1
|
Gui S, Liu Y, Pu J, Wang D, Zhong X, Chen W, Chen X, Chen Y, Chen X, Tao W, Xie P. Systematical Comparison Reveals Distinct Brain Transcriptomic Characteristics in Depression Models Induced by Gut Microbiota Dysbiosis and Chronic Stress. Mol Neurobiol 2025; 62:7957-7974. [PMID: 39960648 DOI: 10.1007/s12035-025-04766-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 02/08/2025] [Indexed: 05/15/2025]
Abstract
Major depressive disorder (MDD) is a devastating psychiatric illness with various etiologies. Both chronic stress and gut microbiome dysbiosis are implicated in the pathogenesis of MDD. However, limited research has been conducted to delineate the distinct effects of these two pathogenic factors on the brain transcriptome. We generated and compared transcriptomic features of the anterior cingulate cortex (ACC) from depressive-like mice induced by gut microbiome dysbiosis and canonical chronic stress paradigms, focusing on gene expression patterns and network characteristics. Data derived from MDD patients served as a reference standard to filter the molecular alterations associated with the disorder. Chronic stress induced a plethora of altered genes and biological functions associated with depression, prominently involving mitochondrial dysfunction. However, gut microbiota dysbiosis specifically regulated narrower range of genes and biological mechanisms, targeting aberrations in vesicular transport systems and perturbations of autophagy pathways. Network analysis revealed that hierarchical gene co-expression was specifically affected by gut microbiota dysbiosis rather than chronic stress. Further functional clustering analysis, along with the central distribution of inflammation-related differentially expressed genes, suggested an intricate interplay between disrupted autophagy processes, microglia-mediated inflammation, and synaptic dysfunctions in the network influenced by gut microbiota dysbiosis. Our findings reveal the distinctive transcriptomic alterations of brain shaped by gut microbiota and chronic stress in the development of MDD, contributing to a deeper understanding the heterogeneity of depression. Additionally, we provide a valuable data resource and bioinformatic analysis template for future studies.
Collapse
Affiliation(s)
- Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Yue Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Xiang Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, China.
- Jin Feng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
2
|
Cao B, Liu YL, Wang N, Huang Y, Lu CX, Li QY, Zou HY. Alterations of serum metabolic profile in major depressive disorder: A case-control study in the Chinese population. World J Psychiatry 2025; 15:102618. [DOI: 10.5498/wjp.v15.i5.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/22/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by persistent depressed mood and cognitive symptoms. This study aimed to discover biomarkers for MDD, explore its pathological mechanisms, and examine the associations of the identified biomarkers with clinical and psychological variables.
AIM To discover candidate biomarkers for MDD identification and provide insight into the pathological mechanism of MDD.
METHODS The current study adopted a single-center cross-sectional case-control design. Serum samples were obtained from 100 individuals diagnosed with MDD and 97 healthy controls (HCs) aged between 18 to 60 years. Metabolomics was performed on an Ultimate 3000 UHPLC system coupled with Q-Exactive MS (Thermo Scientific). The online software Metaboanalyst 6.0 was used to process and analyze the acquired raw data of peak intensities from the instrument.
RESULTS The study included 100 MDD patients and 97 HCs. Metabolomic profiling identified 35 significantly different metabolites (e.g., cortisol, sebacic acid, and L-glutamic acid). Receiver operating characteristic curve analysis highlighted 8-HETE, 10-HDoHE, cortisol, 12-HHTrE, and 10-hydroxydecanoic acid as top diagnostic biomarkers for MDD. Significant correlations were found between metabolites (e.g., some lipids, steroids, and amino acids) and clinical and psychological variables.
CONCLUSION Our study reported metabolites (some lipids, steroids, amino acids, carnitines, and alkaloids) responsible for discriminating MDD patients and HCs. This metabolite profile may enable the development of a laboratory-based diagnostic test for MDD. The mechanisms underlying the association between psychological or clinical variables and differential metabolites deserve further exploration.
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yuan-Li Liu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Na Wang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yan Huang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Chen-Xuan Lu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Qian-Ying Li
- Department of Laboratory Medicine, Jiulongpo District Psychiatric Health Center of Chongqing, Chongqing 401329, China
| | - Hong-Yu Zou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400000, China
| |
Collapse
|
3
|
Mu X, Feng L, Wang Q, Li H, Zhou H, Yi W, Sun Y. Decreased gut microbiome-derived indole-3-propionic acid mediates the exacerbation of myocardial ischemia/reperfusion injury following depression via the brain-gut-heart axis. Redox Biol 2025; 81:103580. [PMID: 40058066 PMCID: PMC11930714 DOI: 10.1016/j.redox.2025.103580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Despite the increasing recognition of the interplay between depression and cardiovascular disease (CVD), the precise mechanisms by which depression contributes to the pathogenesis of cardiovascular disease remain inadequately understood. The involvement of gut microbiota and their metabolites to health and disease susceptibility has been gaining increasing attention. In this study, it was found that depression exacerbated cardiac injury, impaired cardiac function (EF%: P < 0.01; FS%: P < 0.05), hindered long-term survival (P < 0.01), and intensified adverse cardiac remodeling (WGA: P < 0.01; MASSON: P < 0.0001) after myocardial ischemia/reperfusion (MI/R) in mice. Then we found that mice receiving microbiota transplants from chronic social defeat stress (CSDS) mice exhibited worse cardiac function (EF%: P < 0.01; FS%: P < 0.01) than those receiving microbiota transplants from non-CSDS mice after MI/R injury. Moreover, impaired tryptophan metabolism due to alterations in gut microbiota composition and structure was observed in the CSDS mice. Mechanistically, we analyzed the metabolomics of fecal and serum samples from CSDS mice and identified indole-3-propionic acid (IPA) as a protective agent for cardiomyocytes against ferroptosis after MI/R via NRF2/System xc-/GPX4 axis, played a role in mediating the detrimental influence of depression on MI/R. Our findings provide new insights into the role of the gut microbiota and IPA in depression and CVD, forming the basis of intervention strategies aimed at mitigating the deterioration of cardiac function following MI/R in patients experiencing depression.
Collapse
Affiliation(s)
- Xingdou Mu
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Lele Feng
- Department of Cardiovascular Surgery, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Qiang Wang
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Hong Li
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Haitao Zhou
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Wei Yi
- Department of Cardiovascular Surgery, XiJing Hospital, Xi'an, Shaanxi, 710000, China.
| | - Yang Sun
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China.
| |
Collapse
|
4
|
Ang SH, Ho RC, McIntyre RS, Zhang Z, Chang SK, Teopiz KM, Ho CSH. The Clinical Utility of Biomarkers in Diagnosing Major Depressive Disorder in Adults: A Systematic Review of Literature From 2013 to 2023. Psychiatry Investig 2025; 22:341-356. [PMID: 40262783 PMCID: PMC12022786 DOI: 10.30773/pi.2024.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 04/24/2025] Open
Abstract
OBJECTIVE The variety and efficacy of biomarkers available that may be used objectively to diagnose major depressive disorder (MDD) in adults are unclear. This systematic review aims to identify and evaluate the variety of objective markers used to diagnose MDD in adults. METHODS The search strategy was applied via PubMed and PsycINFO over the past 10 years (2013-2023) to capture the latest available evidence supporting the use of biomarkers to diagnose MDD. Data was reported through narrative synthesis. RESULTS Forty-two studies were included in the review. Findings were synthesised based on the following measures: blood, neuroimaging/neurophysiology, urine, dermatological, auditory, vocal, cerebrospinal fluid and combinatory-and evaluated based on its sensitivity/specificity and area under the curve values. The best predictors of blood (MYT1 gene), neuroimaging/neurophysiological (5-HT1A auto-receptor binding in the dorsal and median raphe), urinary (combined albumin, AMBP, HSPB, APOA1), cerebrospinal fluid-based (neuron specific enolase, microRNA) biomarkers were found to be closely linked to the pathophysiology of MDD. CONCLUSION A large variety of biomarkers were available to diagnose MDD, with the best performing biomarkers intrinsically related to the pathophysiology of MDD. Potential for future research lies in investigating the joint sensitivity of the best performing biomarkers identified via machine learning methods and establishing the causal effect between these biomarkers and MDD.
Collapse
Affiliation(s)
- Shi-han Ang
- Department of Psychological Medicine, National University of Singapore, Singapore
| | - Roger C. Ho
- Department of Psychological Medicine, National University of Singapore, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
- Division of Life Science (LIFS), Hong Kong University of Science and Technology, Hong Kong
| | - Roger S. McIntyre
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Zhisong Zhang
- Faculty of Education, Huaibei Normal University, Huaibei, China
- Anhui Engineering Research Center for Intelligent Computing and Application on Cognitive Behavior (ICACB), Huaibei, China
| | - Soon-kiat Chang
- Department of Psychological Medicine, National University of Singapore, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Kayla M. Teopiz
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Cyrus SH Ho
- Department of Psychological Medicine, National University of Singapore, Singapore
| |
Collapse
|
5
|
Azarfarin M, Shahla MM, Mohaddes G, Dadkhah M. Non-pharmacological therapeutic paradigms in stress-induced depression: from novel therapeutic perspective with focus on cell-based strategies. Acta Neuropsychiatr 2025; 37:e10. [PMID: 39973753 DOI: 10.1017/neu.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Major depressive disorder (MDD) is considered a psychiatric disorder and have a relationship with stressful events. Although the common therapeutic approaches against MDD are diverse, a large number of patients do not present an adequate response to antidepressant treatments. On the other hand, effective non-pharmacological treatments for MDD and their tolerability are addressed. Several affective treatments for MDD are used but non-pharmacological strategies for decreasing the common depression-related drugs side effects have been focused recently. However, the potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs), microRNAs (miRNAs) as cell-based therapeutic paradigms, besides other non-pharmacological strategies including mitochondrial transfer, plasma, transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), and exercise therapy needs to further study. This review explores the therapeutic potential of cell-based therapeutic non-pharmacological paradigms for MDD treatment. In addition, plasma therapy, mitotherapy, and exercise therapy in several in vitro and in vivo conditions in experimental disease models along with tDCS and TMS will be discussed as novel non-pharmacological promising therapeutic approaches.
Collapse
Affiliation(s)
- Maryam Azarfarin
- Neuroscience Research center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Neuroscience, Faculty of Advanced Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Gisou Mohaddes
- Neuroscience Research center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biomedical Education, College of Osteopathic Medicine, California Health Sciences University, Clovis, CA, USA
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Neuroscience Research Group, Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Yao M, Qu Y, Zheng Y, Guo H. The effect of exercise on depression and gut microbiota: Possible mechanisms. Brain Res Bull 2025; 220:111130. [PMID: 39557221 DOI: 10.1016/j.brainresbull.2024.111130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Exercise can effectively prevent and treat depression and anxiety, with gut microbiota playing a crucial role in this process. Studies have shown that exercise can influence the diversity and composition of gut microbiota, which in turn affects depression through immune, endocrine, and neural pathways in the gut-brain axis. The effectiveness of exercise varies based on its type, intensity, and duration, largely due to the different changes in gut microbiota. This article summarizes the possible mechanisms by which exercise affects gut microbiota and how gut microbiota influences depression. Additionally, we reviewed literature on the effects of exercise on depression at different intensities, types, and durations to provide a reference for future exercise-based therapies for depression.
Collapse
Affiliation(s)
- Mingchen Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yaqi Qu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yalin Zheng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Hao Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
7
|
Yu L, Chen X, Bai X, Fang J, Sui M. Microbiota Alters and Its Correlation with Molecular Regulation Underlying Depression in PCOS Patients. Mol Neurobiol 2024; 61:9977-9992. [PMID: 37995075 DOI: 10.1007/s12035-023-03744-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Depression is one of the complications in patients with polycystic ovary syndrome (PCOS) that leads to considerable mental health. Accumulating evidence suggests that human gut microbiomes are associated with the progression of PCOS and depression. However, whether microbiota influences depression development in PCOS patients is still uncharacterized. In this study, we employed metagenomic sequencing and transcriptome sequencing (RNA-seq) to profile the composition of the fecal microbiota and gene expression of peripheral blood mononuclear cells in depressed women with PCOS (PCOS-DP, n = 27) in comparison to mentally healthy women with PCOS (PCOS, n = 18) and compared with healthy control (HC, n = 27) and patients with major depressive disorder (MDD, n = 29). Gut microbiota assessment revealed distinct patterns in the relative abundance in the PCOS-DP compared to HC, MDD, and PCOS groups. Several gut microbes exhibited uniquely and significantly higher abundance in the PCOS-DP compared to PCOS patients, inducing EC Ruminococcus torques, Coprococcus comes, Megasphaera elsdenii, Acidaminococcus intestini, and Barnesiella viscericola. Bacteroides eggerthii was a potential gut microbial biomarker for the PCOS-DP. RNA-seq profiling identified that 35 and 37 genes were significantly elevated and downregulated in the PCOS-DP, respectively. The enhanced differential expressed genes (DEGs) in the PCOS-DP were enriched in pathways involved in signal transduction and endocrine and metabolic diseases, whereas several lipid metabolism pathways were downregulated. Intriguingly, genes correlated with the gut microbiota were found to be significantly enriched in pathways of neurodegenerative diseases and the immune system, suggesting that changes in the microbiota may have a systemic impact on the expression of neurodegenerative diseases and immune genes. Gut microbe-related DEGs of CREB3L3 and CCDC173 were possible molecular biomarkers and therapeutic targets of women with PCOS-DP. Our multi-omics data indicate shifts in the gut microbiome and host gene regulation in PCOS patients with depression, which is of possible etiological and diagnostic importance.
Collapse
Affiliation(s)
- Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Xiaoyu Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xuefeng Bai
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Ming Sui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
8
|
Kärkkäinen O, Tolmunen T, Kivimäki P, Kurkinen K, Ali-Sisto T, Mäntyselkä P, Valkonen-Korhonen M, Koivumaa-Honkanen H, Honkalampi K, Ruusunen A, Velagapudi V, Lehto SM. Alcohol use-associated alterations in the circulating metabolite profile in the general population and in individuals with major depressive disorder. Alcohol 2024; 120:161-167. [PMID: 38278499 DOI: 10.1016/j.alcohol.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Our aim was to evaluate whether alcohol use is associated with changes in the circulating metabolite profile similar to those present in persons with depression. If so, these findings could partially explain the link between alcohol use and depression. We applied a targeted liquid chromatography mass spectrometry method to evaluate correlates between concentrations of 86 circulating metabolites and self-reported alcohol use in a cohort of the non-depressed general population (GP) (n = 247) and a cohort of individuals with major depressive disorder (MDD) (n = 99). Alcohol use was associated with alterations in circulating concentrations of metabolites in both cohorts. Our main finding was that self-reported alcohol use was negatively correlated with serum concentrations of hippuric acid in the GP cohort. In the GP cohort, consumption of six or more doses per week was associated with low hippuric acid concentrations, similar to those observed in the MDD cohort, but in these individuals it was regardless of their level of alcohol use. Reduced serum concentrations of hippuric acid suggest that already-moderate alcohol use is associated with depression-like changes in the serum levels of metabolites associated with gut microbiota and liver function; this may be one possible molecular level link between alcohol use and depression.
Collapse
Affiliation(s)
- Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Tommi Tolmunen
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Adolescent Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland
| | - Petri Kivimäki
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; City of Helsinki, Vuosaari Outpatient Psychiatry Clinic. Postal address: P.O. Box 6250, FI-00099 City of Helsinki, Helsinki, Finland
| | - Karoliina Kurkinen
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Toni Ali-Sisto
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Pekka Mäntyselkä
- Clinical Research and Trials Centre, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Minna Valkonen-Korhonen
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Heli Koivumaa-Honkanen
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Kirsi Honkalampi
- School of Educational Sciences and Psychology, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
| | - Anu Ruusunen
- Clinical Research and Trials Centre, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland; Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, VIC 3220, Australia
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, P.O. Box 20, FI-00014 University of Helsinki, Finland
| | - Soili M Lehto
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; R&D Department, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway; Psychiatry, University of Helsinki and Helsinki University Hospital, P.O. Box 20, FI-00014 Helsinki, Finland
| |
Collapse
|
9
|
Wang T, Yang J, Zhu Y, Niu N, Ding B, Wang P, Zhao H, Li N, Chao Y, Gao S, Dong X, Wang Z. Evaluation of metabolomics-based urinary biomarker models for recognizing major depression disorder and bipolar disorder. J Affect Disord 2024; 356:1-12. [PMID: 38548210 DOI: 10.1016/j.jad.2024.03.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and bipolar disorder (BD) are psychiatric disorders with overlapping symptoms, leading to high rates of misdiagnosis due to the lack of biomarkers for differentiation. This study aimed to identify metabolic biomarkers in urine samples for diagnosing MDD and BD, as well as to establish unbiased differential diagnostic models. METHODS We utilized a metabolomics approach employing ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) to analyze the metabolic profiles of urine samples from individuals with MDD (n = 50), BD (n = 12), and healthy controls (n = 50). The identification of urine metabolites was verified using MS data analysis tools and online metabolite databases. RESULTS Two diagnostic panels consisting of a combination of metabolites and clinical indicators were identified-one for MDD and another for BD. The discriminative capacity of these panels was assessed using the area under the receiver operating characteristic (ROC) curve, yielding an area under the curve (AUC) of 0.9084 for MDD and an AUC value of 0.9017 for BD. CONCLUSIONS High-resolution mass spectrometry-based assays show promise in identifying urinary biomarkers for depressive disorders. The combination of urine metabolites and clinical indicators is effective in differentiating healthy controls from individuals with MDD and BD. The metabolic pathway indicating oxidative stress is seen to significantly contribute to depressive disorders.
Collapse
Affiliation(s)
- Tianjiao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China; Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China
| | - Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yuncheng Zhu
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China; Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Na Niu
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Binbin Ding
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Ping Wang
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China
| | - Hongxia Zhao
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yufan Chao
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China; Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China.
| | - Zuowei Wang
- Clinical Research Center for Mental Health, School of Medicine, Shanghai University, Shanghai 200083, China; Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai 200083, China.
| |
Collapse
|
10
|
Chen Y, Lin J, Tao M. Association between cheese and fish consumption and the occurrence of depression based on European population: mediating role of metabolites. Front Nutr 2024; 11:1322254. [PMID: 38694223 PMCID: PMC11061354 DOI: 10.3389/fnut.2024.1322254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Background The consumption of cheese and fish has been linked to the onset of depression. However, the connection between consuming cheese, consuming fish, experiencing depression, and the pathways that mediate this relationship remains unclear. The purpose of this research was to investigate the potential association between the consumption of cheese and fish and the occurrence of depression. Moreover, it is important to identify any metabolites that might be involved and understand their respective roles and functions. Methods A two-step, two-sample Mendelian randomization (MR) study was conducted using genome-wide association study (GWAS) data on cheese, non-oily fish, and oily fish consumption and depression, along with 12 alternate mediators. The study included a total of 451,486 participants in the cheese consumption group, 460,880 in the non-oily fish consumption group, 460,443 in the oily fish consumption group, and 322,580 with a diagnosis of depression. The single nucleotide polymorphism (SNP) estimates were pooled using inverse-variance weighted, weighted median, MR-Egger, simple mode, and weighted mode. Results The data we collected suggested that consuming more cheese correlated with a lower likelihood of experiencing depression (OR: 0.95; 95% CI: 0.92 to 0.98). Neither non-oily fish nor oily fish consumption was directly linked to depression onset (p = 0.08, p = 0.78, respectively). Although there was a direct causal relationship with depression, the mediating relationship of triglycerides (TG), total cholesterol in large HDL, cholesterol to total lipids ratio in large HDL, free cholesterol to total lipids ratio in large HDL, glycine, and phospholipids to total lipids ratio in very large HDL of cheese intake on depression risk were - 0.002 (95% CI: -0.023 - 0.020), -0.002 (95% CI: -0.049 - 0.045), -0.001 (95% CI: -0.033 - 0.031), -0.001 (95% CI: -0.018 - 0.015), 0.001 (95% CI: -0.035 - 0.037), and - 0.001 (95% CI: -0.024 - 0.021), respectively. The mediating relationship of uridine, free cholesterol to total lipids ratio in large HDL, total cholesterol in large HDL, acetoacetate, and 3-hydroxybutyrate (3-HB) between non-oily fish consumption and depression risk were 0.016 (95% CI: -0.008 - 0.040), 0.011 (95% CI: -1.269 - 1.290), 0.010 (95% CI: -1.316 - 1.335), 0.011 (95% CI: -0.089 - 0.110), and 0.008 (95% CI: -0.051 - 0.068), respectively. The mediation effect of uridine and free cholesterol to total lipids ratio in large HDL between intake of oily fish and the risk of depression was found to be 0.006 (95% CI: -0.015 - 0.028) and - 0.002 (95% CI: -0.020 - 0.017), respectively. The correlation between eating cheese and experiencing depression persisted even when adjusting for other variables like Indian snacks, mango consumption, sushi consumption, and unsalted peanuts using multivariable MR. Conclusion The consumption of cheese and fish influenced the likelihood of experiencing depression, and this may be mediated by certain metabolites in the body. Our study provided a new perspective on the clinical treatment of depression.
Collapse
Affiliation(s)
- Yan Chen
- Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jixin Lin
- Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Tao
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Isaiah S, Loots DT, van Reenen M, Solomons R, van Elsland S, Tutu van Furth AM, van der Kuip M, Mason S. Urinary metabolic characterization of advanced tuberculous meningitis cases in a South African paediatric population. Front Mol Biosci 2024; 11:1253983. [PMID: 38560518 PMCID: PMC10978807 DOI: 10.3389/fmolb.2024.1253983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Tuberculous meningitis (TBM) is a severe form of tuberculosis with high neuro-morbidity and mortality, especially among the paediatric population (aged ≤12 years). Little is known of the associated metabolic changes. This study aimed to identify characteristic metabolic markers that differentiate severe cases of paediatric TBM from controls, through non-invasive urine collection. Urine samples selected for this study were from two paediatric groups. Group 1: controls (n = 44): children without meningitis, no neurological symptoms and from the same geographical region as group 2. Group 2: TBM cases (n = 13): collected from paediatric patients that were admitted to Tygerberg Hospital in South Africa on the suspicion of TBM, mostly severely ill; with a later confirmation of TBM. Untargeted 1H NMR-based metabolomics data of urine were generated, followed by statistical analyses via MetaboAnalyst (v5.0), and the identification of important metabolites. Twenty nine urinary metabolites were identified as characteristic of advanced TBM and categorized in terms of six dysregulated metabolic pathways: 1) upregulated tryptophan catabolism linked to an altered vitamin B metabolism; 2) perturbation of amino acid metabolism; 3) increased energy production-metabolic burst; 4) disrupted gut microbiota metabolism; 5) ketoacidosis; 6) increased nitrogen excretion. We also provide original biological insights into this biosignature of urinary metabolites that can be used to characterize paediatric TBM patients in a South African cohort.
Collapse
Affiliation(s)
- Simon Isaiah
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sabine van Elsland
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - A. Marceline Tutu van Furth
- Vrije Universiteit, Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Centers, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Martijn van der Kuip
- Vrije Universiteit, Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Centers, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
12
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
13
|
Jaber M, Kahwaji H, Nasr S, Baz R, Kim YK, Fakhoury M. Precision Medicine in Depression: The Role of Proteomics and Metabolomics in Personalized Treatment Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:359-378. [PMID: 39261438 DOI: 10.1007/978-981-97-4402-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Depression, or major depressive disorder (MDD), is a widespread mental health condition marked by enduring feelings of sorrow and loss of interest. Treatment of depression frequently combines psychotherapy, medication, and lifestyle modifications. However, the occurrence of treatment resistance in certain individuals makes it difficult for physicians to effectively manage this disorder, calling for the implementation of alternative therapeutic strategies. Recently, precision medicine has gained increased attention in the field of mental health, paving the way for more personalized and effective therapeutic interventions in depression. Also known as personalized medicine, this approach relies on genetic composition, molecular profiles, and environmental variables to customize therapies to individual patients. In particular, precision medicine has offered novel viewpoints on depression through two specific domains: proteomics and metabolomics. On one hand, proteomics is the thorough study of proteins in a biological system, while metabolomics focuses on analyzing the complete set of metabolites in a living being. In the past few years, progress in research has led to the identification of numerous depression-related biomarkers using proteomics and metabolomics techniques, allowing for early identification, precise diagnosis, and improved clinical outcome. However, despite significant progress in these techniques, further efforts are required for advancing precision medicine in the diagnosis and treatment of depression. The overarching goal of this chapter is to provide the current state of knowledge regarding the use of proteomics and metabolomics in identifying biomarkers related to depression. It also highlights the potential of proteomics and metabolomics in elucidating the intricate processes underlying depression, opening the door for tailored therapies that could eventually enhance clinical outcome in depressed patients. This chapter finally discusses the main challenges in the use of proteomics and metabolomics and discusses potential future research directions.
Collapse
Affiliation(s)
- Mohamad Jaber
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hamza Kahwaji
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sirine Nasr
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Reine Baz
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
14
|
Li Q, Sun H, Guo J, Zhao X, Bai R, Zhang M, Liu M. The effect of prenatal stress on offspring depression susceptibility in relation to the gut microbiome and metabolome. J Affect Disord 2023; 339:531-537. [PMID: 37463643 DOI: 10.1016/j.jad.2023.07.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
Prenatal stress (PS) increases offspring susceptibility to depression, but the underlying mechanism remains unclear. Our previous results showed that PS can affect depression-like behavior in offspring through neurotransmitters and neuroinflammatory substances in the hippocampus and frontal cortex. In recent years there has been increasing evidence for a role of the gut microbiome in depression. The brain-gut axis theory suggests there is a need to further explore the mechanism involving the gut microbiome in the susceptibility of offspring to depression caused by PS. In the present study we used a stress model relevant to depression in which pregnant female rats undergo prenatal restraint stress and the offspring show susceptibility to depression. High-resolution gene sequencing for 16S ribosomal RNA markers and non-targeted metabolomic analysis were used to evaluate the fecal microbiome and the availability of metabolites, respectively. PS was found to induce depressive-like behavior in susceptible offspring (PS-S), as detected by the sucrose preference and forced swimming tests, as well as altering Alpha and Beta diversity. The different microbiota between the PS-S and control groups were mainly involved in membrane transport, carbohydrate metabolism, amino acid metabolism, and replication and repair pathways. In total, 237 and 136 important differential metabolites with significant influence on modeling analysis were obtained under positive and negative modes, respectively. The main canonical pathways found to be altered were glycerophospholipid metabolism and glycerolipid metabolism. These results suggest that gut microbiota might contribute to the onset of PS-induced depression-like behavior by affecting the glycerophospholipid and glycerolipid metabolic pathways.
Collapse
Affiliation(s)
- Qinghong Li
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 86-710061, PR China
| | - Hongli Sun
- Shaanxi Institute for Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi 86-710003, PR China
| | - Jinzhen Guo
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 86-710061, PR China
| | - Xiaolin Zhao
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 86-710061, PR China
| | - Ruimiao Bai
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 86-710061, PR China
| | - Min Zhang
- Department of Neonatology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi 86-710061, PR China
| | - Minna Liu
- Child Healthcare Department, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 86-710061, PR China.
| |
Collapse
|
15
|
Yang D, Zhou H, Pu J, Liu Y, Gui S, Wang D, Tao X, Li Z, Zhong X, Tao W, Chen W, Chen X, Chen Y, Chen X, Xie P. Integrated pathway and network analyses of metabolomic alterations in peripheral blood of patients with depression. Metab Brain Dis 2023; 38:2199-2209. [PMID: 37300637 DOI: 10.1007/s11011-023-01244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Depression is a serious mental illness, but the molecular mechanisms of depression remain unclear. Previous research has reported metabolomic changes in the blood of patients with depression, while integrated analysis based on these altered metabolites was still lacking. The objective of this study was to integrate metabolomic changes to reveal the underlying molecular alternations of depression. We retrieved altered metabolites in the blood of patients with depression from the MENDA database. Pathway analysis was conducted to explore enriched pathways based on candidate metabolites. Pathway crosstalk analysis was performed to explore potential correlations of these enriched pathways, based on their shared candidate metabolites. Moreover, potential interactions of candidate metabolites with other biomolecules such as proteins were assessed by network analysis. A total of 854 differential metabolite entries were retrieved in peripheral blood of patients with depression, including 555 unique candidate metabolites. Pathway analysis identified 215 significantly enriched pathways, then pathway crosstalk analysis revealed that these pathways were clustered into four modules, including amino acid metabolism, nucleotide metabolism, energy metabolism and others. Additionally, eight molecular networks were identified in the molecular network analysis. The main functions of these networks involved amino acid metabolism, molecular transport, inflammatory responses and others. Based on integrated analysis, our study revealed pathway-based modules and molecular networks associated with depression. These results will contribute to the underlying knowledge of the molecular mechanisms in depression.
Collapse
Affiliation(s)
- Dan Yang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Haipeng Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Xiangkun Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Zhuocan Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yue Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- The Jin Feng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
16
|
Tanabe K, Yokota A. Mental stress objective screening for workers using urinary neurotransmitters. PLoS One 2023; 18:e0287613. [PMID: 37682855 PMCID: PMC10490881 DOI: 10.1371/journal.pone.0287613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Almost 10% of the population develop depression or anxiety disorder during their lifetime. Considering that people who are exposed to high stress are more likely to develop mental disorders, it is important to detect and remove mental stress before depression or anxiety disorder develops. We aimed to develop an objective screening test that quantifies mental stress in workers so that they can recognize and remove it before the disorder develops. METHODS We obtained urine specimens from 100 healthy volunteers (49 men and 51 women; age = 48.2 ± 10.8 years) after they received medical checks and answered the Brief Job Stress Questionnaire (BJSQ). Participants were divided into high- and low- stress groups according to their total BJSQ scores. We further analyzed six urinary neurotransmitters (dopamine, serotonin, 5-hydoroxyindoleacetic acid, gamma-aminobutyric acid, homovanillic acid, and vanillylmandelic acid) using liquid chromatography-mass spectrometry to compare their levels between the two groups. RESULTS We obtained the concentrations of the six analytes from 100 examinees and revealed that the levels of urinary dopamine (p = 0.0042) and homovanillic acid (p = 0.020) were significantly lower in the high-stress group than those in the low-stress group. No biases were observed between the two groups in 36 laboratory items. The stress index generated from the six neurotransmitter concentrations recognized high-stress group significantly. Moreover, we discovered that the level of each urinary neurotransmitter changed depending on various stress factors, such as dissatisfaction, physical fatigue, stomach and intestine problems, poor appetite, poor working environments, sleep disturbance, isolation, worry, or insecurity. CONCLUSION We revealed that urinary neurotransmitters could be a promising indicator to determine underlying mental stress. This study provides clues for scientists to develop a screening test not only for workers but also for patients with depression.
Collapse
Affiliation(s)
- Kazuhiro Tanabe
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Tokyo, Japan
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
| | - Asaka Yokota
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Tokyo, Japan
| |
Collapse
|
17
|
Xu K, Zheng P, Zhao S, Feng J, Pu J, Wang J, Zhao S, Wang H, Chen J, Xie P. Altered MANF and RYR2 concentrations associated with hypolipidemia in the serum of patients with schizophrenia. J Psychiatr Res 2023; 163:142-149. [PMID: 37210832 DOI: 10.1016/j.jpsychires.2023.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Schizophrenia (SCZ) is associated with abnormal serum lipid profiles, but their relationship is poorly understood. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an important regulator of lipid metabolism. Previous studies have shown its involvement in the pathogenesis of numerous neuropsychiatric disorders, while its role in SCZ is still unknown. Therefore, this study was conducted to examine serum MANF levels in patients with SCZ, and to investigate the potential relationship between MANF, serum lipid levels and SCZ. The results showed that total cholesterol (TC) levels were significantly lower in 225 patients with SCZ than in 233 healthy controls (HCs). According to Ingenuity Pathway Analysis, hypolipidemia is associated with SCZ via MANF/ryanodine receptor 2 (RYR2) pathway. This theory was supported by another sample set, which showed significantly lower MANF levels and higher RYR2 levels in the serum of 170 SCZ patients compared to 80 HCs. Moreover, MANF and RYR2 levels both were significantly correlated with the severity of psychotic symptoms and TC levels. In addition, a model consisting of MANF and RYR2 was found to be effective in distinguishing SCZ patients from HCs. These findings suggested that the MANF/RYR2 pathway might serve as a bridge between hypolipidemia and SCZ, and MANF and RYR2 held promise as biomarkers for SCZ.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiubing Wang
- Department of Clinical Laboratory, Chongqing Mental Health Centre, Chongqing, China
| | - Shuqian Zhao
- Department of Clinical Psychology, Chongqing Mental Health Centre, Chongqing, China
| | - Haiyang Wang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Wang D, Gao Y, Li Y, Zhao Y, Du X, Li X, Zhang Y, Liu S, Xu Y. Plasma metabolomics and network pharmacology identified glutamate, glutamine, and arginine as biomarkers of depression under Shuganjieyu capsule treatment. J Pharm Biomed Anal 2023; 232:115419. [PMID: 37146496 DOI: 10.1016/j.jpba.2023.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Depression is a psychiatric disorder and confers an enormous burden on society. Mild to moderate forms of depression (MMD) are particularly common. Our previous studies showed that the Shuganjieyu (SGJY) capsule might improve depressive and cognitive symptoms in patients with MMD. However, biomarkers evaluating the efficacy of SGJY and the underlying mechanism remains unclear. The aim of the present study was to discover efficacy biomarkers and explore the underlying mechanisms of SGJY as antidepression treatment. Twenty-three patients with MMD were recruited and administered with SGJY for 8 weeks. Results showed that the content of 19 metabolites changed significantly in the plasma of patients with MMD, among which 8 metabolites improved significantly after SGJY treatment. Network pharmacology analysis showed that 19 active compounds, 102 potential targets, and 73 enzymes were related to the mechanistic action of SGJY. Through a comprehensive analysis, we identified four hub enzymes (GLS2, GLS, GLUL, and ADC), three key differential metabolites (glutamine, glutamate, and arginine), and two shared pathways (alanine, aspartate, and glutamate metabolism; and arginine biosynthesis). Receiver operating characteristic curve (ROC) analysis showed that the three metabolites had a high diagnostic ability. The expression of hub enzymes was validated using RT-qPCR in animal models. Overall, glutamate, glutamine, and arginine may be potential biomarkers for evaluating the efficacy of SGJY. The present study provides a new strategy for pharmacodynamic evaluation and mechanistic study of SGJY, and offers new information for clinical practice and treatment research.
Collapse
Affiliation(s)
- Dan Wang
- Basic Medical College, Shanxi Medical University, 030000 Taiyuan, China; Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Yao Gao
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Yaojun Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Yu Zhao
- Basic Medical College, Shanxi Medical University, 030000 Taiyuan, China; Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, China
| | - Yu Zhang
- Basic Medical College, Shanxi Medical University, 030000 Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, 030001 Taiyuan, China; Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, 030001 Taiyuan, China.
| | - Yong Xu
- Department of Psychiatry, Taiyuan Central Hospital of Shanxi Medical University, 030032 Taiyuan, China; Department of Psychiatry, First Clinical Medical College of Shanxi Medical University, 030001 Taiyuan, China.
| |
Collapse
|
19
|
Wang Y, Huang J. Untargeted metabolomic analysis of metabolites related to body dysmorphic disorder (BDD). Funct Integr Genomics 2023; 23:70. [PMID: 36854840 PMCID: PMC9974688 DOI: 10.1007/s10142-023-00995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
Body dysmorphic disorder (BDD) is a disorder associated with depression and eating disorders. It often arises from minor defects in appearance or an individual imagining that he or she is defective. However, the mechanisms causing BDD remain unclear, and its pathogenesis and adjuvant treatment methods still need to be explored. Here, we employed a liquid chromatography-mass spectrometry (LC-MS)-based metabolomics approach to identify key metabolic differences in BDD versus healthy patients. We obtained plasma samples from two independent cohorts (including eight BDD patients and eight healthy control patients). Raw data were analyzed using Compound Discoverer to determine peak alignment, retention time correction, and extraction of peak areas. Metabolite structure identification was also obtained using Compound Discoverer by of accurate mass matching (< 10 ppm) and secondary spectral matching queries of compound databases. Next, multidimensional statistical analyses were performed using the ropls R package. These analyses included: unsupervised principal component analysis, supervised partial Least-Squares Discriminant Analysis, and orthogonal partial Least-Squares Discriminant Analysis. We then identified the most promising metabolic signatures associated with BDD across all metabolomic datasets. Principal component analysis showed changes in small-molecule metabolites in patients, and we also found significant differences in metabolite abundance between the BDD and normal groups. Our findings suggest that the occurrence of BDD may be related to metabolites participating in the following KEGG pathways: ABC transporters, purine metabolism, glycine, serine and threonine metabolism, pyrimidine, pyrimidine metabolism, biosynthesis of 12-, 14-, and 16-membered macrolides, microbial metabolism in diverse environments, biosynthesis of secondary metabolites, and caffeine and insect hormone biosynthesis.
Collapse
Affiliation(s)
- Yawen Wang
- Nanjing University of Chinese Medicine, No.138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Jinlong Huang
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
20
|
Accortt E, Mirocha J, Zhang D, Kilpatrick SJ, Libermann T, Karumanchi SA. Perinatal mood and anxiety disorders: biomarker discovery using plasma proteomics. Am J Obstet Gynecol 2023:S0002-9378(23)00016-9. [PMID: 36649818 DOI: 10.1016/j.ajog.2023.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Perinatal mood and anxiety disorders encompass a range of mental health disorders that occur during pregnancy and up to 1 year postpartum, affecting approximately 20% of women. Traditional risk factors, such as a history of depression and pregnancy complications including preeclampsia, are known. Their predictive utility, however, is not specific or sensitive enough to inform clinical decision-making or prevention strategies for perinatal mood and anxiety disorders. Better diagnostic and prognostic models are needed for early identification and referral to treatment. OBJECTIVE This study aimed to determine if a panel of novel third-trimester plasma protein biomarkers in pregnant women can be used to identify those who have a high predisposed risk for perinatal mood and anxiety disorders within 3 months postpartum. STUDY DESIGN We studied 52 women (n=34 with a risk for perinatal mood and anxiety disorders and n=18 controls) among whom mental health screening was conducted at 2 time points, namely in the third trimester and again at 3 months postdelivery. An elevated perinatal mood and anxiety disorder risk was identified by screening individuals with above-validated cutoffs for depression (Edinburgh Postnatal Depression Scale ≥12), anxiety (Overall Anxiety Severity and Impairment Scale ≥7), and/or posttraumatic stress disorder (Impact of Events Scale >26) at both time points. Plasma samples collected in the third trimester were screened using the aptamer-based SomaLogic SomaScan proteomic assay technology to evaluate perinatal mood and anxiety disorder-associated changes in the expression of 1305 protein analytes. Ingenuity Pathway Analysis was conducted to highlight pathophysiological relationships between perinatal mood and anxiety disorder-specific proteins found to be significantly up- or down-regulated in all subjects with perinatal mood and anxiety disorder and in those with perinatal mood and anxiety disorders and no preeclampsia. RESULTS From a panel of 53 significant perinatal mood and anxiety disorder-associated proteins, a unique 20-protein signature differentiated perinatal mood and anxiety disorder cases from controls in a principal component analysis (P<.05). This protein signature included NCAM1, NRCAM, and NTRK3 that converge around neuronal signaling pathways regulating axonal guidance, astrocyte differentiation, and maintenance of GABAergic neurons. Interestingly, when we restricted the analysis to subjects without preeclampsia, a 30-protein signature differentiated perinatal mood and anxiety disorder cases from all controls without overlap on the principal component analysis (P<.001). In the nonpreeclamptic perinatal mood and anxiety disorder group, we observed increased expression of proteins, such as CXCL11, CXCL6, MIC-B, and B2MG, which regulate leucocyte migration, inflammation, and immune function. CONCLUSION Participants with perinatal mood and anxiety disorders had a unique and distinct plasma protein signature that regulated a variety of neuronal signaling and proinflammatory pathways. Additional validation studies with larger sample sizes are needed to determine whether some of these molecules can be used in conjunction with traditional risk factors for the early detection of perinatal mood and anxiety disorders.
Collapse
Affiliation(s)
- Eynav Accortt
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
| | - James Mirocha
- Cedars-Sinai Biostatistics Core and Clinical & Translational Research Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Dongsheng Zhang
- Department of Medicine, Division of Nephrology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Sarah J Kilpatrick
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Towia Libermann
- Department of Medicine and Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - S Ananth Karumanchi
- Department of Medicine, Division of Nephrology, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
21
|
MANF/EWSR1/ANXA6 pathway might as the bridge between hypolipidemia and major depressive disorder. Transl Psychiatry 2022; 12:527. [PMID: 36585419 PMCID: PMC9803680 DOI: 10.1038/s41398-022-02287-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Major depressive disorder (MDD) involves changes in lipid metabolism, but previous findings are contradictory. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is considered to be a regulator of lipid metabolism. To date, the function of MANF has been studied in many brain disorders, but not in MDD. Therefore, to better understand the role of lipids in MDD, this study was conducted to examine lipid levels in the serum of MDD patients and to investigate the potential function of MANF in MDD. First, the data on total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG) in serum from 354 MDD patients and 360 healthy controls (HCs) were collected and analyzed. The results showed that there were significantly lower concentrations of TC and LDL-C in MDD patients compared with HCs, and TC levels were positively correlated with LDL-C levels. Bioinformatics analysis indicated that MANF/EWSR1/ANXA6 pathway might serve as the connecting bridge through which hypolipidemia played a functional role in MDD. Second, to verify this hypothesis, serum samples were collected from 143 MDD patients, and 67 HCs to measure the levels of MANF, EWSR1, and ANXA6 using ELISA kits. The results showed that compared to HCs, MDD patients had a significantly lower level of MANF and higher levels of ANXA6 and EWSR1, and these molecules were significantly correlated with both TC level and Hamilton Depression Rating Scales (HDRS) score. In addition, a discriminative model consisting of MANF, EWSR1, and ANXA6 was identified. This model was capable of distinguishing MDD subjects from HCs, yielded an area under curve of 0.9994 in the training set and 0.9569 in the testing set. Taken together, our results suggested that MANF/EWSR1/ANXA6 pathway might act as the bridge between hypolipidemia and MDD, and these molecules held promise as potential biomarkers for MDD.
Collapse
|
22
|
Liao XX, Wu XY, Zhou YL, Li JJ, Wen YL, Zhou JJ. Gut microbiome metabolites as key actors in atherosclerosis co-depression disease. Front Microbiol 2022; 13:988643. [PMID: 36439791 PMCID: PMC9686300 DOI: 10.3389/fmicb.2022.988643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/24/2022] [Indexed: 02/26/2024] Open
Abstract
Cardiovascular diseases, mainly characterized by atherosclerosis (AS), and depression have a high comorbidity rate. However, previous studies have been conducted under a single disease, and there is a lack of studies in comorbid states to explore the commonalities in the pathogenesis of both diseases. Modern high-throughput technologies have made it clear that the gut microbiome can affect the development of the host's own disorders and have shown that their metabolites are crucial to the pathophysiology of AS and depression. The aim of this review is to summarize the current important findings on the role of gut microbiome metabolites such as pathogen-associated molecular patterns, bile acids, tryptophan metabolites, short-chain fatty acids, and trimethylamine N -oxide in depression and AS disease, with the aim of identifying potential biological targets for the early diagnosis and treatment of AS co-depression disorders.
Collapse
Affiliation(s)
- Xing-Xing Liao
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Xiao-Yun Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yu-Long Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Jia-Jun Li
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - You-Liang Wen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Jun-Jie Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
23
|
Chen G, Zhou S, Chen Q, Liu M, Dong M, Hou J, Zhou B. Tryptophan-5-HT pathway disorder was uncovered in the olfactory bulb of a depression mice model by metabolomic analysis. Front Mol Neurosci 2022; 15:965697. [PMID: 36299862 PMCID: PMC9589483 DOI: 10.3389/fnmol.2022.965697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Major depression (MD) is a severe mental illness that creates a heavy social burden, and the potential molecular mechanisms remain largely unknown. Lots of research demonstrate that the olfactory bulb is associated with MD. Recently, gas chromatography-mass spectrometry-based metabolomic studies on depressive rats indicated that metabolisms of purine and lipids were disordered in the olfactory bulb. With various physicochemical properties and extensive concentration ranges, a single analytical technique could not completely cover all metabolites, hence it is necessary to adopt another metabolomic technique to seek new biomarkers or molecular mechanisms for depression. Therefore, we adopted a liquid chromatography-mass spectrometry metabonomic technique in the chronic mild stress (CMS) model to investigate significant metabolic changes in the olfactory bulb of the mice. We discovered and identified 16 differential metabolites in the olfactory bulb of the CMS treatments. Metabolic pathway analysis by MetaboAnalyst 5.0 was generated according to the differential metabolites, which indicated that the tryptophan metabolism pathway was the core pathogenesis in the olfactory bulb of the CMS depression model. Further, the expressions of tryptophan hydroxylase (TpH) and aromatic amino acid decarboxylase (AAAD) were detected by western blotting and immunofluorescence staining. The expression of TpH was increased after CMS treatment, and the level of AAAD was unaltered. These results revealed that abnormal metabolism of the tryptophan pathway in the olfactory bulb mediated the occurrence of MD.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siqi Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Chen
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meixue Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Meixue Dong
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- Jiabao Hou
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
- Benhong Zhou
| |
Collapse
|
24
|
Tian H, Hu Z, Xu J, Wang C. The molecular pathophysiology of depression and the new therapeutics. MedComm (Beijing) 2022; 3:e156. [PMID: 35875370 PMCID: PMC9301929 DOI: 10.1002/mco2.156] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and disabling disorder. Despite the many hypotheses proposed to understand the molecular pathophysiology of depression, it is still unclear. Current treatments for depression are inadequate for many individuals, because of limited effectiveness, delayed efficacy (usually two weeks), and side effects. Consequently, novel drugs with increased speed of action and effectiveness are required. Ketamine has shown to have rapid, reliable, and long-lasting antidepressant effects in treatment-resistant MDD patients and represent a breakthrough therapy for patients with MDD; however, concerns regarding its efficacy, potential misuse, and side effects remain. In this review, we aimed to summarize molecular mechanisms and pharmacological treatments for depression. We focused on the fast antidepressant treatment and clarified the safety, tolerability, and efficacy of ketamine and its metabolites for the MDD treatment, along with a review of the potential pharmacological mechanisms, research challenges, and future clinical prospects.
Collapse
Affiliation(s)
- Haihua Tian
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
- Department of Laboratory MedicineNingbo Kangning HospitalNingboZhejiangChina
| | - Zhenyu Hu
- Department of Child PsychiatryNingbo Kanning HospitalNingboZhejiangChina
| | - Jia Xu
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| |
Collapse
|
25
|
Zhong Q, Chen JJ, Wang Y, Shao WH, Zhou CJ, Xie P. Differential Gut Microbiota Compositions Related With the Severity of Major Depressive Disorder. Front Cell Infect Microbiol 2022; 12:907239. [PMID: 35899051 PMCID: PMC9309346 DOI: 10.3389/fcimb.2022.907239] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Increasing evidence shows a close relationship between gut microbiota and major depressive disorder (MDD), but the specific mechanisms remain unknown. This study was conducted to explore differential gut microbiota compositions related to the severity of MDD. Methods Healthy controls (HC) (n = 131) and MDD patients (n = 130) were included. MDD patients with Hamilton Depression Rating Scale (HDRS) score <25 and ≥25 were assigned into moderate (n = 72) and severe (n = 58) MDD groups, respectively. Univariate and multivariate analyses were used to analyze the gut microbiota compositions at the genus level. Results Thirty-six and 27 differential genera were identified in moderate and severe MDD patients, respectively. The differential genera in moderate and severe MDD patients mainly belonged to three (Firmicutes, Actinobacteriota, and Bacteroidota) and two phyla (Firmicutes and Bacteroidota), respectively. One specific covarying network from phylum Actinobacteriota was identified in moderate MDD patients. In addition, five genera (Collinsella, Eggerthella, Alistipes, Faecalibacterium, and Flavonifractor) from the shared differential genera by two MDD groups had a fair efficacy in diagnosing MDD from HC (AUC = 0.786). Conclusions Our results were helpful for further exploring the role of gut microbiota in the pathogenesis of depression and developing objective diagnostic methods for MDD.
Collapse
Affiliation(s)
- Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jian-jun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ying Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-hua Shao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chan-juan Zhou
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Peng Xie,
| |
Collapse
|
26
|
Greco PS, Hesson AM, Mozurkewich E, Berman DR. Urinary metabolites as a predictive marker for perinatal depression: A secondary analysis of the mothers, Omega-3 & Mental Health Study. PSYCHIATRY RESEARCH COMMUNICATIONS 2022; 2. [PMID: 35958051 PMCID: PMC9364841 DOI: 10.1016/j.psycom.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Perinatal depression has been associated with unfavorable pregnancy and childhood development outcomes; however, no objective markers exist to identify perinatal mood disorders. We investigated whether metabolites in maternal urine during pregnancy can predict increased depressive symptoms in late pregnancy and postpartum among pregnant women at risk for perinatal depression. Methods: We evaluated metabolomic markers in urine collected at 12–20 and 34–36 weeks’ gestation. We analyzed 49 urinary metabolites using ion pairing reversed-phase liquid chromatography-mass spectrometry. Depressive symptom severity was identified using Beck Depression Inventory (BDI) scores from 105 participants at 12–20 and 34–36 weeks’ gestation, and 6–8 weeks’ postpartum. Mixed model repeated measures analysis evaluated associations between changes in maternal urinary metabolites and BDI scores across pregnancy. Results: Increases in urinary xanthine and hypoxanthine were positively associated with increases in maternal depressive symptoms throughout pregnancy (p = 0.03 and 0.02, respectively). This finding did not persist after false discovery rate correction. None of the urinary metabolites examined were significantly associated with development of postpartum depressive symptoms. Limitations: This study is an exploratory secondary biologic sample analysis from a trial whose sample size was determined by a different primary outcome and expected effect size, which may have limited statistical power to detect associations between urinary metabolites, depressive symptoms, and mood trajectory over time. Conclusions: Increasing concentrations of xanthine and hypoxanthine were associated with increasing depressive symptoms throughout pregnancy. Further research is needed to evaluate the utility of these metabolic markers in identifying women at risk for perinatal depressive symptoms.
Collapse
Affiliation(s)
- Patricia S. Greco
- University of Michigan, Department of Obstetrics and Gynecology, United States
- Corresponding author. 1500 E. Medical Center Dr. Ann Arbor, MI 48109 260, United States. , (P.S. Greco)
| | - Ashley M. Hesson
- University of Michigan, Department of Obstetrics and Gynecology, United States
| | - Ellen Mozurkewich
- University of New Mexico, Department of Obstetrics and Gynecology, United States
| | - Deborah R. Berman
- University of Michigan, Department of Obstetrics and Gynecology, United States
| |
Collapse
|
27
|
F Guerreiro Costa LN, Carneiro BA, Alves GS, Lins Silva DH, Faria Guimaraes D, Souza LS, Bandeira ID, Beanes G, Miranda Scippa A, Quarantini LC. Metabolomics of Major Depressive Disorder: A Systematic Review of Clinical Studies. Cureus 2022; 14:e23009. [PMID: 35415046 PMCID: PMC8993993 DOI: 10.7759/cureus.23009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Although the understanding of the pathophysiology of major depressive disorder (MDD) has advanced greatly, this has not been translated into improved outcomes. To date, no biomarkers have been identified for the diagnosis, prognosis, and therapeutic management of MDD. Thus, we aim to review the biomarkers that are differentially expressed in MDD. A systematic review was conducted in January 2022 in the PubMed/MEDLINE, Scopus, Embase, PsycINFO, and Gale Academic OneFile databases for clinical studies published from January 2001 onward using the following terms: "Depression" OR "Depressive disorder" AND "Metabolomic." Multiple metabolites were found at altered levels in MDD, demonstrating the involvement of cellular signaling metabolites, components of the cell membrane, neurotransmitters, inflammatory and immunological mediators, hormone activators and precursors, and sleep controllers. Kynurenine and acylcarnitine were identified as consistent with depression and response to treatment. The most consistent evidence found was regarding kynurenine and acylcarnitine. Although the data obtained allow us to identify how metabolic pathways are affected in MDD, there is still not enough evidence to propose changes to current diagnostic and therapeutic actions. Some limitations are the heterogeneity of studies on metabolites, methods for detection, analyzed body fluids, and treatments used. The experiments contemplated in the review identified increased or reduced levels of metabolites, but not necessarily increased or reduced the activity of the associated pathways. The information acquired through metabolomic analyses does not specify whether the changes identified in the metabolites are a cause or a consequence of the pathology.
Collapse
Affiliation(s)
- Livia N F Guerreiro Costa
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Beatriz A Carneiro
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Gustavo S Alves
- Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Daniel H Lins Silva
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Daniela Faria Guimaraes
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Lucca S Souza
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Igor D Bandeira
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Graziele Beanes
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Angela Miranda Scippa
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Lucas C Quarantini
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
- Medicine, Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| |
Collapse
|
28
|
Chang L, Wei Y, Hashimoto K. Brain Research Bulletin: Special Issue: Brain–body communication in health and diseases, Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res Bull 2022; 182:44-56. [DOI: 10.1016/j.brainresbull.2022.02.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022]
|
29
|
Sodium hydrosulfide reverses β 2-microglobulin-induced depressive-like behaviors of male Sprague-Dawley rats: Involving improvement of synaptic plasticity and enhancement of Warburg effect in hippocampus. Behav Brain Res 2022; 417:113562. [PMID: 34499939 DOI: 10.1016/j.bbr.2021.113562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Our previous works demonstrated that β2-microglobulin (β2m), a systemic pro-aging factor, induce depressive-like behaviors. Hydrogen sulfide (H2S) is identified as a potential target for treatment of depression. The aim of the present work is to explore whether H2S antagonizes β2m-induced depressive-like behaviors and the underlying mechanisms. METHODS The depressive-like behaviors were detected using the novelty suppressed feeding test (NSFT), tail suspension test (TST), forced swimming test (FST) and open field test (OFT). The expressions of Warburg-related proteins, including hexokinase II (HK II), pyruvate kinase M2 (PKM2), Lactate dehydrogenase A (LDHA), pyruvate dehydrogenase (PDH) and pyruvate dehydrogenase kinase 1(PDK1), and synaptic plasticity-related proteins, including postsynaptic density protein 95 (PSD95) and synaptophysin1 (SYN1), were determined by western blotting. RESULT we found that NaHS (the donor of H2S) attenuated the depressive-like behaviors in the β2m-exposed rats, as judged by NSFT, TST, FST, and OFT. We also demonstrated that NaHS enhanced the synaptic plasticity, as evidenced by the upregulations of PSD95 and SYN1 expressions in the hippocampus of β2m-exposed rats. Furthermore, NaHS improved the Warburg effect in the hippocampus of β2m-exposed rats, as evidenced by the upregulations of HK II, PKM2, LDHA and PDK1 expressions, and the downregulation of PDH expression. CONCLUSION H2S prevents β2m-induced depressive-like behaviors, which is involved in improvement of hippocampal synaptic plasticity as a result of enhancement of hippocampal Warburg effect.
Collapse
|
30
|
Kurkinen K, Kärkkäinen O, Lehto SM, Luoma I, Kraav SL, Nieminen AI, Kivimäki P, Therman S, Tolmunen T. One-carbon and energy metabolism in major depression compared to chronic depression in adolescent outpatients: A metabolomic pilot study. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
31
|
Liu Y, Wang H, Gui S, Zeng B, Pu J, Zheng P, Zeng L, Luo Y, Wu Y, Zhou C, Song J, Ji P, Wei H, Xie P. Proteomics analysis of the gut-brain axis in a gut microbiota-dysbiosis model of depression. Transl Psychiatry 2021; 11:568. [PMID: 34744165 PMCID: PMC8572885 DOI: 10.1038/s41398-021-01689-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a serious mental illness. Increasing evidence from both animal and human studies suggested that the gut microbiota might be involved in the onset of depression via the gut-brain axis. However, the mechanism in depression remains unclear. To explore the protein changes of the gut-brain axis modulated by gut microbiota, germ-free mice were transplanted with gut microbiota from MDD patients to induce depression-like behaviors. Behavioral tests were performed following fecal microbiota transplantation. A quantitative proteomics approach was used to examine changes in protein expression in the prefrontal cortex (PFC), liver, cecum, and serum. Then differential protein analysis and weighted gene coexpression network analysis were used to identify microbiota-related protein modules. Our results suggested that gut microbiota induced the alteration of protein expression levels in multiple tissues of the gut-brain axis in mice with depression-like phenotype, and these changes of the PFC and liver were model specific compared to chronic stress models. Gene ontology enrichment analysis revealed that the protein changes of the gut-brain axis were involved in a variety of biological functions, including metabolic process and inflammatory response, in which energy metabolism is the core change of the protein network. Our data provide clues for future studies in the gut-brain axis on protein level and deepen the understanding of how gut microbiota cause depression-like behaviors.
Collapse
Affiliation(s)
- Yiyun Liu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siwen Gui
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Benhua Zeng
- grid.410570.70000 0004 1760 6682Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Juncai Pu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zeng
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Luo
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - You Wu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- grid.203458.80000 0000 8653 0555College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ping Ji
- grid.203458.80000 0000 8653 0555College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
32
|
Miao M, Du J, Che B, Guo Y, Zhang J, Ju Z, Xu T, Zhong X, Zhang Y, Zhong C. Circulating choline pathway nutrients and depression after ischemic stroke. Eur J Neurol 2021; 29:459-468. [PMID: 34611955 DOI: 10.1111/ene.15133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Choline pathway nutrients, including choline and betaine, are reported to exert antidepressant effects. However, there is little population-based evidence on the relationships between circulating choline and betaine and poststroke depression (PSD). We aimed to prospectively explore the associations between plasma choline and betaine and depression after ischemic stroke. METHODS This study was based on the China Antihypertensive Trial in Acute Ischemic Stroke. A total of 612 participants with plasma choline and betaine concentrations were included in the analysis. The study outcome was depression 3 months after ischemic stroke. Logistic regression models were performed to estimate the relationships between plasma choline and betaine and the risk of PSD. Risk reclassification and calibration of models with choline or betaine were analyzed. RESULTS Patients with PSD had lower choline and betaine levels than those without PSD (p < 0.05). Compared with tertile 1, the multivariable-adjusted odds ratios (95% CIs) for tertile 3 of choline and betaine were 0.54 (0.35-0.83) and 0.59 (0.38-0.92), respectively. Per 1 SD increase in choline or betaine was associated with a 25% (95% CI 9%-37%) or an 19% (95% CI 3%-32%) decreased risk of PSD, respectively. Furthermore, the addition of choline or betaine to the established risk factors model improved the risk reclassification for PSD, as shown by an increase in the net reclassification index and integrated discrimination improvement (all p < 0.05). CONCLUSIONS Patients with elevated levels of choline and betaine had a lower risk of depression after acute ischemic stroke, suggesting the protective significance of choline pathway nutrients for PSD.
Collapse
Affiliation(s)
- Mengyuan Miao
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jigang Du
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Bizhong Che
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yufei Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jintao Zhang
- Department of Neurology, The 88th Hospital of PLA, Shandong, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Tongliao, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xiaoyan Zhong
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
33
|
Osman A, Zuffa S, Walton G, Fagbodun E, Zanos P, Georgiou P, Kitchen I, Swann J, Bailey A. Post-weaning A1/A2 β-casein milk intake modulates depressive-like behavior, brain μ-opioid receptors, and the metabolome of rats. iScience 2021; 24:103048. [PMID: 34585111 PMCID: PMC8450247 DOI: 10.1016/j.isci.2021.103048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
The postnatal period is critical for brain and behavioral development and is sensitive to environmental stimuli, such as nutrition. Prevention of weaning from maternal milk was previously shown to cause depressive-like behavior in rats. Additionally, loss of dietary casein was found to act as a developmental trigger for a population of brain opioid receptors. Here, we explore the effect of exposure to milk containing A1 and A2 β-casein beyond weaning. A1 but not A2 β-casein milk significantly increased stress-induced immobility in rats, concomitant with an increased abundance of Clostridium histolyticum bacterial group in the caecum and colon of A1 β-casein fed animals, brain region-specific alterations of μ-opioid and oxytocin receptors, and modifications in urinary biochemical profiles. Moreover, urinary gut microbial metabolites strongly correlated with altered brain metabolites. These findings suggest that consumption of milk containing A1 β-casein beyond weaning age may affect mood via a possible gut-brain axis mechanism. Postnatal brain development is sensitive to nutritional exposures Consumption of A1 but not A2 β-casein milk post-weaning affects mood in rats Gut microbial, biochemical, and neurochemical changes accompany mood alterations Urinary gut microbial metabolites correlate with brain metabolites
Collapse
Affiliation(s)
- Aya Osman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simone Zuffa
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gemma Walton
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Elizabeth Fagbodun
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | - Panos Zanos
- Department of Psychology, University of Cyprus, 1 University Avenue, 2109 Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ian Kitchen
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Jonathan Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.,School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| |
Collapse
|
34
|
Involvement of Tricarboxylic Acid Cycle Metabolites in Kidney Diseases. Biomolecules 2021; 11:biom11091259. [PMID: 34572472 PMCID: PMC8465464 DOI: 10.3390/biom11091259] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are complex organelles that orchestrate several functions in the cell. The primary function recognized is energy production; however, other functions involve the communication with the rest of the cell through reactive oxygen species (ROS), calcium influx, mitochondrial DNA (mtDNA), adenosine triphosphate (ATP) levels, cytochrome c release, and also through tricarboxylic acid (TCA) metabolites. Kidney function highly depends on mitochondria; hence mitochondrial dysfunction is associated with kidney diseases. In addition to oxidative phosphorylation impairment, other mitochondrial abnormalities have been described in kidney diseases, such as induction of mitophagy, intrinsic pathway of apoptosis, and releasing molecules to communicate to the rest of the cell. The TCA cycle is a metabolic pathway whose primary function is to generate electrons to feed the electron transport system (ETS) to drives energy production. However, TCA cycle metabolites can also release from mitochondria or produced in the cytosol to exert different functions and modify cell behavior. Here we review the involvement of some of the functions of TCA metabolites in kidney diseases.
Collapse
|
35
|
Bai S, Xie J, Bai H, Tian T, Zou T, Chen JJ. Gut Microbiota-Derived Inflammation-Related Serum Metabolites as Potential Biomarkers for Major Depressive Disorder. J Inflamm Res 2021; 14:3755-3766. [PMID: 34393496 PMCID: PMC8354734 DOI: 10.2147/jir.s324922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Background Although many works have been conducted to explore the biomarkers for diagnosing major depressive disorder (MDD), the widely accepted biomarkers are still not identified. Thus, the combined application of serum metabolomics and fecal microbial communities was used to identify gut microbiota-derived inflammation-related serum metabolites as potential biomarkers for MDD. Methods MDD patients and healthy controls (HCs) were included in this study. Both serum samples and fecal samples were collected. The liquid chromatography mass spectrometry (LC-MS) was used to detect the metabolites in serum samples, and the 16S rRNA gene sequencing was used to analyze the gut microbiota compositions in fecal samples. Results Totally, 60 MDD patients and 60 HCs were recruited. The 24 differential serum metabolites were identified, and 10 of these were inflammation-related metabolites. Three significantly affected inflammation-related pathways were identified using differential metabolites. The 17 differential genera were identified, and 14 of these genera belonged to phyla Firmicutes. Four significantly affected inflammation-related pathways were identified using differential genera. Five inflammation-related metabolites (LysoPC(16:0), deoxycholic acid, docosahexaenoic acid, taurocholic acid and LysoPC(20:0)) were identified as potential biomarkers. These potential biomarkers had significant correlations with genera belonged to phyla Firmicutes. The panel consisting of these biomarkers could effectively distinguish MDD patients from HCs with an area under the curve (AUC) of 0.95 in training set and 0.92 in testing set. Conclusion These findings suggested that the disturbance of phyla Firmicutes might be involved in the onset of depression by regulating host’s inflammatory response, and these potential biomarkers could be useful for future investigating the objective methods for diagnosing MDD.
Collapse
Affiliation(s)
- Shunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Xie
- Department of Endocrinology, the Fourth People's Hospital of Chongqing, Chongqing University Central Hospital, Chongqing, People's Republic of China
| | - Huili Bai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tian Tian
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
| | - Tao Zou
- Department of Psychiatry, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China.,Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, People's Republic of China
| | - Jian-Jun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
36
|
Hung CI, Lin G, Chiang MH, Chiu CY. Metabolomics-based discrimination of patients with remitted depression from healthy controls using 1H-NMR spectroscopy. Sci Rep 2021; 11:15608. [PMID: 34341439 PMCID: PMC8329159 DOI: 10.1038/s41598-021-95221-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
The aim of the study was to investigate differences in metabolic profiles between patients with major depressive disorder (MDD) with full remission (FR) and healthy controls (HCs). A total of 119 age-matched MDD patients with FR (n = 47) and HCs (n = 72) were enrolled and randomly split into training and testing sets. A 1H-nuclear magnetic resonance (NMR) spectroscopy-based metabolomics approach was used to identify differences in expressions of plasma metabolite biomarkers. Eight metabolites, including histidine, succinic acid, proline, acetic acid, creatine, glutamine, glycine, and pyruvic acid, were significantly differentially-expressed in the MDD patients with FR in comparison with the HCs. Metabolic pathway analysis revealed that pyruvate metabolism via the tricarboxylic acid cycle linked to amino acid metabolism was significantly associated with the MDD patients with FR. An algorithm based on these metabolites employing a linear support vector machine differentiated the MDD patients with FR from the HCs with a predictive accuracy, sensitivity, and specificity of nearly 0.85. A metabolomics-based approach could effectively differentiate MDD patients with FR from HCs. Metabolomic signatures might exist long-term in MDD patients, with metabolic impacts on physical health even in patients with FR.
Collapse
Affiliation(s)
- Ching-I Hung
- Department of Psychiatry, Chang-Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Gigin Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Medical Imaging and Intervention, Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Meng-Han Chiang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Medical Imaging and Intervention, Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Chih-Yung Chiu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC.
- Division of Pediatric Pulmonology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, 5 Fu-Shing St., Kweishan, Taoyuan, 333, Taiwan, ROC.
| |
Collapse
|
37
|
Emerging application of metabolomics on Chinese herbal medicine for depressive disorder. Biomed Pharmacother 2021; 141:111866. [PMID: 34225013 DOI: 10.1016/j.biopha.2021.111866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Depressive disorder is a kind of emotional disorder that is mainly manifested with spontaneous and persistent low mood. Its etiology is complex and still not fully understood. Metabolomics, an important part of system biology characterized by its integrity and systematicness, analyzes endogenous metabolites of small molecules in vivo and examines the metabolic status of the organism. It is widely used in the field of disease research for its unique advantage in the disease molecular marker discovering Due to fewer adverse reactions and high safety, Chinese herbal medicine (CHM) has great advantages in the treatment of chronic diseases including depression. Metabolomics has been gradually applied to the efficacy evaluation of CHM in treatment of depression and the metabolomics analysis exhibits a systemic metabolic shift in amino acids (such as alanine, glutamic acid, valine, etc.), organic acids (lactic acid, citric acid, stearic acid, palmitic acid, etc.), and sugars, amines, etc. These differential metabolites are mainly involved in energy metabolism, amino acid metabolism, lipid metabolism, etc. In this review, we have exemplified the study of CHM in animals or clinics on the depression, and revealed that CHM treatment has significantly changed the metabolic disorders associated with depression, promoting metabolic network reorganization through restoring of key metabolites, and metabolic pathways, which may be the main mechanism basis of CHM's treatment on depression. Besides, we further envisioned the future application of metabolomics in the study of CHM treatment of depression.
Collapse
|
38
|
Baranyi A, Enko D, von Lewinski D, Rothenhäusler HB, Amouzadeh-Ghadikolai O, Harpf H, Harpf L, Traninger H, Obermayer-Pietsch B, Schweinzer M, Braun CK, Meinitzer A. Assessment of trimethylamine N-oxide (TMAO) as a potential biomarker of severe stress in patients vulnerable to posttraumatic stress disorder (PTSD) after acute myocardial infarction. Eur J Psychotraumatol 2021; 12:1920201. [PMID: 34104352 PMCID: PMC8168738 DOI: 10.1080/20008198.2021.1920201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Posttraumatic stress disorder (PTSD) is a frequently observed stress-related disorder after acute myocardial infarction (AMI) and it is characterized by numerous symptoms, such as flashbacks, intrusions and anxiety, as well as uncontrollable thoughts and feelings related to the trauma. Biological correlates of severe stress might contribute to identifying PTSD-vulnerable patients at an early stage. Objective: Aims of the study were (1) to determine whether blood levels of trimethylamine N-oxide (TMAO) vary immediately after AMI in patients with/without AMI-induced PTSD symptomatology, (2) to investigate whether TMAO is a potential biomarker that might be useful in the prediction of PTSD and the PTSD symptom subclusters re-experiencing, avoidance and hyperarousal, and (3) to investigate whether TMAO varies immediately after AMI in patients with/without depression 6 months after AMI. Method: A total of 114 AMI patients were assessed with the Hamilton-Depression Scale after admission to the hospital and 6 months later. The Clinician Administered PTSD Scale for DSM-5 was used to explore PTSD-symptoms at the time of AMI and 6 months after AMI. To assess patients' TMAO status, serum samples were collected at hospitalization and 6 months after AMI. Results: Participants with PTSD-symptomatology had significantly higher TMAO levels immediately after AMI than patients without PTSD-symptoms (ANCOVA: TMAO(PTSD x time), F = 4.544, df = 1, p = 0.035). With the inclusion of additional clinical predictors in a hierarchical logistic regression model, TMAO became a significant predictor of PTSD-symptomatology. No significant differences in TMAO levels immediately after AMI were detected between individuals with/without depression 6 months after AMI. Conclusions: An elevated TMAO level immediately after AMI might reflect severe stress in PTSD-vulnerable patients, which might also lead to a short-term increase in gut permeability to trimethylamine, the precursor of TMAO. Thus, an elevated TMAO level might be a biological correlate for severe stress that is associated with vulnerability to PTSD.
Collapse
Affiliation(s)
- Andreas Baranyi
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hans-Bernd Rothenhäusler
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Hanns Harpf
- ZARG Zentrum Für Ambulante Rehabilitation GmbH, Graz, Austria
| | - Leonhard Harpf
- ZARG Zentrum Für Ambulante Rehabilitation GmbH, Graz, Austria
| | - Heimo Traninger
- ZARG Zentrum Für Ambulante Rehabilitation GmbH, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Melanie Schweinzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Celine K Braun
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
39
|
Wang X, Lu G, Liu X, Li J, Zhao F, Li K. Assessment of Phytochemicals and Herbal Formula for the Treatment of Depression through Metabolomics. Curr Pharm Des 2021; 27:840-854. [PMID: 33001005 DOI: 10.2174/1381612826666201001125124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Depression is a widespread and persistent psychiatric disease. Due to various side effects and no curative treatments of conventional antidepressant drugs, botanical medicines have attracted considerable attention as a complementary and alternative approach. The pathogenesis of depression is quite complicated and unclear. Metabolomics is a promising new technique for the discovery of novel biomarkers for exploring the potential mechanisms of diverse diseases and assessing the therapeutic effects of drugs. In this article, we systematically reviewed the study of botanical medicine for the treatment of depression using metabolomics over a period from 2010 to 2019. Additionally, we summarized the potential biomarkers and metabolic pathways associated with herbal medicine treatment for depression. Through a comprehensive evaluation of herbal medicine as novel antidepressants and understanding of their pharmacomechanisms, a new perspective on expanding the application of botanical medicines for the treatment of depression is provided.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guanyu Lu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhui Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fei Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kefeng Li
- School of Medicine, University of California, San Diego, CA 92103, United States
| |
Collapse
|
40
|
Liu Y, Song X, Liu X, Pu J, Gui S, Xu S, Tian L, Zhong X, Zhao L, Wang H, Liu L, Xu G, Xie P. Alteration of lipids and amino acids in plasma distinguish schizophrenia patients from controls: A targeted metabolomics study. Psychiatry Clin Neurosci 2021; 75:138-144. [PMID: 33421228 DOI: 10.1111/pcn.13194] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) is a serious psychiatric disorder. Metabolite disturbance is an important pathogenic factor in schizophrenic patients. In this study, we aim to identify plasma lipid and amino acid biomarkers for SCZ using targeted metabolomics. METHODS Plasma from 76 SCZ patients and 50 matched controls were analyzed using the LC/MS-based multiple reaction monitoring (MRM) metabolomics approach. A total of 182 targeted metabolites, including 22 amino acids and 160 lipids or lipid-related metabolites were observed. We used binary logistic regression analysis to determine whether the lipid and amino acid biomarkers could discriminate SCZ patients from controls. The area under the curve (AUC) from receiver operation characteristic (ROC) curve analysis was conducted to evaluate the diagnostic performance of the biomarkers panel. RESULTS We identified 19 significantly differentially expressed metabolites between the SCZ patients and the controls (false discovery rate < 0.05), including one amino acid and 18 lipids or lipid-related metabolites. The binary logistic regression-selected panel showed good diagnostic performance in the drug-naïve group (AUC = 0.936) and all SCZ patients (AUC = 0.948), especially in the drug-treated group (AUC = 0.963). CONCLUSIONS Plasma lipids and amino acids showed significant dysregulation in SCZ, which could effectively discriminate SCZ patients from controls. The LC/MS/MS-based approach provides reliable data for the objective diagnosis of SCZ.
Collapse
Affiliation(s)
- Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemian Song
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
| | - Shaohua Xu
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Lu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Wang Y, Li Y, Wu Z, Chen Z, Yu H, He Y, Tian Y, Lan T, Bai M, Chen X, Cheng K, Xie P. Ferritin disorder in the plasma and hippocampus associated with major depressive disorder. Biochem Biophys Res Commun 2021; 553:114-118. [PMID: 33765555 DOI: 10.1016/j.bbrc.2021.03.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Major depressive disorder (MDD) is a debilitating mental illness that can cause significant emotional disturbances and severe socioeconomic burdens. Rodent and nonhuman primate-based depression models have been studied, such as brain-derived neurotrophic factor (BDNF) and monoamine acid disorder hypotheses, as well as peripheral microbiota disturbances causing MDD; however, the pathogenesis is still largely unknown. This study aims to explore the relationship between ferritin and MDD. First, alterations in ferritin, including ferritin light chain (FTL) and ferritin heavy chain (FTH), in MDD patient plasma compared with healthy control (HC) plasma were detected using ELISA. Then, serum ferritin expression in cLPS-depressed mice was measured by ELISA. The existence of FTH in the hippocampus was validated by immunofluorescence, and the change in FTH levels in the hippocampus of mice injected with cLPS was detected by western blotting. FTL levels in MDD patients were decreased compared with those in HCs. In cLPS-depressed mice, serum ferritin was not different from that in the control group, while the expression of FTH in the hippocampus was significantly reduced in depressed mice. Our findings demonstrate the alteration of ferritin expression in MDD and provide new insight into the pathogenesis of MDD.
Collapse
Affiliation(s)
- Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China; Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
| | - Zhonghao Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
| | - Heming Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
| | - Yu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
| | - Tianlan Lan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Mengge Bai
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
| | - Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402460, China; Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| |
Collapse
|
42
|
Zakaria F, Akhtar MT, Wan Ibrahim WN, Abu Bakar N, Muhamad A, Shohaimi S, Maulidiani M, Ahmad H, Ismail IS, Shaari K. Perturbations in Amino Acid Metabolism in Reserpine-Treated Zebrafish Brain Detected by 1H Nuclear Magnetic Resonance-Based Metabolomics. Zebrafish 2021; 18:42-54. [PMID: 33538644 DOI: 10.1089/zeb.2020.1895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Depression is a complex and disabling psychiatric disorder, which is expected to be a leading cause for disability by 2030. According to World Health Organization, about 350 million people are suffering with mental health disorders around the globe, especially depression. However, the mechanisms involved in stress-induced depression have not been fully elucidated. In this study, a stress-like state was pharmacologically induced in zebrafish using reserpine, a drug widely used to mediate depression in experimental animal models. Zebrafish received single intraperitoneal (i.p.) injections of 20, 40, and 80 mg/kg body weight reserpine doses and were subjected to open-field test at 2, 24, 48, 72, and 96 h after the treatment. Along with observed changes in behavior and measurement of cortisol levels, the fish were further examined for perturbations in their brain metabolites by 1H nuclear magnetic resonance (NMR)-based metabolomics. We found a significant increase in freezing duration, whereas total distance travelled was decreased 24 h after single intraperitoneal injection of reserpine. Cortisol level was also found to be higher after 48 h of reserpine treatment. The 1H NMR data showed that the levels of metabolites such as glutamate, glutamine, histamine, valine, leucine and histidine, lactate, l-fucose, betaine and γ-amino butyric acid (GABA), β-hydroxyisovalerate, and glutathione were significantly decreased in the reserpine-treated group. This study provided some insights into the molecular nature of stress that could contribute toward a better understanding of depression disorder.
Collapse
Affiliation(s)
- Fauziahanim Zakaria
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia.,Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Tayyab Akhtar
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Wan Norhamidah Wan Ibrahim
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Noraini Abu Bakar
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azira Muhamad
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia (NIBM), Bangi, Malaysia
| | - Shamarina Shohaimi
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Maulidiani Maulidiani
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
43
|
Bränn E, Malavaki C, Fransson E, Ioannidi MK, Henriksson HE, Papadopoulos FC, Chrousos GP, Klapa MI, Skalkidou A. Metabolic Profiling Indicates Diversity in the Metabolic Physiologies Associated With Maternal Postpartum Depressive Symptoms. Front Psychiatry 2021; 12:685656. [PMID: 34248718 PMCID: PMC8267859 DOI: 10.3389/fpsyt.2021.685656] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Postpartum depression (PPD) is a devastating disease requiring improvements in diagnosis and prevention. Blood metabolomics identifies biological markers discriminatory between women with and those without antenatal depressive symptoms. Whether this cutting-edge method can be applied to postpartum depressive symptoms merits further investigation. Methods: As a substudy within the Biology, Affect, Stress, Imagine and Cognition Study, 24 women with PPD symptom (PPDS) assessment at 6 weeks postpartum were included. Controls were selected as having a score of ≤ 6 and PPDS cases as ≥12 on the Edinburgh Postnatal Depression Scale. Blood plasma was collected at 10 weeks postpartum and analyzed with gas chromatography-mass spectrometry metabolomics. Results: Variations of metabolomic profiles within the PPDS samples were identified. One cluster showed altered kidney function, whereas the other, a metabolic syndrome profile, both previously associated with depression. Five metabolites (glycerol, threonine, 2-hydroxybutanoic acid, erythritol, and phenylalanine) showed higher abundance among women with PPDSs, indicating perturbations in the serine/threonine and glycerol lipid metabolism, suggesting oxidative stress conditions. Conclusions: Alterations in certain metabolites were associated with depressive pathophysiology postpartum, whereas diversity in PPDS physiologies was revealed. Hence, plasma metabolic profiling could be considered in diagnosis and pathophysiological investigation of PPD toward providing clues for treatment. Future studies require standardization of various subgroups with respect to symptom onset, lifestyle, and comorbidities.
Collapse
Affiliation(s)
- Emma Bränn
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Christina Malavaki
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Patras, Greece
| | - Emma Fransson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institute, Stockholm, Sweden
| | - Maria-Konstantina Ioannidi
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Patras, Greece.,Department of Biology, University of Patras, Patras, Greece
| | - Hanna E Henriksson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Patras, Greece
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Chen J, Lv YN, Li XB, Xiong JJ, Liang HT, Xie L, Wan CY, Chen YQ, Wang HS, Liu P, Zheng HQ. Urinary Metabolite Signatures for Predicting Elderly Stroke Survivors with Depression. Neuropsychiatr Dis Treat 2021; 17:925-933. [PMID: 33790561 PMCID: PMC8007561 DOI: 10.2147/ndt.s299835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Post-stroke depression (PSD) is a major complication in stroke survivors, especially in elderly stroke survivors. But there are still no objective methods to diagnose depression in elderly stroke survivors. Thus, this study was conducted to identify potential biomarkers for diagnosing elderly PSD subjects. METHODS Elderly (60 years or older) stroke survivors with depression were assigned into the PSD group, and elderly stroke survivors without depression and elderly healthy controls (HCs) were assigned into the non-depressed group. Urinary metabolite signatures obtained from gas chromatography-mass spectrometry (GC-MS)-based metabolomic platform were collected. Both univariate and multivariate statistical analysis were used to find the differential urinary metabolites between the two groups. RESULTS The 78 elderly HCs, 122 elderly stroke survivors without depression and 124 elderly PSD subjects were included. A set of 13 differential urinary metabolites responsible for distinguishing PSD subjects from non-depressed subjects were found. The Phenylalanine, tyrosine and tryptophan biosynthesis, Phenylalanine metabolism and Galactose metabolism were found to be significantly changed in elderly PSD subjects. The phenylalanine was significantly negatively correlated with age and depressive symptoms. Meanwhile, a biomarker panel consisting of 3-hydroxyphenylacetic acid, tyrosine, phenylalanine, sucrose, palmitic acid, glyceric acid, azelaic acid and α-aminobutyric acid was identified. CONCLUSION These results provided candidate molecules for developing objective methods to diagnose depression in elderly stroke survivors, suggested that taking supplements of phenylalanine might be an effective method to prevent depression in elderly stroke survivors, and would be helpful for future revealing the pathophysiological mechanism of PSD.
Collapse
Affiliation(s)
- Jin Chen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yan-Ni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xiao-Bing Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jia-Jun Xiong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Hui-Ting Liang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Chen-Yi Wan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yun-Qing Chen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Han-Sen Wang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Pan Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - He-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| |
Collapse
|
45
|
Nikolac Perkovic M, Sagud M, Tudor L, Konjevod M, Svob Strac D, Pivac N. A Load to Find Clinically Useful Biomarkers for Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:175-202. [PMID: 33834401 DOI: 10.1007/978-981-33-6044-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is heterogeneous and complex disease with diverse symptoms. Its neurobiological underpinning is still not completely understood. For now, there are still no validated, easy obtainable, clinically useful noninvasive biomarker(s) or biomarker panel that will be able to confirm a diagnosis of depression, its subtypes and improve diagnostic procedures. Future multimodal preclinical and clinical research that involves (epi)genetic, molecular, cellular, imaging, and other studies is necessary to advance our understanding of the role of monoamines, GABA, HPA axis, neurotrophins, metabolome, and glycome in the pathogenesis of depression and their potential as diagnostic, prognostic, and treatment response biomarkers. These studies should be focused to include the first-episode depression and antidepressant drug-naïve patients with large sample sizes to reduce variability in different biological and clinical parameters. At present, metabolomics study revealed with high precision that a neurometabolite panel consisting of plasma metabolite biomarkers (GABA, dopamine, tyramine, kynurenine) might represent clinically useful biomarkers of MDD.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia.
| |
Collapse
|
46
|
Bacterial Metabolites of Human Gut Microbiota Correlating with Depression. Int J Mol Sci 2020; 21:ijms21239234. [PMID: 33287416 PMCID: PMC7730936 DOI: 10.3390/ijms21239234] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a global threat to mental health that affects around 264 million people worldwide. Despite the considerable evolution in our understanding of the pathophysiology of depression, no reliable biomarkers that have contributed to objective diagnoses and clinical therapy currently exist. The discovery of the microbiota-gut-brain axis induced scientists to study the role of gut microbiota (GM) in the pathogenesis of depression. Over the last decade, many of studies were conducted in this field. The productions of metabolites and compounds with neuroactive and immunomodulatory properties among mechanisms such as the mediating effects of the GM on the brain, have been identified. This comprehensive review was focused on low molecular weight compounds implicated in depression as potential products of the GM. The other possible mechanisms of GM involvement in depression were presented, as well as changes in the composition of the microbiota of patients with depression. In conclusion, the therapeutic potential of functional foods and psychobiotics in relieving depression were considered. The described biomarkers associated with GM could potentially enhance the diagnostic criteria for depressive disorders in clinical practice and represent a potential future diagnostic tool based on metagenomic technologies for assessing the development of depressive disorders.
Collapse
|
47
|
Nobis A, Zalewski D, Waszkiewicz N. Peripheral Markers of Depression. J Clin Med 2020; 9:E3793. [PMID: 33255237 PMCID: PMC7760788 DOI: 10.3390/jcm9123793] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Major Depressive Disorder (MDD) is a leading cause of disability worldwide, creating a high medical and socioeconomic burden. There is a growing interest in the biological underpinnings of depression, which are reflected by altered levels of biological markers. Among others, enhanced inflammation has been reported in MDD, as reflected by increased concentrations of inflammatory markers-C-reactive protein, interleukin-6, tumor necrosis factor-α and soluble interleukin-2 receptor. Oxidative and nitrosative stress also plays a role in the pathophysiology of MDD. Notably, increased levels of lipid peroxidation markers are characteristic of MDD. Dysregulation of the stress axis, along with increased cortisol levels, have also been reported in MDD. Alterations in growth factors, with a significant decrease in brain-derived neurotrophic factor and an increase in fibroblast growth factor-2 and insulin-like growth factor-1 concentrations have also been found in MDD. Finally, kynurenine metabolites, increased glutamate and decreased total cholesterol also hold promise as reliable biomarkers for MDD. Research in the field of MDD biomarkers is hindered by insufficient understanding of MDD etiopathogenesis, substantial heterogeneity of the disorder, common co-morbidities and low specificity of biomarkers. The construction of biomarker panels and their evaluation with use of new technologies may have the potential to overcome the above mentioned obstacles.
Collapse
Affiliation(s)
- Aleksander Nobis
- Department of Psychiatry, Medical University of Bialystok, pl. Brodowicza 1, 16-070 Choroszcz, Poland; (D.Z.); (N.W.)
| | | | | |
Collapse
|
48
|
Cao B, Chen Y, McIntyre RS, Yan L. Acyl-Carnitine plasma levels and their association with metabolic syndrome in individuals with schizophrenia. Psychiatry Res 2020; 293:113458. [PMID: 32977055 DOI: 10.1016/j.psychres.2020.113458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome (MetS) affects individuals with schizophrenia at a higher rate when compared to individuals in the general population. Accumulating evidence indicated that subjects with MetS generally manifest elevated levels of acyl-carnitines, which are important carriers for transporting fatty acyl group. Abnormalities of acyl-carnitines in individuals with schizophrenia with or without MetS had not been sufficiently characterized. We conducted this post-hoc analysis with our published data to further evaluate the differences of 29 acyl-carnitines in 46 individuals with schizophrenia with MetS and 123 without MetS. The rate of MetS was 27.2% (46/169) in the individuals with schizophrenia. After FDR correction, the individuals with schizophrenia and MetS showed significantly higher levels of 17 plasma acyl-carnitines, compared to individuals without MetS. Eight acyl-carnitines (i.e., C3, C4, C5, C6: 1, C10: 1, C10: 2, C14: 2-OH, C16: 2-OH) were significantly different between two groups after adjusting for age and sex. The correlation analysis reported that acyl-carnitine concentrations have potential correlations with certain metabolic parameters. Our findings provide valuable new clues for exploring the roles of acyl-carnitines in the diagnosis and treatment of schizophrenia. More data and molecular biology evidences are needed to replicate our findings and elucidate relevant mechanisms.
Collapse
Affiliation(s)
- Bing Cao
- School of Psychology and Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Psychology Education, Southwest University, Chongqing 400715, China.
| | - Yan Chen
- Dalla Lana School of Public Health, University of Toronto. 155 College St., Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, P. R. China; Medical and Health Analysis Center, Peking University, Beijing 100191, P. R. China; Vaccine Research Center, School of Public Health, Peking University, Beijing 100191, P. R. China.
| |
Collapse
|
49
|
Han Y, Jia Y, Tian J, Zhou S, Chen A, Luo X. Urine metabolomic responses to aerobic and resistance training in rats under chronic unpredictable mild stress. PLoS One 2020; 15:e0237377. [PMID: 32785263 PMCID: PMC7423134 DOI: 10.1371/journal.pone.0237377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Background It is known that bioenergetics of aerobic and resistance exercise are not the same but both can effectively improve depression. However, it is not clear whether and how different types of exercise can influence depression through the same metabolic regulatory system. Metabolomics provides a way to study the correlation between metabolites and changes in exercise and/or diseases through the quantitative analysis of all metabolites in the organism. The objective of this study was to investigate the effects of aerobic and resistance training on urinary metabolites by metabolomics analysis in a rodent model of depression. Methods Male Sprague-Dawley rats were given chronic unpredictable mild stress (CUMS) for eight weeks. The validity of the modeling was assessed by behavioral indices. After four weeks of CUMS, the rats that developed depression were randomly divided into a depression control group, an aerobic training group and a resistance training group. There was also a normal control group. From week 5, the rats in the exercise groups were trained for 30 min per day, five days per week, for four weeks. The urine samples were collected pre and post the training program, and analyzed by proton nuclear magnetic resonance (1H-NMR) spectroscopy. Results Both types of training improved depression-like behavior in CUMS rats. Compared with normal control, 21 potential biomarkers were identified in the urine of CUMS rats, mainly involved in energy, amino acids and intestinal microbial metabolic pathways. Common responses to the training were found in the two exercise groups that the levels of glutamine, acetone and creatine were significantly recalled (all P<0.05) Aerobic training also resulted in changes in pyruvate and trigonelline, while resistance training modified α-Oxoglutarate, citric acid, and trimethylamine oxide (all P<0.05). Conclusions Aerobic and resistance training resulted in common effects on the metabolic pathways of alanine-aspartate-glutamate, TCA cycle, and butyric acid. Aerobic training also had effects on glycolysis or gluconeogenesis and pyruvate metabolism, while resistance training had additional effect on intestinal microbial metabolism.
Collapse
Affiliation(s)
- Yumei Han
- School of Physical Education, Shanxi University, Taiyuan, Shanxi Province, China
- * E-mail:
| | - Yi Jia
- School of Physical Education, Shanxi University, Taiyuan, Shanxi Province, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi Province, China
| | - Shi Zhou
- School of Health and Human Sciences, Southern Cross University, Lismore, New South Wales, Australia
| | - Anping Chen
- School of Physical Education, Shanxi University, Taiyuan, Shanxi Province, China
| | - Xin Luo
- School of Physical Education, Shanxi University, Taiyuan, Shanxi Province, China
| |
Collapse
|
50
|
NMR-Based Metabonomic Study Reveals Intervention Effects of Polydatin on Potassium Oxonate-Induced Hyperuricemia in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6943860. [PMID: 32695259 PMCID: PMC7362289 DOI: 10.1155/2020/6943860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Previous studies have disclosed the antihyperuricemic effect of polydatin, a natural precursor of resveratrol; however, the mechanisms of action still remain elusive. The present study was undertaken to evaluate the therapeutic effects and the underlying mechanisms of polydatin on potassium oxonate-induced hyperuricemia in rats through metabonomic technology from a holistic view. Nuclear magnetic resonance (NMR) spectroscopy was applied to capture the metabolic changes in sera and urine collected from rats induced by hyperuricemia and polydatin treatment. With multivariate data analysis, significant metabolic perturbations were observed in hyperuricemic rats compared with the healthy controls. A total of eleven and six metabolites were identified as differential metabolites related to hyperuricemia in serum and urine of rats, respectively. The proposed pathways primarily included branched-chain amino acid (BCAA) metabolism, glycolysis, the tricarboxylic acid cycle, synthesis and degradation of ketone bodies, purine metabolism, and intestinal microflora metabolism. Additionally, some metabolites indicated the risk of renal injury induced by hyperuricemia. Polydatin significantly lowered the levels of serum uric acid, creatinine, and blood urea nitrogen and alleviated the abnormal metabolic status in hyperuricemic rats by partially restoring the balance of the perturbed metabolic pathways. Our findings shed light on the understanding of the pathophysiological process of hyperuricemia and provided a reference for revealing the metabolic mechanism produced by polydatin in the treatment of hyperuricemia.
Collapse
|