1
|
Bequet E, Salée C, Bletard N, Massot C, Fonzé F, Sarter H, Ley D, Colinet S, Delvenne P, Louis E, Vieujean S, Meuwis MA. Distribution of epithelial endoplasmic reticulum stress-related proteins in adult and pediatric Crohn's disease: Association with inflammation and fibrosis. Dig Liver Dis 2025:S1590-8658(25)00326-3. [PMID: 40300947 DOI: 10.1016/j.dld.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND/AIMS Intestinal strictures in Crohn's disease (CD), driven by fibrosis remain challenging to treat. Current treatments focus on inflammation, but are less effective against fibrosis. Endoplasmic Reticulum Stress-Related Proteins, including Protein disulfide isomerases (PDIs), may contribute to fibrosis; their roles in CD remain unclear. This study investigated the distribution of AGR2, BiP, PDIA6, ERP44 in intestinal epithelium and their association with fibrosis and inflammation in pediatric and adult CD. METHODS We retrospectively analyzed 224 patients (2009-2023). CD patients with and without strictures, non IBD controls, and ulcerative colitis patients were compared. Immunohistochemistry assessed Endoplasmic Reticulum Stress-Related protein distribution in epithelium. H&E and Masson's trichrome staining evaluated inflammation and fibrosis. Correlations between protein distribution, inflammation and fibrosis were examined. RESULTS AGR2 and BiP were increased in fibro-inflammatory and fibrotic intestinal epithelial tissues, especially in pediatric-onset CD. ERP44 was associated with fibrosis exclusively in pediatric CD. PDIA6 was upregulated in CD compared to non IBD, without fibrosis association. Distinct protein distribution patterns were observed between pediatric and adult CD, and between ileum and colon. CONCLUSIONS Distinct patterns of AGR2, BiP, PDIA6, and ERP44 in fibrotic and inflammatory intestinal tissues suggest potential roles in CD-associated fibrosis, warranting exploration as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- E Bequet
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium; Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium.
| | - C Salée
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium
| | - N Bletard
- Department of Pathology, University Hospital Liège, Belgium
| | - C Massot
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium
| | - F Fonzé
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium
| | - H Sarter
- Public Health, Epidemiology and Economic Health, EPIMAD Registry, Regional house of clinical research, F-59000 Lille University and Hospital, Lille, France
| | - D Ley
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France; Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, CHU Lille, F-59000 Lille, France
| | - S Colinet
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, CHC MontLégia, Liège, Belgium
| | - P Delvenne
- Department of Pathology, University Hospital Liège, Belgium
| | - E Louis
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium; Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Liège, Belgium
| | - S Vieujean
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium; Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Liège, Belgium; Department of Gastroenterology, INFINY Institute, INSERM NGERE, CHRU Nancy, F-54500 Vandœuvre-lès-Nancy, France
| | - M-A Meuwis
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium; Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Liège, Belgium
| |
Collapse
|
2
|
Hnath B, Dokholyan NV. Novel extracellular vesicle release pathway facilitated by toxic superoxide dismutase 1 oligomers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647611. [PMID: 40291716 PMCID: PMC12026985 DOI: 10.1101/2025.04.07.647611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease resulting in paralysis and death within three to five years. Mutations in over forty different proteins have been linked to ALS, leading to controversy whether ALS is one disease or many diseases with a similar phenotype. Mutations in Cu,Zn superoxide dismutase 1 (SOD1) are only found in 2-3% of ALS cases, yet misfolded SOD1 is found in both sporadic (sALS) and familial (fALS) patients. Yet, mutations in TDP-43 or FUS increase the level of misfolded SOD1 on extracellular vesicles (EVs). Additionally, small EVs isolated from ALS patient samples caused cell death of wild type motor neurons and myotubules. The toxicity and protein alterations of ALS EVs have led to the theory that EVs are responsible for the spread of ALS. We hypothesize that previously-identified toxic trimeric SOD1 is spreading on EVs in ALS and altering the spread of other ALS-related proteins, linking them to a common mechanism. To test our hypothesis, we isolate EVs from motor neuron-like cells expressing trimer stabilizing mutations and perform a sandwich enzyme-linked immunoassay (ELISA) (CD9 capture antibody) to quantify whether misfolded SOD1 and 17 other ALS-related proteins increase or decrease on EVs with trimer stabilization. We identify which EV release pathway is being affected by trimeric SOD1 utilizing endocytosis and exocytosis inhibitors, and determine if any specific EV-related proteins are altered with trimer stabilization. We establish that VAPB, VCP, and Stathmin-2 increase on EVs with trimer stabilization. The common pathway between SOD1 and three other ALS-associated proteins is affected by multiple pathways, including the Caveolae endocytosis pathway, suggesting a novel hybrid pathway of EV release present in ALS.
Collapse
|
3
|
Hendershot LM, Buck TM, Brodsky JL. The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis. J Mol Biol 2024; 436:168418. [PMID: 38143019 PMCID: PMC12015986 DOI: 10.1016/j.jmb.2023.168418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
4
|
Jovanovic M, Mitra A, Besio R, Contento BM, Wong KW, Derkyi A, To M, Forlino A, Dale RK, Marini JC. Absence of TRIC-B from type XIV Osteogenesis Imperfecta osteoblasts alters cell adhesion and mitochondrial function - A multi-omics study. Matrix Biol 2023; 121:127-148. [PMID: 37348683 PMCID: PMC10634967 DOI: 10.1016/j.matbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Osteogenesis Imperfecta (OI) is a heritable collagen-related bone dysplasia characterized by bone fractures, growth deficiency and skeletal deformity. Type XIV OI is a recessive OI form caused by null mutations in TMEM38B, which encodes the ER membrane intracellular cation channel TRIC-B. Previously, we showed that absence of TMEM38B alters calcium flux in the ER of OI patient osteoblasts and fibroblasts, which further disrupts collagen synthesis and secretion. How the absence of TMEM38B affects osteoblast function is still poorly understood. Here we further investigated the role of TMEM38B in human osteoblast differentiation and mineralization. TMEM38B-null osteoblasts showed altered expression of osteoblast marker genes and decreased mineralization. RNA-Seq analysis revealed that cell-cell adhesion was one of the most downregulated pathways in TMEM38B-null osteoblasts, with further validation by real-time PCR and Western blot. Gap and tight junction proteins were also decreased by TRIC-B absence, both in patient osteoblasts and in calvarial osteoblasts of Tmem38b-null mice. Disrupted cell adhesion decreased mutant cell proliferation and cell cycle progression. An important novel finding was that TMEM38B-null osteoblasts had elongated mitochondria with altered fusion and fission markers, MFN2 and DRP1. In addition, TMEM38B-null osteoblasts exhibited a significant increase in superoxide production in mitochondria, further supporting mitochondrial dysfunction. Together these results emphasize the novel role of TMEM38B/TRIC-B in osteoblast differentiation, affecting cell-cell adhesion processes, gap and tight junction, proliferation, cell cycle, and mitochondrial function.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | | | - Ka Wai Wong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alberta Derkyi
- Office of the Clinical Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.
| |
Collapse
|
5
|
Podraza-Farhanieh A, Raj D, Kao G, Naredi P. A proinsulin-dependent interaction between ENPL-1 and ASNA-1 in neurons is required to maintain insulin secretion in C. elegans. Development 2023; 150:dev201035. [PMID: 36939052 PMCID: PMC10112894 DOI: 10.1242/dev.201035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Neuropeptides, including insulin, are important regulators of physiological functions of the organisms. Trafficking through the Golgi is crucial for the regulation of secretion of insulin-like peptides. ASNA-1 (TRC40) and ENPL-1 (GRP94) are conserved insulin secretion regulators in Caenorhabditis elegans (and mammals), and mouse Grp94 mutants display type 2 diabetes. ENPL-1/GRP94 binds proinsulin and regulates proinsulin levels in C. elegans and mammalian cells. Here, we have found that ASNA-1 and ENPL-1 cooperate to regulate insulin secretion in worms via a physical interaction that is independent of the insulin-binding site of ENPL-1. The interaction occurs in DAF-28/insulin-expressing neurons and is sensitive to changes in DAF-28 pro-peptide levels. Consistently, ASNA-1 acted in neurons to promote DAF-28/insulin secretion. The chaperone form of ASNA-1 was likely the interaction partner of ENPL-1. Loss of asna-1 disrupted Golgi trafficking pathways. ASNA-1 localization to the Golgi was affected in enpl-1 mutants and ENPL-1 overexpression partially bypassed the ASNA-1 requirement. Taken together, we find a functional interaction between ENPL-1 and ASNA-1 that is necessary to maintain proper insulin secretion in C. elegans and provides insights into how their loss might cause diabetes in mammals.
Collapse
Affiliation(s)
- Agnieszka Podraza-Farhanieh
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden
| | - Dorota Raj
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden
| | - Gautam Kao
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45 Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden
| |
Collapse
|
6
|
Xiang L, Yan R, Chen K, Li W, Xu K. Single-Molecule Displacement Mapping Unveils Sign-Asymmetric Protein Charge Effects on Intraorganellar Diffusion. NANO LETTERS 2023; 23:1711-1716. [PMID: 36802676 PMCID: PMC10044514 DOI: 10.1021/acs.nanolett.2c04379] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using single-molecule displacement/diffusivity mapping (SMdM), an emerging super-resolution microscopy method, here we quantify, at nanoscale resolution, the diffusion of a typical fluorescent protein (FP) in the endoplasmic reticulum (ER) and mitochondrion of living mammalian cells. We thus show that the diffusion coefficients D in both organelles are ∼40% of that in the cytoplasm, with the latter exhibiting higher spatial inhomogeneities. Moreover, we unveil that diffusions in the ER lumen and the mitochondrial matrix are markedly impeded when the FP is given positive, but not negative, net charges. Calculation shows most intraorganellar proteins as negatively charged, hence a mechanism to impede the diffusion of positively charged proteins. However, we further identify the ER protein PPIB as an exception with a positive net charge and experimentally show that the removal of this positive charge elevates its intra-ER diffusivity. We thus unveil a sign-asymmetric protein charge effect on the nanoscale intraorganellar diffusion.
Collapse
Affiliation(s)
- Limin Xiang
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
- College of Chemistry and Molecular Sciences & TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Rui Yan
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Kun Chen
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Wan Li
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Ke Xu
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| |
Collapse
|
7
|
Xiang L, Yan R, Chen K, Li W, Xu K. Single-molecule displacement mapping unveils sign-asymmetric protein charge effects on intraorganellar diffusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525611. [PMID: 36747807 PMCID: PMC9900983 DOI: 10.1101/2023.01.26.525611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using single-molecule displacement/diffusivity mapping (SM d M), an emerging super-resolution microscopy method, here we quantify, at nanoscale resolution, the diffusion of a typical fluorescent protein (FP) in the endoplasmic reticulum (ER) and mitochondrion of living mammalian cells. We thus show that the diffusion coefficients D in both organelles are ~40% of that in the cytoplasm, with the latter exhibiting higher spatial inhomogeneities. Moreover, we unveil that diffusions in the ER lumen and the mitochondrial matrix are markedly impeded when the FP is given positive, but not negative, net charges. Calculation shows most intraorganellar proteins as negatively charged, thus a mechanism to impede the diffusion of positively charged proteins. However, we further identify the ER protein PPIB as an exception with a positive net charge, and experimentally show that the removal of this positive charge elevates its intra-ER diffusivity. We thus unveil a sign-asymmetric protein charge effect on the nanoscale intraorganellar diffusion.
Collapse
|
8
|
Palin MF, Caron A, Farmer C. Effects of sustained hyperprolactinemia in late gestation on the mammary parenchymal tissue transcriptome of gilts. BMC Genomics 2023; 24:40. [PMID: 36694114 PMCID: PMC9875420 DOI: 10.1186/s12864-023-09136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Gilts experiencing sustained hyperprolactinemia from d 90 to 109 of gestation showed an early onset of lactogenesis coupled with premature mammary involution. To better understand the molecular mechanisms underlying the premature mammary involution observed in these gilts, a transcriptomic analysis was undertaken. Therefore, this study aimed to explore the effect of hyperprolactinemia on the global transcriptome in the mammary tissue of late gestating gilts and identify the molecular pathways involved in triggering premature mammary involution. METHODS On d 90 of gestation, gilts received daily injections of (1) canola oil until d 109 ± 1 of gestation (CTL, n = 18); (2) domperidone (to induce hyperprolactinemia) until d 96 ± 1 of gestation (T7, n = 17) or; (3) domperidone (until d 109 ± 1 of gestation (T20, n = 17). Mammary tissue was collected on d 110 of gestation and total RNA was isolated from six CTL and six T20 gilts for microarray analysis. The GeneChip® Porcine Gene 1.0 ST Array was used for hybridization. Functional enrichment analyses were performed to explore the biological significance of differentially expressed genes, using the DAVID bioinformatics resource. RESULTS The expression of 335 genes was up-regulated and that of 505 genes down-regulated in the mammary tissue of T20 vs CTL gilts. Biological process GO terms and KEGG pathways enriched in T20 vs CTL gilts reflected the concurrent premature lactogenesis and mammary involution. When looking at individual genes, it appears that mammary cells from T20 gilts can simultaneously upregulate the transcription of milk proteins such as WAP, CSN1S2 and LALBA, and genes triggering mammary involution such as STAT3, OSMR and IL6R. The down-regulation of PRLR expression and up-regulation of genes known to inactivate the JAK-STAT5 pathway (CISH, PTPN6) suggest the presence of a negative feedback loop trying to counteract the effects of hyperprolactinemia. CONCLUSIONS Genes and pathways identified in this study suggest that sustained hyperprolactinemia during late-pregnancy, in the absence of suckling piglets, sends conflicting pro-survival and cell death signals to mammary epithelial cells. Reception of these signals results in a mammary gland that can simultaneously synthesize milk proteins and initiate mammary involution.
Collapse
Affiliation(s)
- Marie-France Palin
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Sherbrooke R & D Centre, Sherbrooke, QC Canada
| | - Anouk Caron
- grid.23856.3a0000 0004 1936 8390Université Laval, Québec, QC Canada
| | - Chantal Farmer
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Sherbrooke R & D Centre, Sherbrooke, QC Canada
| |
Collapse
|
9
|
Cuervo NZ, Grandvaux N. Redox proteomics and structural analyses provide insightful implications for additional non-catalytic thiol-disulfide motifs in PDIs. Redox Biol 2022; 59:102583. [PMID: 36567215 PMCID: PMC9868663 DOI: 10.1016/j.redox.2022.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Protein disulfide isomerases (PDIs) catalyze redox reactions that reduce, oxidize, or isomerize disulfide bonds and act as chaperones of proteins as they fold. The characteristic features of PDIs are the presence of one or more catalytic thioredoxin (TRX)-like domains harboring typical CXXC catalytic motifs responsible for redox reactions, as well as non-catalytic TRX-like domain. As increasing attention is paid to oxidative post-translational modifications of cysteines (Cys ox-PTMs) with the recognition that they control cellular signaling, strategies to identify sites of Cys ox-PTM by redox proteomics have been optimized. Exploration of an available Cys redoxome dataset supported by modeled structure provided arguments for the existence of an additional non-catalytic thiol-disulfide motif, distinct from those contained in the TRX type patterns, typical of PDIAs. Further structural analysis of PDIA3 and 6 allows us to consider the possibility that this hypothesis could be extended to other members of PDI. These elements invite future studies to decipher the exact role of these non-catalytic thiol-disulfide motifs in the functions of PDIs. Strategies that would allow to validate this hypothesis are discussed.
Collapse
Affiliation(s)
- Natalia Zamorano Cuervo
- CRCHUM – Centre de Recherche du Centre Hospitalier de l’Université de Montréal, 900 rue Saint Denis, Montréal, H2X 0A9, Québec, Canada
| | - Nathalie Grandvaux
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal, H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Québec, Canada.
| |
Collapse
|
10
|
Hill SE, Esquivel AR, Ospina SR, Rahal LM, Dickey CA, Blair LJ. Chaperoning activity of the cyclophilin family prevents tau aggregation. Protein Sci 2022; 31:e4448. [PMID: 36305768 PMCID: PMC9597375 DOI: 10.1002/pro.4448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 11/09/2022]
Abstract
Tauopathies, such as Alzheimer's disease, are characterized by the misfolding and progressive accumulation of the microtubule associated protein tau. Chaperones, tasked with maintaining protein homeostasis, can become imbalanced with age and contribute to the progression of neurodegenerative disease. Cyclophilins are a promising pool of underinvestigated chaperones with peptidyl-prolyl isomerase activity that may play protective roles in regulating tau aggregation. Using a Thioflavin T fluorescence-based assay to monitor in vitro tau aggregation, all eight cyclophilins, which include PPIA to PPIH prevent tau aggregation, with PPIB, PPIC, PPID, and PPIH showing the greatest inhibition. The low thermal stability of PPID and the strong heparin binding of PPIB undermines the simplistic interpretation of reduced tau aggregation. In a cellular model of tau accumulation, all cyclophilins, except PPID and PPIH, reduce insoluble tau. PPIB, PPIC, PPIE, and PPIF also reduce soluble tau levels with PPIC exclusively protecting cells from tau seeding. Overall, this study demonstrates cyclophilins prevent tau fibril formation and many reduce cellular insoluble tau accumulation with PPIC having the greatest potential as a molecular tool to mitigate tau seeding and accumulation.
Collapse
Affiliation(s)
- Shannon E. Hill
- USF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Abigail R. Esquivel
- USF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Santiago Rodriguez Ospina
- USF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Lauren M. Rahal
- USF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Chad A. Dickey
- USF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
| | - Laura J. Blair
- USF Health Byrd Alzheimer's InstituteUniversity of South FloridaTampaFloridaUSA
- Department of Molecular MedicineUniversity of South FloridaTampaFloridaUSA
- Research ServiceJames A. Haley Veterans HospitalTampaFloridaUSA
| |
Collapse
|
11
|
Su SC, Hung YJ, Lin FH, Hsieh CH, Lu CH, Chien CY, Chen YC, Li PF, Kuo FC, Liu JS, Chu NF, Lee CH. Circulating protein disulfide isomerase family member 4 is associated with type 2 diabetes mellitus, insulin sensitivity, and obesity. Acta Diabetol 2022; 59:1001-1009. [PMID: 35460376 DOI: 10.1007/s00592-022-01892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/09/2022] [Indexed: 11/01/2022]
Abstract
AIMS Endoplasmic reticulum (ER) stress is associated with obesity and type 2 diabetes mellitus (T2DM) and increasing evidence demonstrates that some ER stress markers can represent the severity of metabolic dysfunction in either cellular or animal models. However, no appropriate molecule has been identified to demonstrate these relationships in clinical practice. METHODS To determine whether the serum level of the ER chaperone, protein disulfide isomerase family A, member 4 (PDIA4), is associated with type 2 diabetes mellitus, obesity, and insulin sensitivity, we conducted a cross-sectional study for which a total of 553 adults, including 159 with normal glucose tolerance (NGT), 169 with prediabetes (Pre-DM), and 225 with newly diagnosed T2DM, were recruited. RESULTS Serum PDIA4 levels were significantly higher in patients with T2DM than in those with NGT (P < 0.001), even after adjustment for potential confounders. These levels correlated positively with fasting plasma glucose, BMI, waist circumference as well as high-sensitivity C-reactive protein levels, and negatively and strongly correlated with insulin sensitivity. In a multivariate logistic regression analysis, higher serum PDIA4 concentration was observed to be significantly associated with an increased risk of T2DM. CONCLUSIONS Our findings provide new mechanistic insights linking ER stress, T2DM, insulin sensitivity, and obesity, which may, in part, account for the ER chaperone properties associated with PDIA4. The results suggest that PDIA4 may serve as a potential instigator of and a putative therapeutic target for T2DM.
Collapse
Affiliation(s)
- Sheng-Chiang Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Chu-Yen Chien
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ying-Chen Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Peng-Fei Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Feng-Chih Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Jhih-Syuan Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Nain-Feng Chu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Chien-Hsing Lee
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC.
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
12
|
West JD. Experimental Approaches for Investigating Disulfide-Based Redox Relays in Cells. Chem Res Toxicol 2022; 35:1676-1689. [PMID: 35771680 DOI: 10.1021/acs.chemrestox.2c00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reversible oxidation of cysteine residues within proteins occurs naturally during normal cellular homeostasis and can increase during oxidative stress. Cysteine oxidation often leads to the formation of disulfide bonds, which can impact protein folding, stability, and function. Work in both prokaryotic and eukaryotic models over the past five decades has revealed several multiprotein systems that use thiol-dependent oxidoreductases to mediate disulfide bond reduction, formation, and/or rearrangement. Here, I provide an overview of how these systems operate to carry out disulfide exchange reactions in different cellular compartments, with a focus on their roles in maintaining redox homeostasis, transducing redox signals, and facilitating protein folding. Additionally, I review thiol-independent and thiol-dependent approaches for interrogating what proteins partner together in such disulfide-based redox relays. While the thiol-independent approaches rely either on predictive measures or standard procedures for monitoring protein-protein interactions, the thiol-dependent approaches include direct disulfide trapping methods as well as thiol-dependent chemical cross-linking. These strategies may prove useful in the systematic characterization of known and newly discovered disulfide relay mechanisms and redox switches involved in oxidant defense, protein folding, and cell signaling.
Collapse
Affiliation(s)
- James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|
13
|
Wiseman RL, Mesgarzadeh JS, Hendershot LM. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell 2022; 82:1477-1491. [PMID: 35452616 PMCID: PMC9038009 DOI: 10.1016/j.molcel.2022.03.025] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.
Collapse
Affiliation(s)
- R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037,To whom correspondences should be addressed: Linda Hendershot, ; R. Luke Wiseman,
| | - Jaleh S. Mesgarzadeh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Linda M. Hendershot
- Department of Tumor Biology, St Jude Children’s Research Hospital, Memphis, TN 38105,To whom correspondences should be addressed: Linda Hendershot, ; R. Luke Wiseman,
| |
Collapse
|
14
|
Preisendörfer S, Ishikawa Y, Hennen E, Winklmeier S, Schupp JC, Knüppel L, Fernandez IE, Binzenhöfer L, Flatley A, Juan-Guardela BM, Ruppert C, Guenther A, Frankenberger M, Hatz RA, Kneidinger N, Behr J, Feederle R, Schepers A, Hilgendorff A, Kaminski N, Meinl E, Bächinger HP, Eickelberg O, Staab-Weijnitz CA. FK506-Binding Protein 11 Is a Novel Plasma Cell-Specific Antibody Folding Catalyst with Increased Expression in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:1341. [PMID: 35456020 PMCID: PMC9027113 DOI: 10.3390/cells11081341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Antibodies are central effectors of the adaptive immune response, widespread used therapeutics, but also potentially disease-causing biomolecules. Antibody folding catalysts in the plasma cell are incompletely defined. Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease with increasingly recognized autoimmune features. We found elevated expression of FK506-binding protein 11 (FKBP11) in IPF lungs where FKBP11 specifically localized to antibody-producing plasma cells. Suggesting a general role in plasma cells, plasma cell-specific FKBP11 expression was equally observed in lymphatic tissues, and in vitro B cell to plasma cell differentiation was accompanied by induction of FKBP11 expression. Recombinant human FKBP11 was able to refold IgG antibody in vitro and inhibited by FK506, strongly supporting a function as antibody peptidyl-prolyl cis-trans isomerase. Induction of ER stress in cell lines demonstrated induction of FKBP11 in the context of the unfolded protein response in an X-box-binding protein 1 (XBP1)-dependent manner. While deficiency of FKBP11 increased susceptibility to ER stress-mediated cell death in an alveolar epithelial cell line, FKBP11 knockdown in an antibody-producing hybridoma cell line neither induced cell death nor decreased expression or secretion of IgG antibody. Similarly, antibody secretion by the same hybridoma cell line was not affected by knockdown of the established antibody peptidyl-prolyl isomerase cyclophilin B. The results are consistent with FKBP11 as a novel XBP1-regulated antibody peptidyl-prolyl cis-trans isomerase and indicate significant redundancy in the ER-resident folding machinery of antibody-producing hybridoma cells.
Collapse
Affiliation(s)
- Stefan Preisendörfer
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; (Y.I.); (H.P.B.)
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, Biomedical Center and LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (S.W.); (E.M.)
| | - Jonas C. Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Larissa Knüppel
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Isis E. Fernandez
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Leonhard Binzenhöfer
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Brenda M. Juan-Guardela
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), 35392 Giessen, Germany; (C.R.); (A.G.)
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), 35392 Giessen, Germany; (C.R.); (A.G.)
| | - Marion Frankenberger
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Rudolf A. Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany;
- Asklepios Fachkliniken München-Gauting, 82131 Gauting, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Jürgen Behr
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (S.W.); (E.M.)
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; (Y.I.); (H.P.B.)
| | - Oliver Eickelberg
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| |
Collapse
|
15
|
Freije BJ, Freije WM, Do TU, Adkins GE, Bruch A, Hurtig JE, Morano KA, Schaffrath R, West JD. Identifying Interaction Partners of Yeast Protein Disulfide Isomerases Using a Small Thiol-Reactive Cross-Linker: Implications for Secretory Pathway Proteostasis. Chem Res Toxicol 2022; 35:326-336. [PMID: 35084835 PMCID: PMC8860869 DOI: 10.1021/acs.chemrestox.1c00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein disulfide isomerases (PDIs) function in forming the correct disulfide bonds in client proteins, thereby aiding the folding of proteins that enter the secretory pathway. Recently, several PDIs have been identified as targets of organic electrophiles, yet the client proteins of specific PDIs remain largely undefined. Here, we report that PDIs expressed in Saccharomyces cerevisiae are targets of divinyl sulfone (DVSF) and other thiol-reactive protein cross-linkers. Using DVSF, we identified the interaction partners that were cross-linked to Pdi1 and Eug1, finding that both proteins form cross-linked complexes with other PDIs, as well as vacuolar hydrolases, proteins involved in cell wall biosynthesis and maintenance, and many ER proteostasis factors involved ER stress signaling and ER-associated protein degradation (ERAD). The latter discovery prompted us to examine the effects of DVSF on ER quality control, where we found that DVSF inhibits the degradation of the ERAD substrate CPY*, in addition to covalently modifying Ire1 and blocking the activation of the unfolded protein response. Our results reveal that DVSF targets many proteins within the ER proteostasis network and suggest that these proteins may be suitable targets for covalent therapeutic development in the future.
Collapse
Affiliation(s)
- Benjamin J. Freije
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA
| | - Wilson M. Freije
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA
| | - To Uyen Do
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA
| | - Grace E. Adkins
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA
| | - Alexander Bruch
- Fachgebiet Mikrobiologie; Institut für Biologie; Universität Kassel; Kassel, Germany
| | - Jennifer E. Hurtig
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA,Department of Microbiology & Molecular Genetics; McGovern Medical School; University of Texas at Houston; Houston, TX USA
| | - Kevin A. Morano
- Department of Microbiology & Molecular Genetics; McGovern Medical School; University of Texas at Houston; Houston, TX USA
| | - Raffael Schaffrath
- Fachgebiet Mikrobiologie; Institut für Biologie; Universität Kassel; Kassel, Germany
| | - James D. West
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA,Corresponding author , phone: 330-263-2368
| |
Collapse
|
16
|
Ismael S, Wajidunnisa, Sakata K, McDonald MP, Liao FF, Ishrat T. ER stress associated TXNIP-NLRP3 inflammasome activation in hippocampus of human Alzheimer's disease. Neurochem Int 2021; 148:105104. [PMID: 34153352 PMCID: PMC9479581 DOI: 10.1016/j.neuint.2021.105104] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Although the exact etiology of Alzheimer's disease (AD) is poorly understood, experimental and clinical evidences suggest the contribution of neuroinflammation in the pathogenesis of AD. Pathologically, AD brain is characterized by an imbalance in redox status, elevated endoplasmic reticulum (ER) stress, synaptic dysfunction, inflammation, and progressive neurodegeneration. It has been noted that continuous accumulation of amyloid-beta (Aβ) and intracellular neurofibrillary tangles (NFTs) in AD brain trigger ER stress, which contributes to neurodegeneration. Similarly, experimental evidences supports the hypothesis that thioredoxin-interacting protein (TXNIP), an endogenous regulator of redox regulator thioredoxin (TRX), is activated by ER stress and contributes to activation of NLRP3 (NOD-like receptor protein 3) inflammatory cascade in hippocampus of the AD brain. Hippocampus of postmortem human AD and aged matched non-AD controls were analyzed for the expression ER stress markers and TXNIP-NLRP3 inflammasome at cellular and molecular levels. We found higher expression of TXNIP at protein and transcript levels in close association with pathological markers of AD such as Aβ and NFTs in AD hippocampus. In addition, our results demonstrated that TXNIP was co-localized in neurons and microglia. Moreover, expression of binding immunoglobulin protein (BiP), activated eukaryotic initiation factor-2α (eIf2α) and C/EBP homology protein (CHOP), proteins involved the development of ER stress, were elevated in AD hippocampus. Further, elevated expression of effector molecules of NLRP3 inflammasome activation such as apoptosis associated speck-like protein (ASC), cleaved caspase-1 and cleaved interleukin-1β were observed in the AD hippocampus. The study suggests that TXNIP could be a link that connect ER stress with neuroinflammation. Thus, TXNIP can be a possible therapeutic target to mitigate the progression of neuroinflammation in the pathogenesis of AD.
Collapse
Affiliation(s)
- Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wajidunnisa
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Kazuko Sakata
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Michael P McDonald
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
17
|
McCaul N, Quandte M, Bontjer I, van Zadelhoff G, Land A, Crooks ET, Binley JM, Sanders RW, Braakman I. Intramolecular quality control: HIV-1 envelope gp160 signal-peptide cleavage as a functional folding checkpoint. Cell Rep 2021; 36:109646. [PMID: 34469718 DOI: 10.1016/j.celrep.2021.109646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/28/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Removal of the membrane-tethering signal peptides that target secretory proteins to the endoplasmic reticulum is a prerequisite for proper folding. While generally thought to be removed co-translationally, we report two additional post-targeting functions for the HIV-1 gp120 signal peptide, which remains attached until gp120 folding triggers its removal. First, the signal peptide improves folding fidelity by enhancing conformational plasticity of gp120 by driving disulfide isomerization through a redox-active cysteine. Simultaneously, the signal peptide delays folding by tethering the N terminus to the membrane, until assembly with the C terminus. Second, its carefully timed cleavage represents intramolecular quality control and ensures release of (only) natively folded gp120. Postponed cleavage and the redox-active cysteine are both highly conserved and important for viral fitness. Considering the ∼15% proteins with signal peptides and the frequency of N-to-C contacts in protein structures, these regulatory roles of signal peptides are bound to be more common in secretory-protein biogenesis.
Collapse
Affiliation(s)
- Nicholas McCaul
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Matthias Quandte
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105 Amsterdam, the Netherlands
| | - Guus van Zadelhoff
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Aafke Land
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ema T Crooks
- San Diego Biomedical Research Institute, 10865 Road to the Cure #100, San Diego, CA, USA
| | - James M Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure #100, San Diego, CA, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105 Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands.
| |
Collapse
|
18
|
Munteanu CVA, Chirițoiu GN, Chirițoiu M, Ghenea S, Petrescu AJ, Petrescu ȘM. Affinity proteomics and deglycoproteomics uncover novel EDEM2 endogenous substrates and an integrative ERAD network. Mol Cell Proteomics 2021; 20:100125. [PMID: 34332121 PMCID: PMC8455867 DOI: 10.1016/j.mcpro.2021.100125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/09/2021] [Accepted: 07/25/2021] [Indexed: 02/08/2023] Open
Abstract
Various pathologies result from disruptions to or stress of endoplasmic reticulum (ER) homeostasis, such as Parkinson's disease and most neurodegenerative illnesses, diabetes, pulmonary fibrosis, viral infections and cancers. A critical process in maintaining ER homeostasis is the selection of misfolded proteins by the ER quality-control system (ERQC) for destruction via ER-associated degradation (ERAD). One key protein proposed to act during the first steps of misfolded glycoprotein degradation is the ER degradation-enhancing α-mannosidase-like protein 2 (EDEM2). Therefore, characterization of the EDEM2 associated proteome is of great interest. We took advantage of using melanoma cells overexpressing EDEM2 as a cancer model system, to start documenting at the deglycoproteome level (N-glycosites identification) the emerging link between ER homeostasis and cancer progression. The dataset created for identifying the EDEM2 glyco-clients carrying high mannose/hybrid N-glycans provides a comprehensive N-glycosites analysis mapping over 1000 N-glycosites on more than 600 melanoma glycoproteins. To identify EDEM2-associated proteins we used affinity-proteomics and proteome-wide analysis of sucrose density fractionation in an integrative workflow. Using intensity and spectral count-based quantification, we identify seven new EDEM2 partners, all of which are involved in ERQC and ERAD. Moreover, we defined novel endogenous candidates for EDEM2-dependent ERAD by combining deglycoproteomics, SILAC-based proteomics, and biochemical methods. These included tumor antigens and several ER-transiting endogenous melanoma proteins, including ITGA1 and PCDH2, the expression of which was negatively correlated with that of EDEM2. Tumor antigens are key in the antigen presentation process, whilst ITGA1 and PCDH2 are involved in melanoma metastasis and invasion. EDEM2 could therefore have a regulatory role in melanoma through the modulation of these glycoproteins degradation and trafficking. The data presented herein suggest that EDEM2 is involved in ER homeostasis to a greater extent than previously suggested.
Collapse
Affiliation(s)
- Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Gabriela N Chirițoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Marioara Chirițoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Simona Ghenea
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Ștefana M Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania.
| |
Collapse
|
19
|
Ichhaporia VP, Hendershot LM. Role of the HSP70 Co-Chaperone SIL1 in Health and Disease. Int J Mol Sci 2021; 22:ijms22041564. [PMID: 33557244 PMCID: PMC7913895 DOI: 10.3390/ijms22041564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/04/2022] Open
Abstract
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.
Collapse
|
20
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
21
|
Liao Q, Zhou Y, Xia L, Cao D. Lipid Metabolism and Immune Checkpoints. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:191-211. [PMID: 33740251 DOI: 10.1007/978-981-33-6785-2_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immune checkpoints are essential for the regulation of immune cell functions. Although the abrogation of immunosurveillance of tumor cells is known, the regulators of immune checkpoints are not clear. Lipid metabolism is one of the important metabolic activities in organisms. In lipid metabolism, a large number of metabolites produced can regulate the gene expression and activation of immune checkpoints through various pathways. In addition, increasing evidence has shown that lipid metabolism leads to transient generation or accumulation of toxic lipids that result in endoplasmic reticulum (ER) stress and then regulate the transcriptional and posttranscriptional modifications of immune checkpoints, including transcription, protein folding, phosphorylation, palmitoylation, etc. More importantly, the lipid metabolism can also affect exosome transportation of checkpoints and the degradation of checkpoints by affecting ubiquitination and lysosomal trafficking. In this chapter, we mainly empathize on the roles of lipid metabolism in the regulation of immune checkpoints, such as gene expression, activation, and degradation.
Collapse
Affiliation(s)
- Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Deliang Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
22
|
Wright MT, Plate L. Revealing functional insights into ER proteostasis through proteomics and interactomics. Exp Cell Res 2020; 399:112417. [PMID: 33301765 DOI: 10.1016/j.yexcr.2020.112417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
The endoplasmic reticulum (ER), responsible for processing approximately one-third of the human proteome including most secreted and membrane proteins, plays a pivotal role in protein homeostasis (proteostasis). Dysregulation of ER proteostasis has been implicated in a number of disease states. As such, continued efforts are directed at elucidating mechanisms of ER protein quality control which are mediated by transient and dynamic protein-protein interactions with molecular chaperones, co-chaperones, protein folding and trafficking factors that take place in and around the ER. Technological advances in mass spectrometry have played a pivotal role in characterizing and understanding these protein-protein interactions that dictate protein quality control mechanisms. Here, we highlight the recent progress from mass spectrometry-based investigation of ER protein quality control in revealing the topological arrangement of the proteostasis network, stress response mechanisms that adjust the ER proteostasis capacity, and disease specific changes in proteostasis network engagement. We close by providing a brief outlook on underexplored areas of ER proteostasis where mass spectrometry is a tool uniquely primed to further expand our understanding of the regulation and coordination of protein quality control processes in diverse diseases.
Collapse
Affiliation(s)
- Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
23
|
Kozlov G, Gehring K. Calnexin cycle - structural features of the ER chaperone system. FEBS J 2020; 287:4322-4340. [PMID: 32285592 PMCID: PMC7687155 DOI: 10.1111/febs.15330] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the major folding compartment for secreted and membrane proteins and is the site of a specific chaperone system, the calnexin cycle, for folding N-glycosylated proteins. Recent structures of components of the calnexin cycle have deepened our understanding of quality control mechanisms and protein folding pathways in the ER. In the calnexin cycle, proteins carrying monoglucosylated glycans bind to the lectin chaperones calnexin and calreticulin, which recruit a variety of function-specific chaperones to mediate protein disulfide formation, proline isomerization, and general protein folding. Upon trimming by glucosidase II, the glycan without an inner glucose residue is no longer able to bind to the lectin chaperones. For proteins that have not yet folded properly, the enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) acts as a checkpoint by adding a glucose back to the N-glycan. This allows the misfolded proteins to re-associate with calnexin and calreticulin for additional rounds of chaperone-mediated refolding and prevents them from exiting the ERs. Here, we review progress in structural studies of the calnexin cycle, which reveal common features of how lectin chaperones recruit function-specific chaperones and how UGGT recognizes misfolded proteins.
Collapse
Affiliation(s)
- Guennadi Kozlov
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| | - Kalle Gehring
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| |
Collapse
|
24
|
Komatsu K, Kumon K, Arita M, Onitsuka M, Omasa T, Yohda M. Effect of the disulfide isomerase PDIa4 on the antibody production of Chinese hamster ovary cells. J Biosci Bioeng 2020; 130:637-643. [PMID: 32878739 DOI: 10.1016/j.jbiosc.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
Abstract
Therapeutic monoclonal antibodies recognize and bind specific molecules on the surface of target cells, stimulating the immune system, which can attack these targeted cells. These antibodies are produced by mammalian cells, including Chinese hamster ovary (CHO) cells, because the formation of antibodies requires complicated posttranslational modifications, including peptidyl-prolyl cis/trans isomerization, disulfide bond formation, and glycosylation. Currently, it is thought that the efficient production of secretory proteins is limited by posttranslational processes. The ER is the biosynthesis site of all secreted and membrane proteins. The accumulation of unfolded proteins in the ER causes the ER stress response. During the ER stress state, various molecular chaperones are expressed to prevent proteins from the aggregate formation. The molecular chaperone involved in ER stress likely plays an essential role in the production of secretory proteins. The purpose of this study was to improve the production of monoclonal antibodies by cells. We elucidated the function of ER chaperones in the production of a monoclonal antibody. First, we quantitatively measured the mRNA expression levels of protein disulfide-isomerase family members. In CHO HcD6 cells treated with tunicamycin, the expression level of pdia4 was significantly increased. Second, we investigated the relationship between PDIa4 and antibody productivity in pdia4-knockdown cells. Both a decrease in the amount of secreted antibody and the accumulation of immature antibodies inside the cells were observed. Recombinant PDIa4 was able to refold the antibodies and Fabs. These results indicate that PDIa4 affects the production of monoclonal antibodies by catalyzing disulfide bond formation in these antibodies in CHO cells.
Collapse
Affiliation(s)
- Kei Komatsu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kento Kumon
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Mayuno Arita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
25
|
Madero-Ayala PA, Mares-Alejandre RE, Ramos-Ibarra MA. A molecular dynamics approach on the Y393C variant of protein disulfide isomerase A1. Chem Biol Drug Des 2020; 96:1341-1347. [PMID: 32352225 DOI: 10.1111/cbdd.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 11/28/2022]
Abstract
Human protein disulfide isomerase A1 (PDIA1) shows both catalytic (i.e., oxidoreductase) and non-catalytic (i.e., chaperone) activities and plays a crucial role in the oxidative folding of proteins within the endoplasmic reticulum. PDIA1 dysregulation is a common trait in numerous pathophysiological conditions, including neurodegenerative disorders and cancerous diseases. The 1178A>G mutation of the human PDIA1-encoding gene is a non-synonymous single nucleotide polymorphism detected in patients with Cole-Carpenter syndrome type 1 (CSS1), a particularly rare bone disease. In vitro studies showed that the encoded variant (PDIA1 Y393C) exhibits limited oxidoreductase activity. To gain knowledge on the structure-function relationship, we undertook a molecular dynamics (MD) approach to examine the structural stability of PDIA1 Y393C. Results showed that significant conformational changes are the structural consequence of the amino acid substitution Tyr>Cys at position 393 of the PDIA1 protein. This structure-based study provides further knowledge about the molecular origin of CCS1.
Collapse
Affiliation(s)
- Pablo A Madero-Ayala
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| | - Rosa E Mares-Alejandre
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| | - Marco A Ramos-Ibarra
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| |
Collapse
|
26
|
Maurel M, Obacz J, Avril T, Ding YP, Papadodima O, Treton X, Daniel F, Pilalis E, Hörberg J, Hou W, Beauchamp MC, Tourneur-Marsille J, Cazals-Hatem D, Sommerova L, Samali A, Tavernier J, Hrstka R, Dupont A, Fessart D, Delom F, Fernandez-Zapico ME, Jansen G, Eriksson LA, Thomas DY, Jerome-Majewska L, Hupp T, Chatziioannou A, Chevet E, Ogier-Denis E. Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation. EMBO Mol Med 2020; 11:emmm.201810120. [PMID: 31040128 PMCID: PMC6554669 DOI: 10.15252/emmm.201810120] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Anterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the underlying molecular mechanisms of AGR2 function toward inflammation remain poorly defined. Here, using a protein-protein interaction screen to identify cellular regulators of AGR2 dimerization, we unveiled specific enhancers, including TMED2, and inhibitors of AGR2 dimerization, that control AGR2 functions. We demonstrate that modulation of AGR2 dimer formation, whether enhancing or inhibiting the process, yields pro-inflammatory phenotypes, through either autophagy-dependent processes or secretion of AGR2, respectively. We also demonstrate that in IBD and specifically in Crohn's disease, the levels of AGR2 dimerization modulators are selectively deregulated, and this correlates with severity of disease. Our study demonstrates that AGR2 dimers act as sensors of ER homeostasis which are disrupted upon ER stress and promote the secretion of AGR2 monomers. The latter might represent systemic alarm signals for pro-inflammatory responses.
Collapse
Affiliation(s)
- Marion Maurel
- INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", University of Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.,VIB Department of Medical Protein Research, UGent, Gent, Belgium.,Apoptosis Research Centre, School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Joanna Obacz
- INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", University of Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Tony Avril
- INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", University of Rennes, Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Yong-Ping Ding
- INSERM, UMR1149, Team «Gut Inflammation», Research Centre of Inflammation, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,APHP Beaujon Hospital Clichy la Garenne, Paris, France
| | - Olga Papadodima
- Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece
| | - Xavier Treton
- INSERM, UMR1149, Team «Gut Inflammation», Research Centre of Inflammation, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,APHP Beaujon Hospital Clichy la Garenne, Paris, France
| | - Fanny Daniel
- INSERM, UMR1149, Team «Gut Inflammation», Research Centre of Inflammation, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,APHP Beaujon Hospital Clichy la Garenne, Paris, France
| | - Eleftherios Pilalis
- Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece.,International Centre for Cancer Vaccine Science, Gdansk, Poland
| | - Johanna Hörberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Wenyang Hou
- Departments of Anatomy and Cell Biology, Human Genetics, and Pediatrics, McGill University, Montreal, QC, Canada
| | - Marie-Claude Beauchamp
- Departments of Anatomy and Cell Biology, Human Genetics, and Pediatrics, McGill University, Montreal, QC, Canada
| | - Julien Tourneur-Marsille
- INSERM, UMR1149, Team «Gut Inflammation», Research Centre of Inflammation, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,APHP Beaujon Hospital Clichy la Garenne, Paris, France
| | - Dominique Cazals-Hatem
- INSERM, UMR1149, Team «Gut Inflammation», Research Centre of Inflammation, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,APHP Beaujon Hospital Clichy la Garenne, Paris, France
| | - Lucia Sommerova
- Regional Centre for Applied Molecular Oncology (RECAMO), Brno, Czech Republic
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Jan Tavernier
- VIB Department of Medical Protein Research, UGent, Gent, Belgium
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology (RECAMO), Brno, Czech Republic
| | - Aurélien Dupont
- Microscopy Rennes Imaging Centre, and Biosit, UMS3480 CNRS, University of Rennes 1, Rennes Cédex, France
| | | | | | - Martin E Fernandez-Zapico
- Division of Oncology Research, Department of Oncology, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gregor Jansen
- Biochemistry Department, McGill University Life Sciences Complex, Montréal, QC, Canada
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - David Y Thomas
- Biochemistry Department, McGill University Life Sciences Complex, Montréal, QC, Canada
| | - Loydie Jerome-Majewska
- Departments of Anatomy and Cell Biology, Human Genetics, and Pediatrics, McGill University, Montreal, QC, Canada
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, Gdansk, Poland.,Regional Centre for Applied Molecular Oncology (RECAMO), Brno, Czech Republic.,Edinburgh Cancer Research Centre at the Institute of Genetics and Molecular Medicine, Edinburgh University, Edimburgh, UK
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece .,e-NIOS PC, Kallithea-Athens, Greece
| | - Eric Chevet
- INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", University of Rennes, Rennes, France .,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Eric Ogier-Denis
- INSERM, UMR1149, Team «Gut Inflammation», Research Centre of Inflammation, Paris, France .,Université Paris-Diderot Sorbonne Paris-Cité, Paris, France.,APHP Beaujon Hospital Clichy la Garenne, Paris, France
| |
Collapse
|
27
|
Khong ML, Li L, Solesio ME, Pavlov EV, Tanner JA. Inorganic polyphosphate controls cyclophilin B-mediated collagen folding in osteoblast-like cells. FEBS J 2020; 287:4500-4524. [PMID: 32056376 DOI: 10.1111/febs.15249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/28/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022]
Abstract
Evidence is emerging that inorganic polyphosphate (polyP) is a fundamental molecule involved in a wide range of biological processes. In higher eukaryotes, polyP is abundant in osteoblasts but questions remain as to its functions. Here, we find that polyP is particularly enriched in endoplasmic reticulum (ER) where it colocalizes with cyclophilin B (CypB) using osteoblastic SaOS-2 model cell line. PolyP binds directly and specifically to CypB, inhibiting its peptidyl-prolyl cis-trans isomerase activity which is critical for collagen folding. PolyP sequestration by spermine and ER-specific polyP reduction by polyphosphatase expression in cells reduced collagen misfolding and confirmed that endogenous polyP acts as a molecular control of CypB-mediated collagen folding. We propose that polyP is a previously unrecognized critical regulator of protein homeostasis in ER.
Collapse
Affiliation(s)
- Mei Li Khong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Lina Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| | - Maria E Solesio
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, NY, USA
| | - Evgeny V Pavlov
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, NY, USA
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, China
| |
Collapse
|
28
|
Abstract
In consistent with other membrane-bound and secretory proteins, immune checkpoint proteins go through a set of modifications in the endoplasmic reticulum (ER) to acquire their native functional structures before they function at their destinations. There are various ER-resident chaperones and enzymes synergistically regulate and catalyze the glycosylation, folding and transporting of proteins. The whole processing is under the surveillance of ER quality control system which allows the correctly folded proteins to exit from the ER with the help of coat proteinII(COPII) coated vesicles, while retains the rest of terminally misfolded ones in the ER and then eliminates them via ER-associated degradation (ERAD) or ER-to-lysosomes-associated degradation (ERLAD). The dysfunction of the ER causes ER stress which triggers unfolded protein response (UPR) to restore ER proteostasis. Unsolvable prolonged ER stress ultimately results in cell death. This chapter reviews the process that proteins undergo in the ER, and the glycosylation, folding and degradation of immune checkpoint proteins as well as the associated potential immunotherapies to date.
Collapse
|
29
|
Abstract
The site of protein folding and maturation for the majority of proteins that are secreted, localized to the plasma membrane or targeted to endomembrane compartments is the endoplasmic reticulum (ER). It is essential that proteins targeted to the ER are properly folded in order to carry out their function, as well as maintain protein homeostasis, as accumulation of misfolded proteins could lead to the formation of cytotoxic aggregates. Because protein folding is an error-prone process, the ER contains protein quality control networks that act to optimize proper folding and trafficking of client proteins. If a protein is unable to reach its native state, it is targeted for ER retention and subsequent degradation. The protein quality control networks of the ER that oversee this evaluation or interrogation process that decides the fate of maturing nascent chains is comprised of three general types of families: the classical chaperones, the carbohydrate-dependent system, and the thiol-dependent system. The cooperative action of these families promotes protein quality control and protein homeostasis in the ER. This review will describe the families of the ER protein quality control network and discuss the functions of individual members.
Collapse
Affiliation(s)
- Benjamin M Adams
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Michela E Oster
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA.
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
30
|
Gómez-Fernández P, Urtasun A, Astobiza I, Mena J, Alloza I, Vandenbroeck K. Pharmacological Targeting of the ER-Resident Chaperones GRP94 or Cyclophilin B Induces Secretion of IL-22 Binding Protein Isoform-1 (IL-22BPi1). Int J Mol Sci 2019; 20:ijms20102440. [PMID: 31108847 PMCID: PMC6566634 DOI: 10.3390/ijms20102440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/05/2023] Open
Abstract
Of the three interleukin-22 binding protein (IL-22BP) isoforms produced by the human IL22RA2 gene, IL-22BPi2 and IL-22BPi3 are capable of neutralizing IL-22. The longest isoform, IL-22BPi1, does not bind IL-22, is poorly secreted, and its retention within the endoplasmic reticulum (ER) is associated with induction of an unfolded protein response (UPR). Therapeutic modulation of IL-22BPi2 and IL-22BPi3 production may be beneficial in IL-22-dependent disorders. Recently, we identified the ER chaperones GRP94 and cyclophilin B in the interactomes of both IL-22BPi1 and IL-22BPi2. In this study, we investigated whether secretion of the IL-22BP isoforms could be modulated by pharmacological targeting of GRP94 and cyclophilin B, either by means of geldanamycin, that binds to the ADP/ATP pocket shared by HSP90 paralogs, or by cyclosporin A, which causes depletion of ER cyclophilin B levels through secretion. We found that geldanamycin and its analogs did not influence secretion of IL-22BPi2 or IL-22BPi3, but significantly enhanced intracellular and secreted levels of IL-22BPi1. The secreted protein was heterogeneously glycosylated, with both high-mannose and complex-type glycoforms present. In addition, cyclosporine A augmented the secretion of IL-22BPi1 and reduced that of IL-22BPi2 and IL-22BPi3. Our data indicate that the ATPase activity of GRP94 and cyclophilin B are instrumental in ER sequestration and degradation of IL-22BPi1, and that blocking these factors mobilizes IL-22BPi1 toward the secretory route.
Collapse
Affiliation(s)
- Paloma Gómez-Fernández
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Andoni Urtasun
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Ianire Astobiza
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Jorge Mena
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Iraide Alloza
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
| | - Koen Vandenbroeck
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), 48490 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
31
|
Sun M, Kotler JLM, Liu S, Street TO. The endoplasmic reticulum (ER) chaperones BiP and Grp94 selectively associate when BiP is in the ADP conformation. J Biol Chem 2019; 294:6387-6396. [PMID: 30787103 DOI: 10.1074/jbc.ra118.007050] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/09/2019] [Indexed: 11/06/2022] Open
Abstract
Hsp70 and Hsp90 chaperones are critical for protein quality control in the cytosol, whereas organelle-specific Hsp70/Hsp90 paralogs provide similar protection for mitochondria and the endoplasmic reticulum (ER). Cytosolic Hsp70/Hsp90 can operate sequentially with Hsp90 selectively associating with Hsp70 after Hsp70 is bound to a client protein. This observation has long suggested that Hsp90 could have a preference for interacting with clients at their later stages of folding. However, recent work has shown that cytosolic Hsp70/Hsp90 can directly interact even in the absence of a client, which opens up an alternative possibility that the ordered interactions of Hsp70/Hsp90 with clients could be a consequence of regulated changes in the direct interactions between Hsp70 and Hsp90. However, it is unknown how such regulation could occur mechanistically. Here, we find that the ER Hsp70/Hsp90 (BiP/Grp94) can form a direct complex in the absence of a client. Importantly, the direct interaction between BiP and Grp94 is nucleotide-specific, with BiP and Grp94 having higher affinity under ADP conditions and lower affinity under ATP conditions. We show that this nucleotide-specific association between BiP and Grp94 is largely due to the conformation of BiP. When BiP is in the ATP conformation its substrate-binding domain blocks Grp94; in contrast, Grp94 can readily associate with the ADP conformation of BiP, which represents the client-bound state of BiP. Our observations provide a mechanism for the sequential involvement of BiP and Grp94 in client folding where the conformation of BiP provides the signal for the subsequent recruitment of Grp94.
Collapse
Affiliation(s)
- Ming Sun
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Judy L M Kotler
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Shanshan Liu
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Timothy O Street
- From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
32
|
Yan Y, Rato C, Rohland L, Preissler S, Ron D. MANF antagonizes nucleotide exchange by the endoplasmic reticulum chaperone BiP. Nat Commun 2019; 10:541. [PMID: 30710085 PMCID: PMC6358605 DOI: 10.1038/s41467-019-08450-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Despite its known role as a secreted neuroprotectant, much of the mesencephalic astrocyte-derived neurotrophic factor (MANF) is retained in the endoplasmic reticulum (ER) of producer cells. There, by unknown mechanisms, MANF plays a role in protein folding homeostasis in complex with the ER-localized Hsp70 chaperone BiP. Here we report that the SAF-A/B, Acinus, and PIAS (SAP) domain of MANF selectively associates with the nucleotide binding domain (NBD) of ADP-bound BiP. In crystal structures the SAP domain engages the cleft between NBD subdomains Ia and IIa, stabilizing the ADP-bound conformation and clashing with the interdomain linker that occupies this site in ATP-bound BiP. MANF inhibits both ADP release from BiP and ATP binding to BiP, and thereby client release. Cells lacking MANF have fewer ER stress-induced BiP-containing high molecular weight complexes. These findings suggest that MANF contributes to protein folding homeostasis as a nucleotide exchange inhibitor that stabilizes certain BiP-client complexes.
Collapse
Affiliation(s)
- Yahui Yan
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Claudia Rato
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lukas Rohland
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.,Center for Molecular Biology (ZMBH) of Heidelberg University, Heidelberg, Germany
| | - Steffen Preissler
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
33
|
Ngounou Wetie AG, Sokolowska I, Channaveerappa D, Dupree EJ, Jayathirtha M, Woods AG, Darie CC. Proteomics and Non-proteomics Approaches to Study Stable and Transient Protein-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:121-142. [DOI: 10.1007/978-3-030-15950-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Profiling Optimal Conditions for Capturing EDEM Proteins Complexes in Melanoma Using Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:155-167. [PMID: 31347047 DOI: 10.1007/978-3-030-15950-4_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) resident and secretory proteins that fail to reach their native conformation are selected for degradation through the ER-Associated Degradation (ERAD) pathway. The ER degradation-enhancing alpha-mannosidase-like proteins (EDEMs) were shown to be involved in this pathway but their precise role is still under investigation. Mass spectrometry analysis has contributed significantly to the characterization of protein complexes in the last years. The recent advancements in instrumentation, especially within resolution and speed can provide unique insights concerning the molecular architecture of protein-protein interactions in systems biology. Previous reports have suggested that several protein complexes in ERAD are sensitive to the extraction conditions. Indeed, whilst EDEM proteins can be recovered in most detergents, some of their partners are not solubilized, which further emphasizes the importance of the experimental setup. Here, we define such dynamic interactions of EDEM proteins by employing offline protein fractionation, nanoLC-MS/MS and describe how mass spectrometry can contribute to the characterization of such complexes, particularly within a disease context like melanoma.
Collapse
|
35
|
Chaperoning the Mononegavirales: Current Knowledge and Future Directions. Viruses 2018; 10:v10120699. [PMID: 30544818 PMCID: PMC6315898 DOI: 10.3390/v10120699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
The order Mononegavirales harbors numerous viruses of significant relevance to human health, including both established and emerging infections. Currently, vaccines are only available for a small subset of these viruses, and antiviral therapies remain limited. Being obligate cellular parasites, viruses must utilize the cellular machinery for their replication and spread. Therefore, targeting cellular pathways used by viruses can provide novel therapeutic approaches. One of the key challenges confronted by both hosts and viruses alike is the successful folding and maturation of proteins. In cells, this task is faced by cellular molecular chaperones, a group of conserved and abundant proteins that oversee protein folding and help maintain protein homeostasis. In this review, we summarize the current knowledge of how the Mononegavirales interact with cellular chaperones, highlight key gaps in our knowledge, and discuss the potential of chaperone inhibitors as antivirals.
Collapse
|
36
|
Fan G, Yang Y, Li T, Lu W, Du Y, Qiang X, Wen Q, Shan W. A Phytophthora capsici RXLR Effector Targets and Inhibits a Plant PPIase to Suppress Endoplasmic Reticulum-Mediated Immunity. MOLECULAR PLANT 2018; 11:1067-1083. [PMID: 29864524 DOI: 10.1016/j.molp.2018.05.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 05/20/2023]
Abstract
Phytophthora pathogens secrete a large arsenal of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Phytophthora effectors manipulate host plant cells still remain largely unclear. In this study, we report that PcAvr3a12, a Phytophthora capsici RXLR effector and a member of the Avr3a effector family, suppresses plant immunity by targeting and inhibiting host plant peptidyl-prolyl cis-trans isomerase (PPIase). Overexpression of PcAvr3a12 in Arabidopsis thaliana enhanced plant susceptibility to P. capsici. FKBP15-2, an endoplasmic reticulum (ER)-localized protein, was identified as a host target of PcAvr3a12 during early P. capsici infection. Analyses of A. thaliana T-DNA insertion mutant (fkbp15-2), RNAi, and overexpression lines consistently showed that FKBP15-2 positively regulates plant immunity in response to Phytophthora infection. FKBP15-2 possesses PPIase activity essential for its contribution to immunity but is directly suppressed by PcAvr3a12. Interestingly, we found that FKBP15-2 is involved in ER stress sensing and is required for ER stress-mediated plant immunity. Taken together, these results suggest that P. capsici deploys an RXLR effector, PcAvr3a12, to facilitate infection by targeting and suppressing a novel ER-localized PPIase, FKBP15-2, which is required for ER stress-mediated plant immunity.
Collapse
Affiliation(s)
- Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyu Qiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qujiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
37
|
Lamriben L, Oster ME, Tamura T, Tian W, Yang Z, Clausen H, Hebert DN. EDEM1's mannosidase-like domain binds ERAD client proteins in a redox-sensitive manner and possesses catalytic activity. J Biol Chem 2018; 293:13932-13945. [PMID: 30021839 DOI: 10.1074/jbc.ra118.004183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) degradation-enhancing α-mannosidase-like 1 protein (EDEM1) is a protein quality control factor that was initially proposed to recognize N-linked glycans on misfolded proteins through its mannosidase-like domain (MLD). However, recent studies have demonstrated that EDEM1 binds to some misfolded proteins in a glycan-independent manner, suggesting a more complex binding landscape for EDEM1. In this study, we have identified a thiol-dependent substrate interaction between EDEM1 and the α1-antitrypsin ER-associated protein degradation (ERAD) clients Z and NHK, specifically through the single Cys residue on Z/NHK (Cys256), required for binding under stringent detergent conditions. In addition to the thiol-dependent interaction, the presence of weaker protein-protein interactions was confirmed, suggestive of bipartite client-binding properties. About four reactive thiols on EDEM1 were identified and were not directly responsible for the observed redox-sensitive binding by EDEM1. Moreover, a protein construct comprising the EDEM1 MLD had thiol-dependent binding properties along with its active glycan-trimming activities. Lastly, we identified an additional intrinsically disordered region (IDR) located at the C terminus of EDEM1 in addition to its previously identified N-terminal IDR. We also determined that both IDRs are required for binding to the ERAD component ERdj5 as an interaction with ERdj5 was not observed with the MLD alone. Together, our findings indicate that EDEM1 employs different binding modalities to interact with ERAD clients and ER quality control (ERQC) machinery partners and that some of these properties are shared with its homologues EDEM2 and EDEM3.
Collapse
Affiliation(s)
- Lydia Lamriben
- From the Department of Biochemistry and Molecular Biology and.,Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003 and
| | - Michela E Oster
- From the Department of Biochemistry and Molecular Biology and
| | - Taku Tamura
- From the Department of Biochemistry and Molecular Biology and
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Daniel N Hebert
- From the Department of Biochemistry and Molecular Biology and .,Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003 and
| |
Collapse
|
38
|
Alasiri G, Fan LYN, Zona S, Goldsbrough IG, Ke HL, Auner HW, Lam EWF. ER stress and cancer: The FOXO forkhead transcription factor link. Mol Cell Endocrinol 2018; 462:67-81. [PMID: 28572047 DOI: 10.1016/j.mce.2017.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle with central roles in maintaining proteostasis due to its involvement in protein synthesis, folding, quality control, distribution and degradation. The accumulation of misfolded proteins in the ER lumen causes 'ER stress' and threatens overall cellular proteostasis. To restore ER homeostasis, cells evoke an evolutionarily conserved adaptive signalling and gene expression network collectively called the 'unfolded protein response (UPR)', a complex biological process which aims to restore proteostasis. When ER stress is overwhelming and beyond rectification, the normally pro-survival UPR can shift to induce cell termination. Emerging evidence from mammalian, fly and nematode worm systems reveals that the FOXO Forkhead proteins integrate upstream ER stress and UPR signals with the transcriptional machinery to decrease translation, promote cell survival/termination and increase the levels of ER-resident chaperones and of ER-associated degradation (ERAD) components to restore ER homeostasis. The high rates of protein synthesis/translation associated with cancer cell proliferation and metabolism, as well as mutations resulting in aberrant proteins, also induce ER stress and the UPR. While the pro-survival side of the UPR underlies its ability to sustain and promote cancers, its apoptotic functions can be exploited for cancer therapies by offering the chance to 'flick the proteostatic switch'. To this end, further studies are required to fully reevaluate the roles and regulation of these UPR signalling molecules, including FOXO proteins and their targets, in cancer initiation and progression as well as the effects on inhibiting their functions in cancer cells. This information will help to establish these UPR signalling molecules as possible therapeutic targets and putative biomarkers in cancers.
Collapse
Affiliation(s)
- Glowi Alasiri
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Lavender Yuen-Nam Fan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | | | - Hui-Ling Ke
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Holger Werner Auner
- Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Eric Wing-Fai Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
39
|
Resistant and susceptible chicken lines show distinctive responses to Newcastle disease virus infection in the lung transcriptome. BMC Genomics 2017; 18:989. [PMID: 29281979 PMCID: PMC5745900 DOI: 10.1186/s12864-017-4380-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/11/2017] [Indexed: 01/28/2023] Open
Abstract
Background Newcastle disease virus (NDV) is a threat to poultry production worldwide. A better understanding of mechanisms of resistance and susceptibility to this virus will improve measures for NDV prevention and control. Males and females from resistant Fayoumi and susceptible Leghorn lines were either challenged with a lentogenic strain of the virus or given a mock infection at 3 weeks of age. The lung transcriptomes generated by RNA-seq were studied using contrasts across the challenged and nonchallenged birds, the two lines, and three time points post-infection, and by using Weighted Gene Co-expression Network Analysis (WGNCA). Results Genetic line and sex had a large impact on the lung transcriptome. When contrasting the challenged and nonchallenged birds, few differentially expressed genes (DEG) were identified within each line at 2, 6, and 10 days post infection (dpi), except for the more resistant Fayoumi line at 10 dpi, for which several pathways were activated and inhibited at this time. The interaction of challenge and line at 10 dpi significantly impacted 131 genes (False Discovery Rate (FDR) <0.05), one of which was PPIB. Many DEG were identified between the Fayoumi and Leghorns. The number of DEG between the two lines in the challenged birds decreased over time, but increased over time in the nonchallenged birds. The nonchallenged Fayoumis at 10 dpi showed enrichment of immune type cells when compared to 2 dpi, suggesting important immune related development at this age. These changes between 10 and 2 dpi were not identified in the challenged Fayoumis. The energy allocated to host defense may have interrupted normal lung development. WGCNA identified important modules and driver genes within those modules that were associated with traits of interest, several of which had no known associated function. Conclusions The lines’ unique response to NDV offers insights into the potential means of their resistance and susceptibility. The lung transcriptome shows a unique response to lentogenic NDV compared to a previous study on the trachea of the same birds. It is important to analyze multiple tissues in order to best understand the chicken’s overall response to NDV challenge and improve strategies to combat this devastating disease. Electronic supplementary material The online version of this article (10.1186/s12864-017-4380-4) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Qu Z, Gao F, Li L, Zhang Y, Jiang Y, Yu L, Zhou Y, Zheng H, Tong W, Li G, Tong G. Label-Free Quantitative Proteomic Analysis of Differentially Expressed Membrane Proteins of Pulmonary Alveolar Macrophages Infected with Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and Its Attenuated Strain. Proteomics 2017; 17. [PMID: 29052333 PMCID: PMC6084361 DOI: 10.1002/pmic.201700101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Significant differences exist between the highly pathogenic (HP) porcine reproductive and respiratory syndrome virus (PRRSV) and its attenuated pathogenic (AP) strain in the ability to infect host cells. The mechanisms by which different virulent strains invade host cells remain relatively unknown. In this study, pulmonary alveolar macrophages (PAMs) are infected with HP‐PRRSV (HuN4) and AP‐PRRSV (HuN4‐F112) for 24 h, then harvested and subjected to label‐free quantitative MS. A total of 2849 proteins are identified, including 95 that are differentially expressed. Among them, 26 proteins are located on the membrane. The most differentially expressed proteins are involved in response to stimulus, metabolic process, and immune system process, which mainly have the function of binding and catalytic activity. Cluster of differentiation CD163, vimentin (VIM), and nmII as well as detected proteins are assessed together by string analysis, which elucidated a potentially different infection mechanism. According to the function annotations, PRRSV with different virulence may mainly differ in immunology, inflammation, immune evasion as well as cell apoptosis. This is the first attempt to explore the differential characteristics between HP‐PRRSV and its attenuated PRRSV infected PAMs focusing on membrane proteins which will be of great help to further understand the different infective mechanisms of HP‐PRRSV and AP‐PRRSV.
Collapse
Affiliation(s)
- Zehui Qu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Yujiao Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| |
Collapse
|
41
|
Santos LE, Ferreira ST. Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer's disease. Neuropharmacology 2017; 136:350-360. [PMID: 29129774 DOI: 10.1016/j.neuropharm.2017.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023]
Abstract
While most often noted for its cognitive symptoms, Alzheimer's disease (AD) is, at its core, a disease of protein misfolding/aggregation, with an intriguing inflammatory component. Defective clearance and/or abnormal production of the amyloid-β peptide (Aβ), and its ensuing accumulation and aggregation, underlie two hallmark features of AD: brain accumulation of insoluble protein deposits known as amyloid or senile plaques, and buildup of soluble Aβ oligomers (AβOs), diffusible toxins linked to synapse dysfunction and memory impairment. In neurons, as in typical eukaryotic cells, the endoplasmic reticulum (ER) serves as a main compartment for the folding, maturation, trafficking and quality control of newly synthesized proteins. The ER lumen, a calcium-rich, oxidizing environment, provides favorable conditions for these physiological functions to occur. These conditions, however, also favor protein aggregation. Several stressors, including metabolic/nutrient stress and certain pathologies, may upset the ER homeostasis, e.g., by affecting calcium levels or by causing the accumulation of unfolded or misfolded proteins. Whatever the underlying cause, the result is what is commonly known as "ER stress". This, in turn, triggers a conserved cellular response mechanism known as the "unfolded protein response" (UPR). The UPR comprises three pathways involving transcriptional or translational regulators aimed at normalizing ER function, and each of them results in pro-inflammatory signaling. A positive feedback loop exists between ER stress and inflammation, with clear implications for neurodegeneration and AD. Here, we explore recent findings on the role of ER stress and the UPR in inflammatory processes leading to synapse failure and memory impairment in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Luis E Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| |
Collapse
|
42
|
β-Amyloid and the Pathomechanisms of Alzheimer's Disease: A Comprehensive View. Molecules 2017; 22:molecules22101692. [PMID: 28994715 PMCID: PMC6151811 DOI: 10.3390/molecules22101692] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Protein dyshomeostasis is the common mechanism of neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is the key risk factor, as the capacity of the proteostasis network declines during aging. Different cellular stress conditions result in the up-regulation of the neurotrophic, neuroprotective amyloid precursor protein (APP). Enzymatic processing of APP may result in formation of toxic Aβ aggregates (β-amyloids). Protein folding is the basis of life and death. Intracellular Aβ affects the function of subcellular organelles by disturbing the endoplasmic reticulum-mitochondria cross-talk and causing severe Ca2+-dysregulation and lipid dyshomeostasis. The extensive and complex network of proteostasis declines during aging and is not able to maintain the balance between production and disposal of proteins. The effectivity of cellular pathways that safeguard cells against proteotoxic stress (molecular chaperones, aggresomes, the ubiquitin-proteasome system, autophagy) declines with age. Chronic cerebral hypoperfusion causes dysfunction of the blood-brain barrier (BBB), and thus the Aβ-clearance from brain-to-blood decreases. Microglia-mediated clearance of Aβ also declines, Aβ accumulates in the brain and causes neuroinflammation. Recognition of the above mentioned complex pathogenesis pathway resulted in novel drug targets in AD research.
Collapse
|
43
|
Ishikawa Y, Holden P, Bächinger HP. Heat shock protein 47 and 65-kDa FK506-binding protein weakly but synergistically interact during collagen folding in the endoplasmic reticulum. J Biol Chem 2017; 292:17216-17224. [PMID: 28860186 DOI: 10.1074/jbc.m117.802298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/18/2017] [Indexed: 12/21/2022] Open
Abstract
Collagen is the most abundant protein in the extracellular matrix in humans and is critical to the integrity and function of many musculoskeletal tissues. A molecular ensemble comprising more than 20 molecules is involved in collagen biosynthesis in the rough endoplasmic reticulum. Two proteins, heat shock protein 47 (Hsp47/SERPINH1) and 65-kDa FK506-binding protein (FKBP65/FKBP10), have been shown to play important roles in this ensemble. In humans, autosomal recessive mutations in both genes cause similar osteogenesis imperfecta phenotypes. Whereas it has been proposed that Hsp47 and FKBP65 interact in the rough endoplasmic reticulum, there is neither clear evidence for this interaction nor any data regarding their binding affinities for each other. In this study using purified endogenous proteins, we examined the interaction between Hsp47, FKBP65, and collagen and also determined their binding affinities and functions in vitro Hsp47 and FKBP65 show a direct but weak interaction, and FKBP65 prefers to interact with Hsp47 rather than type I collagen. Our results suggest that a weak interaction between Hsp47 and FKBP65 confers mutual molecular stability and also allows for a synergistic effect during collagen folding. We also propose that Hsp47 likely acts as a hub molecule during collagen folding and secretion by directing other molecules to reach their target sites on collagens. Our findings may explain why osteogenesis imperfecta-causing mutations in both genes result in similar phenotypes.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| | - Paul Holden
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| | - Hans Peter Bächinger
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| |
Collapse
|
44
|
Protein quality control at the endoplasmic reticulum. Essays Biochem 2017; 60:227-235. [PMID: 27744338 DOI: 10.1042/ebc20160003] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022]
Abstract
The ER (endoplasmic reticulum) is the protein folding 'factory' of the secretory pathway. Virtually all proteins destined for the plasma membrane, the extracellular space or other secretory compartments undergo folding and maturation within the ER. The ER hosts a unique PQC (protein quality control) system that allows specialized modifications such as glycosylation and disulfide bond formation essential for the correct folding and function of many secretory proteins. It is also the major checkpoint for misfolded or aggregation-prone proteins that may be toxic to the cell or extracellular environment. A failure of this system, due to aging or other factors, has therefore been implicated in a number of serious human diseases. In this article, we discuss several key features of ER PQC that maintain the health of the cellular secretome.
Collapse
|
45
|
Suh KS, Chon S, Choi EM. Limonene attenuates methylglyoxal-induced dysfunction in MC3T3-E1 osteoblastic cells. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1337082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Koskela EV, de Ruijter JC, Frey AD. Following nature's roadmap: folding factors from plasma cells led to improvements in antibody secretion in S. cerevisiae. Biotechnol J 2017; 12. [PMID: 28429845 DOI: 10.1002/biot.201600631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Therapeutic protein production in yeast is a reality in industry with an untapped potential to expand to more complex proteins, such as full-length antibodies. Despite numerous engineering approaches, cellular limitations are preventing the use of Saccharomyces cerevisiae as the titers of recombinant antibodies are currently not competitive. Instead of a host specific approach, the possibility of adopting the features from native producers of antibodies, plasma cells, to improve antibody production in yeast. A subset of mammalian folding factors upregulated in plasma cells for expression in yeast and screened for beneficial effects on antibody secretion using a high-throughput ELISA platform was selected. Co-expression of the mammalian chaperone BiP, the co-chaperone GRP170, or the peptidyl-prolyl isomerase FKBP2, with the antibody improved specific product yields up to two-fold. By comparing strains expressing FKBP2 or the yeast PPIase Cpr5p, the authors demonstrate that speeding up peptidyl-prolyl isomerization by upregulation of catalyzing enzymes is a key factor to improve antibody titers in yeast. The findings show that following the route of plasma cells can improve product titers and contribute to developing an alternative yeast-based antibody factory.
Collapse
Affiliation(s)
- Essi V Koskela
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Jorg C de Ruijter
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.,Current address: Department of Biocatalysis and Isotope Chemistry, Almac Sciences, Craigavon, Northern Ireland, United Kingdom
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
47
|
Choi EM, Suh KS, Rhee SY, Oh S, Kim SW, Pak YK, Choe W, Ha J, Chon S. Exposure to tetrabromobisphenol A induces cellular dysfunction in osteoblastic MC3T3-E1 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:561-570. [PMID: 28276884 DOI: 10.1080/10934529.2017.1284435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study was undertaken to investigate the possible involvement of oxidative stress in tetrabromobisphenol A (TBBPA)-induced toxicity in osteoblastic MC3T3-E1 cells. To examine the potential effect of TBBPA on cultured osteoblastic cells, we measured cell viability, apoptosis, reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial parameters including adenosine triphosphate (ATP) level, cardiolipin content, cytochrome c release, cyclophilin levels, and differentiation markers in osteoblastic MC3T3-E1 cells. TBBPA exposure for 48 h caused the apoptosis and cytotoxicity of MC3T3-E1 cells. TBBPA also induced ROS and mitochondrial superoxide production in a concentration-dependent manner. These results suggest that TBBPA induces osteoblast apoptosis and ROS production, resulting in bone diseases. Moreover, TBBPA induced cardiolipin peroxidation, cytochrome c release, and decreased ATP levels which induced apoptosis or necrosis. TBBPA decreased the differentiation markers, collagen synthesis, alkaline phosphatase activity, and calcium deposition in cells. Additionally, TBBPA decreased cyclophilin A and B releases. Taken together, these data support the notion that TBBPA inhibits osteoblast function and has detrimental effects on osteoblasts through a mechanism involving oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Eun Mi Choi
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Kwang Sik Suh
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sang Youl Rhee
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Seungjoon Oh
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sung Woon Kim
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Youngmi Kim Pak
- b Department of Physiology , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Wonchae Choe
- c Department of Biochemistry and Molecular Biology (BK21 project) , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Joohun Ha
- c Department of Biochemistry and Molecular Biology (BK21 project) , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Suk Chon
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
48
|
Devasthanam AS, Tomasi TB. Dicer protein levels elevated by mild hyperthermia promote a pro-survival phenotype. Oncotarget 2017; 8:67001-67016. [PMID: 28978012 PMCID: PMC5620152 DOI: 10.18632/oncotarget.17433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/31/2017] [Indexed: 01/30/2023] Open
Abstract
Cellular exposure to mild stress (39.5°C - 41.5°C) induces thermotolerance, rendering cells resistant to a subsequent heat shock (>42°C) insult. We found that mild hyperthermia at 39.5°C leads to elevations in dicer, a protein well-known for its role in microRNA processing and for its role in cellular stress responses. However, whether elevated dicer protein levels play a role in sustaining a thermotolerant phenotype has, to our knowledge, not been reported. Here we demonstrate that elevated dicer protein is linked to a thermotolerant phenotype in the cervical carcinoma cell line HeLa and in murine embryonic fibroblasts (MEF), and demonstrate that dicer plays a role in mediating PKR and eIF2α phosphorylation. These findings suggest that dicer's role in thermotolerance may be to relay signals to key ER stress pathway components. Moreover, utilizing a MEF cell line defective in microRNA processing, we suggest that dicer's influence on PKR and eIF2α phosphorylation is likely distinct from its microRNA processing role. ATF4 and CHOP are well characterized stress response factors proximal to eIF2α. Evidence is presented that elevated dicer protein in thermotolerant cells differentially modulates ATF4 and CHOP levels to promote a pro-survival phenotype. This work contributes new information on dicer's role in cellular stress responses by defining a pro-survival phenotype in heat stress resistant cells which is sustained, at least in part, by elevated dicer protein levels. Our results suggest an ancillary role for dicer in the cellular stress pathways activated by mild hyperthermia that is likely distinct from its role in microRNA processing.
Collapse
Affiliation(s)
- Anand S Devasthanam
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Thomas B Tomasi
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Department of Medicine, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.,Department of Microbiology and Immunology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| |
Collapse
|
49
|
Butnaru CM, Chiritoiu MB, Chiritoiu GN, Petrescu SM, Petrescu AJ. Inhibition of N-glycan processing modulates the network of EDEM3 interactors. Biochem Biophys Res Commun 2017; 486:978-984. [PMID: 28366632 DOI: 10.1016/j.bbrc.2017.03.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/26/2017] [Indexed: 02/09/2023]
Abstract
We present here data on EDEM3 network of ER resident interactors and the changes induced upon this network by perturbing the early ER N-glycan processing with mannosidase and glucosidase inhibitors. By coupling immunoprecipitation with mass spectrometry we identified EDEM3 interactors and assigned statistical significance to those most abundant ER-residents that might form functional complexes with EDEM3. We further show that this ER interaction network changes in both content and abundance upon treatment with kifunensine (kif) and N-butyldeoxynojirimycin (NB-DNJ) which suggests that when interfering with the N-glycan processing pathway, the functional complexes involving EDEM3 adapt to maintain the cellular homeostasis. In order to increase the scope of EDEM3 network contenders, the set of MS identified species was further supplemented with putative interactors derived from in silico simulations performed with STRING. Finally, the most interesting candidates to this network were further validated by immunoprecipitation coupled with Western Blotting, which strengthened the confidence in the inferred interactions. The data corroborated herein suggest that besides ER residents, EDEM3 interacts also with proteins involved in the ERAD cargo recognition and targeting to degradation translocation into the cytosol, including UBA1 and UBA2 ubiquitinating enzymes. In addition, the results indicate that this network of EDEM3 interactors is highly sensitive to interfering with early ER N-glycan processing.
Collapse
Affiliation(s)
- Cristian M Butnaru
- Departament of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei, nr. 296, 060031, Bucharest 17, Romania.
| | - Marioara B Chiritoiu
- Departament of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei, nr. 296, 060031, Bucharest 17, Romania.
| | - Gabriela N Chiritoiu
- Departament of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei, nr. 296, 060031, Bucharest 17, Romania.
| | - Stefana-Maria Petrescu
- Departament of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei, nr. 296, 060031, Bucharest 17, Romania.
| | - Andrei-Jose Petrescu
- Departament of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei, nr. 296, 060031, Bucharest 17, Romania.
| |
Collapse
|
50
|
Kang H, Aryal A C S, Marini JC. Osteogenesis imperfecta: new genes reveal novel mechanisms in bone dysplasia. Transl Res 2017; 181:27-48. [PMID: 27914223 DOI: 10.1016/j.trsl.2016.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
Abstract
Osteogenesis imperfecta (OI) is a skeletal dysplasia characterized by fragile bones and short stature and known for its clinical and genetic heterogeneity which is now understood as a collagen-related disorder. During the last decade, research has made remarkable progress in identifying new OI-causing genes and beginning to understand the intertwined molecular and biochemical mechanisms of their gene products. Most cases of OI have dominant inheritance. Each new gene for recessive OI, and a recently identified gene for X-linked OI, has shed new light on its (often previously unsuspected) function in bone biology. Here, we summarize the literature that has contributed to our current understanding of the pathogenesis of OI.
Collapse
Affiliation(s)
- Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, Md
| | - Smriti Aryal A C
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, Md
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, Md.
| |
Collapse
|