1
|
Akter F, Bonini S, Ponnaiyan S, Kögler-Mohrbacher B, Bleibaum F, Damme M, Renard BY, Winter D. Multi-Cell Line Analysis of Lysosomal Proteomes Reveals Unique Features and Novel Lysosomal Proteins. Mol Cell Proteomics 2023; 22:100509. [PMID: 36791992 PMCID: PMC10025164 DOI: 10.1016/j.mcpro.2023.100509] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Lysosomes, the main degradative organelles of mammalian cells, play a key role in the regulation of metabolism. It is becoming more and more apparent that they are highly active, diverse, and involved in a large variety of processes. The essential role of lysosomes is exemplified by the detrimental consequences of their malfunction, which can result in lysosomal storage disorders, neurodegenerative diseases, and cancer. Using lysosome enrichment and mass spectrometry, we investigated the lysosomal proteomes of HEK293, HeLa, HuH-7, SH-SY5Y, MEF, and NIH3T3 cells. We provide evidence on a large scale for cell type-specific differences of lysosomes, showing that levels of distinct lysosomal proteins are highly variable within one cell type, while expression of others is highly conserved across several cell lines. Using differentially stable isotope-labeled cells and bimodal distribution analysis, we furthermore identify a high confidence population of lysosomal proteins for each cell line. Multi-cell line correlation of these data reveals potential novel lysosomal proteins, and we confirm lysosomal localization for six candidates. All data are available via ProteomeXchange with identifier PXD020600.
Collapse
Affiliation(s)
- Fatema Akter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany; Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sara Bonini
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Srigayatri Ponnaiyan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | | | - Markus Damme
- Institute for Biochemistry, University of Kiel, Kiel, Germany
| | | | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Gericke B, Wienböker I, Brandes G, Löscher W. Is P-Glycoprotein Functionally Expressed in the Limiting Membrane of Endolysosomes? A Biochemical and Ultrastructural Study in the Rat Liver. Cells 2022; 11:cells11091556. [PMID: 35563868 PMCID: PMC9102269 DOI: 10.3390/cells11091556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The drug efflux transporter P-glycoprotein (Pgp; ABCB1) plays an important role in drug absorption, disposition, and elimination. There is an ongoing debate whether, in addition to its localization at the plasma membrane, Pgp may also be expressed at the limiting membrane of endolysosomes (ELs), mediating active EL drug sequestration. If true, this would be an important mechanism to prevent drugs from reaching their intracellular targets. However, direct evidence demonstrating the functional expression of Pgp at the limiting membrane of ELs is lacking. This prompted us to perform a biochemical and ultrastructural study on the intracellular localization of Pgp in native rat liver. For this purpose, we established an improved subcellular fractionation procedure for the enrichment of ELs and employed different biochemical and ultrastructural methods to characterize the Pgp localization and function in the enriched EL fractions. Whereas the biochemical methods seemed to indicate that Pgp is functionally expressed at EL limiting membranes, transmission electron microscopy (TEM) indicated that this only occurs rarely, if at all. Instead, Pgp was found in the limiting membrane of early endosomes and intraluminal vesicles. In additional TEM experiments, using a Pgp-overexpressing brain microvessel endothelial cell line (hCMEC/D3-MDR1-EGFP), we examined whether Pgp is expressed at the limiting membrane of ELs when cells are exposed to high levels of the Pgp substrate doxorubicin. Pgp was seen in early endosomes but only rarely in endolysosomes, whereas Pgp immunogold labeling was detected in large autophagosomes. In summary, our data demonstrate the importance of combining biochemical and ultrastructural methods to investigate the relationship between Pgp localization and function.
Collapse
Affiliation(s)
- Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; (B.G.); (I.W.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Inka Wienböker
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; (B.G.); (I.W.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany;
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; (B.G.); (I.W.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
- Correspondence:
| |
Collapse
|
3
|
Barral DC, Staiano L, Guimas Almeida C, Cutler DF, Eden ER, Futter CE, Galione A, Marques ARA, Medina DL, Napolitano G, Settembre C, Vieira OV, Aerts JMFG, Atakpa‐Adaji P, Bruno G, Capuozzo A, De Leonibus E, Di Malta C, Escrevente C, Esposito A, Grumati P, Hall MJ, Teodoro RO, Lopes SS, Luzio JP, Monfregola J, Montefusco S, Platt FM, Polishchuck R, De Risi M, Sambri I, Soldati C, Seabra MC. Current methods to analyze lysosome morphology, positioning, motility and function. Traffic 2022; 23:238-269. [PMID: 35343629 PMCID: PMC9323414 DOI: 10.1111/tra.12839] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/09/2023]
Abstract
Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.
Collapse
Affiliation(s)
- Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute for Genetic and Biomedical ResearchNational Research Council (CNR)MilanItaly
| | | | - Dan F. Cutler
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Emily R. Eden
- University College London (UCL) Institute of OphthalmologyLondonUK
| | - Clare E. Futter
- University College London (UCL) Institute of OphthalmologyLondonUK
| | | | | | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Clinical Medicine and Surgery DepartmentFederico II UniversityNaplesItaly
| | - Otília V. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | | | | | - Gemma Bruno
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute of Biochemistry and Cell Biology, CNRRomeItaly
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | | | | | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Michael J. Hall
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Rita O. Teodoro
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - J. Paul Luzio
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | | | | | | | | | - Maria De Risi
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Miguel C. Seabra
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| |
Collapse
|
4
|
Hernandez GA, Perera RM. Autophagy in cancer cell remodeling and quality control. Mol Cell 2022; 82:1514-1527. [PMID: 35452618 PMCID: PMC9119670 DOI: 10.1016/j.molcel.2022.03.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
As one of the two highly conserved cellular degradation systems, autophagy plays a critical role in regulation of protein, lipid, and organelle quality control and cellular homeostasis. This evolutionarily conserved pathway singles out intracellular substrates for elimination via encapsulation within a double-membrane vesicle and delivery to the lysosome for degradation. Multiple cancers disrupt normal regulation of autophagy and hijack its degradative ability to remodel their proteome, reprogram their metabolism, and adapt to environmental challenges, making the autophagy-lysosome system a prime target for anti-cancer interventions. Here, we discuss the roles of autophagy in tumor progression, including cancer-specific mechanisms of autophagy regulation and the contribution of tumor and host autophagy in metabolic regulation, immune evasion, and malignancy. We further discuss emerging proteomics-based approaches for systematic profiling of autophagosome-lysosome composition and contents. Together, these approaches are uncovering new features and functions of autophagy, leading to more effective strategies for targeting this pathway in cancer.
Collapse
Affiliation(s)
- Grace A Hernandez
- Department of Anatomy, Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rushika M Perera
- Department of Anatomy, Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
5
|
Abstract
Lysosomes are the main degradative organelles of almost all eukaryotic cells. They fulfil a crucial function in cellular homeostasis, and impairments in lysosomal function are connected to a continuously increasing number of pathological conditions. In recent years, lysosomes are furthermore emerging as control centers of cellular metabolism, and major regulators of cellular signaling were shown to be activated at the lysosomal surface. To date, >300 proteins were demonstrated to be located in/at the lysosome, and the lysosomal proteome and interactome is constantly growing. For the identification of these proteins, and their involvement in cellular mechanisms or disease progression, mass spectrometry (MS)-based proteomics has proven its worth in a large number of studies. In this review, we are recapitulating the application of MS-based approaches for the investigation of the lysosomal proteome, and their application to a diverse set of research questions. Numerous strategies were applied for the enrichment of lysosomes or lysosomal proteins and their identification by MS-based methods. This allowed for the characterization of the lysosomal proteome, the investigation of lysosome-related disorders, the utilization of lysosomal proteins as biomarkers for diseases, and the characterization of lysosome-related cellular mechanisms. While these >60 studies provide a comprehensive picture of the lysosomal proteome across several model organisms and pathological conditions, various proteomics approaches have not been applied to lysosomes yet, and a large number of questions are still left unanswered.
Collapse
Affiliation(s)
- Pathma Muthukottiappan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, 53115 Bonn, Germany.
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
6
|
Rudnik S, Damme M. The lysosomal membrane-export of metabolites and beyond. FEBS J 2021; 288:4168-4182. [PMID: 33067905 DOI: 10.1111/febs.15602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023]
Abstract
Lysosomes are degradative organelles in eukaryotic cells mediating the hydrolytic catabolism of various macromolecules to small basic building blocks. These low-molecular-weight metabolites are transported across the lysosomal membrane and reused in the cytoplasm and other organelles for biosynthetic pathways. Even though in the past 20 years our understanding of the lysosomal membrane regarding various transporters, other integral and peripheral membrane proteins, the lipid composition, but also its turnover has dramatically improved, there are still many unresolved questions concerning key aspects of the function of the lysosomal membrane. These include a possible function of lysosomes as a cellular storage compartment, yet unidentified transporters mediating the export such as various amino acids, mechanisms mediating the transport of lysosomal membrane proteins from the Golgi apparatus to lysosomes, and the turnover of lysosomal membrane proteins. Here, we review the current knowledge about the lysosomal membrane and identify some of the open questions that need to be solved in the future for a comprehensive and complete understanding of how lysosomes communicate with other organelles, cellular processes, and pathways.
Collapse
Affiliation(s)
- Sönke Rudnik
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
7
|
Shire DM, Kustka AB. Proteomic responses of the coccolithophore Emiliania huxleyi to zinc limitation and trace metal substitution. Environ Microbiol 2021; 24:819-834. [PMID: 34139058 DOI: 10.1111/1462-2920.15644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/26/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022]
Abstract
Zinc concentrations in pelagic surface waters are within the range that limits growth in marine phytoplankton cultures. However, the influence of zinc on marine primary production and phytoplankton communities is not straightforward due to largely uncharacterized abilities for some phytoplankton to access zinc species that may not be universally bioavailable and substitute zinc with cobalt or cadmium. We used a quantitative proteomic approach to investigate these strategies and other responses to zinc limitation in the coccolithophore Emiliania huxleyi, a dominant species in low zinc waters. Zinc limitation resulted in the upregulation of metal transport proteins (ZIP, TroA-like) and COG0523 metallochaperones. Some proteins were uniquely sensitive to growth under replete zinc, substitution of zinc with cobalt, or enhancement of growth with cadmium, and may be useful as biomarkers of zinc stress or substitution in situ. Several proteins specifically upregulated under cobalt-supported or cadmium-enhanced growth appear to reflect stress responses, despite titration of these metals to optimal nutritive levels. Relief from zinc limitation by zinc or cadmium resulted in increased expression of a δ-carbonic anhydrase. Our inability to detect metal binding enzymes that are specifically induced under cobalt- or cadmium-supported growth suggests cambialism is important for zinc substitution in E. huxleyi.
Collapse
Affiliation(s)
- David M Shire
- Department of Earth and Environmental Science, Rutgers University-Newark, Newark, NJ, USA
| | - Adam B Kustka
- Department of Earth and Environmental Science, Rutgers University-Newark, Newark, NJ, USA
| |
Collapse
|
8
|
High fat suppresses SOD1 activity by reducing copper chaperone for SOD1 associated with neurodegeneration and memory decline. Life Sci 2021; 272:119243. [PMID: 33607157 DOI: 10.1016/j.lfs.2021.119243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/22/2023]
Abstract
High fat consumption leads to reactive oxygen species (ROS) which is associated with age-progressive neurological disorders. Cu/Zn superoxide dismutase (SOD1) is a critical enzyme against ROS. However, the relationship between SOD1 and the high-fat-induced ROS and neurodegeneration is poorly known. Here we showed that, upon treatment with a saturated fatty acid palmitic acid (PA), the SOD1 activity was decreased in mouse neuronal HT-22 cell line accompanied by elevation of ROS, but not in mouse microglial BV-2 cell line. We further showed that PA decreased the levels of copper chaperone for SOD1 (CCS) in HT-22 cells, which promoted the nuclear import of SOD1 and decreased its activity. We demonstrated that the reduction of CCS is involved in the PA-induced decrease of SOD1 activity and elevation of ROS. In addition, compared with the adult mice fed with a standard diet, the high-fat-diet adult mice presented an increase of plasma free fatty acids, reduction of hippocampal SOD1 activity and CCS, mitochondrial degeneration and long-term memory decline. Taken together, our findings suggest that the high-fat-induced lower CCS level is essential for SOD1 suppression which may be associated with neurodegeneration and cognitive decline.
Collapse
|
9
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
10
|
Tannous A, Boonen M, Zheng H, Zhao C, Germain CJ, Moore DF, Sleat DE, Jadot M, Lobel P. Comparative Analysis of Quantitative Mass Spectrometric Methods for Subcellular Proteomics. J Proteome Res 2020; 19:1718-1730. [PMID: 32134668 DOI: 10.1021/acs.jproteome.9b00862] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Knowledge of intracellular location can provide important insights into the function of proteins and their respective organelles, and there is interest in combining classical subcellular fractionation with quantitative mass spectrometry to create global cellular maps. To evaluate mass spectrometric approaches specifically for this application, we analyzed rat liver differential centrifugation and Nycodenz density gradient subcellular fractions by tandem mass tag (TMT) isobaric labeling with reporter ion measurement at the MS2 and MS3 level and with two different label-free peak integration approaches, MS1 and data independent acquisition (DIA). TMT-MS2 provided the greatest proteome coverage, but ratio compression from contaminating background ions resulted in a narrower accurate dynamic range compared to TMT-MS3, MS1, and DIA, which were similar. Using a protein clustering approach to evaluate data quality by assignment of reference proteins to their correct compartments, all methods performed well, with isobaric labeling approaches providing the highest quality localization. Finally, TMT-MS2 gave the lowest percentage of missing quantifiable data when analyzing orthogonal fractionation methods containing overlapping proteomes. In summary, despite inaccuracies resulting from ratio compression, data obtained by TMT-MS2 assigned protein localization as well as other methods but achieved the highest proteome coverage with the lowest proportion of missing values.
Collapse
Affiliation(s)
- Abla Tannous
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | - Marielle Boonen
- URPhyM-Intracellular Trafficking Biology, NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000, Belgium
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | - Colin J Germain
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | - Dirk F Moore
- Department of Biostatistics, School of Public Health, Rutgers - The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - David E Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States.,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| | - Michel Jadot
- URPhyM-Physiological Chemistry, NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000, Belgium
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States.,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| |
Collapse
|
11
|
Singh J, Kaade E, Muntel J, Bruderer R, Reiter L, Thelen M, Winter D. Systematic Comparison of Strategies for the Enrichment of Lysosomes by Data Independent Acquisition. J Proteome Res 2020; 19:371-381. [PMID: 31738065 DOI: 10.1021/acs.jproteome.9b00580] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In mammalian cells, the lysosome is the main organelle for the degradation of macromolecules and the recycling of their building blocks. Correct lysosomal function is essential, and mutations in every known lysosomal hydrolase result in so-called lysosomal storage disorders, a group of rare and often fatal inherited diseases. Furthermore, it is becoming more and more apparent that lysosomes play also decisive roles in other diseases, such as cancer and common neurodegenerative disorders. This leads to an increasing interest in the proteomic analysis of lysosomes for which enrichment is a prerequisite. In this study, we compared the four most common strategies for the enrichment of lysosomes using data-independent acquisition. We performed centrifugation at 20,000 × g to generate an organelle-enriched pellet, two-step sucrose density gradient centrifugation, enrichment by superparamagnetic iron oxide nanoparticles (SPIONs), and immunoprecipitation using a 3xHA tagged version of the lysosomal membrane protein TMEM192. Our results show that SPIONs and TMEM192 immunoprecipitation outperform the other approaches with enrichment factors of up to 118-fold for certain proteins relative to whole cell lysates. Furthermore, we achieved an increase in identified lysosomal proteins and a higher reproducibility in protein intensities for label-free quantification in comparison to the other strategies.
Collapse
Affiliation(s)
- Jasjot Singh
- Institute for Biochemistry and Molecular Biology , University of Bonn , 53115 Bonn , Germany
| | - Edgar Kaade
- Institute for Biochemistry and Molecular Biology , University of Bonn , 53115 Bonn , Germany
| | - Jan Muntel
- Biognosys , 8952 Schlieren , Switzerland
| | | | | | - Melanie Thelen
- Institute for Biochemistry and Molecular Biology , University of Bonn , 53115 Bonn , Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology , University of Bonn , 53115 Bonn , Germany
| |
Collapse
|
12
|
Massa López D, Thelen M, Stahl F, Thiel C, Linhorst A, Sylvester M, Hermanns-Borgmeyer I, Lüllmann-Rauch R, Eskild W, Saftig P, Damme M. The lysosomal transporter MFSD1 is essential for liver homeostasis and critically depends on its accessory subunit GLMP. eLife 2019; 8:50025. [PMID: 31661432 PMCID: PMC6819133 DOI: 10.7554/elife.50025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/26/2019] [Indexed: 12/28/2022] Open
Abstract
Lysosomes are major sites for intracellular, acidic hydrolase-mediated proteolysis and cellular degradation. The export of low-molecular-weight catabolic end-products is facilitated by polytopic transmembrane proteins mediating secondary active or passive transport. A number of these lysosomal transporters, however, remain enigmatic. We present a detailed analysis of MFSD1, a hitherto uncharacterized lysosomal family member of the major facilitator superfamily. MFSD1 is not N-glycosylated. It contains a dileucine-based sorting motif needed for its transport to lysosomes. Mfsd1 knockout mice develop splenomegaly and severe liver disease. Proteomics of isolated lysosomes from Mfsd1 knockout mice revealed GLMP as a critical accessory subunit for MFSD1. MFSD1 and GLMP physically interact. GLMP is essential for the maintenance of normal levels of MFSD1 in lysosomes and vice versa. Glmp knockout mice mimic the phenotype of Mfsd1 knockout mice. Our data reveal a tightly linked MFSD1/GLMP lysosomal membrane protein transporter complex. Lysosomes are specialized, enclosed compartments within cells with harsh chemical conditions where enzymes break down large molecules into smaller component parts. The products of these reactions are then transported out of the lysosome by transporter proteins so that they can be used to build new molecules that the cell needs. Despite their importance, only a few lysosomal transporters have been thoroughly studied. A protein called MFSD1 had previously been identified as a potential lysosomal transporter, but its precise role has not been described. Now, Massa López et al. have characterized the role of MFSD1, by genetically modifying mice so they could no longer make the transporter. These mice developed severe liver damage. In particular, a specific type of cell that is important for lining blood vessels in the liver, seemed to be lost in these mice. Older MFSD1 deficient mice also had more tumors in their livers compared to normal mice. Massa López et al. next examined what happened to other lysosomal proteins in the MFSD1 deficient mice, and found that these mice had strikingly low levels of a protein called GLMP. To better understand the relationship between GLMP and MFSD1, another strain of genetically modified mice was analyzed, this time missing GLMP. Mice without GLMP were found to have very similar liver problems to those observed in the mice lacking MFSD1. Moreover, the GLMP deficient mice had low levels of the MFSD1 protein. Further experiments demonstrated that MFSD1 and GLMP physically interact with each other: GLMP seemed to protect MFSD1 from being degraded in the harsh internal environment of the lysosome. Thus both GLMP and MFSD1 were needed to form a stable lysosomal transporter. Characterizing MFSD1 is important for scientists attempting to understand how the lysosomal membrane and transporters work. Moreover, these findings may shed light on how defects in lysosomal transporters contribute to metabolic disease.
Collapse
Affiliation(s)
- David Massa López
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Melanie Thelen
- Institute for Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, Germany
| | - Felix Stahl
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department of Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Arne Linhorst
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Marc Sylvester
- Institute for Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, Germany
| | - Irm Hermanns-Borgmeyer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Winnie Eskild
- Department of Bioscience, University of Oslo, Oslo, Norway
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
13
|
Rakvács Z, Kucsma N, Gera M, Igriczi B, Kiss K, Barna J, Kovács D, Vellai T, Bencs L, Reisecker JM, Szoboszlai N, Szakács G. The human ABCB6 protein is the functional homologue of HMT-1 proteins mediating cadmium detoxification. Cell Mol Life Sci 2019; 76:4131-4144. [PMID: 31053883 PMCID: PMC6785578 DOI: 10.1007/s00018-019-03105-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
ABCB6 belongs to the family of ATP-binding cassette (ABC) transporters, which transport various molecules across extra- and intra-cellular membranes, bearing significant impact on human disease and pharmacology. Although mutations in the ABCB6 gene have been linked to a variety of pathophysiological conditions ranging from transfusion incompatibility to pigmentation defects, its precise cellular localization and function is not understood. In particular, the intracellular localization of ABCB6 has been a matter of debate, with conflicting reports suggesting mitochondrial or endolysosomal expression. ABCB6 shows significant sequence identity to HMT-1 (heavy metal tolerance factor 1) proteins, whose evolutionarily conserved role is to confer tolerance to heavy metals through the intracellular sequestration of metal complexes. Here, we show that the cadmium-sensitive phenotype of Schizosaccharomyces pombe and Caenorhabditis elegans strains defective for HMT-1 is rescued by the human ABCB6 protein. Overexpression of ABCB6 conferred tolerance to cadmium and As(III) (As2O3), but not to As(V) (Na2HAsO4), Sb(V), Hg(II), or Zn(II). Inactivating mutations of ABCB6 abolished vacuolar sequestration of cadmium, effectively suppressing the cadmium tolerance phenotype. Modulation of ABCB6 expression levels in human glioblastoma cells resulted in a concomitant change in cadmium sensitivity. Our findings reveal ABCB6 as a functional homologue of the HMT-1 proteins, linking endolysosomal ABCB6 to the highly conserved mechanism of intracellular cadmium detoxification.
Collapse
Affiliation(s)
- Zsófia Rakvács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Melinda Gera
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Barbara Igriczi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - László Bencs
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Johannes M Reisecker
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Norbert Szoboszlai
- Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Kumar V, A AK, Sanawar R, Jaleel A, Santhosh Kumar TR, Kartha CC. Chronic Pressure Overload Results in Deficiency of Mitochondrial Membrane Transporter ABCB7 Which Contributes to Iron Overload, Mitochondrial Dysfunction, Metabolic Shift and Worsens Cardiac Function. Sci Rep 2019; 9:13170. [PMID: 31511561 PMCID: PMC6739357 DOI: 10.1038/s41598-019-49666-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
We examined the hitherto unexplored role of mitochondrial transporters and iron metabolism in advancing metabolic and mitochondrial dysfunction in the heart during long term pressure overload. We also investigated the link between mitochondrial dysfunction and fluctuation in mitochondrial transporters associated with pressure overload cardiac hypertrophy. Left ventricular hypertrophy (LVH) was induced in 3-month-old male Wistar rats by constriction of the aorta using titanium clips. After sacrifice at the end of 6 and 15 months after constriction, tissues from the left ventricle (LV) from all animals were collected for histology, biochemical studies, proteomic and metabolic profiling, and gene and protein expression studies. LV tissues from rats with LVH had a significant decrease in the expression of ABCB7 and mitochondrial oxidative phosphorylation (mt-OXPHOS) enzymes, an increased level of lipid metabolites, decrease in the level of intermediate metabolites of pentose phosphate pathway and elevated levels of cytoplasmic and mitochondrial iron, reactive oxygen species (ROS) and autophagy-related proteins. Knockdown of ABCB7 in H9C2 cells and stimulation with angiotensin II resulted in increased ROS levels, ferritin, and transferrin receptor expression and iron overload in both mitochondria and cytoplasm. A decrease in mRNA and protein levels of mt-OXPHOS specific enzymes, mt-dynamics and autophagy clearance and activation of IGF-1 signaling were also seen in these cells. ABCB7 overexpression rescued all these changes. ABCB7 was found to interact with mitochondrial complexes IV and V. We conclude that in chronic pressure overload, ABCB7 deficiency results in iron overload and mitochondrial dysfunction, contributing to heart failure.
Collapse
Affiliation(s)
- Vikas Kumar
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.,Graduate studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Aneesh Kumar A
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.,Graduate studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Rahul Sanawar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.,Graduate studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Abdul Jaleel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.,Graduate studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - T R Santhosh Kumar
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India. .,Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India. .,Graduate studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.
| | - C C Kartha
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.
| |
Collapse
|
15
|
Luo C, Zhao S, Dai W, Zheng N, Wang J. Proteomic Analysis of Lysosomal Membrane Proteins in Bovine Mammary Epithelial Cells Illuminates Potential Novel Lysosome Functions in Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13041-13049. [PMID: 30499671 DOI: 10.1021/acs.jafc.8b04508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lactation of bovine mammary epithelial cells (BMEC) is a complex biological process that involves in various organelles. Studies have shown that lysosome and lysosomal membrane proteins (LMP) plays an important role in lactation of BMEC. But the LMP of BMEC remains poorly understood. To obtain a global view of the LMP of BMEC and the affect of lysosome on lactation, the LMP of BMEC was identified using sequential windowed acquisition of all theoretical mass spectra (LC-SWATH/MS). 1214 LMP were identified and 559 were reported to be localized on lysosomal membrane for the first time in BMEC. Gene ontology annotation of these identified proteins showed that both previously reported casein synthesis-related LMP, such as LAMTOR1, 2, 3, and rRagC, and newly identified casein and milk fat synthesis-related LMP, such as EIF4E and ACAA1, were found. KEGG pathway analysis of these identified proteins showed that some pathways involved in lactation, such as PI3K-Akt, mTOR, insulin, PPAR, and JAK-STAT pathway, were found. The lysosomal location of five proteins (PRKCA, EIF4E, ACAA1, HRAS, and THBS1) was analyzed by laser confocal microscopy, and all five were associated with the lysosomal membrane. These findings help to elucidate lysosome functions in the regulation of lactation. The results implicate lysosomes as important organelles in regulation of lactation of BMEC that have been previously undervalued.
Collapse
|
16
|
Cudjoe EK, Saleh T, Hawkridge AM, Gewirtz DA. Proteomics Insights into Autophagy. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Emmanuel K. Cudjoe
- Department of Pharmacotherapy & Outcomes Science; Virginia Commonwealth University; Richmond VA
| | - Tareq Saleh
- Department of Pharmacology & Toxicology; Virginia Commonwealth University; Richmond VA
| | - Adam M. Hawkridge
- Department of Pharmacotherapy & Outcomes Science; Virginia Commonwealth University; Richmond VA
- Department of Pharmaceutics; Virginia Commonwealth University; Richmond VA
| | - David A. Gewirtz
- Department of Pharmacology & Toxicology; Virginia Commonwealth University; Richmond VA
- Massey Cancer Center; Virginia Commonwealth University; Richmond VA
| |
Collapse
|
17
|
SNAT7 is the primary lysosomal glutamine exporter required for extracellular protein-dependent growth of cancer cells. Proc Natl Acad Sci U S A 2017; 114:E3602-E3611. [PMID: 28416685 DOI: 10.1073/pnas.1617066114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lysosomes degrade cellular components sequestered by autophagy or extracellular material internalized by endocytosis and phagocytosis. The macromolecule building blocks released by lysosomal hydrolysis are then exported to the cytosol by lysosomal transporters, which remain undercharacterized. In this study, we designed an in situ assay of lysosomal amino acid export based on the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis that detects lysosomal storage. This assay was used to screen candidate lysosomal transporters, leading to the identification of sodium-coupled neutral amino acid transporter 7 (SNAT7), encoded by the SLC38A7 gene, as a lysosomal transporter highly selective for glutamine and asparagine. Cell fractionation confirmed the lysosomal localization of SNAT7, and flux measurements confirmed its substrate selectivity and showed a strong activation by the lysosomal pH gradient. Interestingly, gene silencing or editing experiments revealed that SNAT7 is the primary permeation pathway for glutamine across the lysosomal membrane and it is required for growth of cancer cells in a low free-glutamine environment, when macropinocytosis and lysosomal degradation of extracellular proteins are used as an alternative source of amino acids. SNAT7 may, thus, represent a novel target for glutamine-related anticancer therapies.
Collapse
|
18
|
Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View. Int J Mol Sci 2016; 18:ijms18010047. [PMID: 28036022 PMCID: PMC5297682 DOI: 10.3390/ijms18010047] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023] Open
Abstract
Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based) that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P) moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review.
Collapse
|
19
|
Jadot M, Boonen M, Thirion J, Wang N, Xing J, Zhao C, Tannous A, Qian M, Zheng H, Everett JK, Moore DF, Sleat DE, Lobel P. Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome. Mol Cell Proteomics 2016; 16:194-212. [PMID: 27923875 DOI: 10.1074/mcp.m116.064527] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/18/2016] [Indexed: 11/06/2022] Open
Abstract
Accurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere. As a step toward a comprehensive cellular map, we used subcellular fractionation with classic balance sheet analysis and isobaric labeling/quantitative mass spectrometry to assign locations to >6000 rat liver proteins. We provide quantitative data and error estimates describing the distribution of each protein among the eight major cellular compartments: nucleus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, Golgi, plasma membrane and cytosol. Accounting for total intracellular distribution improves quality of organelle assignments and assigns proteins with multiple locations. Protein assignments and supporting data are available online through the Prolocate website (http://prolocate.cabm.rutgers.edu). As an example of the utility of this data set, we have used organelle assignments to help analyze whole exome sequencing data from an infant dying at 6 months of age from a suspected neurodegenerative lysosomal storage disorder of unknown etiology. Sequencing data was prioritized using lists of lysosomal proteins comprising well-established residents of this organelle as well as novel candidates identified in this study. The latter included copper transporter 1, encoded by SLC31A1, which we localized to both the plasma membrane and lysosome. The patient harbors two predicted loss of function mutations in SLC31A1, suggesting that this may represent a heretofore undescribed recessive lysosomal storage disease gene.
Collapse
Affiliation(s)
- Michel Jadot
- From the ‡URPhyM-Laboratoire de Chimie Physiologique, Université de Namur, 61 rue de Bruxelles, Namur 5000, Belgium;
| | - Marielle Boonen
- From the ‡URPhyM-Laboratoire de Chimie Physiologique, Université de Namur, 61 rue de Bruxelles, Namur 5000, Belgium
| | - Jaqueline Thirion
- From the ‡URPhyM-Laboratoire de Chimie Physiologique, Université de Namur, 61 rue de Bruxelles, Namur 5000, Belgium
| | - Nan Wang
- §Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Jinchuan Xing
- §Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Caifeng Zhao
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - Abla Tannous
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - Meiqian Qian
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - Haiyan Zheng
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - John K Everett
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854
| | - Dirk F Moore
- ‖Department of Biostatistics, School of Public Health, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, New Jersey 08854
| | - David E Sleat
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854;
| | - Peter Lobel
- ¶Center for Advanced Biotechnology and Medicine, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854;
| |
Collapse
|
20
|
Abdolvahabi A, Shi Y, Rhodes NR, Cook NP, Martí AA, Shaw BF. Arresting amyloid with coulomb's law: acetylation of ALS-linked SOD1 by aspirin impedes aggregation. Biophys J 2016; 108:1199-212. [PMID: 25762331 DOI: 10.1016/j.bpj.2015.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/04/2014] [Accepted: 01/13/2015] [Indexed: 12/15/2022] Open
Abstract
Although the magnitude of a protein's net charge (Z) can control its rate of self-assembly into amyloid, and its interactions with cellular membranes, the net charge of a protein is not viewed as a druggable parameter. This article demonstrates that aspirin (the quintessential acylating pharmacon) can inhibit the amyloidogenesis of superoxide dismutase (SOD1) by increasing the intrinsic net negative charge of the polypeptide, i.e., by acetylation (neutralization) of multiple lysines. The protective effects of acetylation were diminished (but not abolished) in 100 mM NaCl and were statistically significant: a total of 432 thioflavin-T amyloid assays were performed for all studied proteins. The acetylation of as few as three lysines by aspirin in A4V apo-SOD1-a variant that causes familial amyotrophic lateral sclerosis (ALS)-delayed amyloid nucleation by 38% and slowed amyloid propagation by twofold. Lysines in wild-type- and ALS-variant apo-SOD1 could also be peracetylated with aspirin after fibrillization, resulting in supercharged fibrils, with increases in formal net charge of ∼2 million units. Peracetylated SOD1 amyloid defibrillized at temperatures below unacetylated fibrils, and below the melting temperature of native Cu2,Zn2-SOD1 (e.g., fibril Tm = 84.49°C for acetylated D90A apo-SOD1 fibrils). Targeting the net charge of native or misfolded proteins with small molecules-analogous to how an enzyme's Km or Vmax are medicinally targeted-holds promise as a strategy in the design of therapies for diseases linked to protein self-assembly.
Collapse
Affiliation(s)
| | - Yunhua Shi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas
| | - Nicholas R Rhodes
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas
| | - Nathan P Cook
- Department of Chemistry, Rice University, Houston, Texas
| | - Angel A Martí
- Department of Chemistry, Rice University, Houston, Texas; Department of Bioengineering, Rice University, Houston, Texas
| | - Bryan F Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas.
| |
Collapse
|
21
|
Shi Y, Acerson MJ, Shuford KL, Shaw BF. Voltage-Induced Misfolding of Zinc-Replete ALS Mutant Superoxide Dismutase-1. ACS Chem Neurosci 2015. [PMID: 26207449 DOI: 10.1021/acschemneuro.5b00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The monomerization of Cu, Zn superoxide dismutase (SOD1) is an early step along pathways of misfolding linked to amyotrophic lateral sclerosis (ALS). Monomerization requires the reversal of two post-translational modifications that are thermodynamically favorable: (i) dissociation of active-site metal ions and (ii) reduction of intramolecular disulfide bonds. This study found, using amide hydrogen/deuterium (H/D) exchange, capillary electrophoresis, and lysine-acetyl protein charge ladders, that ALS-linked A4V SOD1 rapidly monomerizes and partially unfolds in an external electric field (of physiological strength), without loss of metal ions, exposure to disulfide-reducing agents, or Joule heating. Voltage-induced monomerization was not observed for metal-free A4V SOD1, metal-free WT SOD1, or metal-loaded WT SOD1. Computational modeling suggested a mechanism for this counterintuitive effect: subunit macrodipoles of dimeric SOD1 are antiparallel and amplified 2-fold by metal coordination, which increases torque at the dimer interface as subunits rotate to align with the electric field.
Collapse
Affiliation(s)
- Yunhua Shi
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Mark J. Acerson
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Kevin L. Shuford
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Bryan F. Shaw
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|
22
|
Koszarska M, Kucsma N, Kiss K, Varady G, Gera M, Antalffy G, Andrikovics H, Tordai A, Studzian M, Strapagiel D, Pulaski L, Tani Y, Sarkadi B, Szakacs G. Screening the expression of ABCB6 in erythrocytes reveals an unexpectedly high frequency of Lan mutations in healthy individuals. PLoS One 2014; 9:e111590. [PMID: 25360778 PMCID: PMC4216114 DOI: 10.1371/journal.pone.0111590] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/26/2014] [Indexed: 01/20/2023] Open
Abstract
Lan is a high-incidence blood group antigen expressed in more than 99.9% of the population. Identification of the human ABC transporter ABCB6 as the molecular basis of Lan has opened the way for studies assessing the relation of ABCB6 function and expression to health and disease. To date, 34 ABCB6 sequence variants have been described in association with reduced ABCB6 expression based on the genotyping of stored blood showing weak or no reactivity with anti-Lan antibodies. In the present study we examined the red blood cell (RBC) surface expression of ABCB6 by quantitative flow cytometry in a cohort of 47 healthy individuals. Sequencing of the entire coding region of the ABCB6 gene in low RBC ABCB6 expressors identified a new allele (IVS9+1G>A, affecting a putative splice site at the boundary of exon 9) and two nonsynonymous SNPs listed in the SNP database (R192Q (rs150221689) and G588 S (rs145526996)). The R192Q mutation showed co-segregation with reduced RBC ABCB6 expression in a family, and we found the G588 S mutation in a compound heterozygous individual with undetectable ABCB6 expression, suggesting that both mutations result in weak or no expression of ABCB6 on RBCs. Analysis of the intracellular expression pattern in HeLa cells by confocal microscopy indicated that these mutations do not compromise overall expression or the endolysosomal localization of ABCB6. Genotyping of two large cohorts, containing 235 and 1039 unrelated volunteers, confirmed the high allele frequency of Lan-mutations. Our results suggest that genetic variants linked to lower or absent cell surface expression of ABCB6/Langereis may be more common than previously thought.
Collapse
Affiliation(s)
| | - Nora Kucsma
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gyorgy Varady
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Melinda Gera
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Geza Antalffy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Attila Tordai
- Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Maciej Studzian
- Department of Molecular Biophysics, University of Lodz, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, University of Lodz, Lodz, Poland
| | - Lukasz Pulaski
- Department of Molecular Biophysics, University of Lodz, Lodz, Poland
| | - Yoshihiko Tani
- Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | - Balazs Sarkadi
- Hungarian National Blood Transfusion Service, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Molecular Biophysics Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gergely Szakacs
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
23
|
Repo H, Kuokkanen E, Oksanen E, Goldman A, Heikinheimo P. Is the bovine lysosomal phospholipase B-like protein an amidase? Proteins 2013; 82:300-11. [PMID: 23934913 DOI: 10.1002/prot.24388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 12/17/2022]
Abstract
The main function of lysosomal proteins is to degrade cellular macromolecules. We purified a novel lysosomal protein to homogeneity from bovine kidneys. By gene annotation, this protein is defined as a bovine phospholipase B-like protein 1 (bPLBD1) and, to better understand its biological function, we solved its structure at 1.9 Å resolution. We showed that bPLBD1 has uniform noncomplex-type N-glycosylation and that it localized to the lysosome. The first step in lysosomal protein transport, the initiation of mannose-6-phosphorylation by a N-acetylglucosamine-1-phosphotransferase, requires recognition of at least two distinct lysines on the protein surface. We identified candidate lysines by analyzing the structural and sequentially conserved N-glycosylation sites and lysines in bPLBD1 and in the homologous mouse PLBD2. Our model suggests that N408 is the primarily phosphorylated glycan, and K358 a key residue for N-acetylglucosamine-1-phosphotransferase recognition. Two other lysines, K334 and K342, provide the required second site for N-acetylglucosamine-1-phosphotransferase recognition. bPLBD1 is an N-terminal nucleophile (Ntn) hydrolase. By comparison with other Ntn-hydrolases, we conclude that the acyl moiety of PLBD1 substrate must be small to fit the putative binding pocket, whereas the space for the rest of the substrate is a large open cleft. Finally, as all the known substrates of Ntn-hydrolases have amide bonds, we suggest that bPLBD1 may be an amidase or peptidase instead of lipase, explaining the difficulty in finding a good substrate for any members of the PLBD family.
Collapse
Affiliation(s)
- Heidi Repo
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland; Department of Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|
24
|
Gómez MA, Navas A, Márquez R, Rojas LJ, Vargas DA, Blanco VM, Koren R, Zilberstein D, Saravia NG. Leishmania panamensis infection and antimonial drugs modulate expression of macrophage drug transporters and metabolizing enzymes: impact on intracellular parasite survival. J Antimicrob Chemother 2013; 69:139-49. [PMID: 23975742 DOI: 10.1093/jac/dkt334] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES Treatment failure is multifactorial. Despite the importance of host cell drug transporters and metabolizing enzymes in the accumulation, distribution and metabolism of drugs targeting intracellular pathogens, their impact on the efficacy of antileishmanials is unknown. We examined the contribution of pharmacologically relevant determinants in human macrophages in the antimony-mediated killing of intracellular Leishmania panamensis and its relationship with the outcome of treatment with meglumine antimoniate. METHODS Patients with cutaneous leishmaniasis who failed (n = 8) or responded (n =8) to treatment were recruited. Gene expression profiling of pharmacological determinants in primary macrophages was evaluated by quantitative RT-PCR and correlated to the drug-mediated intracellular parasite killing. Functional validation was conducted through short hairpin RNA gene knockdown. RESULTS Survival of L. panamensis after exposure to antimonials was significantly higher in macrophages from patients who failed treatment. Sixteen macrophage drug-response genes were modulated by infection and exposure to meglumine antimoniate. Correlation analyses of gene expression and intracellular parasite survival revealed the involvement of host cell metallothionein-2A and ABCB6 in the survival of Leishmania during exposure to antimonials. ABCB6 was functionally validated as a transporter of antimonial compounds localized in both the cell and phagolysosomal membranes of macrophages, revealing a novel mechanism of host cell-mediated regulation of intracellular drug exposure and parasite survival within phagocytes. CONCLUSIONS These results provide insight into host cell mechanisms regulating the intracellular exposure of Leishmania to antimonials and variations among individuals that impact parasite survival. Understanding of host cell determinants of intracellular pharmacokinetics/pharmacodynamics opens new avenues to improved drug efficacy for intracellular pathogens.
Collapse
Affiliation(s)
- Maria Adelaida Gómez
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Carrera 125 No. 19-225 Cali, Colombia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shi Y, Mowery RA, Shaw BF. Effect of metal loading and subcellular pH on net charge of superoxide dismutase-1. J Mol Biol 2013; 425:4388-404. [PMID: 23871896 DOI: 10.1016/j.jmb.2013.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/03/2013] [Accepted: 07/11/2013] [Indexed: 11/17/2022]
Abstract
The net charge of a folded protein is hypothesized to influence myriad biochemical processes (e.g., protein misfolding, electron transfer, molecular recognition); however, few tools exist for measuring net charge and this elusive property remains undetermined--at any pH--for nearly all proteins. This study used lysine-acetyl "protein charge ladders" and capillary electrophoresis to measure the net charge of superoxide dismutase-1 (SOD1)--whose aggregation causes amyotrophic lateral sclerosis (ALS)--as a function of coordinated metal ions and pH. The net negative charge of apo-SOD1 was similar to predicted values; however, the binding of a single Zn(2+) or Cu(2+) ion reduced the net negative charge by a greater magnitude than predicted (i.e., ~4 units, instead of 2), whereas the SOD1 protein underwent charge regulation upon binding 2-4 metal ions. From pH5 to pH8 (i.e., a range consistent with the multiple subcellular loci of SOD1), the holo-SOD1 protein underwent smaller fluctuations in net negative charge than predicted (i.e., ~3 units, instead of ~14) and did not undergo charge inversion at its isoelectric point (pI=5.3) but remained anionic. The regulation of SOD1 net charge along its pathways of metal binding, and across solvent pH, provides insight into its metal-induced maturation and enzymatic activity (which remains diffusion-limited across pH5-8). The anionic nature of holo-SOD1 across subcellular pH suggests that ~45 different ALS-linked mutations to SOD1 will reduce its net negative charge regardless of subcellular localization.
Collapse
Affiliation(s)
- Yunhua Shi
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | | | | |
Collapse
|
26
|
Chapel A, Kieffer-Jaquinod S, Sagné C, Verdon Q, Ivaldi C, Mellal M, Thirion J, Jadot M, Bruley C, Garin J, Gasnier B, Journet A. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol Cell Proteomics 2013; 12:1572-88. [PMID: 23436907 PMCID: PMC3675815 DOI: 10.1074/mcp.m112.021980] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 02/01/2013] [Indexed: 12/22/2022] Open
Abstract
Lysosomes are membrane-bound endocytic organelles that play a major role in degrading cell macromolecules and recycling their building blocks. A comprehensive knowledge of the lysosome function requires an extensive description of its content, an issue partially addressed by previous proteomic analyses. However, the proteins underlying many lysosomal membrane functions, including numerous membrane transporters, remain unidentified. We performed a comparative, semi-quantitative proteomic analysis of rat liver lysosome-enriched and lysosome-nonenriched membranes and used spectral counts to evaluate the relative abundance of proteins. Among a total of 2,385 identified proteins, 734 proteins were significantly enriched in the lysosomal fraction, including 207 proteins already known or predicted as endo-lysosomal and 94 proteins without any known or predicted subcellular localization. The remaining 433 proteins had been previously assigned to other subcellular compartments but may in fact reside on lysosomes either predominantly or as a secondary location. Many membrane-associated complexes implicated in diverse processes such as degradation, membrane trafficking, lysosome biogenesis, lysosome acidification, signaling, and nutrient sensing were enriched in the lysosomal fraction. They were identified to an unprecedented extent as most, if not all, of their subunits were found and retained by our screen. Numerous transporters were also identified, including 46 novel potentially lysosomal proteins. We expressed 12 candidates in HeLa cells and observed that most of them colocalized with the lysosomal marker LAMP1, thus confirming their lysosomal residency. This list of candidate lysosomal proteins substantially increases our knowledge of the lysosomal membrane and provides a basis for further characterization of lysosomal functions.
Collapse
Affiliation(s)
- Agnès Chapel
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Sylvie Kieffer-Jaquinod
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Corinne Sagné
- the ‖Université Paris Descartes, Sorbonne Paris Cité, CNRS, UMR 8192, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75006 Paris, France
| | - Quentin Verdon
- the ‖Université Paris Descartes, Sorbonne Paris Cité, CNRS, UMR 8192, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75006 Paris, France
- §§Graduate School ED 419, Université Paris-Sud 11, Hôpital Bicêtre, F-94276 Le Kremlin Bicêtre France, and
| | - Corinne Ivaldi
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Mourad Mellal
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Jaqueline Thirion
- the **Unité de Recherche en Physiologie Moléculaire, Namur Research Institute for Life Sciences, University of Namur (FUNDP), 61, Rue de Bruxelles B,-5000, Namur, Belgium
| | - Michel Jadot
- the **Unité de Recherche en Physiologie Moléculaire, Namur Research Institute for Life Sciences, University of Namur (FUNDP), 61, Rue de Bruxelles B,-5000, Namur, Belgium
| | - Christophe Bruley
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Jérôme Garin
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Bruno Gasnier
- the ‖Université Paris Descartes, Sorbonne Paris Cité, CNRS, UMR 8192, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75006 Paris, France
| | - Agnès Journet
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| |
Collapse
|
27
|
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev 2013; 113:2733-811. [PMID: 23570618 PMCID: PMC3676536 DOI: 10.1021/cr300354g] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chad P. Satori
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Michelle M. Henderson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Elyse A. Krautkramer
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Vratislav Kostal
- Tescan, Libusina trida 21, Brno, 623 00, Czech Republic
- Institute of Analytical Chemistry ASCR, Veveri 97, Brno, 602 00, Czech Republic
| | - Mark M. Distefano
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| |
Collapse
|
28
|
Sleat DE, Sun P, Wiseman JA, Huang L, El-Banna M, Zheng H, Moore DF, Lobel P. Extending the mannose 6-phosphate glycoproteome by high resolution/accuracy mass spectrometry analysis of control and acid phosphatase 5-deficient mice. Mol Cell Proteomics 2013; 12:1806-17. [PMID: 23478313 DOI: 10.1074/mcp.m112.026179] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In mammals, most newly synthesized lumenal lysosomal proteins are delivered to the lysosome by the mannose 6-phosphate (Man6P) targeting pathway. Man6P -containing proteins can be affinity-purified and characterized using proteomic approaches, and such studies have led to the discovery of new lysosomal proteins and associated human disease genes. One limitation to this approach is that in most cell types the Man6P modification is rapidly removed by acid phosphatase 5 (ACP5) after proteins are targeted to the lysosome, and thus, some lysosomal proteins may escape detection. In this study, we have extended the analysis of the lysosomal proteome using high resolution/accuracy mass spectrometry to identify and quantify proteins in a combined analysis of control and ACP5-deficient mice. To identify Man6P glycoproteins with limited tissue distribution, we analyzed multiple tissues and used statistical approaches to identify proteins that are purified with high specificity. In addition to 68 known Man6P glycoproteins, 165 other murine proteins were identified that may contain Man6P and may thus represent novel lysosomal residents. For four of these lysosomal candidates, (lactoperoxidase, phospholipase D family member 3, ribonuclease 6, and serum amyloid P component), we demonstrate lysosomal residence based on the colocalization of fluorescent fusion proteins with a lysosomal marker.
Collapse
Affiliation(s)
- David E Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Engelke R, Becker AC, Dengjel J. The degradative inventory of the cell: proteomic insights. Antioxid Redox Signal 2012; 17:803-12. [PMID: 22074050 DOI: 10.1089/ars.2011.4393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Protein degradation has been identified as being deregulated in numerous human diseases. Hence, proteins involved in proteasomal as well as lysosomal degradation are regarded as interesting potential drug targets and are thoroughly investigated in clinical studies. RECENT ADVANCES Technical advances in the field of quantitative mass spectrometry (MS)-based proteomics allow for detailed investigations of protein degradation dynamics and identifications of responsible protein-protein interaction networks enabling a systematic analysis of the degradative inventory of the cell and its underlying molecular mechanisms. CRITICAL ISSUES In the current review we outline recent technical advances and their limitations in MS-based proteomics and discuss their use for the analysis of protein dynamics involved in degradation processes. FUTURE DIRECTIONS In the next years the analysis of crosstalk between different posttranslational modifications (PTMs) will be a major focus of MS-based proteomics studies. Increasing evidence highlights the complexity of PTMs with positive and negative feedbacks being discovered. In this regard, the generation of absolute quantitative proteomic data will be essential for theoretical scientists to construct predictive network models that constitute a valuable tool for fast hypothesis testing and for explaining underlying molecular mechanisms.
Collapse
Affiliation(s)
- Rudolf Engelke
- Freiburg Institute for Advanced Studies, School of Life Science-LifeNet, University of Freiburg, Germany
| | | | | |
Collapse
|
30
|
Prenni JE, Vidal M, Olver CS. Preliminary characterization of the murine membrane reticulocyte proteome. Blood Cells Mol Dis 2012; 49:74-82. [PMID: 22633119 DOI: 10.1016/j.bcmd.2012.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/19/2012] [Accepted: 04/19/2012] [Indexed: 01/05/2023]
Abstract
The maturation from reticulocyte (immature red blood cell) to erythrocyte (mature red blood cell) includes the loss or decreased expression of cell surface molecules through exosome formation and secretion. Identifying the molecules lost and the molecular events involved is important to our understanding of this final stage of erythropoiesis and of diseases where it is deranged. Also, the presence of certain cell surface molecules is likely responsible for the invasion of certain malaria parasites into reticulocytes. Using a global proteomics approach, we identified proteins potentially lost during and/or involved in the reticulocyte maturation process. The reticulocyte proteome has not yet been published, as previous such studies have focused on the mature erythrocyte. Membrane-rich fractions were fractionated by electrophoresis followed by analysis with tandem mass spectrometry. Seven hundred forty four proteins were identified in the reticulocyte-rich membrane fraction, 192 proteins in the erythrocyte-rich membrane fraction, with 157 common to both fractions. Many of the proteins found uniquely in the reticulocyte were associated with structures known to be in reticulocytes (mitochondria, Golgi). Additional proteins detected are or may be specifically involved in vesicle trafficking, a process important in the maturation process. A number of unique plasma membrane proteins were also identified. These results provide the groundwork for future targeted studies to improve our understanding of the mechanism of reticulocyte maturation and the role of reticulocytes in disease.
Collapse
Affiliation(s)
- Jessica E Prenni
- Proteomics and Metabolomics Facility and Department of Biochemistry and Molecular Biology, Colorado State University, 2021 Campus Delivery, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
31
|
Satori CP, Kostal V, Arriaga EA. Individual organelle pH determinations of magnetically enriched endocytic organelles via laser-induced fluorescence detection. Anal Chem 2011; 83:7331-9. [PMID: 21863795 PMCID: PMC3184341 DOI: 10.1021/ac201196n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The analysis of biotransformations that occur in lysosomes and other endocytic organelles is critical to studies on intracellular degradation, nutrient recycling, and lysosomal storage disorders. Such analyses require bioactive organelle preparations that are devoid of other contaminating organelles. Commonly used differential centrifugation techniques produce impure fractions and may not be compatible with microscale separation platforms. Density gradient centrifugation procedures reduce the level of impurities but may compromise bioactivity. Here we report on simple magnetic setup and a procedure that produce highly enriched bioactive organelles based on their magnetic capture as they traveled through open tubes. Following capture, in-line laser-induced fluorecence detection (LIF) determined for the first time the pH of each magnetically retained individual endocytic organelle. Unlike bulk measurements, this method was suitable to describe the distributions of pH values in endocytic organelles from L6 rat myoblasts treated with dextran-coated iron oxide nanoparticles (for magnetic retention) and fluorescein/TMRM-conjugated dextran (for pH measurements by LIF). Their individual pH values ranged from 4 to 6, which is typical of bioactive endocytic organelles. These analytical procedures are of high relevance to evaluate lysosomal-related degradation pathways in aging, storage disorders, and drug development.
Collapse
Affiliation(s)
- Chad P. Satori
- University of Minnesota; Department of Chemistry, 207 Pleasant St. SE; Minneapolis MN 55455-0431
| | | | - Edgar A. Arriaga
- University of Minnesota; Department of Chemistry, 207 Pleasant St. SE; Minneapolis MN 55455-0431
| |
Collapse
|
32
|
Stewart AK, Shmukler BE, Vandorpe DH, Reimold F, Heneghan JF, Nakakuki M, Akhavein A, Ko S, Ishiguro H, Alper SL. SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization. Am J Physiol Cell Physiol 2011; 301:C289-303. [PMID: 21593449 PMCID: PMC3154555 DOI: 10.1152/ajpcell.00089.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/17/2011] [Indexed: 01/02/2023]
Abstract
The secretin-stimulated human pancreatic duct secretes HCO(3)(-)-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO(3)(-) secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl(-)/HCO(3)(-) exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ∼140 mM HCO(3)(-) or more, mouse and rat ducts secrete ∼40-70 mM HCO(3)(-). Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO(3)(-) secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl(-)/Cl(-) exchange and electroneutral Cl(-)/HCO(3)(-) exchange. gpSlc26a6 in Xenopus oocytes mediated Cl(-)/Cl(-) exchange and bidirectional exchange of Cl(-) for oxalate and sulfate, but Cl(-)/HCO(3)(-) exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl(-), oxalate, and sulfate transport but no detectable Cl(-)/HCO(3)(-) exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of (36)Cl(-) influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO(3)(-) secretion in species that share a high HCO(3)(-) secretory output.
Collapse
Affiliation(s)
- Andrew K Stewart
- Renal Division and Vascular Biology Center, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|