1
|
James NR, O'Neill JS. Circadian Control of Protein Synthesis. Bioessays 2025; 47:e202300158. [PMID: 39668398 PMCID: PMC11848126 DOI: 10.1002/bies.202300158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Daily rhythms in the rate and specificity of protein synthesis occur in most mammalian cells through an interaction between cell-autonomous circadian regulation and daily cycles of systemic cues. However, the overall protein content of a typical cell changes little over 24 h. For most proteins, translation appears to be coordinated with protein degradation, producing phases of proteomic renewal that maximize energy efficiency while broadly maintaining proteostasis across the solar cycle. We propose that a major function of this temporal compartmentalization-and of circadian rhythmicity in general-is to optimize the energy efficiency of protein synthesis and associated processes such as complex assembly. We further propose that much of this temporal compartmentalization is achieved at the level of translational initiation, such that the translational machinery alternates between distinct translational mechanisms, each using a distinct toolkit of phosphoproteins to preferentially recognize and translate different classes of mRNA.
Collapse
Affiliation(s)
- Nathan R. James
- Division of Cell BiologyMRC Laboratory of Molecular BiologyCambridgeUK
| | - John S. O'Neill
- Division of Cell BiologyMRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
2
|
Uchida K, Scarborough EA, Prosser BL. Dual Translational Control in Cardiomyocytes by Heterogeneous mTORC1 and Hypertrophic ERK Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.635974. [PMID: 39990478 PMCID: PMC11844361 DOI: 10.1101/2025.02.10.635974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Cardiac hypertrophy allows post-mitotic cardiomyocytes to meet increased hemodynamic demands but can predispose the heart to adverse clinical outcomes. Despite its central role in cardiac adaptation, the translational control mechanisms that drive cardiac hypertrophy are poorly understood. In this study, we elucidate the relative contributions of the various translational control mechanisms operant during homeostasis and hypertrophic growth. Methods A combination of immunofluorescence and single myocyte protein synthesis assays were used to dissect the single-cardiomyocyte mechanisms of translational control under basal and hypertrophic conditions in isolated adult rat cardiomyocytes. Translational control mechanism were examined in a mouse model of acute hypertrophic phenylephrine (PE) stimulation prior to overt cardiac growth. Results We observed strikingly heterogeneous activity of mTORC1, the master regulator of translation, across cardiomyocytes both in situ and ex vivo. Heterogeneous mTORC1 activity drove heterogeneous protein synthesis, with translation primarily controlled via canonical mTORC1-dependent 4EBP1 phosphorylation at Thr36/Thr45/Thr69 under baseline conditions. Hypertrophic PE stimulation recruited more cardiomyocytes into a high mTORC1 activity state. PE induced a switch in 4EBP1 phosphorylation by increasing mTORC1-dependent phosphorylation at Thr36/Thr45, but not Thr69. Further, PE induced a novel mTORC1-independent, but MEK-ERK-dependent, pathway driving 4EBP1 phosphorylation at Ser64 in both isolated cardiomyocytes and in vivo. Ribosome biogenesis was also observed within hours upon hypertrophic stimulation, while the mTORC1-S6K-eEF2K-eEF2 pathway was not found to be a major driver of protein translation. Conclusions Protein synthesis is heterogeneous across cardiomyocytes driven by heterogeneous mTORC1 activity. MEK-ERK signaling directly controls 4EBP1 phosphorylation to augment translation during cardiac hypertrophy and challenges the canonical model of translation initiation.
Collapse
Affiliation(s)
- Keita Uchida
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emily A. Scarborough
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin L. Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Uversky VN. Functional diversity of intrinsically disordered proteins and their structural heterogeneity: Protein structure-function continuum. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 211:1-15. [PMID: 39947745 DOI: 10.1016/bs.pmbts.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The fact that protein universe is enriched in intrinsic disorder is an accepted truism now. It is also recognized that the phenomenon of protein intrinsic disorder contains keys to answer numerous questions that do not have obvious solutions within the classic "lock-and-key"-based structure-function paradigm. In fact, reality is much more complex than the traditional "one-gene - one-protein - one-function" model, as many (if not most) proteins are multifunctional. This multifunctionality is commonly rooted in the presence of the intrinsically disordered or structurally flexible regions in a protein. Here, in addition to various events at the DNA (genetic variations), mRNA (alternative splicing, alternative promoter usage, alternative initiation of translation, and mRNA editing), and protein levels (post-translational modifications), intrinsic disorder and protein functionality are crucial for generation of proteoforms, which are functionally and structurally different protein forms produced from a single gene. Therefore, since a given protein exists as a dynamic conformational ensemble containing multiple proteoforms characterized by a broad spectrum of structural features and possessing various functional potentials, "protein structure-function continuum" model represents a more realistic way to correlate protein structure and function.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
4
|
Zuo T, Jing S, Chen P, Zhang T, Wang Y, Li Y, Chang L, Rong X, Li N, Zhao Z, Zhao C, Xu P. Hepatitis B small surface protein hijacking Bip is initial and essential to promote lipid synthesis. J Proteomics 2025; 311:105358. [PMID: 39580050 DOI: 10.1016/j.jprot.2024.105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/12/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
To date, the molecular pathogenic mechanisms between HBsAg and liver metabolic disorders have not been fully understood. To explore the overall effects of HBsAg on liver tissues from HBV transgenic mice, proteome, interactome, and signal pathway analysis were employed to uncover the underlying mechanisms. Bioinformatics analysis of 191 differentially expressed proteins suggested that HBV upregulated the expression of multiple enzymes involved in lipid synthesis, and small HBs (SHBs) caused lipid accumulation in cells. Further studies showed that SHBs bound to binding immunoglobulin protein (Bip), which normally functions in cell homeostasis against the unfolded protein response (UPR) signaling via occupying inositol-requiring enzyme 1 (IRE1). Hijacking Bip by SHBs alleviated the inhibition of post-endoplasmic reticulum (ER) signaling and sequential activation of the IRE1 downstream transcription factors involved in lipid synthesis, such as spliced X-box binding protein 1 (sXBP1) and sterol regulatory element-binding protein 1 (SREBP1), leading to lipid metabolism disorder. The restoration of Bip can alleviate ER stress, and block the sequential post-ER signaling caused by SHBs. This study revealed a new pathway through which SHBs promote lipid disorder, and suggests that Bip may serve as a novel target for intervention in HBV related liver diseases. SIGNIFICANCE: In this study, we found a new pathway promoting the lipid disorder by SHBs through quantitative proteomics studies, and Bip may serve as a novel target for intervention in HBV related liver diseases. These findings highlight a novel role of SHBs in regulating cell lipid metabolism and provide an insight into the relationship between HBV infection and liver fatty disorders, which may serve as a potential therapeutic target for intervention of HBV related liver diseases.
Collapse
Affiliation(s)
- Tao Zuo
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Sha Jing
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Peiru Chen
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Tao Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Yihao Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Yanchang Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Lei Chang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Xingyu Rong
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Chao Zhao
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, PR China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, PR China; School of Medicine, Guizhou University, Guiyang 550025, PR China; Graduate School, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
5
|
Muneer G, Chen C, Chen Y. Advancements in Global Phosphoproteomics Profiling: Overcoming Challenges in Sensitivity and Quantification. Proteomics 2025; 25:e202400087. [PMID: 39696887 PMCID: PMC11735659 DOI: 10.1002/pmic.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Protein phosphorylation introduces post-genomic diversity to proteins, which plays a crucial role in various cellular activities. Elucidation of system-wide signaling cascades requires high-performance tools for precise identification and quantification of dynamics of site-specific phosphorylation events. Recent advances in phosphoproteomic technologies have enabled the comprehensive mapping of the dynamic phosphoproteomic landscape, which has opened new avenues for exploring cell type-specific functional networks underlying cellular functions and clinical phenotypes. Here, we provide an overview of the basics and challenges of phosphoproteomics, as well as the technological evolution and current state-of-the-art global and quantitative phosphoproteomics methodologies. With a specific focus on highly sensitive platforms, we summarize recent trends and innovations in miniaturized sample preparation strategies for micro-to-nanoscale and single-cell profiling, data-independent acquisition mass spectrometry (DIA-MS) for enhanced coverage, and quantitative phosphoproteomic pipelines for deep mapping of cell and disease biology. Each aspect of phosphoproteomic analysis presents unique challenges and opportunities for improvement and innovation. We specifically highlight evolving phosphoproteomic technologies that enable deep profiling from low-input samples. Finally, we discuss the persistent challenges in phosphoproteomic technologies, including the feasibility of nanoscale and single-cell phosphoproteomics, as well as future outlooks for biomedical applications.
Collapse
Affiliation(s)
- Gul Muneer
- Institute of ChemistryAcademia SinicaTaipeiTaiwan
| | | | - Yu‐Ju Chen
- Institute of ChemistryAcademia SinicaTaipeiTaiwan
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
6
|
Deng Y, Liu T, Scifo E, Li T, Xie K, Taschler B, Morsy S, Schaaf K, Ehninger A, Bano D, Ehninger D. Analysis of the senescence-associated cell surfaceome reveals potential senotherapeutic targets. Aging Cell 2024; 23:e14312. [PMID: 39228130 PMCID: PMC11634743 DOI: 10.1111/acel.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024] Open
Abstract
The accumulation of senescent cells is thought to play a crucial role in aging-associated physiological decline and the pathogenesis of various age-related pathologies. Targeting senescence-associated cell surface molecules through immunotherapy emerges as a promising avenue for the selective removal of these cells. Despite its potential, a thorough characterization of senescence-specific surface proteins remains to be achieved. Our study addresses this gap by conducting an extensive analysis of the cell surface proteome, or "surfaceome", in senescent cells, spanning various senescence induction regimes and encompassing both murine and human cell types. Utilizing quantitative mass spectrometry, we investigated enriched cell surface proteins across eight distinct models of senescence. Our results uncover significant changes in surfaceome expression profiles during senescence, highlighting extensive modifications in cell mechanics and extracellular matrix remodeling. Our research also reveals substantive heterogeneity of senescence, predominantly influenced by cell type and senescence inducer. A key discovery of our study is the identification of four unique cell surface proteins with extracellular epitopes. These proteins are expressed in senescent cells, absent or present at low levels in their proliferating counterparts, and notably upregulated in tissues from aged mice and an Alzheimer's disease mouse model. These proteins stand out as promising candidates for senotherapeutic targeting, offering potential pathways for the detection and strategic targeting of senescent cell populations in aging and age-related diseases.
Collapse
Affiliation(s)
- Yushuang Deng
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Ting Liu
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Enzo Scifo
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Tao Li
- Department of Neurodegenerative Disease and Geriatric Psychiatry/NeurologyUniversity of Bonn Medical CenterBonnGermany
| | - Kan Xie
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Sarah Morsy
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
- AvenCell Europe GmbHDresdenGermany
| | - Kristina Schaaf
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Daniele Bano
- Aging and Neurodegeneration LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Dan Ehninger
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| |
Collapse
|
7
|
Ohanele C, Peoples JN, Karlstaedt A, Geiger JT, Gayle AD, Ghazal N, Sohani F, Brown ME, Davis ME, Porter GA, Faundez V, Kwong JQ. The mitochondrial citrate carrier SLC25A1 regulates metabolic reprogramming and morphogenesis in the developing heart. Commun Biol 2024; 7:1422. [PMID: 39482367 PMCID: PMC11528069 DOI: 10.1038/s42003-024-07110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
The developing mammalian heart undergoes an important metabolic shift from glycolysis towards mitochondrial oxidation that is critical to support the increasing energetic demands of the maturing heart. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mitochondrial citrate carrier (SLC25A1) knockout mice. Slc25a1 null embryos displayed impaired growth, mitochondrial dysfunction and cardiac malformations that recapitulate the congenital heart defects observed in 22q11.2 deletion syndrome, a microdeletion disorder involving the SLC25A1 locus. Importantly, Slc25a1 heterozygous embryos, while overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 haploinsuffiency and dose-dependent effects. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of gene expression to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of cardiac morphogenesis and metabolic maturation, and suggests a role in congenital heart disease.
Collapse
Affiliation(s)
- Chiemela Ohanele
- Graduate Program in Biochemistry, Cell and Developmental Biology; Graduate Division of Biological and Biomedical Sciences; Emory University, Atlanta, GA, USA
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jessica N Peoples
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Anja Karlstaedt
- Department of Cardiology; Smidt Heart Institute; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua T Geiger
- Division of Vascular Surgery; University of Rochester Medical Center, Rochester, NY, USA
| | - Ashley D Gayle
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Nasab Ghazal
- Graduate Program in Biochemistry, Cell and Developmental Biology; Graduate Division of Biological and Biomedical Sciences; Emory University, Atlanta, GA, USA
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Fateemaa Sohani
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Milton E Brown
- Wallace H. Coulter Department of Biomedical Engineering; Emory University School of Medicine, Atlanta, GA, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering; Emory University School of Medicine, Atlanta, GA, USA
| | - George A Porter
- Department of Pediatrics; Division of Cardiology; University of Rochester Medical Center, Rochester, NY, USA
| | - Victor Faundez
- Department of Cell Biology; Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer Q Kwong
- Division of Pediatric Cardiology; Department of Pediatrics; Emory University School of Medicine; and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Cell Biology; Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Aumailley L, Lebel M. Sex and organ specific proteomic responses to vitamin C deficiency in the brain, heart, liver, and spleen of Gulo-/- mice. PLoS One 2024; 19:e0311857. [PMID: 39388511 PMCID: PMC11476689 DOI: 10.1371/journal.pone.0311857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Recent advances in mass spectrometry have indicated that the water-soluble antioxidant vitamin C differentially modulates the abundance of various proteins in the hepatic tissue of female and male mice. In this study, we performed LC-MS/MS to identify and quantify proteins that correlate with serum vitamin C concentrations in the whole brain, heart, liver, and spleen tissues in mice deficient for the enzyme L-Gulonolactone oxidase required for vitamin C synthesis in mammals. This work shows for the first time that various biological processes affected by a vitamin C deficiency are not only sex specific dependent but also tissue specific dependent even though many proteins have been identified and quantified in more than three organs. For example, the abundance of several complex III subunits of the mitochondrial electron transport chain correlated positively with the levels of serum vitamin C only in the liver and not in the other tissues examined in this study even though such proteins were identified in all the organs analyzed. Western blot analyses on the Uqcrc1 and Uqcrfs1 complex III subunits validated the mass spectrometry results. Interestingly, the ferritin subunits represented the few quantified protein complexes that correlated positively with serum vitamin C in all the organs examined. Concomitantly, serum ferritin light chain 1 was inversely correlated with vitamin C levels in the serum. Thus, our study provides an initial comprehensive atlas of proteins significantly correlating with vitamin C in four organs in mice that will be a useful resource to the scientific community.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City Québec, Canada
| | - Michel Lebel
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City Québec, Canada
| |
Collapse
|
9
|
Wang Z, Liu PK, Li L. A Tutorial Review of Labeling Methods in Mass Spectrometry-Based Quantitative Proteomics. ACS MEASUREMENT SCIENCE AU 2024; 4:315-337. [PMID: 39184361 PMCID: PMC11342459 DOI: 10.1021/acsmeasuresciau.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 08/27/2024]
Abstract
Recent advancements in mass spectrometry (MS) have revolutionized quantitative proteomics, with multiplex isotope labeling emerging as a key strategy for enhancing accuracy, precision, and throughput. This tutorial review offers a comprehensive overview of multiplex isotope labeling techniques, including precursor-based, mass defect-based, reporter ion-based, and hybrid labeling methods. It details their fundamental principles, advantages, and inherent limitations along with strategies to mitigate the limitation of ratio-distortion. This review will also cover the applications and latest progress in these labeling techniques across various domains, including cancer biomarker discovery, neuroproteomics, post-translational modification analysis, cross-linking MS, and single-cell proteomics. This Review aims to provide guidance for researchers on selecting appropriate methods for their specific goals while also highlighting the potential future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Zicong Wang
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Peng-Kai Liu
- Biophysics
Graduate program, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Biophysics
Graduate program, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Lachman
Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Wisconsin
Center for NanoBioSystems, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
10
|
Chiou S, Al-Ani AH, Pan Y, Patel KM, Kong IY, Whitehead LW, Light A, Young SN, Barrios M, Sargeant C, Rajasekhar P, Zhu L, Hempel A, Lin A, Rickard JA, Hall C, Gangatirkar P, Yip RK, Cawthorne W, Jacobsen AV, Horne CR, Martin KR, Ioannidis LJ, Hansen DS, Day J, Wicks IP, Law C, Ritchie ME, Bowden R, Hildebrand JM, O'Reilly LA, Silke J, Giulino-Roth L, Tsui E, Rogers KL, Hawkins ED, Christensen B, Murphy JM, Samson AL. An immunohistochemical atlas of necroptotic pathway expression. EMBO Mol Med 2024; 16:1717-1749. [PMID: 38750308 PMCID: PMC11250867 DOI: 10.1038/s44321-024-00074-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Abstract
Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.
Collapse
Affiliation(s)
- Shene Chiou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Aysha H Al-Ani
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital, Parkville, Australia
| | - Yi Pan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Komal M Patel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Isabella Y Kong
- Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, USA
| | - Lachlan W Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Marilou Barrios
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Callum Sargeant
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Pradeep Rajasekhar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Leah Zhu
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Anne Hempel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Ann Lin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - James A Rickard
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Austin Hospital, Heidelberg, Australia
| | - Cathrine Hall
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | - Raymond Kh Yip
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Wayne Cawthorne
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Annette V Jacobsen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Katherine R Martin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Lisa J Ioannidis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Diana S Hansen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
| | - Jessica Day
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital, Parkville, Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Charity Law
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Rory Bowden
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Lorraine A O'Reilly
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Lisa Giulino-Roth
- Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, USA
| | - Ellen Tsui
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Britt Christensen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital, Parkville, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- University of Melbourne, Parkville, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- University of Melbourne, Parkville, Australia.
| |
Collapse
|
11
|
Yang C, Blander JM. Seeing is believing: a breakthrough to visualize necrosomes in the tissue. EMBO Mol Med 2024; 16:1487-1489. [PMID: 38858536 PMCID: PMC11251154 DOI: 10.1038/s44321-024-00086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
JM Blander and C Yang discuss a method for necroptosis detection in situ as reported by AL Samson, JM Murphy and colleagues, in this issue of EMBO Mol Med .
Collapse
Affiliation(s)
- Chongbo Yang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
12
|
Kim WK, Lee Y, Jang SJ, Hyeon C. Kinetic Model for the Desensitization of G Protein-Coupled Receptor. J Phys Chem Lett 2024; 15:6137-6145. [PMID: 38832827 DOI: 10.1021/acs.jpclett.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Desensitization of G-protein-coupled receptors (GPCR) is a general regulatory mechanism adopted by biological organisms against overstimulation of G protein signaling. Although the details of the mechanism are extensively studied, it is not easy to gain an overarching understanding of the process constituted by a multitude of molecular events with vastly differing time scales. To offer a semiquantitative yet predictive understanding of the mechanism, we formulate a kinetic model for the G protein signaling and desensitization by considering essential biochemical steps from ligand binding to receptor internalization. The internalization, followed by receptor depletion from the plasma membrane, attenuates the downstream signal. Together with the kinetic model and its full numerics of the expression derived for the dose-response relation, an approximated form of the expression clarifies the role played by the individual biochemical processes and allows us to identify four distinct regimes for the downregulation that emerge from the balance between phosphorylation, dephosphorylation, and the cellular level of β-arrestin.
Collapse
Affiliation(s)
- Won Kyu Kim
- Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Seogjoo J Jang
- Korea Institute for Advanced Study, Seoul 02455, Korea
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- PhD programs in Chemistry and Physics Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | | |
Collapse
|
13
|
Yang L, He H, Guo XK, Wang J, Wang W, Li D, Liang S, Shao F, Liu W, Hu X. Intraepithelial mast cells drive gasdermin C-mediated type 2 immunity. Immunity 2024; 57:1056-1070.e5. [PMID: 38614091 DOI: 10.1016/j.immuni.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/15/2024]
Abstract
A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEβ7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.
Collapse
Affiliation(s)
- Liu Yang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Huabin He
- National Institute of Biological Sciences, Beijing, China
| | - Xue-Kun Guo
- Chinese Institutes for Medical Research, Beijing, China
| | - Jiali Wang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Wenwen Wang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Da Li
- National Institute of Biological Sciences, Beijing, China
| | - Shaonan Liang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Wanli Liu
- Institute for Immunology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; The State Key Laboratory of Membrane Biology, Beijing, China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China; The State Key Laboratory of Membrane Biology, Beijing, China.
| |
Collapse
|
14
|
Ohanele C, Peoples JN, Karlstaedt A, Geiger JT, Gayle AD, Ghazal N, Sohani F, Brown ME, Davis ME, Porter GA, Faundez V, Kwong JQ. Mitochondrial citrate carrier SLC25A1 is a dosage-dependent regulator of metabolic reprogramming and morphogenesis in the developing heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.22.541833. [PMID: 37292906 PMCID: PMC10245819 DOI: 10.1101/2023.05.22.541833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The developing mammalian heart undergoes an important metabolic shift from glycolysis toward mitochondrial oxidation, such that oxidative phosphorylation defects may present with cardiac abnormalities. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mice with systemic loss of the mitochondrial citrate carrier SLC25A1. Slc25a1 null embryos displayed impaired growth, cardiac malformations, and aberrant mitochondrial function. Importantly, Slc25a1 heterozygous embryos, which are overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 haploinsuffiency and dose-dependent effects. Supporting clinical relevance, we found a near-significant association between ultrarare human pathogenic SLC25A1 variants and pediatric congenital heart disease. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of gene expression to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of ventricular morphogenesis and cardiac metabolic maturation and suggests a role in congenital heart disease.
Collapse
|
15
|
Zhang G, Li L, Kong Y, Xu D, Bao Y, Zhang Z, Liao Z, Jiao J, Fan D, Long X, Dai J, Xie C, Meng Z, Zhang Z. Vitamin D-binding protein in plasma microglia-derived extracellular vesicles as a potential biomarker for major depressive disorder. Genes Dis 2024; 11:1009-1021. [PMID: 37692510 PMCID: PMC10491883 DOI: 10.1016/j.gendis.2023.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/21/2023] [Indexed: 09/12/2023] Open
Abstract
No well-established biomarkers are available for the clinical diagnosis of major depressive disorder (MDD). Vitamin D-binding protein (VDBP) is altered in plasma and postmortem dorsolateral prefrontal cortex (DLPFC) tissues of MDD patients. Thereby, the role of VDBP as a potential biomarker of MDD diagnosis was further assessed. Total extracellular vesicles (EVs) and brain cell-derived EVs (BCDEVs) were isolated from the plasma of first-episode drug-naïve or drug-free MDD patients and well-matched healthy controls (HCs) in discovery (20 MDD patients and 20 HCs) and validation cohorts (88 MDD patients and 38 HCs). VDBP level in the cerebrospinal fluid (CSF) from chronic glucocorticoid-induced depressed rhesus macaques or prelimbic cortex from lipopolysaccharide (LPS)-induced depressed mice and wild control groups was measured to evaluate its relationship with VDBP in plasma microglia-derived extracellular vesicles (MDEVs). VDBP was significantly decreased in MDD plasma MDEVs compared to HCs, and negatively correlated with HAMD-24 score with the highest diagnostic accuracy among BCDEVs. VDBP in plasma MDEVs was decreased both in depressed rhesus macaques and mice. A positive correlation of VDBP in MDEVs with that in CSF was detected in depressed rhesus macaques. VDBP levels in prelimbic cortex microglia were negatively correlated with those in plasma MDEVs in depressed mice. The main results suggested that VDBP in plasma MDEVs might serve as a prospective candidate biomarker for MDD diagnosis.
Collapse
Affiliation(s)
- Gaojia Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ling Li
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Dandan Xu
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yu Bao
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong 518000, China
| | - Zhiting Zhang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhixiang Liao
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiao Jiao
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Dandan Fan
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xiaojing Long
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ji Dai
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Shenzhen-Hong Kong Institute of Brain Sciences-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518000, China
| | - Chunming Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong 518000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Shenzhen-Hong Kong Institute of Brain Sciences-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518000, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Brain Cognition and Brain Disease Institute, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
16
|
Real MVF, Colvin MS, Sheehan MJ, Moeller AH. Major urinary protein ( Mup) gene family deletion drives sex-specific alterations in the house-mouse gut microbiota. Microbiol Spectr 2024; 12:e0356623. [PMID: 38170981 PMCID: PMC10846032 DOI: 10.1128/spectrum.03566-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
The gut microbiota is shaped by host metabolism. In house mice (Mus musculus), major urinary protein (MUP) pheromone production represents a considerable energy investment, particularly in sexually mature males. Deletion of the Mup gene family shifts mouse metabolism toward an anabolic state, marked by lipogenesis, lipid accumulation, and body mass increases. Given the metabolic implications of MUPs, they may also influence the gut microbiota. Here, we investigated the effect of a deletion of the Mup gene family on the gut microbiota of sexually mature mice. Shotgun metagenomics revealed distinct taxonomic and functional profiles between wild-type and knockout males but not females. Deletion of the Mup gene cluster significantly reduced diversity in microbial families and functions in male mice. Additionally, a species of Ruminococcaceae and several microbial functions, such as transporters involved in vitamin B5 acquisition, were significantly depleted in the microbiota of Mup knockout males. Altogether, these results show that MUPs significantly affect the gut microbiota of house mouse in a sex-specific manner.IMPORTANCEThe community of microorganisms that inhabits the gastrointestinal tract can have profound effects on host phenotypes. The gut microbiota is in turn shaped by host genes, including those involved with host metabolism. In adult male house mice, expression of the major urinary protein (Mup) gene cluster represents a substantial energy investment, and deletion of the Mup gene family leads to fat accumulation and weight gain in males. We show that deleting Mup genes also alters the gut microbiota of male, but not female, mice in terms of both taxonomic and functional compositions. Male mice without Mup genes harbored fewer gut bacterial families and reduced abundance of a species of Ruminococcaceae, a family that has been previously shown to reduce obesity risk. Studying the impact of the Mup gene family on the gut microbiota has the potential to reveal the ways in which these genes affect host phenotypes.
Collapse
Affiliation(s)
- Madalena V. F. Real
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Melanie S. Colvin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
17
|
Antony F, Brough Z, Zhao Z, Duong van Hoa F. Capture of the Mouse Organ Membrane Proteome Specificity in Peptidisc Libraries. J Proteome Res 2024; 23:857-867. [PMID: 38232390 DOI: 10.1021/acs.jproteome.3c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Membrane proteins, particularly those on the cell surface, play pivotal roles in diverse physiological processes, and their dysfunction is linked to a broad spectrum of diseases. Despite being crucial biomarkers and therapeutic drug targets, their low abundance and hydrophobic nature pose challenges in isolation and quantification, especially when extracted from tissues and organs. To overcome these hurdles, we developed the membrane-mimicking peptidisc, enabling the isolation of the membrane proteome in a water-soluble library conducive to swift identification through liquid chromatography with tandem mass spectrometry. This study applies the method across five mice organs, capturing between 200 and 450 plasma membrane proteins in each case. More than just membrane protein identification, the peptidisc is used to estimate the relative abundance across organs, linking cell-surface protein molecular functions to organ biological roles, thereby contributing to the ongoing discourse on organ specificity. This contribution holds substantial potential for unveiling new avenues in the exploration of biomarkers and downstream applications involving knowledge of the organ cell-surface proteome.
Collapse
Affiliation(s)
- Frank Antony
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zora Brough
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
18
|
Michaud SA, Pětrošová H, Sinclair NJ, Kinnear AL, Jackson AM, McGuire JC, Hardie DB, Bhowmick P, Ganguly M, Flenniken AM, Nutter LMJ, McKerlie C, Smith D, Mohammed Y, Schibli D, Sickmann A, Borchers CH. Multiple reaction monitoring assays for large-scale quantitation of proteins from 20 mouse organs and tissues. Commun Biol 2024; 7:6. [PMID: 38168632 PMCID: PMC10762018 DOI: 10.1038/s42003-023-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mouse is the mammalian model of choice to study human health and disease due to its size, ease of breeding and the natural occurrence of conditions mimicking human pathology. Here we design and validate multiple reaction monitoring mass spectrometry (MRM-MS) assays for quantitation of 2118 unique proteins in 20 murine tissues and organs. We provide open access to technical aspects of these assays to enable their implementation in other laboratories, and demonstrate their suitability for proteomic profiling in mice by measuring normal protein abundances in tissues from three mouse strains: C57BL/6NCrl, NOD/SCID, and BALB/cAnNCrl. Sex- and strain-specific differences in protein abundances are identified and described, and the measured values are freely accessible via our MouseQuaPro database: http://mousequapro.proteincentre.com . Together, this large library of quantitative MRM-MS assays established in mice and the measured baseline protein abundances represent an important resource for research involving mouse models.
Collapse
Affiliation(s)
- Sarah A Michaud
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada.
| | - Helena Pětrošová
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Nicholas J Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Andrea L Kinnear
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Angela M Jackson
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Jamie C McGuire
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Darryl B Hardie
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Pallab Bhowmick
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto, ON, Canada
- Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Derek Smith
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - David Schibli
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
19
|
Skinnider MA, Akinlaja MO, Foster LJ. Mapping protein states and interactions across the tree of life with co-fractionation mass spectrometry. Nat Commun 2023; 14:8365. [PMID: 38102123 PMCID: PMC10724252 DOI: 10.1038/s41467-023-44139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
We present CFdb, a harmonized resource of interaction proteomics data from 411 co-fractionation mass spectrometry (CF-MS) datasets spanning 21,703 fractions. Meta-analysis of this resource charts protein abundance, phosphorylation, and interactions throughout the tree of life, including a reference map of the human interactome. We show how large-scale CF-MS data can enhance analyses of individual CF-MS datasets, and exemplify this strategy by mapping the honey bee interactome.
Collapse
Affiliation(s)
- Michael A Skinnider
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Mopelola O Akinlaja
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Niazi SK. A Critical Analysis of the FDA's Omics-Driven Pharmacodynamic Biomarkers to Establish Biosimilarity. Pharmaceuticals (Basel) 2023; 16:1556. [PMID: 38004421 PMCID: PMC10675618 DOI: 10.3390/ph16111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/26/2023] Open
Abstract
Demonstrating biosimilarity entails comprehensive analytical assessment, clinical pharmacology profiling, and efficacy testing in patients for at least one medical indication, as required by the U.S. Biologics Price Competition and Innovation Act (BPCIA). The efficacy testing can be waived if the drug has known pharmacodynamic (PD) markers, leaving most therapeutic proteins out of this concession. To overcome this, the FDA suggests that biosimilar developers discover PD biomarkers using omics technologies such as proteomics, glycomics, transcriptomics, genomics, epigenomics, and metabolomics. This approach is redundant since the mode-action-action biomarkers of approved therapeutic proteins are already available, as compiled in this paper for the first time. Other potential biomarkers are receptor binding and pharmacokinetic profiling, which can be made more relevant to ensure biosimilarity without requiring biosimilar developers to conduct extensive research, for which they are rarely qualified.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Kojima Y, Mishiro-Sato E, Fujishita T, Satoh K, Kajino-Sakamoto R, Oze I, Nozawa K, Narita Y, Ogata T, Matsuo K, Muro K, Taketo MM, Soga T, Aoki M. Decreased liver B vitamin-related enzymes as a metabolic hallmark of cancer cachexia. Nat Commun 2023; 14:6246. [PMID: 37803016 PMCID: PMC10558488 DOI: 10.1038/s41467-023-41952-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
Cancer cachexia is a complex metabolic disorder accounting for ~20% of cancer-related deaths, yet its metabolic landscape remains unexplored. Here, we report a decrease in B vitamin-related liver enzymes as a hallmark of systemic metabolic changes occurring in cancer cachexia. Metabolomics of multiple mouse models highlights cachexia-associated reductions of niacin, vitamin B6, and a glycine-related subset of one-carbon (C1) metabolites in the liver. Integration of proteomics and metabolomics reveals that liver enzymes related to niacin, vitamin B6, and glycine-related C1 enzymes dependent on B vitamins decrease linearly with their associated metabolites, likely reflecting stoichiometric cofactor-enzyme interactions. The decrease of B vitamin-related enzymes is also found to depend on protein abundance and cofactor subtype. These metabolic/proteomic changes and decreased protein malonylation, another cachexia feature identified by protein post-translational modification analysis, are reflected in blood samples from mouse models and gastric cancer patients with cachexia, underscoring the clinical relevance of our findings.
Collapse
Affiliation(s)
- Yasushi Kojima
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan.
| | - Emi Mishiro-Sato
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Teruaki Fujishita
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Kiyotoshi Satoh
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Rie Kajino-Sakamoto
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Kazuki Nozawa
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Takatsugu Ogata
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Makoto Mark Taketo
- Colon Cancer Project, Kyoto University Hospital-iACT, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Masahiro Aoki
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan.
- Department of Cancer Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
22
|
Real MVF, Colvin MS, Sheehan MJ, Moeller AH. Major urinary protein ( Mup) gene family deletion drives sex-specific alterations on the house mouse gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551491. [PMID: 37577672 PMCID: PMC10418228 DOI: 10.1101/2023.08.01.551491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The gut microbiota is shaped by host metabolism. In house mice (Mus musculus), major urinary protein (MUP) pheromone production represents a considerable energy investment, particularly in sexually mature males. Deletion of the Mup gene family shifts mouse metabolism towards an anabolic state, marked by lipogenesis, lipid accumulation, and body mass increases. Given the metabolic implications of MUPs, they may also influence the gut microbiota. Here, we investigated the effect of deletion of the Mup gene family on the gut microbiota of sexually mature mice. Shotgun metagenomics revealed distinct taxonomic and functional profiles between wildtype and knockout males, but not females. Deletion of the Mup gene cluster significantly reduced diversity in microbial families and functions in male mice. Additionally, specific taxa of the Ruminococcaceae family, which is associated with gut health and reduced risk of developing metabolic syndrome, and several microbial functions, such as transporters involved in vitamin B5 acquisition, were significantly depleted in the microbiota of Mup-knockout males. Altogether these results show that major urinary proteins significantly affect the gut microbiota of house mouse in a sex-specific manner.
Collapse
Affiliation(s)
- Madalena V. F. Real
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Melanie S. Colvin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
23
|
Dowling P, Swandulla D, Ohlendieck K. Biochemical and proteomic insights into sarcoplasmic reticulum Ca 2+-ATPase complexes in skeletal muscles. Expert Rev Proteomics 2023; 20:125-142. [PMID: 37668143 DOI: 10.1080/14789450.2023.2255743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission. AREAS COVERED The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca2+-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective. EXPERT OPINION Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca2+-pump proteins of the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth Kildare, Ireland
| |
Collapse
|
24
|
Anisimova AS, Kolyupanova NM, Makarova NE, Egorov AA, Kulakovskiy IV, Dmitriev SE. Human Tissues Exhibit Diverse Composition of Translation Machinery. Int J Mol Sci 2023; 24:8361. [PMID: 37176068 PMCID: PMC10179197 DOI: 10.3390/ijms24098361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
While protein synthesis is vital for the majority of cell types of the human body, diversely differentiated cells require specific translation regulation. This suggests the specialization of translation machinery across tissues and organs. Using transcriptomic data from GTEx, FANTOM, and Gene Atlas, we systematically explored the abundance of transcripts encoding translation factors and aminoacyl-tRNA synthetases (ARSases) in human tissues. We revised a few known and identified several novel translation-related genes exhibiting strict tissue-specific expression. The proteins they encode include eEF1A1, eEF1A2, PABPC1L, PABPC3, eIF1B, eIF4E1B, eIF4ENIF1, and eIF5AL1. Furthermore, our analysis revealed a pervasive tissue-specific relative abundance of translation machinery components (e.g., PABP and eRF3 paralogs, eIF2B and eIF3 subunits, eIF5MPs, and some ARSases), suggesting presumptive variance in the composition of translation initiation, elongation, and termination complexes. These conclusions were largely confirmed by the analysis of proteomic data. Finally, we paid attention to sexual dimorphism in the repertoire of translation factors encoded in sex chromosomes (eIF1A, eIF2γ, and DDX3), and identified the testis and brain as organs with the most diverged expression of translation-associated genes.
Collapse
Affiliation(s)
- Aleksandra S. Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalia M. Kolyupanova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nadezhda E. Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artyom A. Egorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan V. Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia;
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
25
|
Kustatscher G, Hödl M, Rullmann E, Grabowski P, Fiagbedzi E, Groth A, Rappsilber J. Higher-order modular regulation of the human proteome. Mol Syst Biol 2023; 19:e9503. [PMID: 36891684 PMCID: PMC10167480 DOI: 10.15252/msb.20209503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
Operons are transcriptional modules that allow bacteria to adapt to environmental changes by coordinately expressing the relevant set of genes. In humans, biological pathways and their regulation are more complex. If and how human cells coordinate the expression of entire biological processes is unclear. Here, we capture 31 higher-order co-regulation modules, which we term progulons, by help of supervised machine-learning on proteomics data. Progulons consist of dozens to hundreds of proteins that together mediate core cellular functions. They are not restricted to physical interactions or co-localisation. Progulon abundance changes are primarily controlled at the level of protein synthesis and degradation. Implemented as a web app at www.proteomehd.net/progulonFinder, our approach enables the targeted search for progulons of specific cellular processes. We use it to identify a DNA replication progulon and reveal multiple new replication factors, validated by extensive phenotyping of siRNA-induced knockdowns. Progulons provide a new entry point into the molecular understanding of biological processes.
Collapse
Affiliation(s)
- Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Martina Hödl
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edward Rullmann
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Piotr Grabowski
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.,Data Sciences and Artificial Intelligence, Clinical Pharmacology & Safety Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Emmanuel Fiagbedzi
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Neely BA, Dorfer V, Martens L, Bludau I, Bouwmeester R, Degroeve S, Deutsch EW, Gessulat S, Käll L, Palczynski P, Payne SH, Rehfeldt TG, Schmidt T, Schwämmle V, Uszkoreit J, Vizcaíno JA, Wilhelm M, Palmblad M. Toward an Integrated Machine Learning Model of a Proteomics Experiment. J Proteome Res 2023; 22:681-696. [PMID: 36744821 PMCID: PMC9990124 DOI: 10.1021/acs.jproteome.2c00711] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 02/07/2023]
Abstract
In recent years machine learning has made extensive progress in modeling many aspects of mass spectrometry data. We brought together proteomics data generators, repository managers, and machine learning experts in a workshop with the goals to evaluate and explore machine learning applications for realistic modeling of data from multidimensional mass spectrometry-based proteomics analysis of any sample or organism. Following this sample-to-data roadmap helped identify knowledge gaps and define needs. Being able to generate bespoke and realistic synthetic data has legitimate and important uses in system suitability, method development, and algorithm benchmarking, while also posing critical ethical questions. The interdisciplinary nature of the workshop informed discussions of what is currently possible and future opportunities and challenges. In the following perspective we summarize these discussions in the hope of conveying our excitement about the potential of machine learning in proteomics and to inspire future research.
Collapse
Affiliation(s)
- Benjamin A. Neely
- National
Institute of Standards and Technology, Charleston, South Carolina 29412, United States
| | - Viktoria Dorfer
- Bioinformatics
Research Group, University of Applied Sciences
Upper Austria, Softwarepark
11, 4232 Hagenberg, Austria
| | - Lennart Martens
- VIB-UGent
Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, 9000 Ghent, Belgium
| | - Isabell Bludau
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Robbin Bouwmeester
- VIB-UGent
Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sven Degroeve
- VIB-UGent
Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, 9000 Ghent, Belgium
| | - Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | | | - Lukas Käll
- Science
for Life Laboratory, KTH - Royal Institute
of Technology, 171 21 Solna, Sweden
| | - Pawel Palczynski
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, 5230 Odense, Denmark
| | - Samuel H. Payne
- Department
of Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Tobias Greisager Rehfeldt
- Institute
for Mathematics and Computer Science, University
of Southern Denmark, 5230 Odense, Denmark
| | | | - Veit Schwämmle
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, 5230 Odense, Denmark
| | - Julian Uszkoreit
- Medical
Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801 Bochum, Germany
- Medizinisches
Proteom-Center, Medical Faculty, Ruhr University
Bochum, 44801 Bochum, Germany
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory,
European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United
Kingdom
| | - Mathias Wilhelm
- Computational
Mass Spectrometry, Technical University
of Munich (TUM), 85354 Freising, Germany
| | - Magnus Palmblad
- Leiden University Medical Center, Postbus 9600, 2300
RC Leiden, The Netherlands
| |
Collapse
|
27
|
Kim S, Nam Y, Kim MJ, Kwon SH, Jeon J, Shin SJ, Park S, Chang S, Kim HU, Lee YY, Kim HS, Moon M. Proteomic analysis for the effects of non-saponin fraction with rich polysaccharide from Korean Red Ginseng on Alzheimer's disease in a mouse model. J Ginseng Res 2023; 47:302-310. [PMID: 36926613 PMCID: PMC10014184 DOI: 10.1016/j.jgr.2022.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Background The most common type of dementia, Alzheimer's disease (AD), is marked by the formation of extracellular amyloid beta (Aβ) plaques. The impairments of axons and synapses appear in the process of Aβ plaques formation, and this damage could cause neurodegeneration. We previously reported that non-saponin fraction with rich polysaccharide (NFP) from Korean Red Ginseng (KRG) showed neuroprotective effects in AD. However, precise molecular mechanism of the therapeutic effects of NFP from KRG in AD still remains elusive. Methods To investigate the therapeutic mechanisms of NFP from KRG on AD, we conducted proteomic analysis for frontal cortex from vehicle-treated wild-type, vehicle-treated 5XFAD mice, and NFP-treated 5XFAD mice by using nano-LC-ESI-MS/MS. Metabolic network analysis was additionally performed as the effects of NFP appeared to be associated with metabolism according to the proteome analysis. Results Starting from 5,470 proteins, 2,636 proteins were selected for hierarchical clustering analysis, and finally 111 proteins were further selected for protein-protein interaction network analysis. A series of these analyses revealed that proteins associated with synapse and mitochondria might be linked to the therapeutic mechanism of NFP. Subsequent metabolic network analysis via genome-scale metabolic models that represent the three mouse groups showed that there were significant changes in metabolic fluxes of mitochondrial carnitine shuttle pathway and mitochondrial beta-oxidation of polyunsaturated fatty acids. Conclusion Our results suggested that the therapeutic effects of NFP on AD were associated with synaptic- and mitochondrial-related pathways, and they provided targets for further rigorous studies on precise understanding of the molecular mechanism of NFP.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea.,Research Institute for Dementia Science, Konyang University, Daejeon, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Min-Jeong Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Seung-Hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Junhyeok Jeon
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Soyoon Park
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, California, United States
| | - Sungjae Chang
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Hak Su Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Republic of Korea.,Research Institute for Dementia Science, Konyang University, Daejeon, Republic of Korea
| |
Collapse
|
28
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
29
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Proteomic profiling of impaired excitation-contraction coupling and abnormal calcium handling in muscular dystrophy. Proteomics 2022; 22:e2200003. [PMID: 35902360 PMCID: PMC10078611 DOI: 10.1002/pmic.202200003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The X-linked inherited neuromuscular disorder Duchenne muscular dystrophy is characterised by primary abnormalities in the membrane cytoskeletal component dystrophin. The almost complete absence of the Dp427-M isoform of dystrophin in skeletal muscles renders contractile fibres more susceptible to progressive degeneration and a leaky sarcolemma membrane. This in turn results in abnormal calcium homeostasis, enhanced proteolysis and impaired excitation-contraction coupling. Biochemical and mass spectrometry-based proteomic studies of both patient biopsy specimens and genetic animal models of dystrophinopathy have demonstrated significant changes in the concentration and/or physiological function of essential calcium-regulatory proteins in dystrophin-lacking voluntary muscles. Abnormalities include dystrophinopathy-associated changes in voltage sensing receptors, calcium release channels, calcium pumps and calcium binding proteins. This review article provides an overview of the importance of the sarcolemmal dystrophin-glycoprotein complex and the wider dystrophin complexome in skeletal muscle and its linkage to depolarisation-induced calcium-release mechanisms and the excitation-contraction-relaxation cycle. Besides chronic inflammation, fat substitution and reactive myofibrosis, a major pathobiochemical hallmark of X-linked muscular dystrophy is represented by the chronic influx of calcium ions through the damaged plasmalemma in conjunction with abnormal intracellular calcium fluxes and buffering. Impaired calcium handling proteins should therefore be included in an improved biomarker signature of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
30
|
Patrick M, Gu Z, Zhang G, Wynn RM, Kaphle P, Cao H, Vu H, Cai F, Gao X, Zhang Y, Chen M, Ni M, Chuang DT, DeBerardinis RJ, Xu J. Metabolon formation regulates branched-chain amino acid oxidation and homeostasis. Nat Metab 2022; 4:1775-1791. [PMID: 36443523 PMCID: PMC11977170 DOI: 10.1038/s42255-022-00689-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
The branched-chain aminotransferase isozymes BCAT1 and BCAT2, segregated into distinct subcellular compartments and tissues, initiate the catabolism of branched-chain amino acids (BCAAs). However, whether and how BCAT isozymes cooperate with downstream enzymes to control BCAA homeostasis in an intact organism remains largely unknown. Here, we analyse system-wide metabolomic changes in BCAT1- and BCAT2-deficient mouse models. Loss of BCAT2 but not BCAT1 leads to accumulation of BCAAs and branched-chain α-keto acids (BCKAs), causing morbidity and mortality that can be ameliorated by dietary BCAA restriction. Through proximity labelling, isotope tracing and enzymatic assays, we provide evidence for the formation of a mitochondrial BCAA metabolon involving BCAT2 and branched-chain α-keto acid dehydrogenase. Disabling the metabolon contributes to BCAT2 deficiency-induced phenotypes, which can be reversed by BCAT1-mediated BCKA reamination. These findings establish a role for metabolon formation in BCAA metabolism in vivo and suggest a new strategy to modulate this pathway in diseases involving dysfunctional BCAA metabolism.
Collapse
Affiliation(s)
- McKenzie Patrick
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhimin Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gen Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R Max Wynn
- Departments of Biochemistry and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pranita Kaphle
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hui Cao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hieu Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofei Gao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David T Chuang
- Departments of Biochemistry and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Xiao H, Bozi LHM, Sun Y, Riley CL, Philip VM, Chen M, Li J, Zhang T, Mills EL, Emont MP, Sun W, Reddy A, Garrity R, Long J, Becher T, Vitas LP, Laznik-Bogoslavski D, Ordonez M, Liu X, Chen X, Wang Y, Liu W, Tran N, Liu Y, Zhang Y, Cypess AM, White AP, He Y, Deng R, Schöder H, Paulo JA, Jedrychowski MP, Banks AS, Tseng YH, Cohen P, Tsai LT, Rosen ED, Klein S, Chondronikola M, McAllister FE, Van Bruggen N, Huttlin EL, Spiegelman BM, Churchill GA, Gygi SP, Chouchani ET. Architecture of the outbred brown fat proteome defines regulators of metabolic physiology. Cell 2022; 185:4654-4673.e28. [PMID: 36334589 PMCID: PMC10040263 DOI: 10.1016/j.cell.2022.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/18/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Brown adipose tissue (BAT) regulates metabolic physiology. However, nearly all mechanistic studies of BAT protein function occur in a single inbred mouse strain, which has limited the understanding of generalizable mechanisms of BAT regulation over physiology. Here, we perform deep quantitative proteomics of BAT across a cohort of 163 genetically defined diversity outbred mice, a model that parallels the genetic and phenotypic variation found in humans. We leverage this diversity to define the functional architecture of the outbred BAT proteome, comprising 10,479 proteins. We assign co-operative functions to 2,578 proteins, enabling systematic discovery of regulators of BAT. We also identify 638 proteins that correlate with protection from, or sensitivity to, at least one parameter of metabolic disease. We use these findings to uncover SFXN5, LETMD1, and ATP1A2 as modulators of BAT thermogenesis or adiposity, and provide OPABAT as a resource for understanding the conserved mechanisms of BAT regulation over metabolic physiology.
Collapse
Affiliation(s)
- Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Luiz H M Bozi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher L Riley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Mandy Chen
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Wenfei Sun
- Department of Bioengineering, Stanford University, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, CA 94305, USA
| | - Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jiani Long
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tobias Becher
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY 10065, USA
| | - Laura Potano Vitas
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Martha Ordonez
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Xiong Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yun Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Weihai Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nhien Tran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yitong Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yang Zhang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew P White
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yuchen He
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca Deng
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY 10065, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Qu JH, Tarasov KV, Chakir K, Tarasova YS, Riordon DR, Lakatta EG. Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome. Cells 2022; 11:cells11213496. [PMID: 36359893 PMCID: PMC9654263 DOI: 10.3390/cells11213496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Rationale: The 14-3-3 protein family is known to interact with many proteins in non-cardiac cell types to regulate multiple signaling pathways, particularly those relating to energy and protein homeostasis; and the 14-3-3 network is a therapeutic target of critical metabolic and proteostatic signaling in cancer and neurological diseases. Although the heart is critically sensitive to nutrient and energy alterations, and multiple signaling pathways coordinate to maintain the cardiac cell homeostasis, neither the structure of cardiac 14-3-3 protein interactome, nor potential functional roles of 14-3-3 protein–protein interactions (PPIs) in heart has been explored. Objective: To establish the comprehensive landscape and characterize the functional role of cardiac 14-3-3 PPIs. Methods and Results: We evaluated both RNA expression and protein abundance of 14-3-3 isoforms in mouse heart, followed by co-immunoprecipitation of 14-3-3 proteins and mass spectrometry in left ventricle. We identified 52 proteins comprising the cardiac 14-3-3 interactome. Multiple bioinformatic analyses indicated that more than half of the proteins bound to 14-3-3 are related to mitochondria; and the deduced functions of the mitochondrial 14-3-3 network are to regulate cardiac ATP production via interactions with mitochondrial inner membrane proteins, especially those in mitochondrial complex I. Binding to ribosomal proteins, 14-3-3 proteins likely coordinate protein synthesis and protein quality control. Localizations of 14-3-3 proteins to mitochondria and ribosome were validated via immunofluorescence assays. The deduced function of cardiac 14-3-3 PPIs is to regulate cardiac metabolic homeostasis and proteostasis. Conclusions: Thus, the cardiac 14-3-3 interactome may be a potential therapeutic target in cardiovascular metabolic and proteostatic disease states, as it already is in cancer therapy.
Collapse
|
33
|
Tissue-Characteristic Expression of Mouse Proteome. Mol Cell Proteomics 2022; 21:100408. [PMID: 36058520 PMCID: PMC9562433 DOI: 10.1016/j.mcpro.2022.100408] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/23/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
The mouse is a valuable model organism for biomedical research. Here, we established a comprehensive spectral library and the data-independent acquisition-based quantitative proteome maps for 41 mouse organs, including some rarely reported organs such as the cornea, retina, and nine paired organs. The mouse spectral library contained 178,304 peptides from 12,320 proteins, including 1678 proteins not reported in previous mouse spectral libraries. Our data suggested that organs from the nervous system and immune system expressed the most distinct proteome compared with other organs. We also found characteristic protein expression of immune-privileged organs, which may help understanding possible immune rejection after organ transplantation. Each tissue type expressed characteristic high-abundance proteins related to its physiological functions. We also uncovered some tissue-specific proteins which have not been reported previously. The testis expressed highest number of tissue-specific proteins. By comparison of nine paired organs including kidneys, testes, and adrenal glands, we found left organs exhibited higher levels of antioxidant enzymes. We also observed expression asymmetry for proteins related to the apoptotic process, tumor suppression, and organ functions between the left and right sides. This study provides a comprehensive spectral library and a quantitative proteome resource for mouse studies.
Collapse
|
34
|
Song R, Du Y, Li P, Zhou L, Zheng H, Lu X, Wang S, Ma W, Zhang H, Li X. Deletion of Letmd1 leads to the disruption of mitochondrial function in brown adipose tissue. Biochimie 2022; 201:100-115. [PMID: 35817133 DOI: 10.1016/j.biochi.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/06/2022]
Abstract
Human cervical cancer oncogene (HCCR-1), also named as LETMD1, is an LETM-domain containing outer mitochondrial membrane protein which plays an important role in carcinogenesis. The present study found that the loss of Letmd1 in mice led to severe abnormities, such as brown adipose tissue (BAT) whitening, impaired thermogenesis of both BAT and beige fat, cold intolerance, diet-induced obesity, glucose intolerance and insulin resistance. Mechanically, the deletion of Letmd1 in BAT caused decreased level of both mitochondrial and intracellular Ca2+. The reduced intracellular Ca2+ could suppress the fission of mitochondria and ultimately lead to the disruption of BAT thermogenesis by regulating mitochondrial structures and functions. This study indicates that LETMD1 played a crucial role in BAT thermogenesis and energy homeostasis through regulating mitochondrial structures and functions, which provides a novel insight into therapeutic target exploration from oncogenes for metabolic disorders.
Collapse
Affiliation(s)
- Runjie Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaqi Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lijun Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Han Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaohui Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shenghong Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenqiang Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hua Zhang
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
35
|
Giansanti P, Samaras P, Bian Y, Meng C, Coluccio A, Frejno M, Jakubowsky H, Dobiasch S, Hazarika RR, Rechenberger J, Calzada-Wack J, Krumm J, Mueller S, Lee CY, Wimberger N, Lautenbacher L, Hassan Z, Chang YC, Falcomatà C, Bayer FP, Bärthel S, Schmidt T, Rad R, Combs SE, The M, Johannes F, Saur D, de Angelis MH, Wilhelm M, Schneider G, Kuster B. Mass spectrometry-based draft of the mouse proteome. Nat Methods 2022; 19:803-811. [PMID: 35710609 PMCID: PMC7613032 DOI: 10.1038/s41592-022-01526-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/17/2022] [Indexed: 01/06/2023]
Abstract
The laboratory mouse ranks among the most important experimental systems for biomedical research and molecular reference maps of such models are essential informational tools. Here, we present a quantitative draft of the mouse proteome and phosphoproteome constructed from 41 healthy tissues and several lines of analyses exemplify which insights can be gleaned from the data. For instance, tissue- and cell-type resolved profiles provide protein evidence for the expression of 17,000 genes, thousands of isoforms and 50,000 phosphorylation sites in vivo. Proteogenomic comparison of mouse, human and Arabidopsis reveal common and distinct mechanisms of gene expression regulation and, despite many similarities, numerous differentially abundant orthologs that likely serve species-specific functions. We leverage the mouse proteome by integrating phenotypic drug (n > 400) and radiation response data with the proteomes of 66 pancreatic ductal adenocarcinoma (PDAC) cell lines to reveal molecular markers for sensitivity and resistance. This unique atlas complements other molecular resources for the mouse and can be explored online via ProteomicsDB and PACiFIC.
Collapse
Affiliation(s)
- Piero Giansanti
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Patroklos Samaras
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Yangyang Bian
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- College of Life Science, Northwest University, Xi'an, China
| | - Chen Meng
- Bavarian Biomolecular Mass Spectrometry Center, Technical University of Munich, Freising, Germany
| | - Andrea Coluccio
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Frejno
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Hannah Jakubowsky
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rashmi R Hazarika
- Population epigenetics and epigenomics, Technical University of Munich, Freising, Germany
- Institute of Advanced Study (IAS), Technical University of Munich, Freising, Germany
| | - Julia Rechenberger
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Sebastian Mueller
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Chien-Yun Lee
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Nicole Wimberger
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Ludwig Lautenbacher
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Zonera Hassan
- Medical Clinic and Policlinic II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Yun-Chien Chang
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Schmidt
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Roland Rad
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Frank Johannes
- Population epigenetics and epigenomics, Technical University of Munich, Freising, Germany
- Institute of Advanced Study (IAS), Technical University of Munich, Freising, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- Computational Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Günter Schneider
- Medical Clinic and Policlinic II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
- Bavarian Biomolecular Mass Spectrometry Center, Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Advanced Study (IAS), Technical University of Munich, Freising, Germany.
| |
Collapse
|
36
|
Re Cecconi AD, Barone M, Forti M, Lunardi M, Cagnotto A, Salmona M, Olivari D, Zentilin L, Resovi A, Persichitti P, Belotti D, Palo F, Takakura N, Kidoya H, Piccirillo R. Apelin Resistance Contributes to Muscle Loss during Cancer Cachexia in Mice. Cancers (Basel) 2022; 14:cancers14071814. [PMID: 35406586 PMCID: PMC8997437 DOI: 10.3390/cancers14071814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Cancer cachexia is a highly debilitating syndrome involving severe body weight loss. Worldwide around 9–14.5 million cancer patients suffer from cachexia every year and many of them die because of cachexia. Our study aimed to assess the possible role of apelin against muscle loss during cancer growth given its beneficial effects against muscle atrophy during aging. We found apelin exhibiting advantageous effects against atrophy in in vitro models, but not in in vivo models, where we unraveled undesirable apelin resistance that may nullify apelin-based therapy for cancer cachexia. Abstract Cancer cachexia consists of dramatic body weight loss with rapid muscle depletion due to imbalanced protein homeostasis. We found that the mRNA levels of apelin decrease in muscles from cachectic hepatoma-bearing rats and three mouse models of cachexia. Furthermore, apelin expression inversely correlates with MuRF1 in muscle biopsies from cancer patients. To shed light on the possible role of apelin in cachexia in vivo, we generated apelin 13 carrying all the last 13 amino acids of apelin in D isomers, ultimately extending plasma stability. Notably, apelin D-peptides alter cAMP-based signaling in vitro as the L-peptides, supporting receptor binding. In vitro apelin 13 protects myotube diameter from dexamethasone-induced atrophy, restrains rates of degradation of long-lived proteins and MuRF1 expression, but fails to protect mice from atrophy. D-apelin 13 given intraperitoneally for 13 days in colon adenocarcinoma C26-bearing mice does not reduce catabolic pathways in muscles, as it does in vitro. Puzzlingly, the levels of circulating apelin seemingly deriving from cachexia-inducing tumors, increase in murine plasma during cachexia. Muscle electroporation of a plasmid expressing its receptor APJ, unlike apelin, preserves myofiber area from C26-induced atrophy, supporting apelin resistance in vivo. Altogether, we believe that during cachexia apelin resistance occurs, contributing to muscle wasting and nullifying any possible peptide-based treatment.
Collapse
Affiliation(s)
- Andrea David Re Cecconi
- Department of Neurosciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (A.D.R.C.); (M.B.); (M.F.); (M.L.); (D.O.); (F.P.)
| | - Mara Barone
- Department of Neurosciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (A.D.R.C.); (M.B.); (M.F.); (M.L.); (D.O.); (F.P.)
| | - Mara Forti
- Department of Neurosciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (A.D.R.C.); (M.B.); (M.F.); (M.L.); (D.O.); (F.P.)
| | - Martina Lunardi
- Department of Neurosciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (A.D.R.C.); (M.B.); (M.F.); (M.L.); (D.O.); (F.P.)
| | - Alfredo Cagnotto
- Molecular Biochemistry and Pharmacology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (A.C.); (M.S.)
| | - Mario Salmona
- Molecular Biochemistry and Pharmacology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (A.C.); (M.S.)
| | - Davide Olivari
- Department of Neurosciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (A.D.R.C.); (M.B.); (M.F.); (M.L.); (D.O.); (F.P.)
| | - Lorena Zentilin
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, Via Padriciano 99, 34149 Trieste, Italy;
| | - Andrea Resovi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, 24126 Bergamo, Italy; (A.R.); (P.P.); (D.B.)
| | - Perla Persichitti
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, 24126 Bergamo, Italy; (A.R.); (P.P.); (D.B.)
| | - Dorina Belotti
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, 24126 Bergamo, Italy; (A.R.); (P.P.); (D.B.)
| | - Federica Palo
- Department of Neurosciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (A.D.R.C.); (M.B.); (M.F.); (M.L.); (D.O.); (F.P.)
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan;
| | - Hiroyasu Kidoya
- Department of Integrative Vascular Biology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Yoshida, Fukui 910-1193, Japan;
| | - Rosanna Piccirillo
- Department of Neurosciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy; (A.D.R.C.); (M.B.); (M.F.); (M.L.); (D.O.); (F.P.)
- Correspondence: ; Tel.: +39-02-39014371
| |
Collapse
|
37
|
Kubiniok P, Marcu A, Bichmann L, Kuchenbecker L, Schuster H, Hamelin DJ, Duquette JD, Kovalchik KA, Wessling L, Kohlbacher O, Rammensee HG, Neidert MC, Sirois I, Caron E. Understanding the constitutive presentation of MHC class I immunopeptidomes in primary tissues. iScience 2022; 25:103768. [PMID: 35141507 PMCID: PMC8810409 DOI: 10.1016/j.isci.2022.103768] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/15/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the molecular principles that govern the composition of the MHC-I immunopeptidome across different primary tissues is fundamentally important to predict how T cells respond in different contexts in vivo. Here, we performed a global analysis of the MHC-I immunopeptidome from 29 to 19 primary human and mouse tissues, respectively. First, we observed that different HLA-A, HLA-B, and HLA-C allotypes do not contribute evenly to the global composition of the MHC-I immunopeptidome across multiple human tissues. Second, we found that tissue-specific and housekeeping MHC-I peptides share very distinct properties. Third, we discovered that proteins that are evolutionarily hyperconserved represent the primary source of the MHC-I immunopeptidome at the organism-wide scale. Fourth, we uncovered new components of the antigen processing and presentation network, including the carboxypeptidases CPE, CNDP1/2, and CPVL. Together, this study opens up new avenues toward a system-wide understanding of antigen presentation in vivo across mammalian species. Tissue-specific and housekeeping MHC class I peptides share distinct properties HLA-A, HLA-B, and HLA-C allotypes contribute very unevenly to the pool of class I peptides MHC-I immunopeptidomes are represented by evolutionarily conserved proteins An extended antigen processing and presentation pathway is uncovered
Collapse
Affiliation(s)
- Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
| | - Leon Kuchenbecker
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
| | - Heiko Schuster
- Immatics Biotechnologies GmbH, 72076 Tübingen, Baden-Württemberg, Germany
| | - David J. Hamelin
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | | | - Laura Wessling
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence Machine Learning in the Sciences (EXC 2064), University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Baden-Württemberg, Germany
| | - Marian C. Neidert
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital and University of Zürich, 8057&8091 Zürich, Switzerland
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada
- Corresponding author
| |
Collapse
|
38
|
Taylor DF, Bishop DJ. Transcription Factor Movement and Exercise-Induced Mitochondrial Biogenesis in Human Skeletal Muscle: Current Knowledge and Future Perspectives. Int J Mol Sci 2022; 23:1517. [PMID: 35163441 PMCID: PMC8836245 DOI: 10.3390/ijms23031517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
In response to exercise, the oxidative capacity of mitochondria within skeletal muscle increases through the coordinated expression of mitochondrial proteins in a process termed mitochondrial biogenesis. Controlling the expression of mitochondrial proteins are transcription factors-a group of proteins that regulate messenger RNA transcription from DNA in the nucleus and mitochondria. To fulfil other functions or to limit gene expression, transcription factors are often localised away from DNA to different subcellular compartments and undergo rapid movement or accumulation only when required. Although many transcription factors involved in exercise-induced mitochondrial biogenesis have been identified, numerous conflicting findings and gaps exist within our knowledge of their subcellular movement. This review aims to summarise and provide a critical analysis of the published literature regarding the exercise-induced movement of transcription factors involved in mitochondria biogenesis in skeletal muscle.
Collapse
Affiliation(s)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Footscray Park, Victoria University, Melbourne 8001, Australia;
| |
Collapse
|
39
|
Dowling P, Gargan S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle. Expert Rev Proteomics 2021; 18:1073-1086. [PMID: 34890519 DOI: 10.1080/14789450.2021.2017776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Carbonic anhydrase (CA) is a key enzyme that mediates the reversible hydration of carbon dioxide. Skeletal muscles contain high levels of the cytosolic isoform CA3. This enzyme has antioxidative function and plays a crucial role in the maintenance of intracellular pH homeostasis. AREAS COVERED Since elevated levels of serum CA3, often in combination with other muscle-specific proteins, are routinely used as a marker of general muscle damage, it was of interest to examine recent analyses of this enzyme carried out by modern proteomics. This review summarizes the mass spectrometry-based identification and evaluation of CA3 in normal, adapting, dystrophic, and aging skeletal muscle tissues. EXPERT OPINION The mass spectrometric characterization of CA3 confirmed this enzyme as a highly useful marker of both physiological and pathophysiological alterations in skeletal muscles. Cytosolic CA3 is clearly enriched in slow-twitching type I fibers, which makes it an ideal marker for studying fiber type shifting and muscle adaptations. Importantly, neuromuscular diseases feature distinct alterations in CA3 in skeletal muscle tissues versus biofluids, such as serum. Characteristic changes of CA3 in age-related muscle wasting and dystrophinopathy established this enzyme as a suitable biomarker candidate for differential diagnosis and monitoring of disease progression and therapeutic impact.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
40
|
Sun B, Lorang C, Qin S, Zhang Y, Liu K, Li G, Sun Z, Francke A, Utleg AG, Hu Z, Wang K, Moritz RL, Hood L. Mouse Organ-Specific Proteins and Functions. Cells 2021; 10:cells10123449. [PMID: 34943957 PMCID: PMC8700158 DOI: 10.3390/cells10123449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022] Open
Abstract
Organ-specific proteins (OSPs) possess great medical potential both in clinics and in biomedical research. Applications of them—such as alanine transaminase, aspartate transaminase, and troponins—in clinics have raised certain concerns of their organ specificity. The dynamics and diversity of protein expression in heterogeneous human populations are well known, yet their effects on OSPs are less addressed. Here, we used mice as a model and implemented a breadth study to examine the panorgan proteome for potential variations in organ specificity in different genetic backgrounds. Using reasonable resources, we generated panorgan proteomes of four in-bred mouse strains. The results revealed a large diversity that was more profound among OSPs than among proteomes overall. We defined a robustness score to quantify such variation and derived three sets of OSPs with different stringencies. In the meantime, we found that the enriched biological functions of OSPs are also organ-specific and are sensitive and useful to assess the quality of OSPs. We hope our breadth study can open doors to explore the molecular diversity and dynamics of organ specificity at the protein level.
Collapse
Affiliation(s)
- Bingyun Sun
- Departments of Chemistry, Simon Fraser University, Burnaby, BC V5A1S6, Canada; (Y.Z.); (K.L.)
- Departments of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A1S6, Canada
- Correspondence: (B.S.); (L.H.)
| | - Cynthia Lorang
- Institute for Systems Biology, Seattle, WA 98109, USA; (C.L.); (S.Q.); (G.L.); (Z.S.); (A.G.U.); (Z.H.); (K.W.); (R.L.M.)
| | - Shizhen Qin
- Institute for Systems Biology, Seattle, WA 98109, USA; (C.L.); (S.Q.); (G.L.); (Z.S.); (A.G.U.); (Z.H.); (K.W.); (R.L.M.)
| | - Yijuan Zhang
- Departments of Chemistry, Simon Fraser University, Burnaby, BC V5A1S6, Canada; (Y.Z.); (K.L.)
| | - Ken Liu
- Departments of Chemistry, Simon Fraser University, Burnaby, BC V5A1S6, Canada; (Y.Z.); (K.L.)
| | - Gray Li
- Institute for Systems Biology, Seattle, WA 98109, USA; (C.L.); (S.Q.); (G.L.); (Z.S.); (A.G.U.); (Z.H.); (K.W.); (R.L.M.)
| | - Zhi Sun
- Institute for Systems Biology, Seattle, WA 98109, USA; (C.L.); (S.Q.); (G.L.); (Z.S.); (A.G.U.); (Z.H.); (K.W.); (R.L.M.)
| | - Ashley Francke
- Departments of Computing Science, Simon Fraser University, Burnaby, BC V5A1S6, Canada;
| | - Angelita G. Utleg
- Institute for Systems Biology, Seattle, WA 98109, USA; (C.L.); (S.Q.); (G.L.); (Z.S.); (A.G.U.); (Z.H.); (K.W.); (R.L.M.)
| | - Zhiyuan Hu
- Institute for Systems Biology, Seattle, WA 98109, USA; (C.L.); (S.Q.); (G.L.); (Z.S.); (A.G.U.); (Z.H.); (K.W.); (R.L.M.)
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA; (C.L.); (S.Q.); (G.L.); (Z.S.); (A.G.U.); (Z.H.); (K.W.); (R.L.M.)
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, WA 98109, USA; (C.L.); (S.Q.); (G.L.); (Z.S.); (A.G.U.); (Z.H.); (K.W.); (R.L.M.)
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; (C.L.); (S.Q.); (G.L.); (Z.S.); (A.G.U.); (Z.H.); (K.W.); (R.L.M.)
- Correspondence: (B.S.); (L.H.)
| |
Collapse
|
41
|
Shichkova P, Coggan JS, Markram H, Keller D. A Standardized Brain Molecular Atlas: A Resource for Systems Modeling and Simulation. Front Mol Neurosci 2021; 14:604559. [PMID: 34858137 PMCID: PMC8631404 DOI: 10.3389/fnmol.2021.604559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Accurate molecular concentrations are essential for reliable analyses of biochemical networks and the creation of predictive models for molecular and systems biology, yet protein and metabolite concentrations used in such models are often poorly constrained or irreproducible. Challenges of using data from different sources include conflicts in nomenclature and units, as well as discrepancies in experimental procedures, data processing and implementation of the model. To obtain a consistent estimate of protein and metabolite levels, we integrated and normalized data from a large variety of sources to calculate Adjusted Molecular Concentrations. We found a high degree of reproducibility and consistency of many molecular species across brain regions and cell types, consistent with tight homeostatic regulation. We demonstrated the value of this normalization with differential protein expression analyses related to neurodegenerative diseases, brain regions and cell types. We also used the results in proof-of-concept simulations of brain energy metabolism. The standardized Brain Molecular Atlas overcomes the obstacles of missing or inconsistent data to support systems biology research and is provided as a resource for biomolecular modeling.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jay S Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
42
|
Rolfs Z, Frey BL, Shi X, Kawai Y, Smith LM, Welham NV. An atlas of protein turnover rates in mouse tissues. Nat Commun 2021; 12:6778. [PMID: 34836951 PMCID: PMC8626426 DOI: 10.1038/s41467-021-26842-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 01/25/2023] Open
Abstract
Protein turnover is critical to cellular physiology as well as to the growth and maintenance of tissues. The unique synthesis and degradation rates of each protein help to define tissue phenotype, and knowledge of tissue- and protein-specific half-lives is directly relevant to protein-related drug development as well as the administration of medical therapies. Using stable isotope labeling and mass spectrometry, we determine the in vivo turnover rates of thousands of proteins-including those of the extracellular matrix-in a set of biologically important mouse tissues. We additionally develop a data visualization platform, named ApplE Turnover, that enables facile searching for any protein of interest in a tissue of interest and then displays its half-life, confidence interval, and supporting measurements. This extensive dataset and the corresponding visualization software provide a reference to guide future studies of mammalian protein turnover in response to physiologic perturbation, disease, or therapeutic intervention.
Collapse
Affiliation(s)
- Zach Rolfs
- grid.14003.360000 0001 2167 3675Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Brian L. Frey
- grid.14003.360000 0001 2167 3675Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Xudong Shi
- grid.14003.360000 0001 2167 3675Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 USA
| | - Yoshitaka Kawai
- grid.14003.360000 0001 2167 3675Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 USA ,grid.258799.80000 0004 0372 2033Present Address: Department of Otolaryngology–Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Lloyd M. Smith
- grid.14003.360000 0001 2167 3675Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Nathan V. Welham
- grid.14003.360000 0001 2167 3675Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 USA
| |
Collapse
|
43
|
Ghergurovich JM, Xu X, Wang JZ, Yang L, Ryseck RP, Wang L, Rabinowitz JD. Methionine synthase supports tumour tetrahydrofolate pools. Nat Metab 2021; 3:1512-1520. [PMID: 34799699 PMCID: PMC9284419 DOI: 10.1038/s42255-021-00465-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 09/01/2021] [Indexed: 01/02/2023]
Abstract
Mammalian cells require activated folates to generate nucleotides for growth and division. The most abundant circulating folate species is 5-methyl tetrahydrofolate (5-methyl-THF), which is used to synthesize methionine from homocysteine via the cobalamin-dependent enzyme methionine synthase (MTR). Cobalamin deficiency traps folates as 5-methyl-THF. Here, we show using isotope tracing that MTR is only a minor source of methionine in cell culture, tissues or xenografted tumours. Instead, MTR is required for cells to avoid folate trapping and assimilate 5-methyl-THF into other folate species. Under conditions of physiological extracellular folates, genetic MTR knockout in tumour cells leads to folate trapping, purine synthesis stalling, nucleotide depletion and impaired growth in cell culture and as xenografts. These defects are rescued by free folate but not one-carbon unit supplementation. Thus, MTR plays a crucial role in liberating THF for use in one-carbon metabolism.
Collapse
Affiliation(s)
- Jonathan M Ghergurovich
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xincheng Xu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Joshua Z Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Lifeng Yang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Rolf-Peter Ryseck
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lin Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
44
|
Taylor D, deJesus EJ, Novak M, Terry RC. The effects of formalin fixation and fluid storage on stable isotopes in rodent hair. J Mammal 2021. [DOI: 10.1093/jmammal/gyab102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Stable isotopes are increasingly being used to unlock the wealth of information contained in specimens preserved in museum collections. However, preservation methods that employ formalin may confound ecological interpretations. To quantify the effects of formalin fixation and subsequent fluid storage in ethanol on the isotopic signatures of small mammal hair, we analyzed δ 13C and δ 15N values from specimens of seven rodent species that were sampled repeatedly both before and after varying lengths of formalin fixation (1–11 days) and ethanol storage (1–6 years). We supplemented these data with a 2-week fixation experiment using deer mice (Peromyscus maniculatus) in which no ethanol storage was employed. As expected, preservation in formalin and ethanol had no discernable effect on δ 15N values. In contrast, specimen δ 13C values decreased in a saturating fashion during formalin fixation and over subsequent years of fluid storage in ethanol. On the basis of models that we fit to these time series, we estimate the long-term effect of fixation and storage on δ 13C values to be −0.92‰ after 4 years. This biologically relevant shift in δ 13C values should be accounted for when inferring the diets of species from fluid-stored museum collections and when comparing across specimens with different preservation histories.
Collapse
Affiliation(s)
- David Taylor
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - Elia J deJesus
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - Mark Novak
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - Rebecca C Terry
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| |
Collapse
|
45
|
Pino L, Schilling B. Proximity labeling and other novel mass spectrometric approaches for spatiotemporal protein dynamics. Expert Rev Proteomics 2021; 18:757-765. [PMID: 34496693 PMCID: PMC8650568 DOI: 10.1080/14789450.2021.1976149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Proteins are highly dynamic and their biological function is controlled by not only temporal abundance changes but also via regulated protein-protein interaction networks, which respond to internal and external perturbations. A wealth of novel analytical reagents and workflows allow studying spatiotemporal protein environments with great granularity while maintaining high throughput and ease of analysis. AREAS COVERED We review technology advances for measuring protein-protein proximity interactions with an emphasis on proximity labeling, and briefly summarize other spatiotemporal approaches including protein localization, and their dynamic changes over time, specifically in human cells and mammalian tissues. We focus especially on novel technologies and workflows emerging within the past 5 years. This includes enrichment-based techniques (proximity labeling and crosslinking), separation-based techniques (organelle fractionation and size exclusion chromatography), and finally sorting-based techniques (laser capture microdissection and mass spectrometry imaging). EXPERT OPINION Spatiotemporal proteomics is a key step in assessing biological complexity, understanding refined regulatory mechanisms, and forming protein complexes and networks. Studying protein dynamics across space and time holds promise for gaining deep insights into how protein networks may be perturbed during disease and aging processes, and offer potential avenues for therapeutic interventions, drug discovery, and biomarker development.
Collapse
Affiliation(s)
- Lindsay Pino
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, CA 94945, USA
| |
Collapse
|
46
|
Marholz LJ, Federspiel JD, Suh H, Fernandez Ocana M. Highly Multiplexed Kinase Profiling in Spleen with Targeted Mass Spectrometry Reveals Kinome Plasticity across Species. J Proteome Res 2021; 20:4272-4283. [PMID: 34319750 DOI: 10.1021/acs.jproteome.1c00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Early attrition of drug candidates, including kinase inhibitors, often occurs due to issues that arise during preclinical safety and efficacy evaluation. This problem may be exacerbated by the fact that these studies might fail to consider the basic physiological differences that could exist between human patients and animal models. We report the development of a targeted mass spectrometry-based assay capable of monitoring >50 different kinases using peptides conserved in humans and the key preclinical species used in drug development (mouse, rat, dog, and cynomolgus monkey). These methods were then used to profile interspecies kinome variability in spleen with three of the current techniques used in targeted proteomics (MRM, PRM, and IS-PRM). IS-PRM provides the highest number of kinase identifications, and the results indicate that while this initial set of kinases exhibits high correlation between species for this tissue type, distinct species-specific differences do exist, especially within the cyclin-dependent kinase family. An initial screen in two species with the kinase inhibitor dasatinib in competition with the chemoproteomic kinase-binding probe XO44 demonstrated how the targeted methods can be further applied to study species-specific inhibitor occupancy profiles. Understanding such differences could help rationalize the findings of preclinical studies and have major implications for the selection of these animals as models in kinase drug development.
Collapse
Affiliation(s)
- Laura J Marholz
- Department of Drug Safety Research and Development, Pfizer Inc., Andover, Massachusetts 01810, United States
| | - Joel D Federspiel
- Department of Drug Safety Research and Development, Pfizer Inc., Andover, Massachusetts 01810, United States
| | - Hyunsuk Suh
- Department of Drug Safety Research and Development, Pfizer Inc., Andover, Massachusetts 01810, United States
| | - Mireia Fernandez Ocana
- Department of Drug Safety Research and Development, Pfizer Inc., Andover, Massachusetts 01810, United States
| |
Collapse
|
47
|
Skinnider MA, Scott NE, Prudova A, Kerr CH, Stoynov N, Stacey RG, Chan QWT, Rattray D, Gsponer J, Foster LJ. An atlas of protein-protein interactions across mouse tissues. Cell 2021; 184:4073-4089.e17. [PMID: 34214469 DOI: 10.1016/j.cell.2021.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Cellular processes arise from the dynamic organization of proteins in networks of physical interactions. Mapping the interactome has therefore been a central objective of high-throughput biology. However, the dynamics of protein interactions across physiological contexts remain poorly understood. Here, we develop a quantitative proteomic approach combining protein correlation profiling with stable isotope labeling of mammals (PCP-SILAM) to map the interactomes of seven mouse tissues. The resulting maps provide a proteome-scale survey of interactome rewiring across mammalian tissues, revealing more than 125,000 unique interactions at a quality comparable to the highest-quality human screens. We identify systematic suppression of cross-talk between the evolutionarily ancient housekeeping interactome and younger, tissue-specific modules. Rewired proteins are tightly regulated by multiple cellular mechanisms and are implicated in disease. Our study opens up new avenues to uncover regulatory mechanisms that shape in vivo interactome responses to physiological and pathophysiological stimuli in mammalian systems.
Collapse
Affiliation(s)
- Michael A Skinnider
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nichollas E Scott
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Peter Doherty Institute, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anna Prudova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Craig H Kerr
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikolay Stoynov
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - R Greg Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Queenie W T Chan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Rattray
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
48
|
Wynne ME, Lane AR, Singleton KS, Zlatic SA, Gokhale A, Werner E, Duong D, Kwong JQ, Crocker AJ, Faundez V. Heterogeneous Expression of Nuclear Encoded Mitochondrial Genes Distinguishes Inhibitory and Excitatory Neurons. eNeuro 2021; 8:ENEURO.0232-21.2021. [PMID: 34312306 PMCID: PMC8387155 DOI: 10.1523/eneuro.0232-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial composition varies by organ and their constituent cell types. This mitochondrial diversity likely determines variations in mitochondrial function. However, the heterogeneity of mitochondria in the brain remains underexplored despite the large diversity of cell types in neuronal tissue. Here, we used molecular systems biology tools to address whether mitochondrial composition varies by brain region and neuronal cell type in mice. We reasoned that proteomics and transcriptomics of microdissected brain regions combined with analysis of single-cell mRNA sequencing (scRNAseq) could reveal the extent of mitochondrial compositional diversity. We selected nuclear encoded gene products forming complexes of fixed stoichiometry, such as the respiratory chain complexes and the mitochondrial ribosome, as well as molecules likely to perform their function as monomers, such as the family of SLC25 transporters. We found that the proteome encompassing these nuclear-encoded mitochondrial genes and obtained from microdissected brain tissue segregated the hippocampus, striatum, and cortex from each other. Nuclear-encoded mitochondrial transcripts could only segregate cell types and brain regions when the analysis was performed at the single-cell level. In fact, single-cell mitochondrial transcriptomes were able to distinguish glutamatergic and distinct types of GABAergic neurons from one another. Within these cell categories, unique SLC25A transporters were able to identify distinct cell subpopulations. Our results demonstrate heterogeneous mitochondrial composition across brain regions and cell types. We postulate that mitochondrial heterogeneity influences regional and cell type-specific mechanisms in health and disease.
Collapse
Affiliation(s)
- Meghan E Wynne
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Alicia R Lane
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | | | | | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Duc Duong
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | | | - Amanda J Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
49
|
Fenech EJ, Ben-Dor S, Schuldiner M. Double the Fun, Double the Trouble: Paralogs and Homologs Functioning in the Endoplasmic Reticulum. Annu Rev Biochem 2021; 89:637-666. [PMID: 32569522 DOI: 10.1146/annurev-biochem-011520-104831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.
Collapse
Affiliation(s)
- Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
50
|
Mohammed Y, Michaud SA, Pětrošová H, Yang J, Ganguly M, Schibli D, Flenniken AM, Nutter LMJ, Adissu HA, Lloyd KCK, McKerlie C, Borchers CH. Proteotyping of knockout mouse strains reveals sex- and strain-specific signatures in blood plasma. NPJ Syst Biol Appl 2021; 7:25. [PMID: 34050187 PMCID: PMC8163790 DOI: 10.1038/s41540-021-00184-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/25/2021] [Indexed: 11/24/2022] Open
Abstract
We proteotyped blood plasma from 30 mouse knockout strains and corresponding wild-type mice from the International Mouse Phenotyping Consortium. We used targeted proteomics with internal standards to quantify 375 proteins in 218 samples. Our results provide insights into the manifested effects of each gene knockout at the plasma proteome level. We first investigated possible contamination by erythrocytes during sample preparation and labeled, in one case, up to 11 differential proteins as erythrocyte originated. Second, we showed that differences in baseline protein abundance between female and male mice were evident in all mice, emphasizing the necessity to include both sexes in basic research, target discovery, and preclinical effect and safety studies. Next, we identified the protein signature of each gene knockout and performed functional analyses for all knockout strains. Further, to demonstrate how proteome analysis identifies the effect of gene deficiency beyond traditional phenotyping tests, we provide in-depth analysis of two strains, C8a-/- and Npc2+/-. The proteins encoded by these genes are well-characterized providing good validation of our method in homozygous and heterozygous knockout mice. Ig alpha chain C region, a poorly characterized protein, was among the differentiating proteins in C8a-/-. In Npc2+/- mice, where histopathology and traditional tests failed to differentiate heterozygous from wild-type mice, our data showed significant difference in various lysosomal storage disease-related proteins. Our results demonstrate how to combine absolute quantitative proteomics with mouse gene knockout strategies to systematically study the effect of protein absence. The approach used here for blood plasma is applicable to all tissue protein extracts.
Collapse
Affiliation(s)
- Yassene Mohammed
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada.
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands.
| | - Sarah A Michaud
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada.
| | - Helena Pětrošová
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Juncong Yang
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - David Schibli
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto, ON, Canada
- Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - K C Kent Lloyd
- Department of Surgery, School of Medicine, and Mouse Biology Program, University of California, Davis, CA, USA
| | | | - Christoph H Borchers
- Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.
- Department of Data Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia.
| |
Collapse
|