1
|
Sun W, Shahrajabian MH, Ma K, Wang S. Advances in Molecular Function and Recombinant Expression of Human Collagen. Pharmaceuticals (Basel) 2025; 18:430. [PMID: 40143206 PMCID: PMC11945623 DOI: 10.3390/ph18030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Collagen is the main protein found in skin, bone, cartilage, ligaments, tendons and connective tissue, and it can exhibit properties ranging from compliant to rigid or form gradients between these states. The collagen family comprises 28 members, each containing at least one triple-helical domain. These proteins play critical roles in maintaining mechanical characteristics, tissue organization, and structural integrity. Collagens regulate cellular processes such as proliferation, migration, and differentiation through interactions with cell surface receptors. Fibrillar collagens, the most abundant extracellular matrix (ECM) proteins, provide organs and tissues with structural stability and connectivity. In the mammalian myocardial interstitium, types I and III collagens are predominant: collagen I is found in organs, tendons, and bones; collagen II is found in cartilage; collagen III is found in reticular fibers; collagen IV is found in basement membranes; and collagen V is found in nails and hair. Recombinant human collagens, particularly in sponge-like porous formats combined with bone morphogenetic proteins, serve as effective scaffolds for bone repair. Due to their biocompatibility and low immunogenicity, collagens are pivotal in tissue engineering applications for skin, bone, and wound regeneration. Recombinant technology enables the production of triple-helical collagens with amino acid sequences identical to human tissue-derived collagens. This review summarizes recent advances in the molecular functions and recombinant expression of human collagens, with a focus on their biomedical applications.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Kun Ma
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| | - Shubin Wang
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| |
Collapse
|
2
|
Gao Y, Kim H, Kitata RB, Lin TT, Swensen AC, Shi T, Liu T. Multiplexed quantitative proteomics in prostate cancer biomarker development. Adv Cancer Res 2024; 161:31-69. [PMID: 39032952 PMCID: PMC11987045 DOI: 10.1016/bs.acr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PCa) is the most common non-skin cancer among men in the United States. However, the widely used protein biomarker in PCa, prostate-specific antigen (PSA), while useful for initial detection, its use alone cannot detect aggressive PCa and can lead to overtreatment. This chapter provides an overview of PCa protein biomarker development. It reviews the state-of-the-art liquid chromatography-mass spectrometry-based proteomics technologies for PCa biomarker development, such as enhancing the detection sensitivity of low-abundance proteins through antibody-based or antibody-independent protein/peptide enrichment, enriching post-translational modifications such as glycosylation as well as information-rich extracellular vesicles, and increasing accuracy and throughput using advanced data acquisition methodologies. This chapter also summarizes recent PCa biomarker validation studies that applied those techniques in diverse specimen types, including cell lines, tissues, proximal fluids, urine, and blood, developing novel protein biomarkers for various clinical applications, including early detection and diagnosis, prognosis, and therapeutic intervention of PCa.
Collapse
Affiliation(s)
- Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Hyeyoon Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.
| |
Collapse
|
3
|
Ishikawa Y, Taga Y, Coste T, Tufa SF, Keene DR, Mizuno K, Tournier-Lasserve E, Gould DB. Lysyl hydroxylase 3-mediated post-translational modifications are required for proper biosynthesis of collagen α1α1α2(IV). J Biol Chem 2022; 298:102713. [PMID: 36403858 PMCID: PMC9761383 DOI: 10.1016/j.jbc.2022.102713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Collagens are the most abundant proteins in the body and among the most biosynthetically complex. A molecular ensemble of over 20 endoplasmic reticulum resident proteins participates in collagen biosynthesis and contributes to heterogeneous post-translational modifications. Pathogenic variants in genes encoding collagens cause connective tissue disorders, including osteogenesis imperfecta, Ehlers-Danlos syndrome, and Gould syndrome (caused by mutations in COL4A1 and COL4A2), and pathogenic variants in genes encoding proteins required for collagen biosynthesis can cause similar but overlapping clinical phenotypes. Notably, pathogenic variants in lysyl hydroxylase 3 (LH3) cause a multisystem connective tissue disorder that exhibits pathophysiological features of collagen-related disorders. LH3 is a multifunctional collagen-modifying enzyme; however, its precise role(s) and substrate specificity during collagen biosynthesis has not been defined. To address this critical gap in knowledge, we generated LH3 KO cells and performed detailed quantitative and molecular analyses of collagen substrates. We found that LH3 deficiency severely impaired secretion of collagen α1α1α2(IV) but not collagens α1α1α2(I) or α1α1α1(III). Amino acid analysis revealed that LH3 is a selective LH for collagen α1α1α2(IV) but a general glucosyltransferase for collagens α1α1α2(IV), α1α1α2(I), and α1α1α1(III). Importantly, we identified rare variants that are predicted to be pathogenic in the gene encoding LH3 in two of 113 fetuses with intracranial hemorrhage-a cardinal feature of Gould syndrome. Collectively, our findings highlight a critical role of LH3 in α1α1α2(IV) biosynthesis and suggest that LH3 pathogenic variants might contribute to Gould syndrome.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Ophthalmology, University of California San Francisco, School of Medicine, California, USA.
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Thibault Coste
- Université Paris Cité, Inserm Neurodiderot, AP-HP Paris, France
| | - Sara F Tufa
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Douglas R Keene
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | | | | | - Douglas B Gould
- Department of Ophthalmology, University of California San Francisco, School of Medicine, California, USA; Department Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, California, USA.
| |
Collapse
|
4
|
Kobayashi-Miura M, Osago H, Hamasaki Y, Takano I, Akiho M, Hiyoshi M, Hara N. Decrease in Glycosaminoglycan with Aging in Normal Rat Articular Cartilage Is Greater in Females than in Males. Cartilage 2022; 13:19476035221102566. [PMID: 35866183 PMCID: PMC9310225 DOI: 10.1177/19476035221102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is more prevalent in females. We hypothesized that changes in articular cartilage (AC) constituents with aging may cause differences. Herein, we aimed to compare the changes in AC constituents with aging in male and female normal rats. DESIGN The glycosaminoglycan (GAG) and collagen (COL) contents of the AC in knee, hip, and shoulder joints of male and female rats were quantified and compared between age groups and sexes. RESULTS The amount of GAG was decreased in multiple joints in both males and females with aging. In females, it had a significant decrease in all joints measured. The decrease in GAG with aging was more severe in females than in males. Even in young rats, the amount of knee joint GAG was significantly less in females than in males. The amount of COL in the AC was unchanged with aging in both sexes. CONCLUSIONS The drastic GAG decrease with aging in female normal rats may explain the higher prevalence and more severe OA in females.
Collapse
Affiliation(s)
- Mikiko Kobayashi-Miura
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan,Mikiko Kobayashi-Miura, Department of Biochemistry, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo 693-8501, Shimane, Japan.
| | - Harumi Osago
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yoshifumi Hamasaki
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Ikuko Takano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Mitsuki Akiho
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Mineyoshi Hiyoshi
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Nobumasa Hara
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
5
|
Reintjens NR, Yakovlieva L, Marinus N, Hekelaar J, Nuti F, Papini AM, Witte MD, Minnaard AJ, Walvoort M. Palladium‐Catalyzed Oxidation of Glucose in Glycopeptides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Niels R.M. Reintjens
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Liubov Yakovlieva
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Nittert Marinus
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Johan Hekelaar
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Francesca Nuti
- University of Florence: Universita degli Studi di Firenze Department of Chemistry “Ugo Schiff” ITALY
| | - Anna Maria Papini
- University of Florence: Universita degli Studi di Firenze Department of Chemistry “Ugo Schiff” ITALY
| | - Martin D. Witte
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Adriaan J. Minnaard
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Marthe Walvoort
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry Nijenborgh 7 9747 AG Groningen NETHERLANDS
| |
Collapse
|
6
|
Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021; 6:396. [PMID: 34782609 PMCID: PMC8591162 DOI: 10.1038/s41392-021-00809-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
7
|
Preservation of collagen in the soft tissues of frozen mammoths. PLoS One 2021; 16:e0258699. [PMID: 34714842 PMCID: PMC8555803 DOI: 10.1371/journal.pone.0258699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
We investigated the characteristics of extracellular matrix (ECM) in the soft tissue of two frozen baby woolly mammoths (Mammuthus primigenius) that died and were buried in Siberian permafrost approximately 40,000 years ago. Morphological and biochemical analyses of mammoth lung and liver demonstrated that those soft tissues were preserved at the gross anatomical and histological levels. The ultrastructure of ECM components, namely a fibrillar structure with a collagen-characteristic pattern of cross-striation, was clearly visible with transmission and scanning electron microscopy. Type I and type IV collagens were detected by immunohistochemical observation. Quantitative amino acid analysis of liver and lung tissues of the baby mammoths indicated that collagenous protein is selectively preserved in these tissues as a main protein. Type I and type III collagens were detected as major components by means of liquid chromatography–mass spectrometry analysis after digestion with trypsin. These results indicate that the triple helical collagen molecule, which is resistant to proteinase digestion, has been preserved in the soft tissues of these frozen mammoths for 40,000 years.
Collapse
|
8
|
Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. Biochem Soc Trans 2021; 49:855-866. [PMID: 33704379 DOI: 10.1042/bst20200767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Collagen is a major constituent of the extracellular matrix (ECM) that confers fundamental mechanical properties to tissues. To allow proper folding in triple-helices and organization in quaternary super-structures, collagen molecules require essential post-translational modifications (PTMs), including hydroxylation of proline and lysine residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific hydroxylysine residues on procollagen alpha chains. The resulting galactosyl-hydroxylysine (Gal-Hyl) and less abundant glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl) are amongst the simplest glycosylation patterns found in nature and are essential for collagen and ECM homeostasis. These collagen PTMs depend on the activity of specialized glycosyltransferase enzymes. Although their biochemical reactions have been widely studied, several key biological questions about the possible functions of these essential PTMs are still missing. In addition, the lack of three-dimensional structures of collagen glycosyltransferase enzymes hinders our understanding of the catalytic mechanisms producing this modification, as well as the impact of genetic mutations causing severe connective tissue pathologies. In this mini-review, we summarize the current knowledge on the biochemical features of the enzymes involved in the production of collagen glycosylations and the current state-of-the-art methods for the identification and characterization of this important PTM.
Collapse
|
9
|
Ishikawa Y, Taga Y, Zientek K, Mizuno N, Salo AM, Semenova O, Tufa SF, Keene DR, Holden P, Mizuno K, Gould DB, Myllyharju J, Bächinger HP. Type I and type V procollagen triple helix uses different subsets of the molecular ensemble for lysine posttranslational modifications in the rER. J Biol Chem 2021; 296:100453. [PMID: 33631195 PMCID: PMC7988497 DOI: 10.1016/j.jbc.2021.100453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA; Research Department, Shriners Hospital for Children, Portland, Oregon, USA; Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California, USA.
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Keith Zientek
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Nobuyo Mizuno
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Olesya Semenova
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Sara F Tufa
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Douglas R Keene
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Paul Holden
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | | | - Douglas B Gould
- Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California, USA; Department of Anatomy, University of California, San Francisco, School of Medicine, San Francisco, California USA
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Takeyari S, Kubota T, Ohata Y, Fujiwara M, Kitaoka T, Taga Y, Mizuno K, Ozono K. 4-Phenylbutyric acid enhances the mineralization of osteogenesis imperfecta iPSC-derived osteoblasts. J Biol Chem 2021; 296:100027. [PMID: 33154166 PMCID: PMC7948972 DOI: 10.1074/jbc.ra120.014709] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable brittle bone disease mainly caused by mutations in the two type I collagen genes. Collagen synthesis is a complex process including trimer formation, glycosylation, secretion, extracellular matrix (ECM) formation, and mineralization. Using OI patient-derived fibroblasts and induced pluripotent stem cells (iPSCs), we investigated the effect of 4-phenylbutyric acid (4-PBA) on collagen synthesis to test its potential as a new treatment for OI. Endoplasmic reticulum (ER) retention of type I collagen was observed by immunofluorescence staining in OI patient-derived fibroblasts with glycine substitution and exon skipping mutations. Liquid chromatography-mass spectrometry analysis revealed excessive glycosylation of secreted type I collagen at the specific sites in OI cells. The misfolding of the type I collagen triple helix in the ECM was demonstrated by the incorporation of heat-dissociated collagen hybridizing peptide in OI cells. Type I collagen was produced excessively by OI fibroblasts with a glycine mutation, but this excessive production was normalized when OI fibroblasts were cultured on control fibroblast-derived ECM. We also found that mineralization was impaired in osteoblasts differentiated from OI iPSCs. In summary, treatment with 4-PBA normalizes the excessive production of type I collagen, reduces ER retention, partially improves misfolding of the type I collagen helix in ECM, and improves osteoblast mineralization. Thus, 4-PBA may improve not only ER retention, but also type I collagen synthesis and mineralization in human cells from OI patients.
Collapse
Affiliation(s)
- Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
11
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
12
|
The Transcription Factor HAND1 Is Involved in Cortical Bone Mass through the Regulation of Collagen Expression. Int J Mol Sci 2020; 21:ijms21228638. [PMID: 33207791 PMCID: PMC7697595 DOI: 10.3390/ijms21228638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 01/17/2023] Open
Abstract
Temporal and/or spatial alteration of collagen family gene expression results in bone defects. However, how collagen expression controls bone size remains largely unknown. The basic helix-loop-helix transcription factor HAND1 is expressed in developing long bones and is involved in their morphogenesis. To understand the functional role of HAND1 and collagen in the postnatal development of long bones, we overexpressed Hand1 in the osteochondroprogenitors of model mice and found that the bone volumes of cortical bones decreased in Hand1Tg/+;Twist2-Cre mice. Continuous Hand1 expression downregulated the gene expression of type I, V, and XI collagen in the diaphyses of long bones and was associated with decreased expression of Runx2 and Sp7/Osterix, encoding transcription factors involved in the transactivation of fibril-forming collagen genes. Members of the microRNA-196 family, which target the 3' untranslated regions of COL1A1 and COL1A2, were significantly upregulated in Hand1Tg/+;Twist2-Cre mice. Mass spectrometry revealed that the expression ratios of alpha 1(XI), alpha 2(XI), and alpha 2(V) in the diaphysis increased during postnatal development in wild-type mice, which was delayed in Hand1Tg/+;Twist2-Cre mice. Our results demonstrate that HAND1 regulates bone size and morphology through osteochondroprogenitors, at least partially by suppressing postnatal expression of collagen fibrils in the cortical bones.
Collapse
|
13
|
Xu S, Sun F, Wu R. A Chemoenzymatic Method Based on Easily Accessible Enzymes for Profiling Protein O-GlcNAcylation. Anal Chem 2020; 92:9807-9814. [PMID: 32574038 PMCID: PMC7437014 DOI: 10.1021/acs.analchem.0c01284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O-GlcNAcylation has gradually been recognized as a critically important protein post-translational modification in mammalian cells. Besides regulation of gene expression, its crosstalk with protein phosphorylation is vital for cell signaling. Despite its importance, comprehensive analysis of O-GlcNAcylation is extraordinarily challenging due to the low abundances of many O-GlcNAcylated proteins and the complexity of biological samples. Here, we developed a novel chemoenzymatic method based on a wild-type galactosyltransferase and uridine diphosphate galactose (UDP-Gal) for global and site-specific analysis of protein O-GlcNAcylation. This method integrates enzymatic reactions and hydrazide chemistry to enrich O-GlcNAcylated peptides. All reagents used are more easily accessible and cost-effective as compared to the engineered enzyme and click chemistry reagents. Biological triplicate experiments were performed to validate the effectiveness and the reproducibility of this method, and the results are comparable with the previous chemoenzymatic method using the engineered enzyme and click chemistry. Moreover, because of the promiscuity of the galactosyltransferase, 18 unique O-glucosylated peptides were identified on the EGF domain from nine proteins. Considering that effective and approachable methods are critical to advance glycoscience research, the current method without any sample restrictions can be widely applied for global analysis of protein O-GlcNAcylation in different samples.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Cudic M, Fields GB. Modulation of receptor binding to collagen by glycosylated 5-hydroxylysine: Chemical biology approaches made feasible by Carpino's Fmoc group. Pept Sci (Hoboken) 2020; 112. [PMID: 33073165 DOI: 10.1002/pep2.24156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The creation of the 9-fluorenylmethoxycarbonyl (Fmoc) group by the Carpino laboratory facilitated the synthesis of peptides containing acid-sensitive groups, such as O-linked glycosides. To fully investigative collagen biochemistry, one needs to assemble peptides that possess glycosylated 5-hydroxylysine (Hyl). A convenient method for the synthesis of Fmoc-Hyl(ε-tert-butyloxycarbonyl (Boc),O-tert-butyldimethylsilyl (TBDMS)) and efficient methods for the synthesis of Fmoc-Hyl[ε-Boc,O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)] have been developed. Glycosylated Fmoc-Hyl derivatives were used to construct a series of types I-IV collagen-model triple-helical peptides (THPs) that incorporated known or proposed receptor binding sites. Glycosylation of Hyl was found to strongly down-regulate the binding of CD44 and the α3β1 integrin to collagen, while the impact on α2β1 integrin binding was more modest. Molecular modeling of integrin binding indicated that Hyl glycosylation directly impacted the association between the α3β1 integrin metal ion-dependent adhesion site (MIDAS) and the receptor binding site within type IV collagen. The Fmoc solid-phase strategy ultimately allowed for chemical biology approaches to be utilized to study tumor cell interactions with glycosylated collagen sequences and document the modulation of receptor interactions by Hyl posttranslational modification.
Collapse
Affiliation(s)
- Maré Cudic
- Institute for Human Health & Disease Intervention (I-HEALTH) and the Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 U.S.A
| | - Gregg B Fields
- Institute for Human Health & Disease Intervention (I-HEALTH) and the Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 U.S.A
| |
Collapse
|
15
|
Kinoshita S, Mera K, Ichikawa H, Shimasaki S, Nagai M, Taga Y, Iijima K, Hattori S, Fujiwara Y, Shirakawa JI, Nagai R. Nω -(Carboxymethyl)arginine Is One of the Dominant Advanced Glycation End Products in Glycated Collagens and Mouse Tissues. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9073451. [PMID: 31583049 PMCID: PMC6754957 DOI: 10.1155/2019/9073451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/31/2019] [Accepted: 08/16/2019] [Indexed: 01/22/2023]
Abstract
Advanced glycation end products (AGEs) accumulate in proteins during aging in humans. In particular, the AGE structure Nω -(carboxymethyl)arginine (CMA) is produced by oxidation in glycated collagen, accounting for one of the major proteins detected in biological samples. In this study, we investigated the mechanism by which CMA is generated in collagen and detected CMA in collagen-rich tissues. When various protein samples were incubated with glucose, the CMA content, detected using a monoclonal antibody, increased in a time-dependent manner only in glycated collagen, whereas the formation of Nε -(carboxymethyl)lysine (CML), a major antigenic AGE, was detected in all glycated proteins. Dominant CMA formation in glycated collagen was also observed by electrospray ionization-liquid chromatography-tandem mass spectrometry (LC-MS/MS). During incubation of glucose with collagen, CMA formation was enhanced with increasing glucose concentration, whereas it was inhibited in the presence of dicarbonyl-trapping reagents and a metal chelator. CMA formation was also observed upon incubating collagen with glyoxal, and CMA was generated in a time-dependent manner when glyoxal was incubated with type I-IV collagens. To identify hotspots of CMA formation, tryptic digests of glycated collagen were applied to an affinity column conjugated with anti-CMA. Several CMA peptides that are important for recognition by integrins were detected by LC-MS/MS and amino acid sequence analyses. CMA formation on each sequence was confirmed by incubation of the synthesized peptides with glyoxal and ribose. LC-MS detected CMA in the mouse skin at a higher level than other AGEs. Furthermore, CMA accumulation was greater in the human aorta of older individuals. Overall, our study provides evidence that CMA is a representative AGE structure that serves as a useful index to reflect the oxidation and glycation of collagen.
Collapse
Affiliation(s)
- Sho Kinoshita
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Katsumi Mera
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroko Ichikawa
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Satoko Shimasaki
- Department of Food and Nutrition, Laboratory of Nutritional Science and Biochemistry, Japan Women's University, Tokyo, Japan
| | - Mime Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Tokyo, Japan
| | | | | | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun-ichi Shirakawa
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Agriculture, Tokai University, Kumamoto, Japan
| |
Collapse
|
16
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
17
|
Component of splicing factor SF3b plays a key role in translational control of polyribosomes on the endoplasmic reticulum. Proc Natl Acad Sci U S A 2019; 116:9340-9349. [PMID: 31004060 DOI: 10.1073/pnas.1901742116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the morphological hallmarks of terminally differentiated secretory cells is highly proliferated membrane of the rough endoplasmic reticulum (ER), but the molecular basis for the high rate of protein biosynthesis in these cells remains poorly documented. An important aspect of ER translational control is the molecular mechanism that supports efficient use of targeted mRNAs in polyribosomes. Here, we identify an enhancement system for ER translation promoted by p180, an integral ER membrane protein we previously reported as an essential factor for the assembly of ER polyribosomes. We provide evidence that association of target mRNAs with p180 is critical for efficient translation, and that SF3b4, an RNA-binding protein in the splicing factor SF3b, functions as a cofactor for p180 at the ER and plays a key role in enhanced translation of secretory proteins. A cis-element in the 5' untranslated region of collagen and fibronectin genes is important to increase translational efficiency in the presence of p180 and SF3b4. These data demonstrate that a unique system comprising a p180-SF3b4-mRNA complex facilitates the selective assembly of polyribosomes on the ER.
Collapse
|
18
|
Collagen glycosylation. Curr Opin Struct Biol 2019; 56:131-138. [PMID: 30822656 DOI: 10.1016/j.sbi.2019.01.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Abstract
Despite the ubiquity of collagens in the animal kingdom, little is known about the biology of the disaccharide Glc(α1-2)Gal(β1-O) bound to hydroxylysine across collagens from sponges to mammals. The extent of collagen glycosylation varies by the types of collagen, with basement membrane collagen type IV being more glycosylated than fibrillar collagens. Beyond true collagens, proteins including collagen domains such as the complement protein 1Q and the hormone adiponectin also feature glycosylated hydroxylysine. Collagen glycosylation is initiated in the endoplasmic reticulum by the galactosyltransferases COLGALT1 and COLGALT2. Mutations in the COLGALT1 gene cause cerebral small vessel abnormality and porencephaly, which are common in collagen type IV deficiency. Beyond the strongly conserved Glc(α1-2)Gal(β1-O) glycan, additional forms of collagen glycosylation have been described in the deep-sea worm Riftia pachyptila and in the giant virus Mimivirus, thereby suggesting that further forms of collagen glycosylation are likely to be identified in the future.
Collapse
|
19
|
Abstract
Fibrillar type I collagen is the most abundant structural protein in most tissues and organs. One of the unique and functionally important characteristics of collagen is sequential posttranslational modifications of lysine (Lys) residues. In the endoplasmic reticulum, hydroxylation of specific Lys occurs producing 5-hydroxylysine (Hyl). Then, to the 5-hydroxyl group of Hyl, a single galactose unit can be attached to form galactosyl-Hyl (Gal-Hyl) and further glucose can be added to Gal-Hyl to form glucosylgalactosyl-Hyl (GlcGal-Hyl). These are the only two O-linked glycosides found in mature type I collagen. It has been shown that this modification is critically involved in a number of biological and pathological processes likely through its regulatory roles in collagen fibrillogenesis, intermolecular cross-linking, and collagen-cell interaction. Recently, with the advances in molecular/cell biology and analytical chemistry, the molecular mechanisms of collagen glycosylation have been gradually deciphered, and the type and extent of glycosylation at the specific molecular loci can now be quantitatively analyzed. In this chapter, we describe quantitative analysis of collagen glycosylation by high-performance liquid chromatography (HPLC) and semiquantitative, site-specific analysis by HPLC-tandem mass spectrometry.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.
| | - Marnisa Sricholpech
- Faculty of Dentistry, Department of Oral Surgery and Oral Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Masahiko Terajima
- Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
20
|
Taga Y, Tanaka K, Hamada C, Kusubata M, Ogawa-Goto K, Hattori S. Hydroxyhomocitrulline Is a Collagen-Specific Carbamylation Mark that Affects Cross-link Formation. Cell Chem Biol 2017; 24:1276-1284.e3. [DOI: 10.1016/j.chembiol.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
|
21
|
Terajima M, Taga Y, Cabral WA, Nagasawa M, Sumida N, Hattori S, Marini JC, Yamauchi M. Cyclophilin B Deficiency Causes Abnormal Dentin Collagen Matrix. J Proteome Res 2017; 16:2914-2923. [PMID: 28696707 DOI: 10.1021/acs.jproteome.7b00190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cyclophilin B (CypB) is an endoplasmic reticulum-resident protein that regulates collagen folding, and also contributes to prolyl 3-hydroxylation (P3H) and lysine (Lys) hydroxylation of collagen. In this study, we characterized dentin type I collagen in CypB null (KO) mice, a model of recessive osteogenesis imperfecta type IX, and compared to those of wild-type (WT) and heterozygous (Het) mice. Mass spectrometric analysis demonstrated that the extent of P3H in KO collagen was significantly diminished compared to WT/Het. Lys hydroxylation in KO was significantly diminished at the helical cross-linking sites, α1/α2(I) Lys-87 and α1(I) Lys-930, leading to a significant increase in the under-hydroxylated cross-links and a decrease in fully hydroxylated cross-links. The extent of glycosylation of hydroxylysine residues was, except α1(I) Lys-87, generally higher in KO than WT/Het. Some of these molecular phenotypes were distinct from other KO tissues reported previously, indicating the dentin-specific control mechanism through CypB. Histological analysis revealed that the width of predentin was greater and irregular, and collagen fibrils were sparse and significantly smaller in KO than WT/Het. These results indicate a critical role of CypB in dentin matrix formation, suggesting a possible association between recessive osteogenesis imperfecta and dentin defects that have not been clinically detected.
Collapse
Affiliation(s)
- Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Yuki Taga
- Nippi Research Institute of Biomatrix , Ibaraki 302-0017, Japan
| | - Wayne A Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences , Niigata 951-8514, Japan
| | - Noriko Sumida
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix , Ibaraki 302-0017, Japan
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
22
|
Zheng J, Xiao H, Wu R. Specific Identification of Glycoproteins Bearing the Tn Antigen in Human Cells. Angew Chem Int Ed Engl 2017; 56:7107-7111. [PMID: 28514044 PMCID: PMC5529048 DOI: 10.1002/anie.201702191] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Indexed: 01/17/2023]
Abstract
Glycoproteins contain a wealth of valuable information regarding the development and disease status of cells. In cancer cells, some glycans (such as the Tn antigen) are highly up-regulated, but this remains largely unknown for glycoproteins with a particular glycan. Herein, an innovative method combining enzymatic and chemical reactions was first designed to enrich glycoproteins with the Tn antigen. Using synthetic glycopeptides with O-GalNAc (the Tn antigen) or O-GlcNAc, we demonstrated that the method is selective for glycopeptides with O-GalNAc and can distinguish between these two modifications. The diagnostic ions from the tagged O-GalNAc further confirmed the effectiveness of the method and confidence in the identification of glycopeptides with the Tn antigen by mass spectrometry. Using this method, we identified 96 glycoproteins with the Tn antigen in Jurkat cells. The method can be extensively applied in biological and biomedical research.
Collapse
Affiliation(s)
- Jiangnan Zheng
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
23
|
Zheng J, Xiao H, Wu R. Specific Identification of Glycoproteins Bearing the Tn Antigen in Human Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jiangnan Zheng
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta GA 30332 USA
| |
Collapse
|
24
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Kumazawa Y, Taga Y, Iwai K, Koyama YI. A Rapid and Simple LC-MS Method Using Collagen Marker Peptides for Identification of the Animal Source of Leather. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6051-6057. [PMID: 27397145 DOI: 10.1021/acs.jafc.6b02132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Identification of the animal source of leather is difficult using traditional methods, including microscopic observation and PCR. In the present study, a LC-MS method was developed for detecting interspecies differences in the amino acid sequence of type I collagen, which is a major component of leather, among six animals (cattle, horse, pig, sheep, goat, and deer). After a dechroming procedure and trypsin digestion, six tryptic peptides of type I collagen were monitored by LC-MS in multiple reaction monitoring mode for the animal source identification using the patterns of the presence or absence of the marker peptides. We analyzed commercial leathers from various production areas using this method, and found some leathers in which the commercial label disagreed with the identified animal source. Our method enabled rapid and simple leather certification and could be applied to other animals whether or not their collagen sequences are available in public databases.
Collapse
Affiliation(s)
- Yuki Kumazawa
- Japan Institute of Leather Research , 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Yuki Taga
- Nippi Research Institute of Biomatrix , 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Kenji Iwai
- Japan Institute of Leather Research , 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Yoh-Ichi Koyama
- Japan Institute of Leather Research , 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
- Nippi Research Institute of Biomatrix , 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| |
Collapse
|
26
|
Terajima M, Taga Y, Chen Y, Cabral WA, Hou-Fu G, Srisawasdi S, Nagasawa M, Sumida N, Hattori S, Kurie JM, Marini JC, Yamauchi M. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen. J Biol Chem 2016; 291:9501-12. [PMID: 26934917 DOI: 10.1074/jbc.m115.699470] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/07/2023] Open
Abstract
Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation.
Collapse
Affiliation(s)
- Masahiko Terajima
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuki Taga
- the Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Yulong Chen
- the Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Wayne A Cabral
- the Bone and Extracellular Matrix Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Guo Hou-Fu
- the Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Sirivimol Srisawasdi
- the Departments of Operative Dentistry, Chulalongkorn University, Bangkok 10330, Thailand, and
| | - Masako Nagasawa
- the Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Noriko Sumida
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Shunji Hattori
- the Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Jonathan M Kurie
- the Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Joan C Marini
- the Bone and Extracellular Matrix Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Mitsuo Yamauchi
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|
27
|
Basak T, Vega-Montoto L, Zimmerman LJ, Tabb DL, Hudson BG, Vanacore RM. Comprehensive Characterization of Glycosylation and Hydroxylation of Basement Membrane Collagen IV by High-Resolution Mass Spectrometry. J Proteome Res 2015; 15:245-58. [PMID: 26593852 DOI: 10.1021/acs.jproteome.5b00767] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Collagen IV is the main structural protein that provides a scaffold for assembly of basement membrane proteins. Posttranslational modifications such as hydroxylation of proline and lysine and glycosylation of lysine are essential for the functioning of collagen IV triple-helical molecules. These modifications are highly abundant posing a difficult challenge for in-depth characterization of collagen IV using conventional proteomics approaches. Herein, we implemented an integrated pipeline combining high-resolution mass spectrometry with different fragmentation techniques and an optimized bioinformatics workflow to study posttranslational modifications in mouse collagen IV. We achieved 82% sequence coverage for the α1 chain, mapping 39 glycosylated hydroxylysine, 148 4-hydroxyproline, and seven 3-hydroxyproline residues. Further, we employed our pipeline to map the modifications on human collagen IV and achieved 85% sequence coverage for the α1 chain, mapping 35 glycosylated hydroxylysine, 163 4-hydroxyproline, and 14 3-hydroxyproline residues. Although lysine glycosylation heterogeneity was observed in both mouse and human, 21 conserved sites were identified. Likewise, five 3-hydroxyproline residues were conserved between mouse and human, suggesting that these modification sites are important for collagen IV function. Collectively, these are the first comprehensive maps of hydroxylation and glycosylation sites in collagen IV, which lay the foundation for dissecting the key role of these modifications in health and disease.
Collapse
Affiliation(s)
- Trayambak Basak
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Lorenzo Vega-Montoto
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Lisa J Zimmerman
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - David L Tabb
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Roberto M Vanacore
- Department of Medicine, Division of Nephrology and Hypertension, ‡Center for Matrix Biology, §Department of Biochemistry, and ⊥Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| |
Collapse
|
28
|
Taga Y, Kusubata M, Ogawa-Goto K, Hattori S. Developmental Stage-dependent Regulation of Prolyl 3-Hydroxylation in Tendon Type I Collagen. J Biol Chem 2015; 291:837-47. [PMID: 26567337 DOI: 10.1074/jbc.m115.686105] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 11/06/2022] Open
Abstract
3-Hydroxyproline (3-Hyp), which is unique to collagen, is a fairly rare post-translational modification. Recent studies have suggested a function of prolyl 3-hydroxylation in fibril assembly and its relationships with certain disorders, including recessive osteogenesis imperfecta and high myopia. However, no direct evidence for the physiological and pathological roles of 3-Hyp has been presented. In this study, we first estimated the overall alterations in prolyl hydroxylation in collagens purified from skin, bone, and tail tendon of 0.5-18-month-old rats by LC-MS analysis with stable isotope-labeled collagen, which was recently developed as an internal standard for highly accurate collagen analyses. 3-Hyp was found to significantly increase in tendon collagen until 3 months after birth and then remain constant, whereas increased prolyl 3-hydroxylation was not observed in skin and bone collagen. Site-specific analysis further revealed that 3-Hyp was increased in tendon type I collagen in a specific sequence region, including a previously known modification site at Pro(707) and newly identified sites at Pro(716) and Pro(719), at the early ages. The site-specific alterations in prolyl 3-hydroxylation with aging were also observed in bovine Achilles tendon. We postulate that significant increases in 3-Hyp at the consecutive modification sites are correlated with tissue development in tendon. The present findings suggest that prolyl 3-hydroxylation incrementally regulates collagen fibril diameter in tendon.
Collapse
Affiliation(s)
- Yuki Taga
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Masashi Kusubata
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kiyoko Ogawa-Goto
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- From the Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| |
Collapse
|
29
|
Parikka K, Master E, Tenkanen M. Oxidation with galactose oxidase: Multifunctional enzymatic catalysis. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Huang J, Qin H, Sun Z, Huang G, Mao J, Cheng K, Zhang Z, Wan H, Yao Y, Dong J, Zhu J, Wang F, Ye M, Zou H. A peptide N-terminal protection strategy for comprehensive glycoproteome analysis using hydrazide chemistry based method. Sci Rep 2015; 5:10164. [PMID: 25959593 PMCID: PMC4426672 DOI: 10.1038/srep10164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/01/2015] [Indexed: 01/01/2023] Open
Abstract
Enrichment of glycopeptides by hydrazide chemistry (HC) is a popular method for glycoproteomics analysis. However, possible side reactions of peptide backbones during the glycan oxidation in this method have not been comprehensively studied. Here, we developed a proteomics approach to locate such side reactions and found several types of the side reactions that could seriously compromise the performance of glycoproteomics analysis. Particularly, the HC method failed to identify N-terminal Ser/Thr glycopeptides because the oxidation of vicinal amino alcohol on these peptides generates aldehyde groups and after they are covalently coupled to HC beads, these peptides cannot be released by PNGase F for identification. To overcome this drawback, we apply a peptide N-terminal protection strategy in which primary amine groups on peptides are chemically blocked via dimethyl labeling, thus the vicinal amino alcohols on peptide N-termini are eliminated. Our results showed that this strategy successfully prevented the oxidation of peptide N-termini and significantly improved the coverage of glycoproteome.
Collapse
Affiliation(s)
- Junfeng Huang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhen Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guang Huang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Cheng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology
| | - Yating Yao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jun Zhu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hanfa Zou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
31
|
Hill RC, Wither MJ, Nemkov T, Barrett A, D'Alessandro A, Dzieciatkowska M, Hansen KC. Preserved Proteins from Extinct Bison latifrons Identified by Tandem Mass Spectrometry; Hydroxylysine Glycosides are a Common Feature of Ancient Collagen. Mol Cell Proteomics 2015; 14:1946-58. [PMID: 25948757 DOI: 10.1074/mcp.m114.047787] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 11/06/2022] Open
Abstract
Bone samples from several vertebrates were collected from the Ziegler Reservoir fossil site, in Snowmass Village, Colorado, and processed for proteomics analysis. The specimens come from Pleistocene megafauna Bison latifrons, dating back ∼ 120,000 years. Proteomics analysis using a simplified sample preparation procedure and tandem mass spectrometry (MS/MS) was applied to obtain protein identifications. Several bioinformatics resources were used to obtain peptide identifications based on sequence homology to extant species with annotated genomes. With the exception of soil sample controls, all samples resulted in confident peptide identifications that mapped to type I collagen. In addition, we analyzed a specimen from the extinct B. latifrons that yielded peptide identifications mapping to over 33 bovine proteins. Our analysis resulted in extensive fibrillar collagen sequence coverage, including the identification of posttranslational modifications. Hydroxylysine glucosylgalactosylation, a modification thought to be involved in collagen fiber formation and bone mineralization, was identified for the first time in an ancient protein dataset. Meta-analysis of data from other studies indicates that this modification may be common in well-preserved prehistoric samples. Additional peptide sequences from extracellular matrix (ECM) and non-ECM proteins have also been identified for the first time in ancient tissue samples. These data provide a framework for analyzing ancient protein signatures in well-preserved fossil specimens, while also contributing novel insights into the molecular basis of organic matter preservation. As such, this analysis has unearthed common posttranslational modifications of collagen that may assist in its preservation over time. The data are available via ProteomeXchange with identifier PXD001827.
Collapse
Affiliation(s)
- Ryan C Hill
- From the ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Matthew J Wither
- From the ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Travis Nemkov
- From the ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Alexander Barrett
- From the ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Angelo D'Alessandro
- From the ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Monika Dzieciatkowska
- From the ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Kirk C Hansen
- From the ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, USA
| |
Collapse
|
32
|
Taga Y, Kusubata M, Ogawa-Goto K, Hattori S. Highly accurate quantification of hydroxyproline-containing peptides in blood using a protease digest of stable isotope-labeled collagen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12096-12102. [PMID: 25417748 DOI: 10.1021/jf5039597] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Collagen-derived hydroxyproline (Hyp)-containing dipeptides and tripeptides, which are known to possess physiological functions, appear in blood at high concentrations after oral ingestion of gelatin hydrolysate. However, highly accurate and sensitive quantification of the Hyp-containing peptides in blood has been challenging because of the analytical interference from numerous other blood components. We recently developed a stable isotope-labeled collagen named "SI-collagen" that can be used as an internal standard in various types of collagen analyses employing liquid chromatography-mass spectrometry (LC-MS). Here we prepared stable isotope-labeled Hyp-containing peptides from SI-collagen using trypsin/chymotrypsin and plasma proteases by mimicking the protein degradation pathways in the body. With the protease digest of SI-collagen used as an internal standard mixture, we achieved highly accurate simultaneous quantification of Hyp and 13 Hyp-containing peptides in human blood by LC-MS. The area under the plasma concentration-time curve of Hyp-containing peptides ranged from 0.663 ± 0.022 nmol/mL·h for Pro-Hyp-Gly to 163 ± 1 nmol/mL·h for Pro-Hyp after oral ingestion of 25 g of fish gelatin hydrolysate, and the coefficient of variation of three separate measurements was <7% for each peptide except for Glu-Hyp-Gly, which was near the detection limit. Our method is useful for absorption/metabolism studies of the Hyp-containing peptides and development of functionally characterized gelatin hydrolysate.
Collapse
Affiliation(s)
- Yuki Taga
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | | | | | | |
Collapse
|
33
|
Stawikowski MJ, Aukszi B, Stawikowska R, Cudic M, Fields GB. Glycosylation modulates melanoma cell α2β1 and α3β1 integrin interactions with type IV collagen. J Biol Chem 2014; 289:21591-604. [PMID: 24958723 PMCID: PMC4118119 DOI: 10.1074/jbc.m114.572073] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/20/2014] [Indexed: 01/02/2023] Open
Abstract
Although type IV collagen is heavily glycosylated, the influence of this post-translational modification on integrin binding has not been investigated. In the present study, galactosylated and nongalactosylated triple-helical peptides have been constructed containing the α1(IV)382-393 and α1(IV)531-543 sequences, which are binding sites for the α2β1 and α3β1 integrins, respectively. All peptides had triple-helical stabilities of 37 °C or greater. The galactosylation of Hyl(393) in α1(IV)382-393 and Hyl(540) and Hyl(543) in α1(IV)531-543 had a dose-dependent influence on melanoma cell adhesion that was much more pronounced in the case of α3β1 integrin binding. Molecular modeling indicated that galactosylation occurred on the periphery of α2β1 integrin interaction with α1(IV)382-393 but right in the middle of α3β1 integrin interaction with α1(IV)531-543. The possibility of extracellular deglycosylation of type IV collagen was investigated, but no β-galactosidase-like activity capable of collagen modification was found. Thus, glycosylation of collagen can modulate integrin binding, and levels of glycosylation could be altered by reduction in expression of glycosylation enzymes but most likely not by extracellular deglycosylation activity.
Collapse
Affiliation(s)
- Maciej J Stawikowski
- From the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Beatrix Aukszi
- the Nova Southeastern University, Fort Lauderdale, Florida 33314
| | - Roma Stawikowska
- From the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Mare Cudic
- From the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Gregg B Fields
- From the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| |
Collapse
|
34
|
Taga Y, Kusubata M, Ogawa-Goto K, Hattori S. Stable Isotope-Labeled Collagen: A Novel and Versatile Tool for Quantitative Collagen Analyses Using Mass Spectrometry. J Proteome Res 2014; 13:3671-8. [DOI: 10.1021/pr500213a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yuki Taga
- Nippi Research Institute of Biomatrix, 520-11
Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Masashi Kusubata
- Nippi Research Institute of Biomatrix, 520-11
Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Kiyoko Ogawa-Goto
- Nippi Research Institute of Biomatrix, 520-11
Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, 520-11
Kuwabara, Toride, Ibaraki 302-0017, Japan
| |
Collapse
|
35
|
Nishikaze T, Kawabata SI, Iwamoto S, Tanaka K. Reversible hydrazide chemistry-based enrichment for O-GlcNAc-modified peptides and glycopeptides having non-reducing GlcNAc residues. Analyst 2014; 138:7224-32. [PMID: 24131013 DOI: 10.1039/c3an00880k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O-Linked N-acetylglucosamine (O-GlcNAc) is an emerging post-translational modification (PTM) of proteins. Analysis of O-GlcNAc modification using mass spectrometry (MS) is often problematic because of the low stoichiometry of the modification. In this study, we developed a new method for enriching O-GlcNAc-modified peptides using reversible hydrazide chemistry. O-GlcNAc-modified peptides were first labeled with N-azidoacetylgalactosamine (GalNAz) using gatactosyltransferase-T1 (Y289L) enzyme. The azide group on the GalNAz residue was then reacted with 3-ethynylbenzaldehyde via copper-catalyzed Huisgen 1,3-cycloaddition "click reaction" to form an aromatic aldehyde group of glycopeptides. Aromatic aldehyde-derivatized glycopeptides were enriched by reversible hydrazone formation with hydrazide resin. Reaction conditions for each step, especially for the click reaction, were optimized to achieve complete reaction without significant side reactions. This method was validated using a tryptic digest of bovine α-crystallin, which is an O-GlcNAc-modified glycoprotein. The developed method was also applied to structure-specific enrichment of N-linked glycopeptides having non-reducing terminal GlcNAc residues. All materials and chemicals required for this method are commercially available and there is no need to prepare any special reagents, facilitating the introduction of this method in any laboratory.
Collapse
Affiliation(s)
- Takashi Nishikaze
- Koichi Tanaka Laboratory of Advanced Science and Technology, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan.
| | | | | | | |
Collapse
|
36
|
Ji A, Ren W, Ai HW. A highly efficient oxidative condensation reaction for selective protein conjugation. Chem Commun (Camb) 2014; 50:7469-72. [DOI: 10.1039/c4cc01551g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel oxidative conjugation reaction between aryl diamine and aldehyde was used to site-specifically label a protein.
Collapse
Affiliation(s)
- Ao Ji
- Department of Chemistry
- University of California Riverside
- Riverside, USA
| | - Wei Ren
- Department of Chemistry
- University of California Riverside
- Riverside, USA
| | - Hui-wang Ai
- Department of Chemistry
- University of California Riverside
- Riverside, USA
| |
Collapse
|
37
|
Lattová E, Perreault H. The usefulness of hydrazine derivatives for mass spectrometric analysis of carbohydrates. MASS SPECTROMETRY REVIEWS 2013; 32:366-385. [PMID: 23345114 DOI: 10.1002/mas.21367] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 06/01/2023]
Abstract
Over the last years, extensive studies have evaluated glycans from different biological samples and validated the importance of glycosylation as one of the most important post-translational modifications of proteins. Although a number of new methods for carbohydrate analysis have been published and there has been significant progress in their identification, the development of new approaches to study these biomolecules and understand their role in living systems are still vivid challenges that intrigue glycobiologists. In the last decade, the success in analyses of oligosaccharides has been driven mainly by the development of innovative, highly sensitive mass spectrometry techniques. For enhanced mass spectrometry detection, carbohydrate molecules are often derivatized. Besides, the type of labeling can influence the fragmentation pattern and make the structural analysis less complicated. In this regard, in 2003 we introduced the low scale, simple non-reductive tagging of glycans employing phenylhydrazine (PHN) as the derivatizing reagent. PHN-labeled glycans showed increased detection and as reported previously they can be analyzed by HPLC, ESI, or MALDI immediately after derivatization. Under tandem mass spectrometry conditions, PHN-derivatives produced useful data for the structural elucidation of oligosaccharides. This approach of analysis has helped to reveal new isomeric structures for glycans of known/unknown composition and has been successfully applied for the profiling of N-glycans obtained from serum samples and cancer cells. The efficacy of this labeling has also been evaluated for different substituted hydrazine reagents. This review summarizes all types of reducing-end labeling based on hydrazone-linkage that have been used for mass spectrometric analyses of oligosaccharides. This review is also aimed at correcting some past misconceptions or interpretations reported in the literature.
Collapse
Affiliation(s)
- Erika Lattová
- Chemistry Department, University of Manitoba, 144 Dysart Road, Winnipeg, MB, Canada R3T 2N2.
| | | |
Collapse
|
38
|
Song E, Mechref Y. LC-MS/MS identification of the O-glycosylation and hydroxylation of amino acid residues of collagen α-1 (II) chain from bovine cartilage. J Proteome Res 2013; 12:3599-609. [PMID: 23879958 DOI: 10.1021/pr400101t] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
O-Glycosylation of collagen is a unique type of posttranslational modifications (PTMs) involving the attachment of galactose (Gal) or glucose-galactose (Glc-Gal) moieties to hydroxylysine (HyK). Also, hydroxyproline (HyP) result from the posttranslational hydroxylation of some proline residues in collagen. Here, LC-MS/MS was effectively employed to identify 23 O-glycosylation sites and a large number of HyP residues associated with bovine type II collagen α-1 chain (CO2A1). The modifications of the 23 O-glycosylation sites varied qualitatively and quantitatively. Both Gal and Glc-Gal moieties occupied 22 of the identified glycosylation sites, while K773 was observed as unmodified. A large number of HyP residues at Yaa positions of Gly-Xaa-Yaa motif were detected. HyP residues at Xaa positions of Gly-HyP-HyP, Gly-HyP-Ala, and Gly-HyP-Val motifs were also observed. Notably, HyP residue of Gly-HyP-Gln motif was detected, which has not been previously reported. Moreover, the deamidation of 8 Asn residues was identified, of which 2 Asp residues were observed at different retention times because of isomerization (Asp vs isoAsp). Partial macroheterogeneities of some CO2A1 glycosylation sites were revealed by LC-MS/MS analysis. ETD experiments revealed partial macroheterogeneities associated with K299-K308, K452-K464, K464-K470, and K857-K884 glycosylation sites. Semiquantitative data suggest that the glycosylation of hydroxylysine residues is site-specific.
Collapse
Affiliation(s)
- Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, USA
| | | |
Collapse
|
39
|
Perdivara I, Yamauchi M, Tomer KB. Molecular Characterization of Collagen Hydroxylysine O-Glycosylation by Mass Spectrometry: Current Status. Aust J Chem 2013; 66:760-769. [PMID: 25414518 PMCID: PMC4235766 DOI: 10.1071/ch13174] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The most abundant proteins in vertebrates - the collagen family proteins - play structural and biological roles in the body. The predominant member, type I collagen, provides tissues and organs with structure and connectivity. This protein has several unique post-translational modifications that take place intra- and extra-cellularly. With growing evidence of the relevance of such post-translational modifications in health and disease, the biological significance of O-linked collagen glycosylation has recently drawn increased attention. However, several aspects of this unique modification - the requirement for prior lysyl hydroxylation as a substrate, involvement of at least two distinct glycosyl transferases, its involvement in intermolecular crosslinking - have made its molecular mapping and quantitative characterization challenging. Such characterization is obviously crucial for understanding its biological significance. Recent progress in mass spectrometry has provided an unprecedented opportunity for this type of analysis. This review summarizes recent advances in the area of O-glycosylation of fibrillar collagens and their characterization using state-of-the-art liquid chromatography-mass spectrometry-based methodologies, and perspectives on future research. The analytical characterization of collagen crosslinking and advanced glycation end-products are not addressed here.
Collapse
Affiliation(s)
- Irina Perdivara
- Mass Spectrometry Group, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, NC 27709, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC 27599, USA
| | - Kenneth B. Tomer
- Mass Spectrometry Group, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, NC 27709, USA
| |
Collapse
|
40
|
Pokidysheva E, Zientek KD, Ishikawa Y, Mizuno K, Vranka JA, Montgomery NT, Keene DR, Kawaguchi T, Okuyama K, Bächinger HP. Posttranslational modifications in type I collagen from different tissues extracted from wild type and prolyl 3-hydroxylase 1 null mice. J Biol Chem 2013; 288:24742-52. [PMID: 23861401 DOI: 10.1074/jbc.m113.464156] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type I collagen extracted from tendon, skin, and bone of wild type and prolyl 3-hydroxylase 1 (P3H1) null mice shows distinct patterns of 3-hydroxylation and glycosylation of hydroxylysine residues. The A1 site (Pro-986) in the α1-chain of type I collagen is almost completely 3-hydroxylated in every tissue of the wild type mice. In contrast, no 3-hydroxylation of this proline residue was found in P3H1 null mice. Partial 3-hydroxylation of the A3 site (Pro-707) was present in tendon and bone, but absent in skin in both α-chains of the wild type animals. Type I collagen extracted from bone of P3H1 null mice shows a large reduction in 3-hydroxylation of the A3 site in both α-chains, whereas type I collagen extracted from tendon of P3H1 null mice shows little difference as compared with wild type. These results demonstrate that the A1 site in type I collagen is exclusively 3-hydroxylated by P3H1, and presumably, this enzyme is required for the 3-hydroxylation of the A3 site of both α-chains in bone but not in tendon. The increase in glycosylation of hydroxylysine in P3H1 null mice in bone was found to be due to an increased occupancy of normally glycosylated sites. Despite the severe disorganization of collagen fibrils in adult tissues, the D-period of the fibrils is unchanged. Tendon fibrils of newborn P3H1 null mice are well organized with only a slight increase in diameter. The absence of 3-hydroxyproline and/or the increased glycosylation of hydroxylysine in type I collagen disturbs the lateral growth of the fibrils.
Collapse
Affiliation(s)
- Elena Pokidysheva
- Research Department, Shriners Hospitals for Children, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Perdivara I, Perera L, Sricholpech M, Terajima M, Pleshko N, Yamauchi M, Tomer KB. Unusual fragmentation pathways in collagen glycopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1072-1081. [PMID: 23633013 PMCID: PMC3679267 DOI: 10.1007/s13361-013-0624-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 05/29/2023]
Abstract
Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids -(X-Y-Gly)n. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical N- and O-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways-amide bond and glycosidic bond cleavage-are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides.
Collapse
Affiliation(s)
- Irina Perdivara
- Mass Spectrometry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Lalith Perera
- Computational Chemistry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | | | - Masahiko Terajima
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Pennsylvania, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Kenneth B. Tomer
- Mass Spectrometry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| |
Collapse
|
42
|
Agarwal P, Kudirka R, Albers AE, Barfield RM, de Hart GW, Drake PM, Jones LC, Rabuka D. Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem 2013; 24:846-51. [PMID: 23731037 DOI: 10.1021/bc400042a] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aldehyde- and ketone-functionalized biomolecules have found widespread use in biochemical and biotechnological fields. They are typically conjugated with hydrazide or aminooxy nucleophiles under acidic conditions to yield hydrazone or oxime products that are relatively stable, but susceptible to hydrolysis over time. We introduce a new reaction, the hydrazino-Pictet-Spengler (HIPS) ligation, which has two distinct advantages over hydrazone and oxime ligations. First, the HIPS ligation proceeds quickly near neutral pH, allowing for one-step labeling of aldehyde-functionalized proteins under mild conditions. Second, the HIPS ligation product is very stable (>5 days) in human plasma relative to an oxime-linked conjugate (∼1 day), as demonstrated by monitoring protein-fluorophore conjugates by ELISA. Thus, the HIPS ligation exhibits a combination of product stability and speed near neutral pH that is unparalleled by current carbonyl bioconjugation chemistries.
Collapse
Affiliation(s)
- Paresh Agarwal
- Redwood Bioscience, 5703 Hollis Street, Emeryville, California 94608, United States
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Taga Y, Kusubata M, Ogawa-Goto K, Hattori S. Site-specific Quantitative Analysis of Overglycosylation of Collagen in Osteogenesis Imperfecta Using Hydrazide Chemistry and SILAC. J Proteome Res 2013; 12:2225-32. [DOI: 10.1021/pr400079d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki
302-0017, Japan
| | - Masashi Kusubata
- Nippi Research Institute of Biomatrix, Toride, Ibaraki
302-0017, Japan
| | - Kiyoko Ogawa-Goto
- Nippi Research Institute of Biomatrix, Toride, Ibaraki
302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki
302-0017, Japan
| |
Collapse
|