCV. PI-WCV-stimulated DCs displayed significantly higher levels of CCR7 and migratory ability to secondary lymphoid organs. Challenge-protection studies in wild-type and CCR7-deficient mice confirmed that CCR7 is critical for PI-WCV-induced cellular immunity. CONCLUSIONS PI-WVC stimulates protective immunity to C. burnetii in mice through stimulation of migratory behavior in DCs for protective cellular immunity. Additionally, the humoral immune response to LPS is an important component of protective immunity.
Collapse
Affiliation(s)
- Chen Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan
| | - Erin J van Schaik
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan
| | - Anthony E Gregory
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan
| | - Adam Vigil
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine
| | - Phillip L Felgner
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine
| | - Laura R Hendrix
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan
| | - Robert Faris
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan
| | - James E Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan
| |
Collapse
|
22
|
Awanye AM, Chang CM, Wheeler JX, Chan H, Marsay L, Dold C, Rollier CS, Bird LE, Nettleship JE, Owens RJ, Pollard AJ, Derrick JP. Immunogenicity profiling of protein antigens from capsular group B Neisseria meningitidis. Sci Rep 2019; 9:6843. [PMID: 31048732 PMCID: PMC6497663 DOI: 10.1038/s41598-019-43139-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/11/2019] [Indexed: 11/29/2022] Open
Abstract
Outer membrane vesicle (OMV)- based vaccines have been used to provide strain-specific protection against capsular group B Neisseria meningitidis infections, but the full breadth of the immune response against the components of the OMV has not been established. Sera from adults vaccinated with an OMV vaccine were used to screen 91 outer membrane proteins (OMPs) incorporated in an antigen microarray panel. Antigen-specific IgG levels were quantified pre-vaccination, and after 12 and 18 weeks. These results were compared with IgG levels from mice vaccinated with the same OMV vaccine. The repertoires of highly responding antigens in humans and mice overlapped, but were not identical. The highest responding antigens to human IgG comprised four integral OMPs (PorA, PorB, OpcA and PilQ), a protein which promotes the stability of PorA and PorB (RmpM) and two lipoproteins (BamC and GNA1162). These observations will assist in evaluating the role of minor antigen components within OMVs in providing protection against meningococcal infection. In addition, the relative dominance of responses to integral OMPs in humans emphasizes the importance of this subclass and points to the value of maintaining conformational epitopes from integral membrane proteins in vaccine formulations.
Collapse
Affiliation(s)
- Amaka M Awanye
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Chun-Mien Chang
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Jun X Wheeler
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Hannah Chan
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Leanne Marsay
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Louise E Bird
- Oxford Protein Production Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot, OX11 0FA, UK
| | - Joanne E Nettleship
- Oxford Protein Production Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot, OX11 0FA, UK
| | - Raymond J Owens
- Oxford Protein Production Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot, OX11 0FA, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
23
|
Scholzen A, Richard G, Moise L, Baeten LA, Reeves PM, Martin WD, Brauns TA, Boyle CM, Raju Paul S, Bucala R, Bowen RA, Garritsen A, De Groot AS, Sluder AE, Poznansky MC. Promiscuous Coxiella burnetii CD4 Epitope Clusters Associated With Human Recall Responses Are Candidates for a Novel T-Cell Targeted Multi-Epitope Q Fever Vaccine. Front Immunol 2019; 10:207. [PMID: 30828331 PMCID: PMC6384241 DOI: 10.3389/fimmu.2019.00207] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is a Gram-negative intracellular bacterium transmitted via aerosol. Regulatory approval of the Australian whole-cell vaccine Q-VAX® in the US and Europe is hindered by reactogenicity in previously exposed individuals. The aim of this study was to identify and rationally select C. burnetii epitopes for design of a safe, effective, and less reactogenic T-cell targeted human Q fever vaccine. Immunoinformatic methods were used to predict 65 HLA class I epitopes and 50 promiscuous HLA class II C. burnetii epitope clusters, which are conserved across strains of C. burnetii. HLA binding assays confirmed 89% of class I and 75% of class II predictions, and 11 HLA class II epitopes elicited IFNγ responses following heterologous DNA/DNA/peptide/peptide prime-boost immunizations of HLA-DR3 transgenic mice. Human immune responses to the predicted epitopes were characterized in individuals naturally exposed to C. burnetii during the 2007–2010 Dutch Q fever outbreak. Subjects were divided into three groups: controls with no immunological evidence of previous infection and individuals with responses to heat-killed C. burnetii in a whole blood IFNγ release assay (IGRA) who remained asymptomatic or who experienced clinical Q fever during the outbreak. Recall responses to C. burnetii epitopes were assessed by cultured IFNγ ELISpot. While HLA class I epitope responses were sparse in this cohort, we identified 21 HLA class II epitopes that recalled T-cell IFNγ responses in 10–28% of IGRA+ subjects. IGRA+ individuals with past asymptomatic and symptomatic C. burnetii infection showed a comparable response pattern and cumulative peptide response which correlated with IGRA responses. None of the peptides elicited reactogenicity in a C. burnetii exposure-primed guinea pig model. These data demonstrate that a substantial proportion of immunoinformatically identified HLA class II epitopes show long-lived immunoreactivity in naturally infected individuals, making them desirable candidates for a novel human multi-epitope Q fever vaccine.
Collapse
Affiliation(s)
| | | | - Leonard Moise
- EpiVax, Inc., Providence, RI, United States.,Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Laurie A Baeten
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Patrick M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | | | - Timothy A Brauns
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | | | - Susan Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
24
|
Abstract
The varied landscape of the adaptive immune response is determined by the peptides presented by immune cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or antigens is not new, and classical methods such as agglutination, enzyme-linked immunosorbent assay, or Western blotting have been used for many years to study the immune response to vaccination or disease. However, in many of these traditional techniques, protein or peptide identification has often been the bottleneck. Recent progress in genomics and mass spectrometry have led to many of the rapid advances in proteomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have the common goal of identifying and measuring antigenic peptides or proteins. This includes gel-based, array-based, mass spectrometry-based, DNA-based, or in silico approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an overview of immunoproteomics and closely related technologies that are used to define the full set of protein antigens targeted by the immune system during disease.
Collapse
Affiliation(s)
- Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Isabel Baltat
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
25
|
|
26
|
Cornillot E, Dassouli A, Pachikara N, Lawres L, Renard I, Francois C, Randazzo S, Brès V, Garg A, Brancato J, Pazzi JE, Pablo J, Hung C, Teng A, Shandling AD, Huynh VT, Krause PJ, Lepore T, Delbecq S, Hermanson G, Liang X, Williams S, Molina DM, Ben Mamoun C. A targeted immunomic approach identifies diagnostic antigens in the human pathogen Babesia microti. Transfusion 2016; 56:2085-99. [PMID: 27184823 PMCID: PMC5644385 DOI: 10.1111/trf.13640] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Babesia microti is a protozoan parasite responsible for the majority of reported cases of human babesiosis and a major risk to the blood supply. Laboratory screening of blood donors may help prevent transfusion-transmitted babesiosis but there is no Food and Drug Administration-approved screening method yet available. Development of a sensitive, specific, and highly automated B. microti antibody assay for diagnosis of acute babesiosis and blood screening could have an important impact on decreasing the health burden of B. microti infection. STUDY DESIGN AND METHODS Herein, we take advantage of recent advances in B. microti genomic analyses, field surveys of the reservoir host, and human studies in endemic areas to apply a targeted immunomic approach to the discovery of B. microti antigens that serve as signatures of active or past babesiosis infections. Of 19 glycosylphosphatidylinositol (GPI)-anchored protein candidates (BmGPI1-19) identified in the B. microti proteome, 17 were successfully expressed, printed on a microarray chip, and used to screen sera from uninfected and B. microti-infected mice and humans to determine immune responses that are associated with active and past infection. RESULTS Antibody responses to various B. microti BmGPI antigens were detected and BmGPI12 was identified as the best biomarker of infection that provided high sensitivity and specificity when used in a microarray antibody assay. CONCLUSION BmGPI12 alone or in combination with other BmGPI proteins is a promising candidate biomarker for detection of B. microti antibodies that might be useful in blood screening to prevent transfusion-transmitted babesiosis.
Collapse
Affiliation(s)
- Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), Institut de Recherche en Cancérologie de Montpellier (IRCM-INSERM U1194), Institut régional du Cancer Montpellier (ICM) and Université de Montpellier, Montpellier, France
| | - Amina Dassouli
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | - Niseema Pachikara
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Lauren Lawres
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Isaline Renard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Celia Francois
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | - Sylvie Randazzo
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | - Virginie Brès
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | - Aprajita Garg
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Janna Brancato
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | | | | | - Chris Hung
- Antigen Discovery, Inc., Irvine, California
| | - Andy Teng
- Antigen Discovery, Inc., Irvine, California
| | | | | | - Peter J. Krause
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Timothy Lepore
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Stephane Delbecq
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, Montpellier, France
| | | | | | - Scott Williams
- Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | | | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
27
|
Abstract
Autoantibodies are a key component for the diagnosis, prognosis and monitoring of various diseases. In order to discover novel autoantibody targets, highly multiplexed assays based on antigen arrays hold a great potential and provide possibilities to analyze hundreds of body fluid samples for their reactivity pattern against thousands of antigens in parallel. Here, we provide an overview of the available technologies for producing antigen arrays, highlight some of the technical and methodological considerations and discuss their applications as discovery tools. Together with recent studies utilizing antigen arrays, we give an overview on how the different types of antigen arrays have and will continue to deliver novel insights into autoimmune diseases among several others.
Collapse
|
28
|
A systems biology approach for diagnostic and vaccine antigen discovery in tropical infectious diseases. Curr Opin Infect Dis 2016; 28:438-45. [PMID: 26237545 DOI: 10.1097/qco.0000000000000193] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW There is a need for improved diagnosis and for more rapidly assessing the presence, prevalence, and spread of newly emerging or reemerging infectious diseases. An approach to the pathogen-detection strategy is based on analyzing host immune response to the infection. This review focuses on a protein microarray approach for this purpose. RECENT FINDINGS Here we take a protein microarray approach to profile the humoral immune response to numerous infectious agents, and to identify the complete antibody repertoire associated with each disease. The results of these studies lead to the identification of diagnostic markers and potential subunit vaccine candidates. These results from over 30 different organisms can also provide information about common trends in the humoral immune response. SUMMARY This review describes the implications of the findings for clinical practice or research. A systems biology approach to identify the antibody repertoire associated with infectious diseases challenge using protein microarray has become a powerful method in identifying diagnostic markers and potential subunit vaccine candidates, and moreover, in providing information on proteomic feature (functional and physically properties) of seroreactive and serodiagnostic antigens. Combining the detection of the pathogen with a comprehensive assessment of the host immune response will provide a new understanding of the correlations between specific causative agents, the host response, and the clinical manifestations of the disease.
Collapse
|
29
|
Furman D, Davis MM. New approaches to understanding the immune response to vaccination and infection. Vaccine 2015; 33:5271-81. [PMID: 26232539 DOI: 10.1016/j.vaccine.2015.06.117] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/26/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
Abstract
The immune system is a network of specialized cell types and tissues that communicates via cytokines and direct contact, to orchestrate specific types of defensive responses. Until recently, we could only study immune responses in a piecemeal, highly focused fashion, on major components like antibodies to the pathogen. But recent advances in technology and in our understanding of the many components of the system, innate and adaptive, have made possible a broader approach, where both the multiple responding cells and cytokines in the blood are measured. This systems immunology approach to a vaccine response or an infection gives us a more holistic picture of the different parts of the immune system that are mobilized and should allow us a much better understanding of the pathways and mechanisms of such responses, as well as to predict vaccine efficacy in different populations well in advance of efficacy studies. Here we summarize the different technologies and methods and discuss how they can inform us about the differences between diseases and vaccines, and how they can greatly accelerate vaccine development.
Collapse
Affiliation(s)
- David Furman
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States; Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States; Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States; Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
30
|
Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Obando I, Rodríguez-Ortega MJ. A Pneumococcal Protein Array as a Platform to Discover Serodiagnostic Antigens Against Infection. Mol Cell Proteomics 2015; 14:2591-608. [PMID: 26183717 DOI: 10.1074/mcp.m115.049544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 01/22/2023] Open
Abstract
Pneumonia is one of the most common and severe diseases associated with Streptococcus pneumoniae infections in children and adults. Etiological diagnosis of pneumococcal pneumonia in children is generally challenging because of limitations of diagnostic tests and interference with nasopharyngeal colonizing strains. Serological assays have recently gained interest to overcome some problems found with current diagnostic tests in pediatric pneumococcal pneumonia. To provide insight into this field, we have developed a protein array to screen the antibody response to many antigens simultaneously. Proteins were selected by experimental identification from a collection of 24 highly prevalent pediatric clinical isolates in Spain, using a proteomics approach consisting of "shaving" the cell surface with proteases and further LC/MS/MS analysis. Ninety-five proteins were recombinantly produced and printed on an array. We probed it with a collection of sera from children with pneumococcal pneumonia. From the set of the most seroprevalent antigens, we obtained a clear discriminant response for a group of three proteins (PblB, PulA, and PrtA) in children under 4 years old. We validated the results by ELISA and an immunostrip assay showed the translation to easy-to-use, affordable tests. Thus, the protein array here developed presents a tool for broad use in serodiagnostics.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- From the ‡Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Jiménez-Munguía
- From the ‡Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Gómez-Gascón
- §Departamento de Sanidad Animal, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Ignacio Obando
- ¶Sección de Enfermedades Infecciosas Pediátricas e Inmunopatología, Hospital Universitario Infantil Virgen del Rocío, Sevilla, Spain
| | - Manuel J Rodríguez-Ortega
- From the ‡Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain;
| |
Collapse
|
31
|
Carmona SJ, Nielsen M, Schafer-Nielsen C, Mucci J, Altcheh J, Balouz V, Tekiel V, Frasch AC, Campetella O, Buscaglia CA, Agüero F. Towards High-throughput Immunomics for Infectious Diseases: Use of Next-generation Peptide Microarrays for Rapid Discovery and Mapping of Antigenic Determinants. Mol Cell Proteomics 2015; 14:1871-84. [PMID: 25922409 PMCID: PMC4587317 DOI: 10.1074/mcp.m114.045906] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Indexed: 01/09/2023] Open
Abstract
Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens.
Collapse
Affiliation(s)
- Santiago J Carmona
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Morten Nielsen
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina; §Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | - Juan Mucci
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Jaime Altcheh
- ‖Servicio de Parasitología y Chagas, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, Argentina
| | - Virginia Balouz
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Valeria Tekiel
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Alberto C Frasch
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Oscar Campetella
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Carlos A Buscaglia
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina
| | - Fernán Agüero
- From the ‡Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad de San Martín - CONICET, Sede San Martín, B 1650 HMP, San Martín, Buenos Aires, Argentina;
| |
Collapse
|
32
|
Ruiz S, Wolfe DN. Vaccination against Q fever for biodefense and public health indications. Front Microbiol 2014; 5:726. [PMID: 25566235 PMCID: PMC4267281 DOI: 10.3389/fmicb.2014.00726] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/03/2014] [Indexed: 01/02/2023] Open
Abstract
Coxiella burnetii is the etiological agent of Q fever, a disease that is often spread to humans via inhalational exposure to the bacteria from contaminated agricultural sources. Outbreaks have been observed all over the world with larger foci generating interest in vaccination programs, most notably in Australia and the Netherlands. Importantly, exposure rates among military personnel deployed to the Middle East can be relatively high as measured by seroconversion to C. burnetii-specific antibodies. Q fever has been of interest to the biodefense community over the years due to its low infectious dose and environmental stability. Recent advances in cell-free growth and genetics of C. burnetii also make this organism easier to culture and manipulate. While there is a vaccine that is licensed for use in Australia, the combination of biodefense- and public health-related issues associated with Q fever warrant the development of a safer and more effective vaccine against this disease.
Collapse
Affiliation(s)
- Sara Ruiz
- Center for Aerobiological Sciences, U.S. Army Medical Research Institute of Infectious Diseases Fort Detrick, MD USA
| | - Daniel N Wolfe
- Chemical and Biological Technologies Department, Defense Threat Reduction Agency Fort Belvoir, VA USA
| |
Collapse
|
33
|
Lessa-Aquino C, Wunder EA, Lindow JC, Rodrigues CB, Pablo J, Nakajima R, Jasinskas A, Liang L, Reis MG, Ko AI, Medeiros MA, Felgner PL. Proteomic features predict seroreactivity against leptospiral antigens in leptospirosis patients. J Proteome Res 2014; 14:549-56. [PMID: 25358092 PMCID: PMC4286151 DOI: 10.1021/pr500718t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
With
increasing efficiency, accuracy, and speed we can access complete
genome sequences from thousands of infectious microorganisms; however,
the ability to predict antigenic targets of the immune system based
on amino acid sequence alone is still needed. Here we use a Leptospira interrogans microarray expressing 91% (3359)
of all leptospiral predicted ORFs (3667) and make an empirical accounting
of all antibody reactive antigens recognized in sera from naturally
infected humans; 191 antigens elicited an IgM or IgG response, representing
5% of the whole proteome. We classified the reactive antigens into
26 annotated COGs (clusters of orthologous groups), 26 JCVI Mainrole
annotations, and 11 computationally predicted proteomic features.
Altogether, 14 significantly enriched categories were identified,
which are associated with immune recognition including mass spectrometry
evidence of in vitro expression and in vivo mRNA up-regulation. Together,
this group of 14 enriched categories accounts for just 25% of the
leptospiral proteome but contains 50% of the immunoreactive antigens.
These findings are consistent with our previous studies of other Gram-negative
bacteria. This genome-wide approach provides an empirical basis to
predict and classify antibody reactive antigens based on structural,
physical–chemical, and functional proteomic features and a
framework for understanding the breadth and specificity of the immune
response to L. interrogans.
Collapse
Affiliation(s)
- Carolina Lessa-Aquino
- Fiocruz, Bio-Manguinhos, Brazilian Ministry of Health , Avenida Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ 21040-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gahoi N, Ray S, Srivastava S. Array-based proteomic approaches to study signal transduction pathways: prospects, merits and challenges. Proteomics 2014; 15:218-31. [PMID: 25266292 DOI: 10.1002/pmic.201400261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 01/17/2023]
Abstract
Very often dysfunctional aspects of various signalling networks are found to be associated with human diseases and disorders. The major characteristics of signal transduction pathways are specificity, amplification of the signal, desensitisation and integration, which is accomplished not solely, but majorly by proteins. Array-based profiling of protein-protein and other biomolecular interactions is a versatile approach, which holds immense potential for multiplex interactome mapping and provides an inclusive representation of the signal transduction pathways and networks. Protein microarrays such as analytical protein microarrays (antigen-antibody interactions, autoantibody screening), RP microarrays (interaction of a particular ligand with all the possible targets in cell), functional protein microarrays (protein-protein or protein-ligand interactions) are implemented for various applications, including analysis of protein interactions and their significance in signalling cascades. Additionally, successful amalgamation of the array-based approaches with different label-free detection techniques allows real-time analysis of interaction kinetics of multiple interaction events simultaneously. This review discusses the prospects, merits and limitations of different variants of array-based techniques and their promising applications for studying the modifications and interactions of biomolecules, and highlights the studies associated with signal transduction pathways and their impact on disease pathobiology.
Collapse
Affiliation(s)
- Nikita Gahoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | |
Collapse
|
35
|
Pitarch A, Nombela C, Gil C. Serum antibody signature directed against Candida albicans Hsp90 and enolase detects invasive candidiasis in non-neutropenic patients. J Proteome Res 2014; 13:5165-84. [PMID: 25377742 DOI: 10.1021/pr500681x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Invasive candidiasis (IC) adds significantly to the morbidity and mortality of non-neutropenic patients if not diagnosed and treated early. To uncover serologic biomarkers that alone or in combination could reliably detect IC in this population, IgG antibody-reactivity profiles to the Candida albicans intracellular proteome were examined by serological proteome analysis (SERPA) and data mining procedures in a training set of 24 non-neutropenic patients. Despite the high interindividual molecular heterogeneity, unsupervised clustering analyses revealed that serum 22-IgG antibody-reactivity patterns differentiated IC from non-IC patients. Univariate analyses further highlighted that 15 out of the 22 SERPA-identified IgG antibodies could be useful candidate IC biomarkers. The diagnostic performance of one of these candidates (anti-Hsp90 IgG antibodies) was validated using an ELISA prototype in a test set of 59 non-neutropenic patients. We then formulated an IC discriminator based on the combined immunoproteomic fingerprints of this and another SERPA-detected and previously validated IC biomarker (anti-Eno1 IgG antibodies) in the training set. Its consistency was substantiated using their ELISA prototypes in the test set. Receiver-operating-characteristic curve analyses showed that this two-biomarker signature accurately identified IC in non-neutropenic patients and provided better IC diagnostic accuracy than the individual biomarkers alone. We conclude that this serum IgG antibody signature directed against C. albicans Hsp90 and Eno1, if confirmed prospectively, may be useful for IC diagnosis in non-neutropenic patients.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid and Ramón y Cajal Institute of Health Research (IRYCIS) , Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | | |
Collapse
|
36
|
The impact of "omic" and imaging technologies on assessing the host immune response to biodefence agents. J Immunol Res 2014; 2014:237043. [PMID: 25333059 PMCID: PMC4182007 DOI: 10.1155/2014/237043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/23/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023] Open
Abstract
Understanding the interactions between host and pathogen is important for the development and assessment of medical countermeasures to infectious agents, including potential biodefence pathogens such as Bacillus anthracis, Ebola virus, and Francisella tularensis. This review focuses on technological advances which allow this interaction to be studied in much greater detail. Namely, the use of “omic” technologies (next generation sequencing, DNA, and protein microarrays) for dissecting the underlying host response to infection at the molecular level; optical imaging techniques (flow cytometry and fluorescence microscopy) for assessing cellular responses to infection; and biophotonic imaging for visualising the infectious disease process. All of these technologies hold great promise for important breakthroughs in the rational development of vaccines and therapeutics for biodefence agents.
Collapse
|
37
|
Yu X, Bian X, Throop A, Song L, Moral LD, Park J, Seiler C, Fiacco M, Steel J, Hunter P, Saul J, Wang J, Qiu J, Pipas JM, LaBaer J. Exploration of panviral proteome: high-throughput cloning and functional implications in virus-host interactions. Am J Cancer Res 2014; 4:808-22. [PMID: 24955142 PMCID: PMC4063979 DOI: 10.7150/thno.8255] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 04/27/2014] [Indexed: 12/24/2022] Open
Abstract
Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies.
Collapse
|
38
|
Detection of Q Fever Specific Antibodies Using Recombinant Antigen in ELISA with Peroxidase Based Signal Amplification. INTERNATIONAL JOURNAL OF BACTERIOLOGY 2014; 2014:707463. [PMID: 26904739 PMCID: PMC4745451 DOI: 10.1155/2014/707463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 11/18/2022]
Abstract
Currently, the accepted method for Q fever serodiagnosis is indirect immunofluorescent antibody assay (IFA) using the whole cell antigen. In this study, we prepared the recombinant antigen of the 27-kDa outer membrane protein (Com1) which has been shown to be recognized by Q fever patient sera. The performance of recombinant Com1 was evaluated in ELISA by IFA confirmed serum samples. Due to the low titers of IgG and IgM in Q fever patients, the standard ELISA signals were further amplified by using biotinylated anti-human IgG or IgM plus streptavidin-HRP polymer. The modified ELISA can detect 88% (29 out of 33) of Q fever patient sera collected from Marines deployed to Iraq. Less than 5% (5 out of 156) of the sera from patients with other febrile diseases reacted with the Com1. These results suggest that the modified ELISA using Com1 may have the potential to improve the detection of Q fever specific antibodies.
Collapse
|
39
|
Casado-Vela J, Fuentes M, Franco-Zorrilla JM. Screening of Protein–Protein and Protein–DNA Interactions Using Microarrays. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:231-81. [DOI: 10.1016/b978-0-12-800453-1.00008-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Systematic reference sample generation for multiplexed serological assays. Sci Rep 2013; 3:3259. [PMID: 24247282 PMCID: PMC3832875 DOI: 10.1038/srep03259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/01/2013] [Indexed: 12/30/2022] Open
Abstract
Quality controls of serological assays have to contain defined amounts of human antibodies specific for the targeted antigen. A prevailing issue for array-based antigen assays is that dozens of antigens are targeted within the same assay. Commonly different patient sera are combined and optimal pools are empirically identified. Here, we report a mathematical approach how an optimal sample pool composition can be systematically calculated and accurately compiled. The approach was used to compose suitable quality controls for a 71 plex Tuberculosis antigen bead array using a limited number of positive human sera.
Collapse
|
41
|
Protein arrays as tool for studies at the host-pathogen interface. J Proteomics 2013; 94:387-400. [PMID: 24140974 DOI: 10.1016/j.jprot.2013.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 09/06/2013] [Accepted: 10/08/2013] [Indexed: 01/10/2023]
Abstract
Pathogens and parasites encode a wide spectrum of multifunctional proteins interacting to and modifying proteins in host cells. However, the current lack of a reliable method to unveil the protein-protein interactions (PPI) at the host-pathogen interface is retarding our understanding of many important pathogenic processes. Thus, the identification of proteins involved in host-pathogen interactions is important for the elucidation of virulence determinants, mechanisms of infection, host susceptibility and/or disease resistance. In this sense, proteomic technologies have experienced major improvements in recent years and protein arrays are a powerful and modern method for studying PPI in a high-throughput format. This review focuses on these techniques analyzing the state-of-the-art of proteomic technologies and their possibilities to diagnose and explore host-pathogen interactions. Major technical advancements, applications and protocol concerns are presented, so readers can appreciate the immense progress achieved and the current technical options available for studying the host-pathogen interface. Finally, future uses of this kind of array-based proteomic tools in the fight against infectious and parasitic diseases are discussed.
Collapse
|
42
|
Wang J, Barker K, Steel J, Park J, Saul J, Festa F, Wallstrom G, Yu X, Bian X, Anderson KS, Figueroa JD, LaBaer J, Qiu J. A versatile protein microarray platform enabling antibody profiling against denatured proteins. Proteomics Clin Appl 2013; 7:378-83. [PMID: 23027520 DOI: 10.1002/prca.201200062] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 11/10/2022]
Abstract
PURPOSE We aim to develop a protein microarray platform capable of presenting both natural and denatured forms of proteins for antibody biomarker discovery. We will further optimize plasma screening protocols to improve detection. EXPERIMENTAL DESIGN We developed a new covalent capture protein microarray chemistry using HaloTag fusion proteins and ligand. To enhance protein yield, we used HeLa cell lysate as an in vitro transcription translation (IVTT) system. Escherichia coli lysates were added to the plasma blocking buffer to reduce nonspecific background. These protein microarrays were probed with plasma samples and autoantibody responses were quantified and compared with or without denaturing buffer treatment. RESULTS We demonstrated that protein microarrays using the covalent attachment chemistry endured denaturing conditions. Blocking with E. coli lysates greatly reduced the background signals and expression with IVTT based on HeLa cell lysates significantly improved the antibody signals on protein microarrays probed with plasma samples. Plasma samples probed on denatured protein arrays produced autoantibody profiles distinct from those probed on natively displayed proteins. CONCLUSIONS AND CLINICAL RELEVANCE This versatile protein microarray platform allows the display of both natural and denatured proteins, offers a new dimension to search for disease-specific antibodies, broadens the repertoire of potential biomarkers, and will potentially yield clinical diagnostics with greater performance.
Collapse
Affiliation(s)
- Jie Wang
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287-6401, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang X, Xiong X, Graves S, Stenos J, Wen B. Protein array of Coxiella burnetii probed with Q fever sera. SCIENCE CHINA-LIFE SCIENCES 2013; 56:453-9. [PMID: 23633077 DOI: 10.1007/s11427-013-4472-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/21/2013] [Indexed: 10/26/2022]
Abstract
Coxiella burnetii is the etiological agent of Q fever. To identify its major seroreactive proteins, a subgenomic protein array was developed. A total of 101 assumed virulence-associated recombinant proteins of C. burnetii were probed with sera from mice experimentally infected with C. burnetii and sera from Q fever patients. Sixteen proteins were recognized as major seroreactive antigens by the mouse sera. Seven of these 16 proteins reacted positively with at least 45% of Q fever patient sera. Notably, HspB had the highest fluorescence intensity value and positive frequency of all the proteins on the array when probed with both Q fever patient sera and mouse sera. These results suggest that these seven major seroreactive proteins, particularly HspB, are potential serodiagnostic and subunit vaccine antigens of Q fever.
Collapse
Affiliation(s)
- Xile Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | | | | | | | | |
Collapse
|
44
|
Abstract
Protein microarray technology is an emerging field that provides a versatile platform for the characterization of hundreds of thousands of proteins in a highly parallel and high-throughput manner. Protein microarrays are composed of two major classes: analytical and functional. In addition, tissue or cell lysates can also be fractionated and spotted on a slide to form a reverse-phase protein microarray. Applications of protein microarrays, especially functional protein microarrays, have flourished over the past decade as the fabrication technology has matured. In this unit, advances in protein microarray technologies are reviewed, and then a series of examples are presented to illustrate the applications of analytical and functional protein microarrays in both basic and clinical research. Relevant areas of research include the detection of various binding properties of proteins, the study of protein post-translational modifications, the analysis of host-microbe interactions, profiling antibody specificity, and the identification of biomarkers in autoimmune diseases.
Collapse
Affiliation(s)
- F X Reymond Sutandy
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| | | | | | | |
Collapse
|
45
|
Hendrix LR, Chen C. Antigenic analysis for vaccines and diagnostics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 984:299-328. [PMID: 22711639 DOI: 10.1007/978-94-007-4315-1_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Coxiella burnetii infection is frequently unrecognized or misdiagnosed, as symptoms generally mimic an influenza-like illness. However, the disease (Q fever) may result in chronic infection, usually manifesting as potentially fatal endocarditis. The development of a chronic fatigue-like sequela may also occur. Infected ruminants are the major reservoir for infection in humans, primarily through exposure to birth products or aerosols that transmit the bacterium over wide regions. A vaccine against C. burnetii infection has been in use in Australia for abattoir and agricultural workers for many years. The possibility of adverse reactions in those with previous exposure to the agent has prevented its use elsewhere. Subunit vaccines, utilizing chemical extraction of components thought to cause adverse reactions, are in development, but none are yet licensed. Others have sought to combine immunogenic peptides with or without selected lipopolysaccharide components to produce a vaccine without the possibility of adverse reactions. Selected immunogenic proteins have been shown to induce both humoral and cellular immune responses. Although current diagnosis of infection relies on serological testing, the presentation of specific antibody occurs 7-15 days following the onset of symptoms, delaying treatment that may result in prolonged morbidity. PCR detection of DNA to specific C. burnetii antigens in the blood is possible early in infection, but PCR may become negative when PII IgG antibodies appear. PCR is useful for early diagnosis when Q fever is suspected, as in large epidemics, and shortens the delay in the identification of Q fever endocarditis. Others have combined PCR with ELISA or other methods to increase the ability to detect infection at any stage. The search for new diagnostic reagents and vaccines has utilized new methods for discovery of immunoreactive proteins. DNA analysis of the heterogeneity of C. burnetii isolates has led to a greater understanding of the diversity of isolates and a means to determine whether there is a correlation between strain and disease severity. 2-D SDS PAGE of immunogenic proteins reactive with human or animal infection sera and mass spectrometric analysis of specific secreted or outer membrane proteins have identified candidate antigens. Microarrays have allowed the analysis of peptide libraries of open reading frames to evaluate the immunogenicity of complete genomes.
Collapse
Affiliation(s)
- Laura R Hendrix
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, 3107 Medical Research and Education Building, Bryan, TX 77807-3260, USA.
| | | |
Collapse
|
46
|
Abstract
The varied landscape of the adaptive immune response is determined by the peptides presented by immune cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or antigens is not new and classical methods such as agglutination, enzyme-linked immunosorbent assay, or Western blotting have been used for many years to study the immune response to vaccination or disease. However, in many of these traditional techniques, protein or peptide identification has often been the bottleneck. Recent advances in genomics and proteomics, has led to many of the rapid advances in proteomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have the common goal of identifying and measuring antigenic peptides or proteins. This includes gel based, array based, mass spectrometry, DNA based, or in silico approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an overview of immunoproteomics and closely related technologies that are used to define the full set of antigens targeted by the immune system during disease.
Collapse
Affiliation(s)
- Kelly M Fulton
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | | |
Collapse
|
47
|
Zhu H, Cox E, Qian J. Functional protein microarray as molecular decathlete: a versatile player in clinical proteomics. Proteomics Clin Appl 2012; 6:548-62. [PMID: 23027439 PMCID: PMC3600421 DOI: 10.1002/prca.201200041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/31/2022]
Abstract
Functional protein microarrays were developed as a high-throughput tool to overcome the limitations of DNA microarrays and to provide a versatile platform for protein functional analyses. Recent years have witnessed tremendous growth in the use of protein microarrays, particularly functional protein microarrays, to address important questions in the field of clinical proteomics. In this review, we will summarize some of the most innovative and exciting recent applications of protein microarrays in clinical proteomics, including biomarker identification, pathogen-host interactions, and cancer biology.
Collapse
Affiliation(s)
- Heng Zhu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, MD, USA.
| | | | | |
Collapse
|
48
|
Leptospiral outer membrane protein microarray, a novel approach to identification of host ligand-binding proteins. J Bacteriol 2012; 194:6074-87. [PMID: 22961849 DOI: 10.1128/jb.01119-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via freshwater and colonization of the renal tubules of their reservoir hosts. Infection requires adherence to cell surfaces and extracellular matrix components of host tissues. These host-pathogen interactions involve outer membrane proteins (OMPs) expressed on the bacterial surface. In this study, we developed an Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 OMP microarray containing all predicted lipoproteins and transmembrane OMPs. A total of 401 leptospiral genes or their fragments were transcribed and translated in vitro and printed on nitrocellulose-coated glass slides. We investigated the potential of this protein microarray to screen for interactions between leptospiral OMPs and fibronectin (Fn). This approach resulted in the identification of the recently described fibronectin-binding protein, LIC10258 (MFn8, Lsa66), and 14 novel Fn-binding proteins, denoted Microarray Fn-binding proteins (MFns). We confirmed Fn binding of purified recombinant LIC11612 (MFn1), LIC10714 (MFn2), LIC11051 (MFn6), LIC11436 (MFn7), LIC10258 (MFn8, Lsa66), and LIC10537 (MFn9) by far-Western blot assays. Moreover, we obtained specific antibodies to MFn1, MFn7, MFn8 (Lsa66), and MFn9 and demonstrated that MFn1, MFn7, and MFn9 are expressed and surface exposed under in vitro growth conditions. Further, we demonstrated that MFn1, MFn4 (LIC12631, Sph2), and MFn7 enable leptospires to bind fibronectin when expressed in the saprophyte, Leptospira biflexa. Protein microarrays are valuable tools for high-throughput identification of novel host ligand-binding proteins that have the potential to play key roles in the virulence mechanisms of pathogens.
Collapse
|
49
|
Chronic Q fever: Review of the literature and a proposal of new diagnostic criteria. J Infect 2012; 64:247-59. [DOI: 10.1016/j.jinf.2011.12.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 12/19/2022]
|
50
|
Kowalczewska M, Nappez C, Vincentelli R, Scola BL, Raoult D. Protein candidates for Q fever serodiagnosis. ACTA ACUST UNITED AC 2012; 64:140-2. [DOI: 10.1111/j.1574-695x.2011.00912.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/21/2011] [Accepted: 11/07/2011] [Indexed: 11/30/2022]
|