1
|
Shen W, de Boer JF, Kuipers F, Fu J. New insights in amino sugar metabolism by the gut microbiome. Gut Microbes 2025; 17:2510462. [PMID: 40415338 PMCID: PMC12118421 DOI: 10.1080/19490976.2025.2510462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/03/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
Gut microorganisms inhabiting the intestinal tract play key roles in host's health and disease. A properly functioning gut microbiome requires the availability of adequate carbon, nitrogen and energy sources. One of the main sources of energy for intestinal bacteria are glycans, of which amino sugars are important components. Amino sugars are a class of carbohydrates in which one or more hydroxyl groups are substituted with amino groups. However, bacterial utilization of amino sugars and their impact on the gut microbiome and host health have not been thoroughly assessed. In this review, we summarize the latest discoveries about amino sugar metabolism by gut microbes, paying particular attention to the metabolism of N-acetyl-galactosamine (GalNAc), one of the most abundant amino sugars in the intestine, and its potential implications for microbial functionality and host health.
Collapse
Affiliation(s)
- Wenqiang Shen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Singh S, Liu Y, Burke M, Rayaprolu V, Stein SE, Hasan SS. Production and cryo-electron microscopy structure of an internally tagged SARS-CoV-2 spike ecto-domain construct. J Struct Biol X 2025; 11:100123. [PMID: 40046771 PMCID: PMC11880631 DOI: 10.1016/j.yjsbx.2025.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
The SARS-CoV-2 spike protein is synthesized in the endoplasmic reticulum of host cells, from where it undergoes export to the Golgi and the plasma membrane or retrieval from the Golgi to the endoplasmic reticulum. Elucidating the fundamental principles of this bidirectional secretion are pivotal to understanding virus assembly and designing the next generation of spike genetic vaccine with enhanced export properties. However, the widely used strategy of C-terminal affinity tagging of the spike cytosolic tail interferes with proper bidirectional trafficking. Hence, the structural and biophysical investigations of spike protein trafficking have been hindered by a lack of appropriate spike constructs. Here we describe a strategy for the internal tagging of the spike protein. Using sequence analyses and AlphaFold modeling, we identified a site down-stream of the signal sequence for the insertion of a twin-strep-tag, which facilitates purification of an ecto-domain construct from the extra-cellular medium of mammalian Expi293F cells. Mass spectrometry analyses show that the internal tag has minimal impact on N-glycan modifications, which are pivotal for spike-host interactions. Single particle cryo-electron microscopy reconstructions of the spike ecto-domain reveal conformational states compatible for ACE2 receptor interactions, further solidifying the feasibility of the internal tagging strategy. Collectively, these results present a substantial advance towards reagent development for the investigations of spike protein trafficking during coronavirus infection and genetic vaccination.
Collapse
Affiliation(s)
- Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Yi Liu
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg MD 20899, USA
| | - Meghan Burke
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg MD 20899, USA
| | - Vamseedhar Rayaprolu
- Pacific Northwest Cryo-EM Center, Oregon Health and Sciences University, Portland, OR 97201, USA
| | - Stephen E. Stein
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg MD 20899, USA
| | - S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore MD 21201, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville MD 20850, USA
| |
Collapse
|
3
|
Hogan RA, Pepi LE, Riley NM, Chalkley RJ. Comparative analysis of glycoproteomic software using a tailored glycan database. Anal Bioanal Chem 2025; 417:1985-2001. [PMID: 40097686 PMCID: PMC12060194 DOI: 10.1007/s00216-025-05780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 03/19/2025]
Abstract
Glycoproteomics is a rapidly developing field, and data analysis has been stimulated by several technological innovations. As a result, there are many software tools from which to choose; and each comes with unique features that can be difficult to compare. This work presents a head-to-head comparison of five modern analytical software: Byonic, Protein Prospector, MSFraggerGlyco, pGlyco3, and GlycoDecipher. To enable a meaningful comparison, parameter variables were minimized. One potential confounding variable is the glycan database that informs glycoproteomic searches. We performed glycomic profiling of the samples and used the output to construct matched glycan databases for each software. Up to 17,000 glycopeptide spectra were identified across three replicates of wild-type SH-SY5Y cells. There was overlap among all software for glycoproteins identified, locations of glycosites, and glycans; but there was no clear winner. Incorporation of several comparative criteria was critically important for learning the most information in this study and should be used more broadly when assessing software. A single criterion, such as number of glycopeptide spectra found, is not sufficient. We present evidence that suggests Byonic reports many spurious results at the glycoprotein and glycosite level. Overall, our results indicate that glycoproteomic searches should involve more than one software, excluding the current version of Byonic, to generate confidence by consensus. It may be useful to consider software with peptide-first approaches and with glycan-first approaches.
Collapse
Affiliation(s)
- Reuben A Hogan
- University of California, San Francisco, San Francisco, CA, USA.
| | - Lauren E Pepi
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
4
|
Mycroft-West CJ, Leanca MA, Wu L. Structural glycobiology - from enzymes to organelles. Biochem Soc Trans 2025; 53:BST20241119. [PMID: 39889286 DOI: 10.1042/bst20241119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Biological carbohydrate polymers represent some of the most complex molecules in life, enabling their participation in a huge range of physiological functions. The complexity of biological carbohydrates arises from an extensive enzymatic repertoire involved in their construction, deconstruction and modification. Over the past decades, structural studies of carbohydrate processing enzymes have driven major insights into their mechanisms, supporting associated applications across medicine and biotechnology. Despite these successes, our understanding of how multienzyme networks function to create complex polysaccharides is still limited. Emerging techniques such as super-resolution microscopy and cryo-electron tomography are now enabling the investigation of native biological systems at near molecular resolutions. Here, we review insights from classical in vitro studies of carbohydrate processing, alongside recent in situ studies of glycosylation-related processes. While considerable technical challenges remain, the integration of molecular mechanisms with true biological context promises to transform our understanding of carbohydrate regulation, shining light upon the processes driving functional complexity in these essential biomolecules.
Collapse
Affiliation(s)
| | - Miron A Leanca
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
| | - Liang Wu
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, OX3 7BN, Oxford, UK
| |
Collapse
|
5
|
Beaudoin CA, Kohli M, Salvage SC, Liu H, Arundel SJ, Hamaia SW, Lei M, Huang CLH, Jackson AP. Isoform-specific N-linked glycosylation of NaV channel α-subunits alters β-subunit binding sites. J Gen Physiol 2025; 157:e202413609. [PMID: 39680039 PMCID: PMC11666101 DOI: 10.1085/jgp.202413609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Voltage-gated sodium channel α-subunits (NaV1.1-1.9) initiate and propagate action potentials in neurons and myocytes. The NaV β-subunits (β1-4) have been shown to modulate α-subunit properties. Homo-oligomerization of β-subunits on neighboring or opposing plasma membranes has been suggested to facilitate cis or trans interactions, respectively. The interactions between several NaV channel isoforms and β-subunits have been determined using cryogenic electron microscopy (cryo-EM). Interestingly, the NaV cryo-EM structures reveal the presence of N-linked glycosylation sites. However, only the first glycan moieties are typically resolved at each site due to the flexibility of mature glycan trees. Thus, existing cryo-EM structures may risk de-emphasizing the structural implications of glycans on the NaV channels. Herein, molecular modeling and all-atom molecular dynamics simulations were applied to investigate the conformational landscape of N-linked glycans on NaV channel surfaces. The simulations revealed that negatively charged sialic acid residues of two glycan sites may interact with voltage-sensing domains. Notably, two NaV1.5 isoform-specific glycans extensively cover the α-subunit region that, in other NaV channel α-subunit isoforms, corresponds to the binding site for the β1- (and likely β3-) subunit immunoglobulin (Ig) domain. NaV1.8 contains a unique N-linked glycosylation site that likely prevents its interaction with the β2 and β4-subunit Ig-domain. These isoform-specific glycans may have evolved to facilitate specific functional interactions, for example, by redirecting β-subunit Ig-domains outward to permit cis or trans supraclustering within specialized cellular compartments such as the cardiomyocyte perinexal space. Further experimental work is necessary to validate these predictions.
Collapse
Affiliation(s)
| | - Manas Kohli
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, UK
| | - Samantha C. Salvage
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, UK
| | - Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, UK
| | - Samuel J. Arundel
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, UK
| | - Samir W. Hamaia
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Christopher L.-H. Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Antony P. Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Pribić T, Das JK, Đerek L, Belsky DW, Orenduff M, Huffman KM, Kraus WE, Deriš H, Šimunović J, Štambuk T, Hodžić AF, Kraus VB, Das SK, Racette SB, Banskota N, Ferruci L, Pieper C, Lewis NE, Lauc G, Krishnan S. A 2-year calorie restriction intervention reduces glycomic biological age biomarkers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318451. [PMID: 39677441 PMCID: PMC11643172 DOI: 10.1101/2024.12.04.24318451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background/Objective In a subset of participants from the CALERIE™ Phase 2 study we evaluated the effects of 2y of ~25% Calorie Restriction (CR) diet on IgG N-glycosylation (GlycAge), plasma and complement C3 N-glycome as markers of aging and inflammaging. Methods Plasma samples from 26 participants in the CR group who completed the CALERIE2 trial and were deemed adherent to the intervention (~>10 % CR at 12 mo) were obtained from the NIA AgingResearchBiobank. Glycomic investigations using UPLC or LC-MS analyses were conducted on samples from baseline (BL), mid-intervention (12 mo) and post-intervention (24 mo), and changes resulting from the 2y CR intervention were examined. In addition, anthropometric, clinical, metabolic, DNA methylation (epigenetic) and skeletal muscle transcriptomic data were analyzed to identify aging-related changes that occurred in tandem with the N-glycome changes. Results Following the 2y CR intervention, IgG galactosylation was higher at 24mo compared to BL (p = 0.051), digalactosylation and GlycAge (the IgG-based surrogate for biological age) were not different between BL and 12mo or BL and 24mo, but increased between 12mo and 24mo (p = 0.016, 0.027 respectively). GlycAge was also positively associated with TNF-α and ICAM-1 (p=0.030, p=0.017 respectively). Plasma highly branched glycans were decreased by the 2y intervention (BL vs 24 mo: p=0.013), but both plasma and IgG bisecting GlcNAcs were increased (BL vs 24mo: p<0.001, p = 0.01 respectively). Furthermore, total complement C3 protein concentrations were reduced (BL vs 24mo: p <0.001), as were Man9 glycoforms (BL vs 24mo: p<0.001), and Man10 (which is glucosylated) C3 glycoforms (BL vs 24mo: p = 0.046). Conclusions 24-mos of CR was associated with several favorable, anti-aging, anti-inflammatory changes in the glycome: increased galactosylation, reduced branching glycans, and reduced GlycAge. These promising CR effects were accompanied by an increase in bisecting GlcNAc, a known pro-inflammatory biomarker. These intriguing findings linking CR, clinical, and glycomic changes may be anti-aging and inflammatory, and merit additional investigation.
Collapse
Affiliation(s)
- Tea Pribić
- Genos Ltd, Glycoscience Research Laboratory, Zagreb, Croatia
| | - Jayanta K Das
- Longitudinal Studies Section, Translation Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Lovorka Đerek
- Clinical Department for Laboratory Diagnostics, University Hospital Dubrava, Croatia
| | - Daniel W. Belsky
- Robert N Butler Columbia Aging Center and Department of Epidemiology, Columbia University Mailman School of Public Health, New York, USA
| | - Melissa Orenduff
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kim M Huffman
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - William E Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Helena Deriš
- Genos Ltd, Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Tamara Štambuk
- Genos Ltd, Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Virginia B Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sai Krupa Das
- Jean Mayer, USDA, Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Susan B. Racette
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Nirad Banskota
- Computational Biology and Genomics Core, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferruci
- Longitudinal Studies Section, Translation Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Carl Pieper
- Division of Biostatistics, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, California, USA
| | - Gordan Lauc
- Genos Ltd, Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia
| | - Sridevi Krishnan
- School of Nutritional Sciences and Wellness, BIO5, University of Arizona, Tucson, USA
| |
Collapse
|
7
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
8
|
Tian W, Blomberg AL, Steinberg KE, Henriksen BL, Jørgensen JS, Skovgaard K, Skovbakke SL, Goletz S. Novel genetically glycoengineered human dendritic cell model reveals regulatory roles of α2,6-linked sialic acids in DC activation of CD4+ T cells and response to TNFα. Glycobiology 2024; 34:cwae042. [PMID: 38873803 DOI: 10.1093/glycob/cwae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Dendritic cells (DCs) are central for the initiation and regulation of appropriate immune responses. While several studies suggest important regulatory roles of sialoglycans in DC biology, our understanding is still inadequate primarily due to a lack of appropriate models. Previous approaches based on enzymatic- or metabolic-glycoengineering and primary cell isolation from genetically modified mice have limitations related to specificity, stability, and species differences. This study addresses these challenges by introducing a workflow to genetically glycoengineer the human DC precursor cell line MUTZ-3, described to differentiate and maturate into fully functional dendritic cells, using CRISPR-Cas9, thereby providing and validating the first isogenic cell model for investigating glycan alteration on human DC differentiation, maturation, and activity. By knocking out (KO) the ST6GAL1 gene, we generated isogenic cells devoid of ST6GAL1-mediated α(2,6)-linked sialylation, allowing for a comprehensive investigation into its impact on DC function. Glycan profiling using lectin binding assay and functional studies revealed that ST6GAL1 KO increased the expression of important antigen presenting and co-stimulatory surface receptors and a specifically increased activation of allogenic human CD4 + T cells. Additionally, ST6GAL1 KO induces significant changes in surface marker expression and cytokine response to TNFα-induced maturation, and it affects migration and the endocytic capacity. These results indicate that genetic glycoengineering of the isogenic MUTZ-3 cellular model offers a valuable tool to study how specific glycan structures influence human DC biology, contributing to our understanding of glycoimmunology.
Collapse
Affiliation(s)
- Weihua Tian
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Anne Louise Blomberg
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Kaylin Elisabeth Steinberg
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Betina Lyngfeldt Henriksen
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Josefine Søborg Jørgensen
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Kerstin Skovgaard
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Sarah Line Skovbakke
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Steffen Goletz
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| |
Collapse
|
9
|
Hirayama H, Tachida Y, Fujinawa R, Matsuda Y, Murase T, Nishiuchi Y, Suzuki T. Development of a fluorescence and quencher-based FRET assay for detection of endogenous peptide:N-glycanase/NGLY1 activity. J Biol Chem 2024; 300:107121. [PMID: 38417795 PMCID: PMC11065741 DOI: 10.1016/j.jbc.2024.107121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals) catalyzes deglycosylation of N-glycans on glycoproteins. A genetic disorder caused by mutations in the NGLY1 gene leads to NGLY1 deficiency with symptoms including motor deficits and neurological problems. Effective therapies have not been established, though, a recent study used the administration of an adeno-associated viral vector expressing human NGLY1 to dramatically rescue motor functions in young Ngly1-/- rats. Thus, early therapeutic intervention may improve symptoms arising from central nervous system dysfunction, and assay methods for measuring NGLY1 activity in biological samples are critical for early diagnostics. In this study, we established an assay system for plate-based detection of endogenous NGLY1 activity using a FRET-based probe. Using this method, we revealed significant changes in NGLY1 activity in rat brains during aging. This novel assay offers reliable disease diagnostics and provides valuable insights into the regulation of PNGase/NGLY1 activity in diverse organisms under different stress conditions.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Yuriko Tachida
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | | | | | | | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan.
| |
Collapse
|
10
|
Antony F, Brough Z, Zhao Z, Duong van Hoa F. Capture of the Mouse Organ Membrane Proteome Specificity in Peptidisc Libraries. J Proteome Res 2024; 23:857-867. [PMID: 38232390 DOI: 10.1021/acs.jproteome.3c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Membrane proteins, particularly those on the cell surface, play pivotal roles in diverse physiological processes, and their dysfunction is linked to a broad spectrum of diseases. Despite being crucial biomarkers and therapeutic drug targets, their low abundance and hydrophobic nature pose challenges in isolation and quantification, especially when extracted from tissues and organs. To overcome these hurdles, we developed the membrane-mimicking peptidisc, enabling the isolation of the membrane proteome in a water-soluble library conducive to swift identification through liquid chromatography with tandem mass spectrometry. This study applies the method across five mice organs, capturing between 200 and 450 plasma membrane proteins in each case. More than just membrane protein identification, the peptidisc is used to estimate the relative abundance across organs, linking cell-surface protein molecular functions to organ biological roles, thereby contributing to the ongoing discourse on organ specificity. This contribution holds substantial potential for unveiling new avenues in the exploration of biomarkers and downstream applications involving knowledge of the organ cell-surface proteome.
Collapse
Affiliation(s)
- Frank Antony
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zora Brough
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
11
|
Adav SS, Ng KW. Recent omics advances in hair aging biology and hair biomarkers analysis. Ageing Res Rev 2023; 91:102041. [PMID: 37634889 DOI: 10.1016/j.arr.2023.102041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex natural process that leads to a decline in physiological functions, which is visible in signs such as hair graying, thinning, and loss. Although hair graying is characterized by a loss of pigment in the hair shaft, the underlying mechanism of age-associated hair graying is not fully understood. Hair graying and loss can have a significant impact on an individual's self-esteem and self-confidence, potentially leading to mental health problems such as depression and anxiety. Omics technologies, which have applications beyond clinical medicine, have led to the discovery of candidate hair biomarkers and may provide insight into the complex biology of hair aging and identify targets for effective therapies. This review provides an up-to-date overview of recent omics discoveries, including age-associated alterations of proteins and metabolites in the hair shaft and follicle, and highlights the significance of hair aging and graying biomarker discoveries. The decline in hair follicle stem cell activity with aging decreased the regeneration capacity of hair follicles. Cellular senescence, oxidative damage and altered extracellular matrix of hair follicle constituents characterized hair follicle and hair shaft aging and graying. The review attempts to correlate the impact of endogenous and exogenous factors on hair aging. We close by discussing the main challenges and limitations of the field, defining major open questions and offering an outlook for future research.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
12
|
Yang W, Tian E, Chernish A, McCluggage P, Dalal K, Lara A, Ten Hagen KG, Tabak LA. Quantitative mapping of the in vivo O-GalNAc glycoproteome in mouse tissues identifies GalNAc-T2 O-glycosites in metabolic disorder. Proc Natl Acad Sci U S A 2023; 120:e2303703120. [PMID: 37862385 PMCID: PMC10614836 DOI: 10.1073/pnas.2303703120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/03/2023] [Indexed: 10/22/2023] Open
Abstract
The family of GalNAc-Ts (GalNAcpolypeptide:N-Acetylgalactosaminyl transferases) catalyzes the first committed step in the synthesis of O-glycans, which is an abundant and biologically important protein modification. Abnormalities in the activity of individual GalNAc-Ts can result in congenital disorders of O-glycosylation (CDG) and influence a broad array of biological functions. How site-specific O-glycans regulate biology is unclear. Compiling in vivo O-glycosites would be an invaluable step in determining the function of site-specific O-glycans. We integrated chemical and enzymatic conditions that cleave O-glycosites, a higher-energy dissociation product ions-triggered electron-transfer/higher-energy collision dissociation mass spectrometry (MS) workflow and software to study nine mouse tissues and whole blood. We identified 2,154 O-glycosites from 595 glycoproteins. The O-glycosites and glycoproteins displayed consensus motifs and shared functions as classified by Gene Ontology terms. Limited overlap of O-glycosites was observed with protein O-GlcNAcylation and phosphorylation sites. Quantitative glycoproteomics and proteomics revealed a tissue-specific regulation of O-glycosites that the differential expression of Galnt isoenzymes in tissues partly contributes to. We examined the Galnt2-null mouse model, which phenocopies congenital disorder of glycosylation involving GALNT2 and revealed a network of glycoproteins that lack GalNAc-T2-specific O-glycans. The known direct and indirect functions of these glycoproteins appear consistent with the complex metabolic phenotypes observed in the Galnt2-null animals. Through this study and interrogation of databases and the literature, we have compiled an atlas of experimentally identified mouse O-glycosites consisting of 2,925 O-glycosites from 758 glycoproteins.
Collapse
Affiliation(s)
- Weiming Yang
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - E. Tian
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Aliona Chernish
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Peggy McCluggage
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Kruti Dalal
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Alexander Lara
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Kelly G. Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Lawrence A. Tabak
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| |
Collapse
|
13
|
Gao Z, Chen S, Du J, Wu Z, Ge W, Gao S, Zhou Z, Yang X, Xing Y, Shi M, Hu Y, Tang W, Xia J, Zhang X, Jiang J, Yang S. Quantitative analysis of fucosylated glycoproteins by immobilized lectin-affinity fluorescent labeling. RSC Adv 2023; 13:6676-6687. [PMID: 36860533 PMCID: PMC9969232 DOI: 10.1039/d3ra00072a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Human biofluids are often used to discover disease-specific glycosylation, since abnormal changes in protein glycosylation can discern physiopathological states. Highly glycosylated proteins in biofluids make it possible to identify disease signatures. Glycoproteomic studies on saliva glycoproteins showed that fucosylation was significantly increased during tumorigenesis and that glycoproteins became hyperfucosylated in lung metastases, and tumor stage is associated with fucosylation. Quantification of salivary fucosylation can be achieved by mass spectrometric analysis of fucosylated glycoproteins or fucosylated glycans; however, the use of mass spectrometry is non-trivial for clinical practice. Here, we developed a high-throughput quantitative method, lectin-affinity fluorescent labeling quantification (LAFLQ), to quantify fucosylated glycoproteins without relying on mass spectrometry. Lectins with a specific affinity for fucoses are immobilized on the resin and effectively capture fluorescently labeled fucosylated glycoproteins, which are further quantitatively characterized by fluorescence detection in a 96-well plate. Our results demonstrated that serum IgG can be accurately quantified by lectin and fluorescence detection. Quantification in saliva showed significantly higher fucosylation in lung cancer patients compared to healthy controls or other non-cancer diseases, suggesting that this method has the potential to quantify stage-related fucosylation in lung cancer saliva.
Collapse
Affiliation(s)
- Ziyuan Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006 China
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006 China
| | - Sufeng Chen
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital Hangzhou Zhejiang 310014 China
| | - Jing Du
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital Hangzhou Zhejiang 310014 China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University Shanghai 200438 China
| | - Wei Ge
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University Lianyungang 222005 China
| | - Zeyang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Yufei Xing
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Minhua Shi
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Yunyun Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Wen Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Jun Xia
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital Hangzhou Zhejiang 310014 China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University Shanghai 200438 China
| | - Junhong Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006 China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
| |
Collapse
|
14
|
Abstract
Artificial intelligence (AI) methods have been and are now being increasingly integrated in prediction software implemented in bioinformatics and its glycoscience branch known as glycoinformatics. AI techniques have evolved in the past decades, and their applications in glycoscience are not yet widespread. This limited use is partly explained by the peculiarities of glyco-data that are notoriously hard to produce and analyze. Nonetheless, as time goes, the accumulation of glycomics, glycoproteomics, and glycan-binding data has reached a point where even the most recent deep learning methods can provide predictors with good performance. We discuss the historical development of the application of various AI methods in the broader field of glycoinformatics. A particular focus is placed on shining a light on challenges in glyco-data handling, contextualized by lessons learnt from related disciplines. Ending on the discussion of state-of-the-art deep learning approaches in glycoinformatics, we also envision the future of glycoinformatics, including development that need to occur in order to truly unleash the capabilities of glycoscience in the systems biology era.
Collapse
Affiliation(s)
- Daniel Bojar
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41390, Sweden
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 41390, Sweden
| | - Frederique Lisacek
- Proteome
Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
- Computer
Science Department & Section of Biology, University of Geneva, route de Drize 7, CH-1227, Geneva, Switzerland
| |
Collapse
|
15
|
Iles RK, Iles JK, Lacey J, Gardiner A, Zmuidinaite R. Direct Detection of Glycated Human Serum Albumin and Hyperglycosylated IgG3 in Serum, by MALDI-ToF Mass Spectrometry, as a Predictor of COVID-19 Severity. Diagnostics (Basel) 2022; 12:diagnostics12102521. [PMID: 36292212 PMCID: PMC9601263 DOI: 10.3390/diagnostics12102521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
The prefusion spike protein of SARS-CoV-2 binds advanced glycation end product (AGE)-glycated human serum albumin (HSA) and a higher mass (hyperglycosylated/glycated) immunoglobulin (Ig) G3, as determined by matrix assisted laser desorption mass spectrometry (MALDI-ToF). We set out to investigate if the total blood plasma of patients who had recovered from acute respiratory distress syndrome (ARDS) as a result of COVID-19, contained more glycated HSA and higher mass (glycosylated/glycated) IgG3 than those with only clinically mild or asymptomatic infections. A direct serum dilution, and disulphide bond reduction, method was developed and applied to plasma samples from SARS-CoV-2 seronegative (n = 30) and seropositive (n = 31) healthcare workers (HCWs) and 38 convalescent plasma samples from patients who had been admitted with acute respiratory distress (ARDS) associated with COVID-19. Patients recovering from COVID-19 ARDS had significantly higher mass AGE-glycated HSA and higher mass IgG3 levels. This would indicate that increased levels and/or ratios of hyper-glycosylation (probably terminal sialic acid) IgG3 and AGE glycated HSA may be predisposition markers for the development of COVID-19 ARDS as a result of SARS-CoV2 infection. Furthermore, rapid direct analysis of serum/plasma samples by MALDI-ToF for such humoral immune correlates of COVID-19 presents a feasible screening technology for the most at risk; regardless of age or known health conditions.
Collapse
Affiliation(s)
- Ray K. Iles
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- NISAD, Sundstorget 2, 252-21 Helsingborg, Sweden
- Correspondence:
| | - Jason K. Iles
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Jonathan Lacey
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
| | - Anna Gardiner
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
| | - Raminta Zmuidinaite
- MAP Sciences, The iLab, Stannard Way, Bedford MK44 3RZ, UK
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
16
|
Mackay S, Hitefield NL, Oduor IO, Roberts AB, Burch TC, Lance RS, Cunningham TD, Troyer DA, Semmes OJ, Nyalwidhe JO. Site-Specific Intact N-Linked Glycopeptide Characterization of Prostate-Specific Membrane Antigen from Metastatic Prostate Cancer Cells. ACS OMEGA 2022; 7:29714-29727. [PMID: 36061737 PMCID: PMC9435049 DOI: 10.1021/acsomega.2c02265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The composition of N-linked glycans that are conjugated to the prostate-specific membrane antigen (PSMA) and their functional significance in prostate cancer progression have not been fully characterized. PSMA was isolated from two metastatic prostate cancer cell lines, LNCaP and MDAPCa2b, which have different tissue tropism and localization. Isolated PSMA was trypsin-digested, and intact glycopeptides were subjected to LC-HCD-EThcD-MS/MS analysis on a Tribrid Orbitrap Fusion Lumos mass spectrometer. Differential qualitative and quantitative analysis of site-specific N-glycopeptides was performed using Byonic and Byologic software. Comparative quantitative analysis demonstrates that multiple glycopeptides at asparagine residues 51, 76, 121, 195, 336, 459, 476, and 638 were in significantly different abundance in the two cell lines (p < 0.05). Biochemical analysis using endoglycosidase treatment and lectin capture confirm the MS and site occupancy data. The data demonstrate the effectiveness of the strategy for comprehensive analysis of PSMA glycopeptides. This approach will form the basis of ongoing experiments to identify site-specific glycan changes in PSMA isolated from disease-stratified clinical samples to uncover targets that may be associated with disease progression and metastatic phenotypes.
Collapse
Affiliation(s)
- Stephen Mackay
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
- University
of North Carolina, Chapel Hill, North Carolina 27516, United States
| | - Naomi L. Hitefield
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
- University
of Georgia, Athens, Georgia 30602, United
States
| | - Ian O. Oduor
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Autumn B. Roberts
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Tanya C. Burch
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Raymond S. Lance
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Spokane
Urology, Spokane, Washington 99202, United States
| | - Tina D. Cunningham
- School of
Health Professions, Eastern Virginia Medical
School, Norfolk, Virginia 23507, United States
| | - Dean A. Troyer
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Oliver J. Semmes
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Julius O. Nyalwidhe
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| |
Collapse
|
17
|
Klarić TS, Lauc G. The dynamic brain N-glycome. Glycoconj J 2022; 39:443-471. [PMID: 35334027 DOI: 10.1007/s10719-022-10055-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 01/17/2023]
Abstract
The attachment of carbohydrates to other macromolecules, such as proteins or lipids, is an important regulatory mechanism termed glycosylation. One subtype of protein glycosylation is asparagine-linked glycosylation (N-glycosylation) which plays a key role in the development and normal functioning of the vertebrate brain. To better understand the role of N-glycans in neurobiology, it's imperative we analyse not only the functional roles of individual structures, but also the collective impact of large-scale changes in the brain N-glycome. The systematic study of the brain N-glycome is still in its infancy and data are relatively scarce. Nevertheless, the prevailing view has been that the neuroglycome is inherently restricted with limited capacity for variation. The development of improved methods for N-glycomics analysis of brain tissue has facilitated comprehensive characterisation of the complete brain N-glycome under various experimental conditions on a larger scale. Consequently, accumulating data suggest that it's more dynamic than previously recognised and that, within a general framework, it has a given capacity to change in response to both intrinsic and extrinsic stimuli. Here, we provide an overview of the many factors that can alter the brain N-glycome, including neurodevelopment, ageing, diet, stress, neuroinflammation, injury, and disease. Given this emerging evidence, we propose that the neuroglycome has a hitherto underappreciated plasticity and we discuss the therapeutic implications of this regarding the possible reversal of pathological changes via interventions. We also briefly review the merits and limitations of N-glycomics as an analytical method before reflecting on some of the outstanding questions in the field.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Gaye MM, Ward CM, Piasecki AJ, Stahl VL, Karagianni A, Costello CE, Ravid K. Characterization of Glycoproteoforms of Integrins α2 and β1 in Megakaryocytes in the Occurrence of JAK2V617F Mutation-Induced Primary Myelofibrosis. Mol Cell Proteomics 2022; 21:100213. [PMID: 35182768 PMCID: PMC8968581 DOI: 10.1016/j.mcpro.2022.100213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Primary myelofibrosis (PMF) is a neoplasm prone to leukemic transformation, for which limited treatment is available. Among individuals diagnosed with PMF, the most prevalent mutation is the JAK2V617F somatic point mutation that activates the Janus kinase 2 (JAK2) enzyme. Our earlier reports on hyperactivity of β1 integrin and enhanced adhesion activity of the α2β1 complex in JAK2V617F megakaryocytes (MKs) led us to examine the new hypothesis that this mutation leads to posttranslational modification via changes in glycosylation. Samples were derived from immunoprecipitation of MKs obtained from Vav1-hJAK2V617F and WT mice. Immunoprecipitated fractions were separated by SDS-PAGE and analyzed using LC-MS/MS techniques in a bottom-up glycoproteomics workflow. In the immunoprecipitate, glycopeptiforms corresponding to 11 out of the 12 potential N-glycosylation sites of integrin β1 and to all nine potential glycosylation sites of integrin α2 were observed. Glycopeptiforms were compared across WT and JAK2V617F phenotypes for both integrins. The overall trend observed is that JAK2V617F mutation in PMF MKs leads to changes in β1 glycosylation; in most cases, it results in an increase in the integrated area of glycopeptiforms. We also observed that in mutated MKs, changes in integrin α2 glycosylation were more substantial than those observed for integrin β1 glycosylation, a finding that suggests that altered integrin α2 glycosylation may also affect activation. Additionally, the identification of proteins associated to the cytoskeleton that were co-immunoprecipitated with integrins α2 and β1 demonstrated the potential of the methodology employed in this study to provide some insight, at the peptide level, into the consequences of integrin activation in MKs. The extensive and detailed glycosylation patterns we uncovered provide a basis for future functional studies of each site in control cells as compared to JAK2V617F-mutated cells. Data are available via ProteomeXchange with identifier PXD030550.
Collapse
Affiliation(s)
- Maissa M. Gaye
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christina M. Ward
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew J. Piasecki
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vanessa L. Stahl
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Aikaterini Karagianni
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Catherine E. Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA,For correspondence: Catherine E. Costello; Katya Ravid
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Soares LC, Al-Dalahmah O, Hillis J, Young CC, Asbed I, Sakaguchi M, O’Neill E, Szele FG. Novel Galectin-3 Roles in Neurogenesis, Inflammation and Neurological Diseases. Cells 2021; 10:3047. [PMID: 34831271 PMCID: PMC8618878 DOI: 10.3390/cells10113047] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.
Collapse
Affiliation(s)
- Luana C. Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Osama Al-Dalahmah
- Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - James Hillis
- Massachusets General Hospital, Harvard Medical School, 15 Parkman Street, Boston, MA 02114, USA;
| | - Christopher C. Young
- Department of Neurological Surgery, University of Washington, 325 Ninth Avenue, Seattle, WA 98104, USA;
| | - Isaiah Asbed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Francis G. Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| |
Collapse
|
20
|
Li X, Wang H, Zhu Y, Cao W, Song M, Wang Y, Hou H, Lang M, Guo X, Tan X, Han JJ, Wang W. Heritability Enrichment of Immunoglobulin G N-Glycosylation in Specific Tissues. Front Immunol 2021; 12:741705. [PMID: 34804021 PMCID: PMC8595136 DOI: 10.3389/fimmu.2021.741705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified over 60 genetic loci associated with immunoglobulin G (IgG) N-glycosylation; however, the causal genes and their abundance in relevant tissues are uncertain. Leveraging data from GWAS summary statistics for 8,090 Europeans, and large-scale expression quantitative trait loci (eQTL) data from the genotype-tissue expression of 53 types of tissues (GTEx v7), we derived a linkage disequilibrium score for the specific expression of genes (LDSC-SEG) and conducted a transcriptome-wide association study (TWAS). We identified 55 gene associations whose predicted levels of expression were significantly associated with IgG N-glycosylation in 14 tissues. Three working scenarios, i.e., tissue-specific, pleiotropic, and coassociated, were observed for candidate genetic predisposition affecting IgG N-glycosylation traits. Furthermore, pathway enrichment showed several IgG N-glycosylation-related pathways, such as asparagine N-linked glycosylation, N-glycan biosynthesis and transport to the Golgi and subsequent modification. Through phenome-wide association studies (PheWAS), most genetic variants underlying TWAS hits were found to be correlated with health measures (height, waist-hip ratio, systolic blood pressure) and diseases, such as systemic lupus erythematosus, inflammatory bowel disease, and Parkinson's disease, which are related to IgG N-glycosylation. Our study provides an atlas of genetic regulatory loci and their target genes within functionally relevant tissues, for further studies on the mechanisms of IgG N-glycosylation and its related diseases.
Collapse
Affiliation(s)
- Xingang Li
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Hao Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Yahong Zhu
- Beijing Lucidus Bioinformation Technology Co., Ltd., Beijing, China
| | - Weijie Cao
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Manshu Song
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Minglin Lang
- Chinese Academy of Sciences (CAS) Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiuhua Guo
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Xuerui Tan
- The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Jingdong J. Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Wei Wang
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
21
|
Glycosylation Modulates Plasma Membrane Trafficking of CD24 in Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22158165. [PMID: 34360932 PMCID: PMC8347636 DOI: 10.3390/ijms22158165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
In breast cancer, expression of Cluster of Differentiation 24 (CD24), a small GPI-anchored glycoprotein at the cell periphery, is associated with metastasis and immune escape, while its absence is associated with tumor-initiating capacity. Since the mechanism of CD24 sorting is unknown, we investigated the role of glycosylation in the subcellular localization of CD24. Expression and localization of wild type N36- and/or N52-mutated CD24 were analyzed using immunofluorescence in luminal (MCF-7) and basal B (MDA-MB-231 and Hs578T) breast cancer cells lines, as well as HEK293T cells. Endogenous and exogenously expressed wild type and mutated CD24 were found localized at the plasma membrane and the cytoplasm, but not the nucleoplasm. The cell lines showed different kinetics for the sorting of CD24 through the secretory/endocytic pathway. N-glycosylation, especially at N52, and its processing in the Golgi were critical for the sorting and expression of CD24 at the plasma membrane of HEK293T and basal B type cells, but not of MCF-7 cells. In conclusion, our study highlights the contribution of N-glycosylation for the subcellular localization of CD24. Aberrant N-glycosylation at N52 of CD24 could account for the lack of CD24 expression at the cell surface of basal B breast cancer cells.
Collapse
|
22
|
Shu H, Zhang L, Chen Y, Guo Y, Li L, Chen F, Cao Z, Yan G, Lu C, Liu C, Zhang S. Quantification of Intact O-Glycopeptides on Haptoglobin in Sera of Patients With Hepatocellular Carcinoma and Liver Cirrhosis. Front Chem 2021; 9:705341. [PMID: 34336790 PMCID: PMC8316590 DOI: 10.3389/fchem.2021.705341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/16/2021] [Indexed: 12/02/2022] Open
Abstract
Haptoglobin (Hp) is one of the acute-phase response proteins secreted by the liver, and its aberrant N-glycosylation was previously reported in hepatocellular carcinoma (HCC). Limited studies on Hp O-glycosylation have been previously reported. In this study, we aimed to discover and confirm its O-glycosylation in HCC based on lectin binding and mass spectrometry (MS) detection. First, serum Hp was purified from patients with liver cirrhosis (LC) and HCC, respectively. Then, five lectins with Gal or GalNAc monosaccharide specificity were chosen to perform lectin blot, and the results showed that Hp in HCC bound to these lectins in a much stronger manner than that in LC. Furthermore, label-free quantification based on MS was performed. A total of 26 intact O-glycopeptides were identified on Hp, and most of them were elevated in HCC as compared to LC. Among them, the intensity of HYEGS316TVPEK (H1N1S1) on Hp was the highest in HCC patients. Increased HYEGS316TVPEK (H1N1S1) in HCC was quantified and confirmed using the MS method based on 18O/16O C-terminal labeling and multiple reaction monitoring. This study provided a comprehensive understanding of the glycosylation of Hp in liver diseases.
Collapse
Affiliation(s)
- Hong Shu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.,Department of Clinical Laboratory, Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yijie Guo
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China
| | - Limin Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanghua Chen
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zhao Cao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guoquan Yan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| |
Collapse
|
23
|
Li H, Kostel SA, DiMartino SE, Hashemi Gheinani A, Froehlich JW, Lee RS. Uromodulin Isolation and Its N-Glycosylation Analysis by NanoLC-MS/MS. J Proteome Res 2021; 20:2662-2672. [PMID: 33650863 DOI: 10.1021/acs.jproteome.0c01053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The glycoprotein uromodulin (UMOD) is the most abundant protein in urine, and N-glycans are critical for many biological functions of UMOD. Comprehensive glycan profiling of UMOD provides valuable information to understand the exact mechanisms of glycan-regulated functions. To perform comprehensive glycosylation analysis of UMOD from urine samples with limited volumes, we developed a streamlined workflow that included UMOD isolation from 5 mL of urine from 6 healthy adult donors (3 males and 3 females) and a glycosylation analysis using a highly sensitive and reproducible nanoLC-MS/MS based glycomics approach. In total, 212 N-glycan compositions were identified from the purified UMOD, and 17% were high-mannose glycans, 2% were afucosylated/asialylated, 3% were neutral fucosylated, 28% were sialylated (with no fucose), 46% were fucosylated and sialylated, and 4% were sulfated. We found that isolation of UMOD resulted in a significant decrease in the relative quantity of high-mannose and sulfated glycans with a significant increase of neutral fucosylated glycans in the UMOD-depleted urine relative to the undepleted urine, but depletion had little impact on the sialylated glycans. To our knowledge, this is the first study to perform comprehensive N-glycan profiling of UMOD using nanoLC-MS/MS. This analytical workflow would be very beneficial for studies with limited sample size, such as pediatric studies, and can be applied to larger patient cohorts not only for UMOD interrogation but also for global glycan analysis.
Collapse
Affiliation(s)
- Haiying Li
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Stephen A Kostel
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shannon E DiMartino
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ali Hashemi Gheinani
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - John W Froehlich
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Richard S Lee
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
24
|
Cao W, Liu M, Kong S, Wu M, Zhang Y, Yang P. Recent Advances in Software Tools for More Generic and Precise Intact Glycopeptide Analysis. Mol Cell Proteomics 2021; 20:100060. [PMID: 33556625 PMCID: PMC8724820 DOI: 10.1074/mcp.r120.002090] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intact glycopeptide identification has long been known as a key and challenging barrier to the comprehensive and accurate understanding the role of glycosylation in an organism. Intact glycopeptide analysis is a blossoming field that has received increasing attention in recent years. MS-based strategies and relative software tools are major drivers that have greatly facilitated the analysis of intact glycopeptides, particularly intact N-glycopeptides. This article provides a systematic review of the intact glycopeptide-identification process using MS data generated in shotgun proteomic experiments, which typically focus on N-glycopeptide analysis. Particular attention is paid to the software tools that have been recently developed in the last decade for the interpretation and quality control of glycopeptide spectra acquired using different MS strategies. The review also provides information about the characteristics and applications of these software tools, discusses their advantages and disadvantages, and concludes with a discussion of outstanding tools.
Collapse
Affiliation(s)
- Weiqian Cao
- The Fifth People's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Medical Epigenetics and the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, China.
| | - Mingqi Liu
- The Fifth People's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Siyuan Kong
- The Fifth People's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mengxi Wu
- The Fifth People's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Department of Chemistry, Fudan University, Shanghai, China
| | - Yang Zhang
- The Fifth People's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Medical Epigenetics and the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, China
| | - Pengyuan Yang
- The Fifth People's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China; The Shanghai Key Laboratory of Medical Epigenetics and the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, China; Department of Chemistry, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Cioce A, Malaker SA, Schumann B. Generating orthogonal glycosyltransferase and nucleotide sugar pairs as next-generation glycobiology tools. Curr Opin Chem Biol 2021; 60:66-78. [PMID: 33125942 PMCID: PMC7955280 DOI: 10.1016/j.cbpa.2020.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation fundamentally impacts biological processes. Nontemplated biosynthesis introduces unparalleled complexity into glycans that needs tools to understand their roles in physiology. The era of quantitative biology is a great opportunity to unravel these roles, especially by mass spectrometry glycoproteomics. However, with high sensitivity come stringent requirements on tool specificity. Bioorthogonal metabolic labeling reagents have been fundamental to studying the cell surface glycoproteome but typically enter a range of different glycans and are thus of limited specificity. Here, we discuss the generation of metabolic 'precision tools' to study particular subtypes of the glycome. A chemical biology tactic termed bump-and-hole engineering generates mutant glycosyltransferases that specifically accommodate bioorthogonal monosaccharides as an enabling technique of glycobiology. We review the groundbreaking discoveries that have led to applying the tactic in the living cell and the implications in the context of current developments in mass spectrometry glycoproteomics.
Collapse
Affiliation(s)
- Anna Cioce
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A Malaker
- Department of Chemistry, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA; Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT, 06511, USA.
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom.
| |
Collapse
|
26
|
Cioce A, Malaker SA, Schumann B. Generating orthogonal glycosyltransferase and nucleotide sugar pairs as next-generation glycobiology tools. Curr Opin Chem Biol 2021. [PMID: 33125942 DOI: 10.1016/jcbpa.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Protein glycosylation fundamentally impacts biological processes. Nontemplated biosynthesis introduces unparalleled complexity into glycans that needs tools to understand their roles in physiology. The era of quantitative biology is a great opportunity to unravel these roles, especially by mass spectrometry glycoproteomics. However, with high sensitivity come stringent requirements on tool specificity. Bioorthogonal metabolic labeling reagents have been fundamental to studying the cell surface glycoproteome but typically enter a range of different glycans and are thus of limited specificity. Here, we discuss the generation of metabolic 'precision tools' to study particular subtypes of the glycome. A chemical biology tactic termed bump-and-hole engineering generates mutant glycosyltransferases that specifically accommodate bioorthogonal monosaccharides as an enabling technique of glycobiology. We review the groundbreaking discoveries that have led to applying the tactic in the living cell and the implications in the context of current developments in mass spectrometry glycoproteomics.
Collapse
Affiliation(s)
- Anna Cioce
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A Malaker
- Department of Chemistry, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA; Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT, 06511, USA.
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom.
| |
Collapse
|
27
|
Schulze S, Igiraneza AB, Kösters M, Leufken J, Leidel SA, Garcia BA, Fufezan C, Pohlschroder M. Enhancing Open Modification Searches via a Combined Approach Facilitated by Ursgal. J Proteome Res 2021; 20:1986-1996. [PMID: 33514075 DOI: 10.1021/acs.jproteome.0c00799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The identification of peptide sequences and their post-translational modifications (PTMs) is a crucial step in the analysis of bottom-up proteomics data. The recent development of open modification search (OMS) engines allows virtually all PTMs to be searched for. This not only increases the number of spectra that can be matched to peptides but also greatly advances the understanding of the biological roles of PTMs through the identification, and the thereby facilitated quantification, of peptidoforms (peptide sequences and their potential PTMs). Whereas the benefits of combining results from multiple protein database search engines have been previously established, similar approaches for OMS results have been missing so far. Here we compare and combine results from three different OMS engines, demonstrating an increase in peptide spectrum matches of 8-18%. The unification of search results furthermore allows for the combined downstream processing of search results, including the mapping to potential PTMs. Finally, we test for the ability of OMS engines to identify glycosylated peptides. The implementation of these engines in the Python framework Ursgal facilitates the straightforward application of the OMS with unified parameters and results files, thereby enabling yet unmatched high-throughput, large-scale data analysis.
Collapse
Affiliation(s)
- Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aime Bienfait Igiraneza
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Manuel Kösters
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Johannes Leufken
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Sebastian A Leidel
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christian Fufezan
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mechthild Pohlschroder
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
28
|
Čaval T, de Haan N, Konstantinidi A, Vakhrushev SY. Quantitative characterization of O-GalNAc glycosylation. Curr Opin Struct Biol 2021; 68:135-141. [PMID: 33508547 DOI: 10.1016/j.sbi.2020.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
O-GalNAc type glycosylation is an abundant and complex protein modification. Recent developments in mass spectrometry resulted in significant success in quantitative analysis of O-GalNAc glycosylation. The analysis of released O-GalNAc type glycans expanded our horizons of understanding the glycome of various biological models. The site-specific analysis of glycosylation micro-heterogeneity of purified proteins opened perspectives for the improved design of glycoprotein therapeutics. Advanced gene editing and chemical technologies applied to O-glycoproteomics enabled to identify O-GalNAc glycosylation at unprecedented depth. Progress in the analysis of intact glycoproteins under native and reduced conditions enabled the monitoring of glycosylation proteoform variants. Despite of the astonishing results in quantitative O-GalNAc glycoproteomics, site-specific mapping of the full O-GalNAc structural repertoire in complex samples is yet a long way off. Here, we summarize the most common quantitative strategies in O-GalNAc glycoproteomics, review recent progress and discuss benefits and limitations of the various approaches in the field.
Collapse
Affiliation(s)
- Tomislav Čaval
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
29
|
Viinikangas T, Khosrowabadi E, Kellokumpu S. N-Glycan Biosynthesis: Basic Principles and Factors Affecting Its Outcome. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:237-257. [PMID: 34687012 DOI: 10.1007/978-3-030-76912-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbohydrate chains are the most abundant and diverse of nature's biopolymers and represent one of the four fundamental macromolecular building blocks of life together with proteins, nucleic acids, and lipids. Indicative of their essential roles in cells and in multicellular organisms, genes encoding proteins associated with glycosylation account for approximately 2% of the human genome. It has been estimated that 50-80% of all human proteins carry carbohydrate chains-glycans-as part of their structure. Despite cells utilize only nine different monosaccharides for making their glycans, their order and conformational variation in glycan chains together with chain branching differences and frequent post-synthetic modifications can give rise to an enormous repertoire of different glycan structures of which few thousand is estimated to carry important structural or functional information for a cell. Thus, glycans are immensely versatile encoders of multicellular life. Yet, glycans do not represent a random collection of unpredictable structures but rather, a collection of predetermined but still dynamic entities that are present at defined quantities in each glycosylation site of a given protein in a cell, tissue, or organism.In this chapter, we will give an overview of what is currently known about N-glycan synthesis in higher eukaryotes, focusing not only on the processes themselves but also on factors that will affect or can affect the final outcome-the dynamicity and heterogeneity of the N-glycome. We hope that this review will help understand the molecular details underneath this diversity, and in addition, be helpful for those who plan to produce optimally glycosylated antibody-based therapeutics.
Collapse
Affiliation(s)
- Teemu Viinikangas
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
30
|
Blazev R, Ashwood C, Abrahams JL, Chung LH, Francis D, Yang P, Watt KI, Qian H, Quaife-Ryan GA, Hudson JE, Gregorevic P, Thaysen-Andersen M, Parker BL. Integrated Glycoproteomics Identifies a Role of N-Glycosylation and Galectin-1 on Myogenesis and Muscle Development. Mol Cell Proteomics 2020; 20:100030. [PMID: 33583770 PMCID: PMC8724610 DOI: 10.1074/mcp.ra120.002166] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022] Open
Abstract
Many cell surface and secreted proteins are modified by the covalent addition of glycans that play an important role in the development of multicellular organisms. These glycan modifications enable communication between cells and the extracellular matrix via interactions with specific glycan-binding lectins and the regulation of receptor-mediated signaling. Aberrant protein glycosylation has been associated with the development of several muscular diseases, suggesting essential glycan- and lectin-mediated functions in myogenesis and muscle development, but our molecular understanding of the precise glycans, catalytic enzymes, and lectins involved remains only partially understood. Here, we quantified dynamic remodeling of the membrane-associated proteome during a time-course of myogenesis in cell culture. We observed wide-spread changes in the abundance of several important lectins and enzymes facilitating glycan biosynthesis. Glycomics-based quantification of released N-linked glycans confirmed remodeling of the glycome consistent with the regulation of glycosyltransferases and glycosidases responsible for their formation including a previously unknown digalactose-to-sialic acid switch supporting a functional role of these glycoepitopes in myogenesis. Furthermore, dynamic quantitative glycoproteomic analysis with multiplexed stable isotope labeling and analysis of enriched glycopeptides with multiple fragmentation approaches identified glycoproteins modified by these regulated glycans including several integrins and growth factor receptors. Myogenesis was also associated with the regulation of several lectins, most notably the upregulation of galectin-1 (LGALS1). CRISPR/Cas9-mediated deletion of Lgals1 inhibited differentiation and myotube formation, suggesting an early functional role of galectin-1 in the myogenic program. Importantly, similar changes in N-glycosylation and the upregulation of galectin-1 during postnatal skeletal muscle development were observed in mice. Treatment of new-born mice with recombinant adeno-associated viruses to overexpress galectin-1 in the musculature resulted in enhanced muscle mass. Our data form a valuable resource to further understand the glycobiology of myogenesis and will aid the development of intervention strategies to promote healthy muscle development or regeneration.
Collapse
Affiliation(s)
- Ronnie Blazev
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Ashwood
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia; CardiOmics Program, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jodie L Abrahams
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Long H Chung
- School of Life and Environmental Science, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Deanne Francis
- School of Life and Environmental Science, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Pengyi Yang
- School of Mathematics and Statistics, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Kevin I Watt
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia; Department of Diabetes, Monash University, Melbourne, Victoria, Australia
| | - Hongwei Qian
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory A Quaife-Ryan
- Cardiac Bioengineering Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James E Hudson
- Cardiac Bioengineering Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul Gregorevic
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia; Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Benjamin L Parker
- Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia; School of Life and Environmental Science, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
31
|
Čaval T, Heck AJR, Reiding KR. Meta-heterogeneity: Evaluating and Describing the Diversity in Glycosylation Between Sites on the Same Glycoprotein. Mol Cell Proteomics 2020; 20:100010. [PMID: 33561609 PMCID: PMC8724623 DOI: 10.1074/mcp.r120.002093] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
Mass spectrometry-based glycoproteomics has gone through some incredible developments over the last few years. Technological advances in glycopeptide enrichment, fragmentation methods, and data analysis workflows have enabled the transition of glycoproteomics from a niche application, mainly focused on the characterization of isolated glycoproteins, to a mature technology capable of profiling thousands of intact glycopeptides at once. In addition to numerous biological discoveries catalyzed by the technology, we are also observing an increase in studies focusing on global protein glycosylation and the relationship between multiple glycosylation sites on the same protein. It has become apparent that just describing protein glycosylation in terms of micro- and macro-heterogeneity, respectively, the variation and occupancy of glycans at a given site, is not sufficient to describe the observed interactions between sites. In this perspective we propose a new term, meta-heterogeneity, to describe a higher level of glycan regulation: the variation in glycosylation across multiple sites of a given protein. We provide literature examples of extensive meta-heterogeneity on relevant proteins such as antibodies, erythropoietin, myeloperoxidase, and a number of serum and plasma proteins. Furthermore, we postulate on the possible biological reasons and causes behind the intriguing meta-heterogeneity observed in glycoproteins.
Collapse
Affiliation(s)
- Tomislav Čaval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands.
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands.
| |
Collapse
|
32
|
Klarić TS, Salopek M, Micek V, Gornik Kljaić O, Lauc G. Post-natal developmental changes in the composition of the rat neocortical N-glycome. Glycobiology 2020; 31:636-648. [PMID: 33242084 DOI: 10.1093/glycob/cwaa108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
Asparagine-linked glycosylation (N-glycosylation) plays a key role in many neurodevelopmental processes, including neural cell adhesion, neurite outgrowth and axon targeting. However, little is known about the dynamics of N-glycosylation during brain development and, in particular, how the N-glycome of the developing neocortex differs from that of the adult. The aim of this study, therefore, was to perform a thorough characterization of N-glycosylation in both the adult and neonatal rat neocortex in order to gain insights into the types of changes occurring in the N-glycome during neurodevelopment. To this end, we used hydrophilic interaction ultraperformance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry to compare the adult neocortical N-glycome with that of 24- and 48-h neonates. We report that the abundance of complex N-glycans is significantly lower in adults compared with neonates. Furthermore, the proportion of charged complex N-glycans is also greatly reduced. This decrease in the abundance of complex N-glycans is offset by a corresponding increase in the proportion of truncated and, to a lesser extent, hybrid N-glycans. Lastly, we report that although the proportion of oligomannose N-glycans remains constant at around 24%, the distribution of high-mannose subtypes shifts from predominantly large subtypes in neonates to smaller subtypes in the adult. In summary, our findings indicate that N-glycan synthesis in the rat neocortex is fundamentally different in neonates compared with adults with a general shift occurring from large, sialylated N-glycans towards smaller, neutral structures as neonates develop into adults, coupled with a parallel shift towards smaller oligomannose structures.
Collapse
Affiliation(s)
- Thomas S Klarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Matija Salopek
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Vedran Micek
- Laboratory Animals Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Olga Gornik Kljaić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
33
|
Leiva-Carrasco MJ, Jiménez-Chávez S, Harvey DJ, Parra NC, Tavares KC, Camacho F, González A, Sánchez O, Montesino R, Toledo JR. In vivo modification of the goat mammary gland glycosylation pathway. N Biotechnol 2020; 61:11-21. [PMID: 33157282 DOI: 10.1016/j.nbt.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022]
Abstract
Complex recombinant glycoproteins produced as potential biopharmaceuticals in goat's milk have an aberrant pattern of N-glycosylation due to the lack of multi-antennary structures. Overexpression of glycosyltransferases may increase oligosaccharide branching of the desired glycoproteins. Here, human erythropoietin fused to human IgG Fc (EPO-Fc) was co-expressed with N-acetyl-glucosaminyltransferase-IVa (GnT-IVa) by adenoviral transduction in goat mammary gland to evaluate the in vivo modification of N-glycosylation pattern in this tissue. Adenoviral vectors, containing the EPO-Fc and GnT-IVa sequences were assembled for in vitro and in vivo expression in mammalian cell culture or in goat mammary gland. Protein detection was assessed by gel electrophoresis and western blot, and N-glycans were identified by HPLC and mass spectrometry. GnT-IVa overexpression and its colocalization with EPO-Fc in the Golgi apparatus of SiHa cells were demonstrated. N-glycan analysis of in vitro and in vivo expression of EPO-Fc modified by GnT-IVa (EPO-Fc/GnT-IVa) showed an increase in high molecular weight structures, which corresponded to tri- and tetra-antennary N-glycans in SiHa cells and mostly tri-antennary N-glycans in goat's milk from transformed mammary tissue. The results confirmed that successful modification of the goat mammary gland secretion pathway could be achieved by co-expressing glycoenzymes together with the glycoprotein of interest. This is the first report of modification of the N-glycosylation pattern in the goat mammary gland in vivo, and constitutes a step forward for improving the use of the mammary gland as a bioreactor for the production of complex recombinant proteins.
Collapse
Affiliation(s)
- María J Leiva-Carrasco
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile; Biotechnology and Biomedicine Center SpA, Granada 168, Villumanque, Concepcion, Chile
| | - Silvana Jiménez-Chávez
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile; Biotechnology and Biomedicine Center SpA, Granada 168, Villumanque, Concepcion, Chile
| | - David J Harvey
- Oxford Glycobiology Institute, Biochemistry Department, South Parks Road, Oxford, OX1 3QU, UK
| | - Natalie C Parra
- Department of Pharmacology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
| | - Kaio C Tavares
- Molecular and Developmental Biology Laboratory, Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | - Frank Camacho
- Department of Pharmacology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
| | - Alain González
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
| | - Oliberto Sánchez
- Department of Pharmacology, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile
| | - Raquel Montesino
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile; Biotechnology and Biomedicine Center SpA, Granada 168, Villumanque, Concepcion, Chile.
| | - Jorge R Toledo
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, University of Concepcion, Victor Lamas 1290, P.O. Box 160C, Concepcion, Chile; Biotechnology and Biomedicine Center SpA, Granada 168, Villumanque, Concepcion, Chile.
| |
Collapse
|
34
|
Polasky DA, Yu F, Teo GC, Nesvizhskii AI. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. Nat Methods 2020; 17:1125-1132. [PMID: 33020657 PMCID: PMC7606558 DOI: 10.1038/s41592-020-0967-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
Recent advances in methods for enrichment and mass spectrometric analysis of intact glycopeptides have produced large-scale glycoproteomics datasets, but interpreting these data remains challenging. We present MSFragger-Glyco, a glycoproteomics mode of the MSFragger search engine, for fast and sensitive identification of N- and O-linked glycopeptides and open glycan searches. Reanalysis of recent N-glycoproteomics data resulted in annotation of 80% more glycopeptide spectrum matches (glycoPSMs) than previously reported. In published O-glycoproteomics data, our method more than doubled the number of glycoPSMs annotated when searching the same glycans as the original search, and yielded 4- to 6-fold increases when expanding searches to include additional glycan compositions and other modifications. Expanded searches also revealed many sulfated and complex glycans that remained hidden to the original search. With greatly improved spectral annotation, coupled with the speed of index-based scoring, MSFragger-Glyco makes it possible to comprehensively interrogate glycoproteomics data and illuminate the many roles of glycosylation.
Collapse
Affiliation(s)
- Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Polasky DA, Yu F, Teo GC, Nesvizhskii AI. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. Nat Methods 2020. [PMID: 33020657 DOI: 10.1101/2020.05.18.102665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Recent advances in methods for enrichment and mass spectrometric analysis of intact glycopeptides have produced large-scale glycoproteomics datasets, but interpreting these data remains challenging. We present MSFragger-Glyco, a glycoproteomics mode of the MSFragger search engine, for fast and sensitive identification of N- and O-linked glycopeptides and open glycan searches. Reanalysis of recent N-glycoproteomics data resulted in annotation of 80% more glycopeptide spectrum matches (glycoPSMs) than previously reported. In published O-glycoproteomics data, our method more than doubled the number of glycoPSMs annotated when searching the same glycans as the original search, and yielded 4- to 6-fold increases when expanding searches to include additional glycan compositions and other modifications. Expanded searches also revealed many sulfated and complex glycans that remained hidden to the original search. With greatly improved spectral annotation, coupled with the speed of index-based scoring, MSFragger-Glyco makes it possible to comprehensively interrogate glycoproteomics data and illuminate the many roles of glycosylation.
Collapse
Affiliation(s)
- Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Databases and Bioinformatic Tools for Glycobiology and Glycoproteomics. Int J Mol Sci 2020; 21:ijms21186727. [PMID: 32937895 PMCID: PMC7556027 DOI: 10.3390/ijms21186727] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosylation plays critical roles in various biological processes and is closely related to diseases. Deciphering the glycocode in diverse cells and tissues offers opportunities to develop new disease biomarkers and more effective recombinant therapeutics. In the past few decades, with the development of glycobiology, glycomics, and glycoproteomics technologies, a large amount of glycoscience data has been generated. Subsequently, a number of glycobiology databases covering glycan structure, the glycosylation sites, the protein scaffolds, and related glycogenes have been developed to store, analyze, and integrate these data. However, these databases and tools are not well known or widely used by the public, including clinicians and other researchers who are not in the field of glycobiology, but are interested in glycoproteins. In this study, the representative databases of glycan structure, glycoprotein, glycan-protein interactions, glycogenes, and the newly developed bioinformatic tools and integrated portal for glycoproteomics are reviewed. We hope this overview could assist readers in searching for information on glycoproteins of interest, and promote further clinical application of glycobiology.
Collapse
|
37
|
Ahmad Izaham AR, Scott NE. Open Database Searching Enables the Identification and Comparison of Bacterial Glycoproteomes without Defining Glycan Compositions Prior to Searching. Mol Cell Proteomics 2020. [PMID: 32576591 DOI: 10.1101/2020.04.21.052845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Mass spectrometry has become an indispensable tool for the characterization of glycosylation across biological systems. Our ability to generate rich fragmentation of glycopeptides has dramatically improved over the last decade yet our informatic approaches still lag behind. Although glycoproteomic informatics approaches using glycan databases have attracted considerable attention, database independent approaches have not. This has significantly limited high throughput studies of unusual or atypical glycosylation events such as those observed in bacteria. As such, computational approaches to examine bacterial glycosylation and identify chemically diverse glycans are desperately needed. Here we describe the use of wide-tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial glycoproteomes. We benchmarked this approach using N-linked glycopeptides of Campylobacter fetus subsp. fetus as well as O-linked glycopeptides of Acinetobacter baumannii and Burkholderia cenocepacia revealing glycopeptides modified with a range of glycans can be readily identified without defining the glycan masses before database searching. Using this approach, we demonstrate how wide tolerance searching can be used to compare glycan use across bacterial species by examining the glycoproteomes of eight Burkholderia species (B. pseudomallei; B. multivorans; B. dolosa; B. humptydooensis; B. ubonensis, B. anthina; B. diffusa; B. pseudomultivorans). Finally, we demonstrate how open searching enables the identification of low frequency glycoforms based on shared modified peptides sequences. Combined, these results show that open searching is a robust computational approach for the determination of glycan diversity within bacterial proteomes.
Collapse
Affiliation(s)
- Ameera Raudah Ahmad Izaham
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
38
|
Ahmad Izaham AR, Scott NE. Open Database Searching Enables the Identification and Comparison of Bacterial Glycoproteomes without Defining Glycan Compositions Prior to Searching. Mol Cell Proteomics 2020; 19:1561-1574. [PMID: 32576591 PMCID: PMC8143609 DOI: 10.1074/mcp.tir120.002100] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry has become an indispensable tool for the characterization of glycosylation across biological systems. Our ability to generate rich fragmentation of glycopeptides has dramatically improved over the last decade yet our informatic approaches still lag behind. Although glycoproteomic informatics approaches using glycan databases have attracted considerable attention, database independent approaches have not. This has significantly limited high throughput studies of unusual or atypical glycosylation events such as those observed in bacteria. As such, computational approaches to examine bacterial glycosylation and identify chemically diverse glycans are desperately needed. Here we describe the use of wide-tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial glycoproteomes. We benchmarked this approach using N-linked glycopeptides of Campylobacter fetus subsp. fetus as well as O-linked glycopeptides of Acinetobacter baumannii and Burkholderia cenocepacia revealing glycopeptides modified with a range of glycans can be readily identified without defining the glycan masses before database searching. Using this approach, we demonstrate how wide tolerance searching can be used to compare glycan use across bacterial species by examining the glycoproteomes of eight Burkholderia species (B. pseudomallei; B. multivorans; B. dolosa; B. humptydooensis; B. ubonensis, B. anthina; B. diffusa; B. pseudomultivorans). Finally, we demonstrate how open searching enables the identification of low frequency glycoforms based on shared modified peptides sequences. Combined, these results show that open searching is a robust computational approach for the determination of glycan diversity within bacterial proteomes.
Collapse
Affiliation(s)
- Ameera Raudah Ahmad Izaham
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
39
|
Riley N, Malaker SA, Driessen MD, Bertozzi CR. Optimal Dissociation Methods Differ for N- and O-Glycopeptides. J Proteome Res 2020; 19:3286-3301. [PMID: 32500713 PMCID: PMC7425838 DOI: 10.1021/acs.jproteome.0c00218] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 01/29/2023]
Abstract
Site-specific characterization of glycosylation requires intact glycopeptide analysis, and recent efforts have focused on how to best interrogate glycopeptides using tandem mass spectrometry (MS/MS). Beam-type collisional activation, i.e., higher-energy collisional dissociation (HCD), has been a valuable approach, but stepped collision energy HCD (sceHCD) and electron transfer dissociation with HCD supplemental activation (EThcD) have emerged as potentially more suitable alternatives. Both sceHCD and EThcD have been used with success in large-scale glycoproteomic experiments, but they each incur some degree of compromise. Most progress has occurred in the area of N-glycoproteomics. There is growing interest in extending this progress to O-glycoproteomics, which necessitates comparisons of method performance for the two classes of glycopeptides. Here, we systematically explore the advantages and disadvantages of conventional HCD, sceHCD, ETD, and EThcD for intact glycopeptide analysis and determine their suitability for both N- and O-glycoproteomic applications. For N-glycopeptides, HCD and sceHCD generate similar numbers of identifications, although sceHCD generally provides higher quality spectra. Both significantly outperform EThcD methods in terms of identifications, indicating that ETD-based methods are not required for routine N-glycoproteomics even if they can generate higher quality spectra. Conversely, ETD-based methods, especially EThcD, are indispensable for site-specific analyses of O-glycopeptides. Our data show that O-glycopeptides cannot be robustly characterized with HCD-centric methods that are sufficient for N-glycopeptides, and glycoproteomic methods aiming to characterize O-glycopeptides must be constructed accordingly.
Collapse
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, Stanford University, Stanford, California 94305-6104, United States
| | - Stacy A. Malaker
- Department
of Chemistry, Stanford University, Stanford, California 94305-6104, United States
| | - Marc D. Driessen
- Department
of Chemistry, Stanford University, Stanford, California 94305-6104, United States
| | - Carolyn R. Bertozzi
- Department
of Chemistry, Stanford University, Stanford, California 94305-6104, United States
- Howard
Hughes Medical Institute, Stanford, California 94305-6104, United States
| |
Collapse
|
40
|
Yang W, Song A, Ao M, Xu Y, Zhang H. Large-scale site-specific mapping of the O-GalNAc glycoproteome. Nat Protoc 2020; 15:2589-2610. [PMID: 32681153 PMCID: PMC8620167 DOI: 10.1038/s41596-020-0345-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/21/2020] [Indexed: 01/20/2023]
Abstract
Protein glycosylation is one of the most common protein modifications. A major type of protein glycosylation is O-GalNAcylation, in which GalNAc-type glycans are attached to protein Ser or Thr residues via an O-linked glycosidic bond. O-GalNAcylation is thought to play roles in protein folding, stability, trafficking and protein interactions, and identification of the site-specific O-GalNAc glycoproteome is a crucial step toward understanding the biological significance of the modification. However, lack of suitable methodology, absence of consensus sequon of O-GalNAcylation sites and complex O-GalNAc glycan structures pose analytical challenges. We recently developed a mass spectrometry-based method called extraction of O-linked glycopeptides (EXoO) that enables large-scale mapping of site-specific mucin-type O-GalNAcylation sites. Here we provide a detailed protocol for EXoO, which includes seven stages of: (1) extraction and proteolytic digestion of proteins to peptides, (2) sequential guanidination and de-salting of peptides, (3) enrichment of glycopeptides, (4) solid-phase peptide conjugation and release of O-GalNAc glycopeptides using the OpeRATOR protease, (5) liquid chromatography with tandem mass spectrometry analysis of O-GalNAc glycopeptides, (6) identification of O-GalNAc glycopeptides by database search and (7) quantification of O-GalNAc glycopeptides. Using this protocol, thousands of O-GalNAcylation sites from hundreds of glycoproteins with information regarding site-specific O-GalNAc glycan can be identified and quantified from complex samples. The protocol can be performed by a researcher with basic proteomics skills and takes about 4 d to complete.
Collapse
Affiliation(s)
- Weiming Yang
- Corresponding Author: Address: Department of Pathology, Johns Hopkins University School of Medicine, 400 North Broadway, Room 4001A, Baltimore, Maryland, United States.
| | | | | | | | | |
Collapse
|
41
|
Kereilwe O, Kadokawa H. Anti-Müllerian hormone and its receptor are detected in most gonadotropin-releasing-hormone cell bodies and fibers in heifer brains. Domest Anim Endocrinol 2020; 72:106432. [PMID: 32169754 DOI: 10.1016/j.domaniend.2019.106432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/18/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022]
Abstract
Circulating concentrations of Anti-Müllerian hormone (AMH) can indicate fertility in various animals, but the physiological mechanisms underlying the effect of AMH on fertility remain unknown. We recently discovered that AMH has extragonadal functions via its main receptor, AMH receptor type 2 (AMHR2). Specifically, AMH stimulates the secretion of luteinizing hormone and follicle-stimulating hormone from bovine gonadotrophs. Moreover, gonadotrophs themselves express AMH to exert paracrine/autocrine functions, and AMH can activate gonadotropin-releasing-hormone (GnRH) neurons in mice. This study aimed to evaluate whether AMH and AMHR2 are detected in areas of the brain relevant to neuroendocrine control of reproduction: the preoptic area (POA), arcuate nucleus (ARC), and median eminence (ME), and in particular within GnRH neurons. Reverse transcription-polymerase chain reaction detected both AMH and AMHR2 mRNA in tissues containing POA, as well as in those containing both ARC and ME, collected from postpubertal heifers. Western blotting detected AMH and AMHR2 protein in the collected tissues. Triple fluorescence immunohistochemistry revealed that most cell bodies or fibers of GnRH neurons were AMHR2-positive and AMH-positive, although some were negative. Immunohistochemistry revealed that 75% to 85% of cell bodies and fibers of GnRH neurons were positive for both AMH and AMHR2 in the POA, ARC, and both the internal and external zones of the ME. The cell bodies of GnRH neurons were situated around other AMH-positive cell bodies or fibers of GnRH and non-GNRH neurons. Our findings thus indicate that AMH and AMHR2 are detected in most cell bodies or fibers of GnRH neurons in the POA, ARC, and ME of heifer brains. These data support the need for further study as to how AMH and AMHR2 act within the hypothalamus to influence GnRH and gonadotropin secretion.
Collapse
Affiliation(s)
- O Kereilwe
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - H Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan.
| |
Collapse
|
42
|
de Haas P, Hendriks WJAJ, Lefeber DJ, Cambi A. Biological and Technical Challenges in Unraveling the Role of N-Glycans in Immune Receptor Regulation. Front Chem 2020; 8:55. [PMID: 32117881 PMCID: PMC7013033 DOI: 10.3389/fchem.2020.00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation of membrane receptors is important for a wide variety of cellular processes. In the immune system, loss or alteration of receptor glycosylation can affect pathogen recognition, cell-cell interaction, and activation as well as migration. This is not only due to aberrant folding of the receptor, but also to altered lateral mobility or aggregation capacity. Despite increasing evidence of their biological relevance, glycosylation-dependent mechanisms of receptor regulation are hard to dissect at the molecular level. This is due to the intrinsic complexity of the glycosylation process and high diversity of glycan structures combined with the technical limitations of the current experimental tools. It is still challenging to precisely determine the localization and site-occupancy of glycosylation sites, glycan micro- and macro-heterogeneity at the individual receptor level as well as the biological function and specific interactome of receptor glycoforms. In addition, the tools available to manipulate N-glycans of a specific receptor are limited. Significant progress has however been made thanks to innovative approaches such as glycoproteomics, metabolic engineering, or chemoenzymatic labeling. By discussing examples of immune receptors involved in pathogen recognition, migration, antigen presentation, and cell signaling, this Mini Review will focus on the biological importance of N-glycosylation for receptor functions and highlight the technical challenges for examination and manipulation of receptor N-glycans.
Collapse
Affiliation(s)
- Paola de Haas
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wiljan J A J Hendriks
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dirk J Lefeber
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
43
|
Zhang S, Cao X, Liu C, Li W, Zeng W, Li B, Chi H, Liu M, Qin X, Tang L, Yan G, Ge Z, Liu Y, Gao Q, Lu H. N-glycopeptide Signatures of IgA 2 in Serum from Patients with Hepatitis B Virus-related Liver Diseases. Mol Cell Proteomics 2019; 18:2262-2272. [PMID: 31501225 PMCID: PMC6823847 DOI: 10.1074/mcp.ra119.001722] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
N-glycosylation alteration has been reported in liver diseases. Characterizing N-glycopeptides that correspond to N-glycan structure with specific site information enables better understanding of the molecular pathogenesis of liver damage and cancer. Here, unbiased quantification of N-glycopeptides of a cluster of serum glycoproteins with 40-55 kDa molecular weight (40-kDa band) was investigated in hepatitis B virus (HBV)-related liver diseases. We used an N-glycopeptide method based on 18O/16O C-terminal labeling to obtain 82 comparisons of serum from patients with HBV-related hepatocellular carcinoma (HCC) and liver cirrhosis (LC). Then, multiple reaction monitoring (MRM) was performed to quantify N-glycopeptide relative to the protein content, especially in the healthy donor-HBV-LC-HCC cascade. TPLTAN205ITK (H5N5S1F1) and (H5N4S2F1) corresponding to the glycopeptides of IgA2 were significantly elevated in serum from patients with HBV infection and even higher in HBV-related LC patients, as compared with healthy donor. In contrast, the two glycopeptides of IgA2 fell back down in HBV-related HCC patients. In addition, the variation in the abundance of two glycopeptides was not caused by its protein concentration. The altered N-glycopeptides might be part of a unique glycan signature indicating an IgA-mediated mechanism and providing potential diagnostic clues in HBV-related liver diseases.
Collapse
Affiliation(s)
- Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Xinyi Cao
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Precision Medicine, Beihang University, Beijing 100083, China
| | - Wei Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wenfeng Zeng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China
| | - Baiwen Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 201620, China
| | - Hao Chi
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China
| | - Mingqi Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Lingyi Tang
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Guoquan Yan
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zefan Ge
- State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China.
| | - Haojie Lu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry, Fudan University, Shanghai 200433, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
| |
Collapse
|
44
|
Chen Z, Huang J, Li L. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples. Trends Analyt Chem 2019; 118:880-892. [PMID: 31579312 PMCID: PMC6774629 DOI: 10.1016/j.trac.2018.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein glycosylation plays a key role in various biological processes and disease-related pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There have been numerous significant technological advances in this field, including improved glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software packages, and effective quantitation strategies, as well as more dedicated workflows. With increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted this approach to explore different biological systems both in terms of in-depth glycoproteome profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables researchers to discover novel glycosylation-based biomarkers in various diseases with potential to offer better sensitivity and specificity for disease diagnosis. In this review, we present recent methodological developments in MS-based glycoproteomics and highlight its utility and applications in answering various questions in complex biological systems.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
45
|
Chen Z, Huang J, Li L. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples. Trends Analyt Chem 2019. [PMID: 31579312 DOI: 10.1016/jtrac.2018.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Protein glycosylation plays a key role in various biological processes and disease-related pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There have been numerous significant technological advances in this field, including improved glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software packages, and effective quantitation strategies, as well as more dedicated workflows. With increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted this approach to explore different biological systems both in terms of in-depth glycoproteome profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables researchers to discover novel glycosylation-based biomarkers in various diseases with potential to offer better sensitivity and specificity for disease diagnosis. In this review, we present recent methodological developments in MS-based glycoproteomics and highlight its utility and applications in answering various questions in complex biological systems.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
46
|
Glyco-DIA: a method for quantitative O-glycoproteomics with in silico-boosted glycopeptide libraries. Nat Methods 2019; 16:902-910. [PMID: 31384044 DOI: 10.1038/s41592-019-0504-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/26/2019] [Indexed: 12/21/2022]
Abstract
We report a liquid chromatography coupled to tandem mass spectrometry O-glycoproteomics strategy using data-independent acquisition (DIA) mode for direct analysis of O-glycoproteins. This approach enables characterization of glycopeptides and structures of O-glycans on a proteome-wide scale with quantification of stoichiometries (though it does not allow for direct unambiguous glycosite identification). The method relies on a spectral library of O-glycopeptides; the Glyco-DIA library contains sublibraries obtained from human cell lines and human serum, and it currently covers 2,076 O-glycoproteins (11,452 unique glycopeptide sequences) and the 5 most common core1 O-glycan structures. Applying the Glyco-DIA library to human serum without enrichment for glycopeptides enabled us to identify and quantify 269 distinct glycopeptide sequences bearing up to 5 different core1 O-glycans from 159 glycoproteins in a SingleShot analysis.
Collapse
|
47
|
Čaval T, Zhu J, Heck AJR. Simply Extending the Mass Range in Electron Transfer Higher Energy Collisional Dissociation Increases Confidence in N-Glycopeptide Identification. Anal Chem 2019; 91:10401-10406. [PMID: 31287300 PMCID: PMC6706795 DOI: 10.1021/acs.analchem.9b02125] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Glycopeptide-centric
mass spectrometry has become a popular approach
for studying protein glycosylation. However, current approaches still
utilize fragmentation schemes and ranges originally optimized and
intended for the analysis of typically much smaller unmodified tryptic
peptides. Here, we show that by merely increasing the tandem mass
spectrometry m/z range from 2000
to 4000 during electron transfer higher energy collisional dissociation
(EThcD) fragmentation, a wealth of highly informative c and z ion
fragment ions are additionally detected, facilitating improved identification
of glycopeptides. We demonstrate the benefit of this extended mass
range on various classes of glycopeptides containing phosphorylated,
fucosylated, and/or sialylated N-glycans. We conclude that the current
software solutions for glycopeptide identification also require further
improvements to realize the full potential of extended mass range
glycoproteomics. To stimulate further developments, we provide data
sets containing all classes of glycopeptides (high mannose, hybrid,
and complex) measured with standard (2000) and extended (4000) m/z range that can be used as test cases
for future development of software solutions enhancing automated glycopeptide
analysis.
Collapse
Affiliation(s)
- Tomislav Čaval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences , University of Utrecht , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Jing Zhu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences , University of Utrecht , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences , University of Utrecht , Padualaan 8 , 3584 CH Utrecht , The Netherlands.,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| |
Collapse
|
48
|
Ascites from Ovarian Cancer Induces Novel Fucosylated Proteins. CANCER MICROENVIRONMENT 2019; 12:181-195. [PMID: 31267484 DOI: 10.1007/s12307-019-00227-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
Ovarian cancer is considered to be the most lethal type of gynecological cancer. During the advanced stages of ovarian cancer, an accumulation of ascites is observed. Fucosylation has been classified as an abnormal post-translational modification that is present in many diseases, including ovarian cancer. Ovarian cancer cells that are cultured with ascites stimulation change their morphology; concomitantly, the fucosylation process is altered. However, it is not known which fucosylated proteins are modified. The goal of this work was to identify the differentially fucosylated proteins that are expressed by ovarian cancer cell lines that are cultured with ovarian cancer patients' ascites. Aleuria aurantia lectin was used to detect fucosylation, and some changes were observed, especially in the cell membrane. Affinity chromatography and mass spectrometry (MALDI-TOF) were used to identify 6 fucosylated proteins. Four proteins (Intermediate filament family orphan 1 [IFFO1], PHD finger protein 20-like protein 1 [PHF20L1], immunoglobulin gamma 1 heavy chain variable region partial [IGHV1-2], and Zinc finger protein 224 [ZNF224]) were obtained from cell cultures stimulated with ascites, and the other two proteins (Peregrin [BRPF1] and Dystrobrevin alpha [DTNA]) were obtained under normal culture conditions. The fucosylated state of some of these proteins was further analyzed. The experimental results show that the ascites of ovarian cancer patients modulated the fucosylation process. The PHD finger protein 20-like protein 1, Zinc finger protein 224 and Peregrin proteins colocalize with fucosylation at different levels.
Collapse
|
49
|
Glycoproteomics and Glycomics in the Biomedical Area Special Issue. Proteomics Clin Appl 2019; 12:e1800122. [PMID: 30203442 DOI: 10.1002/prca.201800122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 11/10/2022]
|
50
|
Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat Commun 2019; 10:1311. [PMID: 30899004 PMCID: PMC6428843 DOI: 10.1038/s41467-019-09222-w] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/19/2019] [Indexed: 11/08/2022] Open
Abstract
Protein glycosylation is a highly important, yet poorly understood protein post-translational modification. Thousands of possible glycan structures and compositions create potential for tremendous site heterogeneity. A lack of suitable analytical methods for large-scale analyses of intact glycopeptides has limited our abilities both to address the degree of heterogeneity across the glycoproteome and to understand how this contributes biologically to complex systems. Here we show that N-glycoproteome site-specific microheterogeneity can be captured via large-scale glycopeptide profiling methods enabled by activated ion electron transfer dissociation (AI-ETD), ultimately characterizing 1,545 N-glycosites (>5,600 unique N-glycopeptides) from mouse brain tissue. Our data reveal that N-glycosylation profiles can differ between subcellular regions and structural domains and that N-glycosite heterogeneity manifests in several different forms, including dramatic differences in glycosites on the same protein. Moreover, we use this large-scale glycoproteomic dataset to develop several visualizations that will prove useful for analyzing intact glycopeptides in future studies. Mass spectrometry facilitates large-scale glycosylation profiling but in-depth analysis of intact glycopeptides is still challenging. Here, the authors show that activated ion electron transfer dissociation is suitable for glycopeptide fragmentation and improves glycoproteome coverage.
Collapse
|