1
|
Kaimuangpak K, Lehtonen M, Rautio J, Weerapreeyakul N. Unraveled cancer cell survival-associated amino acid metabolism of HepG2 cells altered by Thai rat-tailed radish microgreen extract examined by untargeted LC-MS/MS analysis. Food Chem 2025; 474:143206. [PMID: 39954416 DOI: 10.1016/j.foodchem.2025.143206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/02/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Thai rat-tailed radish (RS) microgreens are enriched in macro- and micronutrients and phytochemicals with anticancer potential. This study investigates the antiproliferative effects of RS in the liver HepG2 cell model and untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. RS was partitioned in water and dichloromethane (DCM). DCM was collected and evaporated to yield crude extract. The extract exhibited antiproliferation with inhibitory concentrations (IC50) of 612.5 ± 24.7 μg/ml at 24 h and 568.6 ± 11.0 μg/ml at 48 h. Metabolic pathways relevant to the anticancer effects are amino acid metabolism, including (1) alanine, aspartate, and glutamate metabolism; (2) nicotinate and nicotinamide metabolism; and (3) cysteine and methionine metabolism. Significantly, glutamine was upregulated, and aspartic acid, NAD, 5'-methylthioadenosine, cystathionine, and S-adenosylhomocysteine were downregulated. This finding suggested plausible effects of RS on liver cancer cell survival and invasion activities.
Collapse
Affiliation(s)
- Karnchanok Kaimuangpak
- Graduate School (in the program of Research and Development in Pharmaceuticals), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
Rushing BR, Molina S, Sumner S. Metabolomics Analysis Reveals Altered Metabolic Pathways and Response to Doxorubicin in Drug-Resistant Triple-Negative Breast Cancer Cells. Metabolites 2023; 13:865. [PMID: 37512572 PMCID: PMC10383792 DOI: 10.3390/metabo13070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to investigate metabolic changes following the acquisition of resistance to doxorubicin in the triple-negative breast cancer (TNBC) cell line MDA-MB-231. Two drug-resistant cell lines, DOX-RES-50 and DOX-RES-100, were generated by treating MDA-MB-231 cells with doxorubicin for 24 h and allowing them to recover for six weeks. Both drug-resistant cell lines demonstrated an increase in doxorubicin IC50 values, indicating acquired drug resistance. Metabolomics analysis showed clear separation between the parental MDA-MB-231 cell line and the drug-resistant cell lines. Pathway analysis revealed that arginine and proline metabolism, glutathione metabolism, and beta-alanine metabolism were significantly perturbed in the drug-resistant cell lines compared to the parental cell line. After matching signals to an in-house library of reference standards, significant decreases in short- and medium-chain acylcarnitines and significant increases in long-chain acylcarnitines, 5-oxoproline, and 7-ketodeoxycholic acid were observed in the resistant cell lines as compared to the parental MDA-MB-231 cell line. In addition to baseline metabolic differences, we also investigated differences in metabolic responses in resistant cell lines upon a second exposure at multiple concentrations. Results indicate that whereas the parental MDA-MB-231 cell line had many metabolites that responded to doxorubicin in a dose-dependent manner, the two resistant cell lines lost a dose-dependent response for the majority of these metabolites. The study's findings provide insight into how metabolism is altered during the acquisition of resistance in TNBC cells and how the metabolic response to doxorubicin changes upon repeated treatment. This information can potentially identify novel targets to prevent or reverse multi-drug resistance in TNBC, and also demonstrate the usefulness of metabolomics technology in identifying new mechanisms of drug resistance in cancer and potential drug targets.
Collapse
Affiliation(s)
- Blake R Rushing
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Sabrina Molina
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Susan Sumner
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
3
|
Guerrero L, Paradela A, Corrales FJ. Targeted Proteomics for Monitoring One-Carbon Metabolism in Liver Diseases. Metabolites 2022; 12:779. [PMID: 36144184 PMCID: PMC9501948 DOI: 10.3390/metabo12090779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Liver diseases cause approximately 2 million deaths per year worldwide and had an increasing incidence during the last decade. Risk factors for liver diseases include alcohol consumption, obesity, diabetes, the intake of hepatotoxic substances like aflatoxin, viral infection, and genetic determinants. Liver cancer is the sixth most prevalent cancer and the third in mortality (second in males). The low survival rate (less than 20% in 5 years) is partially explained by the late diagnosis, which remarks the need for new early molecular biomarkers. One-carbon metabolism integrates folate and methionine cycles and participates in essential cell processes such as redox homeostasis maintenance and the regulation of methylation reactions through the production of intermediate metabolites such as cysteine and S-Adenosylmethionine. One-carbon metabolism has a tissue specific configuration, and in the liver, the participating enzymes are abundantly expressed-a requirement to maintain hepatocyte differentiation. Targeted proteomics studies have revealed significant differences in hepatocellular carcinoma and cirrhosis, suggesting that monitoring one-carbon metabolism enzymes can be useful for stratification of liver disease patients and to develop precision medicine strategies for their clinical management. Here, reprogramming of one-carbon metabolism in liver diseases is described and the role of mass spectrometry to follow-up these alterations is discussed.
Collapse
Affiliation(s)
- Laura Guerrero
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - Fernando J. Corrales
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| |
Collapse
|
4
|
Chang W, Chen Y, Hsiao Y, Chiang C, Wang C, Chang Y, Hong Q, Lin C, Lin S, Chang G, Chen H, Chen Y, Chen C, Yang P, Yu S. Reduced symmetric dimethylation stabilizes vimentin and promotes metastasis in
MTAP‐
deficient lung cancer. EMBO Rep 2022; 23:e54265. [PMID: 35766227 PMCID: PMC9346486 DOI: 10.15252/embr.202154265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wen‐Hsin Chang
- Institute of Molecular Medicine College of Medicine, National Taiwan University Taipei Taiwan
| | - Yi‐Ju Chen
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Yi‐Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Ching‐Cheng Chiang
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Chia‐Yu Wang
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Ya‐Ling Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Qi‐Sheng Hong
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
| | - Chien‐Yu Lin
- Institute of Statistical Science Academia Sinica Taipei Taiwan
| | - Shr‐Uen Lin
- Graduate Institute of Oncology College of Medicine, National Taiwan University Taipei Taiwan
| | - Gee‐Chen Chang
- Division of Chest Medicine, Department of Internal Medicine Taichung Veterans General Hospital Taichung Taiwan
- School of Medicine Chung Shan Medical University Taichung Taiwan
| | - Hsuan‐Yu Chen
- Institute of Statistical Science Academia Sinica Taipei Taiwan
| | - Yu‐Ju Chen
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Ching‐Hsien Chen
- Division of Pulmonary, Critical Care, and Sleep Medicine Department of Internal Medicine University of California Davis Davis CA USA
- Division of Nephrology, Department of Internal Medicine University of California Davis Davis CA USA
- Comprehensive Cancer Center University of California Davis Davis CA USA
| | - Pan‐Chyr Yang
- Institute of Molecular Medicine College of Medicine, National Taiwan University Taipei Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University Taipei Taiwan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Sung‐Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University Taipei Taiwan
- Institute of Medical Device and Imaging, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Pathology, College of Medicine National Taiwan University Taipei Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine National Taiwan University Taipei Taiwan
- Department of Laboratory Medicine National Taiwan University Hospital Taipei Taiwan
| |
Collapse
|
5
|
Integration of the Salmonella Typhimurium Methylome and Transcriptome Reveals That DNA Methylation and Transcriptional Regulation Are Largely Decoupled under Virulence-Related Conditions. mBio 2022; 13:e0346421. [PMID: 35658533 PMCID: PMC9239280 DOI: 10.1128/mbio.03464-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Despite being in a golden age of bacterial epigenomics, little work has systematically examined the plasticity and functional impacts of the bacterial DNA methylome. Here, we leveraged single-molecule, real-time sequencing (SMRT-seq) to examine the m6A DNA methylome of two Salmonella enterica serovar Typhimurium strains: 14028s and a ΔmetJ mutant with derepressed methionine metabolism, grown in Luria broth or medium that simulates the intracellular environment. We found that the methylome is remarkably static: >95% of adenosine bases retain their methylation status across conditions. Integration of methylation with transcriptomic data revealed limited correlation between changes in methylation and gene expression. Further, examination of the transcriptome in ΔyhdJ bacteria lacking the m6A methylase with the most dynamic methylation pattern in our data set revealed little evidence of YhdJ-mediated gene regulation. Curiously, despite G(m6A)TC motifs being particularly resistant to change across conditions, incorporating dam mutants into our analyses revealed two examples where changes in methylation and transcription may be linked across conditions. This includes the novel finding that the ΔmetJ motility defect may be partially driven by hypermethylation of the chemotaxis gene tsr. Together, these data redefine the S. Typhimurium epigenome as a highly stable system that has rare but important roles in transcriptional regulation. Incorporating these lessons into future studies will be critical as we progress through the epigenomic era.
Collapse
|
6
|
Fukumoto K, Ito K, Saer B, Taylor G, Ye S, Yamano M, Toriba Y, Hayes A, Okamura H, Fustin JM. Excess S-adenosylmethionine inhibits methylation via catabolism to adenine. Commun Biol 2022; 5:313. [PMID: 35383287 PMCID: PMC8983724 DOI: 10.1038/s42003-022-03280-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
The global dietary supplement market is valued at over USD 100 billion. One popular dietary supplement, S-adenosylmethionine, is marketed to improve joints, liver health and emotional well-being in the US since 1999, and has been a prescription drug in Europe to treat depression and arthritis since 1975, but recent studies questioned its efficacy. In our body, S-adenosylmethionine is critical for the methylation of nucleic acids, proteins and many other targets. The marketing of SAM implies that more S-adenosylmethionine is better since it would stimulate methylations and improve health. Previously, we have shown that methylation reactions regulate biological rhythms in many organisms. Here, using biological rhythms to assess the effects of exogenous S-adenosylmethionine, we reveal that excess S-adenosylmethionine disrupts rhythms and, rather than promoting methylation, is catabolized to adenine and methylthioadenosine, toxic methylation inhibitors. These findings further our understanding of methyl metabolism and question the safety of S-adenosylmethionine as a supplement. S-adenosylmethionine (SAM) is a widely available dietary supplement. Exogenous SAM is catabolized to adenine, an inhibitor of adenosylhomocysteinase, leading to widespread methylation inhibition and disruption of circadian rhythms in vitro and in mice.
Collapse
Affiliation(s)
- Kazuki Fukumoto
- Kyoto University, Graduate School of Pharmaceutical Sciences, Department of Molecular Metabology, Kyoto, Japan.,Kokando Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Kakeru Ito
- Kyoto University, Graduate School of Pharmaceutical Sciences, Department of Molecular Metabology, Kyoto, Japan
| | - Benjamin Saer
- The University of Manchester, Centre for Biological Timing, Manchester, UK
| | - George Taylor
- The University of Manchester, BioMS Core Facility, Manchester, UK
| | - Shiqi Ye
- Kyoto University, Graduate School of Pharmaceutical Sciences, Department of Molecular Metabology, Kyoto, Japan.,Cancer Epigenetics Laboratory, Francis Crick Institute, Cambridge, UK
| | - Mayu Yamano
- Kyoto University, Graduate School of Pharmaceutical Sciences, Department of Molecular Metabology, Kyoto, Japan
| | - Yuki Toriba
- Kyoto University, Graduate School of Pharmaceutical Sciences, Department of Molecular Metabology, Kyoto, Japan.,Master's Programme in Molecular Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrew Hayes
- The University of Manchester, Genomics Technologies Core Facility, Manchester, UK
| | - Hitoshi Okamura
- Kyoto University, Graduate School of Medicine, Division of Physiology and Neurobiology, Kyoto, Japan.
| | - Jean-Michel Fustin
- Kyoto University, Graduate School of Pharmaceutical Sciences, Department of Molecular Metabology, Kyoto, Japan. .,The University of Manchester, Centre for Biological Timing, Manchester, UK.
| |
Collapse
|
7
|
Guerrero L, Sangro B, Ambao V, Granero JI, Ramos-Fernández A, Paradela A, Corrales FJ. Monitoring one-carbon metabolism by mass spectrometry to assess liver function and disease. J Physiol Biochem 2022; 78:229-243. [PMID: 34897580 PMCID: PMC8666175 DOI: 10.1007/s13105-021-00856-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Precision medicine promises to overcome the constraints of the traditional "one-for-all" healthcare approach through a clear understanding of the molecular features of a disease, allowing for innovative and tailored treatments. State-of-the-art proteomics has the potential to accurately explore the human proteome to identify, quantify, and characterize proteins associated with disease progression. There is a pressing need for informative biomarkers to diagnose liver disease early in its course to prevent severe disease for which no efficient treatment is yet available. Here, we propose the concept of a cellular pathway as a functional biomarker, whose monitorization may inform normal and pathological status. We have developed a standardized targeted selected-reaction monitoring assay to detect and quantify 13 enzymes of one-carbon metabolism (1CM). The assay is compliant with Clinical Proteomics Tumor Analysis Consortium (CPTAC) guidelines and has been included in the protein quantification assays that can be accessed through the assay portal at the CPTAC web page. To test the feasibility of the assay, we conducted a retrospective, proof-of-concept study on a collection of liver samples from healthy controls and from patients with cirrhosis or hepatocellular carcinoma (HCC). Our results indicate a significant reconfiguration of 1CM upon HCC development resulting from a process that can already be identified in cirrhosis. Our findings indicate that the systematic and integrated quantification of 1CM enzymes is a promising cell function-based biomarker for patient stratification, although further experiments with larger cohorts are needed to confirm these findings.
Collapse
Affiliation(s)
- Laura Guerrero
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, Darwin 3, 28049, Madrid, Spain
| | - Bruno Sangro
- Hepatology Department, University Clinic of Navarra, University of Navarra, 31008, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Verónica Ambao
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET-FEI-División de Endocrinología, Hospital de Niños R. Gutiérrez, 1330, C1425EFD, Buenos Aires, Gallo, Argentina
| | - José Ignacio Granero
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, Darwin 3, 28049, Madrid, Spain
| | | | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, Darwin 3, 28049, Madrid, Spain
| | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, Darwin 3, 28049, Madrid, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029, Madrid, Spain.
| |
Collapse
|
8
|
Raboni S, Montalbano S, Stransky S, Garcia BA, Buschini A, Bettati S, Sidoli S, Mozzarelli A. A Key Silencing Histone Mark on Chromatin Is Lost When Colorectal Adenocarcinoma Cells Are Depleted of Methionine by Methionine γ-Lyase. Front Mol Biosci 2021; 8:735303. [PMID: 34660696 PMCID: PMC8517235 DOI: 10.3389/fmolb.2021.735303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Methionine is an essential amino acid used, beyond protein synthesis, for polyamine formation and DNA/RNA/protein methylation. Cancer cells require particularly high methionine supply for their homeostasis. A successful approach for decreasing methionine concentration is based on the systemic delivery of methionine γ-lyase (MGL), with in vitro and in vivo studies demonstrating its efficacy in cancer therapy. However, the mechanisms explaining how cancer cells suffer from the absence of methionine more significantly than non-malignant cells are still unclear. We analyzed the outcome of the human colorectal adenocarcinoma cancer cell line HT29 to the exposure of MGL for up to 72 h by monitoring cell viability, proteome expression, histone post-translational modifications, and presence of spurious transcription. The rationale of this study was to verify whether reduced methionine supply would affect chromatin decondensation by changing the levels of histone methylation and therefore increasing genomic instability. MGL treatment showed a time-dependent cytotoxic effect on HT29 cancer cells, with an IC50 of 30 µg/ml, while Hs27 normal cells were less affected, with an IC50 of >460 µg/ml. Although the levels of total histone methylation were not altered, a loss of the silencing histone mark H3K9me2 was observed, as well as a decrease in H4K20me3. Since H3K9me2/3 decorate repetitive DNA elements, we proved by qRT-PCR that MGL treatment leads to an increased expression of major satellite units. Our data indicate that selected histone methylation marks may play major roles in the mechanism of methionine starvation in cancer cells, proving that MGL treatment directly impacts chromatin homeostasis.
Collapse
Affiliation(s)
- Samanta Raboni
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Center, Pisa, Italy
| | - Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.,Interdepartmental Centre for Molecular and Translational Oncology COMT, University of Parma, Parma, Italy
| | - Stefano Bettati
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Center, Pisa, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Center, Pisa, Italy.,Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Liu H, Zhu J, Li Q, Wang D, Wan K, Yuan Z, Zhang J, Zou L, He X, Miao J. Untargeted metabolomic analysis of urine samples for diagnosis of inherited metabolic disorders. Funct Integr Genomics 2021; 21:645-653. [PMID: 34585279 DOI: 10.1007/s10142-021-00804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022]
Abstract
Metabolomics has become an important tool for clinical research, especially for analyzing inherited metabolic disorders (IMDs). The purpose of this study was to explore the performance of metabolomics in diagnosing IMDs using an untargeted metabolomic approach. A total of 40 urine samples were collected: 20 samples from healthy children and 20 from pediatric patients, of whom 13 had confirmed IMDs and seven had suspected IMDs. Samples were analyzed by Orbitrap mass spectrometry in positive and negative mode alternately, coupled with ultra-high liquid chromatography. Raw data were processed using Compound Discovery 2.0 ™ and then exported for partial least squares discriminant analysis (PLS-DA) by SIMCA-P 14.1. After comparing with m/zCloud and chemSpider libraries, compounds with similarity above 80% were selected and normalized for subsequent relative quantification analysis. The uncommon compounds discovered were analyzed based on the Kyoto Encyclopedia of Genes and Genomes to explore their possible metabolic pathways. All IMDs patients were successfully distinguished from controls in the PLS-DA. Untargeted metabolomics revealed a broader metabolic spectrum in patients than what is observed using routine chromatographic methods for detecting IMDs. Higher levels of certain compounds were found in all 13 confirmed IMD patients and 5 of 7 suspected IMD patients. Several potential novel markers emerged after relative quantification. Untargeted metabolomics may be able to diagnose IMDs from urine and may deepen insights into the disease by revealing changes in various compounds such as amino acids, acylcarnitines, organic acids, and nucleosides. Such analyses may identify biomarkers to improve the study and treatment of IMDs.
Collapse
Affiliation(s)
- Hao Liu
- Newborn Screening Center, Chongqing Health Center for Women and Children, Longshan Road 120th, Yubei District, Chongqing, 401147, People's Republic of China.,Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Jiang Zhu
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Qiu Li
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Dongjuan Wang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Kexing Wan
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Zhaojian Yuan
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Juan Zhang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Lin Zou
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Xiaoyan He
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China.
| | - Jingkun Miao
- Newborn Screening Center, Chongqing Health Center for Women and Children, Longshan Road 120th, Yubei District, Chongqing, 401147, People's Republic of China.
| |
Collapse
|
10
|
Du C, Li SW, Singh SX, Roso K, Sun MA, Pirozzi CJ, Yang R, Li JL, He Y. Epigenetic Regulation of Fanconi Anemia Genes Implicates PRMT5 Blockage as a Strategy for Tumor Chemosensitization. Mol Cancer Res 2021; 19:2046-2056. [PMID: 34521764 DOI: 10.1158/1541-7786.mcr-21-0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Strengthened DNA repair pathways in tumor cells contribute to the development of resistance to DNA-damaging agents. Consequently, targeting proteins in these pathways is a promising strategy for tumor chemosensitization. Here, we show that the expression of a subset of Fanconi anemia (FA) genes is attenuated in glioblastoma tumor cells deficient in methylthioadenosine phosphorylase (MTAP), a common genetic alteration in a variety of cancers. Subsequent experiments in cell line models of different cancer types illustrate that this reduced transcription of FA genes can be recapitulated by blockage of Protein Arginine Methyltransferase 5 (PRMT5), a promising therapeutically targetable epigenetic regulator whose enzymatic activity is compromised in MTAP-deficient cells. Further analyses provide evidence to support that PRMT5 can function as an epigenetic regulator that contributes to the increased expression of FA genes in cancer cells. Most notably and consistent with the essential roles of FA proteins in resolving DNA damage elicited by interstrand crosslinking (ICL) agents, PRMT5 blockage, as well as MTAP loss, sensitizes tumor cells to ICL agents both in vitro and in xenografts. Collectively, these findings reveal a novel epigenetic mechanism underlying the upregulated expression of FA genes in cancer cells and suggest that therapeutically targeting PRMT5 can have an additional benefit of chemosensitizing tumor cells to ICL agents. IMPLICATIONS: PRMT5 positively regulates the expression of FA genes. Inhibition of PRMT5 attenuates FA-dependent DNA repair pathway and sensitizes tumor cells to ICL agents.
Collapse
Affiliation(s)
- Changzheng Du
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,School of Medicine, Southern University of Science and Technology, and Southern University of Science and Technology Hospital, Nanshan District, Shenzhen, Guangdong, China
| | - Steven W Li
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Simranjit X Singh
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Pathology Graduate Program, Duke University Medical Center, Durham, North Carolina
| | - Kristen Roso
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Michael A Sun
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Pathology Graduate Program, Duke University Medical Center, Durham, North Carolina
| | - Christopher J Pirozzi
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Rui Yang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina. .,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
11
|
Bojko B, Looby N, Olkowicz M, Roszkowska A, Kupcewicz B, Reck Dos Santos P, Ramadan K, Keshavjee S, Waddell TK, Gómez-Ríos G, Tascon M, Goryński K, Cypel M, Pawliszyn J. Solid phase microextraction chemical biopsy tool for monitoring of doxorubicin residue during in vivo lung chemo-perfusion. J Pharm Anal 2020; 11:37-47. [PMID: 33717610 PMCID: PMC7930785 DOI: 10.1016/j.jpha.2020.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Development of a novel in vivo lung perfusion (IVLP) procedure allows localized delivery of high-dose doxorubicin (DOX) for targeting residual micrometastatic disease in the lungs. However, DOX delivery via IVLP requires careful monitoring of drug level to ensure tissue concentrations of this agent remain in the therapeutic window. A small dimension nitinol wire coated with a sorbent of biocompatible morphology (Bio-SPME) has been clinically evaluated for in vivo lung tissue extraction and determination of DOX and its key metabolites. The in vivo Bio-SPME-IVLP experiments were performed on pig model over various (150 and 225 mg/m2) drug doses, and during human clinical trial. Two patients with metastatic osteosarcoma were treated with a single 5 and 7 μg/mL (respectively) dose of DOX during a 3-h IVLP. In both pig and human cases, DOX tissue levels presented similar trends during IVLP. Human lung tissue concentrations of drug ranged between 15 and 293 μg/g over the course of the IVLP procedure. In addition to DOX levels, Bio-SPME followed by liquid chromatography-mass spectrometry analysis generated 64 metabolic features during endogenous metabolite screening, providing information about lung status during drug administration. Real-time monitoring of DOX levels in the lungs can be performed effectively throughout the IVLP procedure by in vivo Bio-SPME chemical biopsy approach. Bio-SPME also extracted various endogenous molecules, thus providing a real-time snapshot of the physiology of the cells, which might assist in the tailoring of personalized treatment strategy.
Collapse
Affiliation(s)
- Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada.,Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089, Bydgoszcz, Poland
| | - Nikita Looby
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada
| | - Mariola Olkowicz
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland
| | - Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada.,Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416, Gdansk, Poland
| | - Bogumiła Kupcewicz
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089, Bydgoszcz, Poland
| | | | - Khaled Ramadan
- University Health Network - TGH, Toronto, ON M5G 2C4, Canada
| | - Shaf Keshavjee
- University Health Network - TGH, Toronto, ON M5G 2C4, Canada
| | | | - German Gómez-Ríos
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada
| | - Marcos Tascon
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada
| | - Krzysztof Goryński
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada.,Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089, Bydgoszcz, Poland
| | - Marcelo Cypel
- University Health Network - TGH, Toronto, ON M5G 2C4, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada
| |
Collapse
|
12
|
Guo K, Cao Y, Li Z, Zhou X, Ding R, Chen K, Liu Y, Qiu Y, Wu Z, Fang M. Glycine metabolomic changes induced by anticancer agents in A549 cells. Amino Acids 2020; 52:793-809. [PMID: 32430875 DOI: 10.1007/s00726-020-02853-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Glycine plays a key role in rapidly proliferating cancer cells such as A549 cells. Targeting glycine metabolism is considered as a potential means for cancer treatment. However, the drug-induced alterations in glycine metabolism have not yet been investigated. Herein, a total of 34 glycine metabolites were examined in A549 cells with or without anticancer drug treatment. This work showed all tested anticancer agents could alter glycine metabolism in A549 cells including inhibition of pyruvate metabolism and down-regulation of betaine aldehyde and 5'-phosphoribosylglycinamide. Principal component analysis and orthogonal partial least-squares discrimination analysis exhibited the difference between control and each drug-treated group. In general, cisplatin, camptothecin, and SAHA could induce the significant down-regulation of more metabolites, compared with afatinib, gefitinib, and targretin. Both glycine, serine and threonine metabolism, and purine metabolism were significantly disturbed by the treatment with afatinib, gefitinib, and targretin. However, the treatment using cisplatin, camptothecin, and SAHA was considered to be highly responsible for the perturbation of glycine, serine and threonine metabolism, and cysteine and methionine metabolism. Finally, multivariate analysis for control and all drug-treated groups revealed 11 altered metabolites with a significant difference. It implies anti-cancer agents with different mechanisms of action might induce different comprehensive changes of glycine metabolomics. The current study provides fundamental insights into the acquisition of the role of anti-cancer agents in glycine metabolism while suppressing cancer cell proliferation, and may aid the development of cancer treatment targeting glycine metabolism.
Collapse
Affiliation(s)
- Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Zan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Xiaoxiao Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Rong Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Kejing Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Yan Liu
- Department of Chemical Biology and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen, 361102, China.
| |
Collapse
|
13
|
Brown-Borg HM, Rakoczy S, Wonderlich JA, Borg KE, Rojanathammanee L. Metabolic adaptation of short-living growth hormone transgenic mice to methionine restriction and supplementation. Ann N Y Acad Sci 2019; 1418:118-136. [PMID: 29722030 DOI: 10.1111/nyas.13687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/17/2018] [Accepted: 02/26/2018] [Indexed: 01/07/2023]
Abstract
Extension of mammalian health and life span has been achieved using various dietary interventions. We previously reported that restricting dietary methionine (MET) content extends life span only when growth hormone signaling is intact (no life span increase in GH deficiency or GH resistance). To understand the metabolic responses of altered dietary MET in the context of accelerated aging (high GH), the current study evaluated MET and related pathways in short-living GH transgenic (GH Tg) and wild-type mice following 8 weeks of restricted (0.16%), low (0.43%), or enriched (1.3%) MET consumption. Liver MET metabolic enzymes were suppressed in GH Tg compared to diet-matched wild-type mice. MET metabolite levels were differentially affected by GH status and diet. SAM:SAH ratios were markedly higher in GH Tg mice. Glutathione levels were lower in both genotypes consuming 0.16% MET but reduced in GH Tg mice when compared to wild type. Tissue thioredoxin and glutaredoxin were impacted by diet and GH status. The responsiveness to the different MET diets is reflected across many metabolic pathways indicating the importance of GH signaling in the ability to discriminate dietary amino acid levels and alter metabolism and life span.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota
| | - Sharlene Rakoczy
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota
| | - Joseph A Wonderlich
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota.,Department of Psychology, George Mason University, Fairfax, Virginia
| | - Kurt E Borg
- Education Resources, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota
| | - Lalida Rojanathammanee
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota.,School of Sports Science, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
14
|
Hansen LJ, Sun R, Yang R, Singh SX, Chen LH, Pirozzi CJ, Moure CJ, Hemphill C, Carpenter AB, Healy P, Ruger RC, Chen CPJ, Greer PK, Zhao F, Spasojevic I, Grenier C, Huang Z, Murphy SK, McLendon RE, Friedman HS, Friedman AH, Herndon JE, Sampson JH, Keir ST, Bigner DD, Yan H, He Y. MTAP Loss Promotes Stemness in Glioblastoma and Confers Unique Susceptibility to Purine Starvation. Cancer Res 2019; 79:3383-3394. [PMID: 31040154 PMCID: PMC6810595 DOI: 10.1158/0008-5472.can-18-1010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 01/28/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
Homozygous deletion of methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic alterations in glioblastoma (GBM), but its pathologic consequences remain unclear. In this study, we report that loss of MTAP results in profound epigenetic reprogramming characterized by hypomethylation of PROM1/CD133-associated stem cell regulatory pathways. MTAP deficiency promotes glioma stem-like cell (GSC) formation with increased expression of PROM1/CD133 and enhanced tumorigenicity of GBM cells and is associated with poor prognosis in patients with GBM. As a combined consequence of purine production deficiency in MTAP-null GBM and the critical dependence of GSCs on purines, the enriched subset of CD133+ cells in MTAP-null GBM can be effectively depleted by inhibition of de novo purine synthesis. These findings suggest that MTAP loss promotes the pathogenesis of GBM by shaping the epigenetic landscape and stemness of GBM cells while simultaneously providing a unique opportunity for GBM therapeutics. SIGNIFICANCE: This study links the frequently mutated metabolic enzyme MTAP to dysregulated epigenetics and cancer cell stemness and establishes MTAP status as a factor for consideration in characterizing GBM and developing therapeutic strategies.
Collapse
Affiliation(s)
- Landon J Hansen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Ran Sun
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Jilin, China
| | - Rui Yang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Simranjit X Singh
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Lee H Chen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Christopher J Pirozzi
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Casey J Moure
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Carlee Hemphill
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Austin B Carpenter
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Patrick Healy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Ryan C Ruger
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Chin-Pu J Chen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Paula K Greer
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Fangping Zhao
- Genetron Health Technologies, Inc., Research Triangle Park, North Carolina
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Roger E McLendon
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Allan H Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - James E Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - John H Sampson
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Stephen T Keir
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Darell D Bigner
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Hai Yan
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
15
|
Li Y, Wang Y, Wu P. 5'-Methylthioadenosine and Cancer: old molecules, new understanding. J Cancer 2019; 10:927-936. [PMID: 30854099 PMCID: PMC6400808 DOI: 10.7150/jca.27160] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
While the metabolic changes in cancer tissues were first observed by Warburg Otto almost a century ago, altered metabolism has recently returned as a focus of cancer research. 5'-Methylthioadenosine (MTA) is a naturally occurring sulfur-containing nucleoside found in numerous species. While MTA was first isolated several decades ago, a lack of sensitive and specific analytical methodologies designed for its direct quantification has hampered the study of its physiological and pathophysiological features. Many studies indicate that MTA suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. In this review, we assessed the effects of MTA and of related materials on the growth and functions of normal and malignant cells.
Collapse
Affiliation(s)
- Yaofeng Li
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yubo Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ping Wu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
16
|
Tietz-Bogert PS, Kim M, Cheung A, Tabibian JH, Heimbach JK, Rosen CB, Nandakumar M, Lazaridis KN, LaRusso NF, Sung J, O'Hara SP. Metabolomic Profiling of Portal Blood and Bile Reveals Metabolic Signatures of Primary Sclerosing Cholangitis. Int J Mol Sci 2018; 19:3188. [PMID: 30332763 PMCID: PMC6214107 DOI: 10.3390/ijms19103188] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 02/08/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a pathogenically complex, chronic, fibroinflammatory disorder of the bile ducts without known etiology or effective pharmacotherapy. Emerging in vitro and in vivo evidence support fundamental pathophysiologic mechanisms in PSC centered on enterohepatic circulation. To date, no studies have specifically interrogated the chemical footprint of enterohepatic circulation in PSC. Herein, we evaluated the metabolome and lipidome of portal venous blood and bile obtained at the time of liver transplantation in patients with PSC (n = 7) as compared to individuals with noncholestatic, end-stage liver disease (viral, metabolic, etc. (disease control, DC, n = 19)) and to nondisease controls (NC, living donors, n = 12). Global metabolomic and lipidomic profiling was performed on serum derived from portal venous blood (portal serum) and bile using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and differential mobility spectroscopy-mass spectroscopy (DMS-MS; complex lipid platform). The Mann⁻Whitney U test was used to identify metabolites that significantly differed between groups. Principal-component analysis (PCA) showed significant separation of both PSC and DC from NC for both portal serum and bile. Metabolite set enrichment analysis of portal serum and bile demonstrated that the liver-disease cohorts (PSC and DC) exhibited similar enrichment in several metabolite categories compared to NC. Interestingly, the bile in PSC was uniquely enriched for dipeptide and polyamine metabolites. Finally, analysis of patient-matched portal serum and biliary metabolome revealed that these biological fluids were more homogeneous in PSC than in DC or NC, suggesting aberrant bile formation and enterohepatic circulation. In summary, PSC and DC patients exhibited alterations in several metabolites in portal serum and bile, while PSC patients exhibited a unique bile metabolome. These specific alterations in PSC are amenable to hypothesis testing and, potentially, therapeutic pharmacologic manipulation.
Collapse
Affiliation(s)
- Pamela S Tietz-Bogert
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Minsuk Kim
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | - Angela Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - James H Tabibian
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA 91342, USA.
| | - Julie K Heimbach
- Division of Transplant Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Charles B Rosen
- Division of Transplant Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | - Konstantinos N Lazaridis
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
- Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
17
|
Mato JM, Elortza F, Lu SC, Brun V, Paradela A, Corrales FJ. Liver cancer-associated changes to the proteome: what deserves clinical focus? Expert Rev Proteomics 2018; 15:749-756. [PMID: 30204005 DOI: 10.1080/14789450.2018.1521277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is recognized as the fifth most common neoplasm and currently represents the second leading form of cancer-related death worldwide. Despite great progress has been done in the understanding of its pathogenesis, HCC represents a heavy societal and economic burden as most patients are still diagnosed at advanced stages and the 5-year survival rate remain below 20%. Early detection and revolutionary therapies that rely on the discovery of new molecular biomarkers and therapeutic targets are therefore urgently needed to develop precision medicine strategies for a more efficient management of patients. Areas covered: This review intends to comprehensively analyse the proteomics-based research conducted in the last few years to address some of the principal still open riddles in HCC biology, based on the identification of molecular drivers of tumor progression and metastasis. Expert commentary: The technical advances in mass spectrometry experienced in the last decade have significantly improved the analytical capacity of proteome wide studies. Large-scale protein and protein variant (post-translational modifications) identification and quantification have allowed detailed dissections of molecular mechanisms underlying HCC progression and are already paving the way for the identification of clinically relevant proteins and the development of their use on patient care.
Collapse
Affiliation(s)
- José M Mato
- a CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park , Derio , Spain
- b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
| | - Félix Elortza
- a CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park , Derio , Spain
- b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
| | - Shelly C Lu
- c Division of Digestive and Liver Diseases , Cedars-Sinai Medical Center , LA , CA , USA
| | - Virginie Brun
- d Université Grenoble-Alpes, CEA, BIG, Biologie à Grande Echelle, Inserm , Grenoble , France
| | - Alberto Paradela
- e Functional Proteomics Laboratory , Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, CIBERehd , Madrid , Spain
| | - Fernando J Corrales
- b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
- e Functional Proteomics Laboratory , Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, CIBERehd , Madrid , Spain
| |
Collapse
|
18
|
Methylthioadenosine Suppresses Salmonella Virulence. Infect Immun 2018; 86:IAI.00429-18. [PMID: 29866910 PMCID: PMC6105896 DOI: 10.1128/iai.00429-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 02/01/2023] Open
Abstract
In order to deploy virulence factors at appropriate times and locations, microbes must rapidly sense and respond to various metabolite signals. Previously, we showed a transient elevation of the methionine-derived metabolite methylthioadenosine (MTA) concentration in serum during systemic Salmonella enterica serovar Typhimurium infection. Here we explored the functional consequences of increased MTA concentrations on S Typhimurium virulence. We found that MTA, but not other related metabolites involved in polyamine synthesis and methionine salvage, reduced motility, host cell pyroptosis, and cellular invasion. Further, we developed a genetic model of increased bacterial endogenous MTA production by knocking out the master repressor of the methionine regulon, metJ Like MTA-treated S Typhimurium, the ΔmetJ mutant displayed reduced motility, host cell pyroptosis, and invasion. These phenotypic effects of MTA correlated with suppression of flagellar and Salmonella pathogenicity island 1 (SPI-1) networks. S Typhimurium ΔmetJ had reduced virulence in oral and intraperitoneal infection of C57BL/6J mice independently of the effects of MTA on SPI-1. Finally, ΔmetJ bacteria induced a less severe inflammatory cytokine response in a mouse sepsis model. Together, these data indicate that exposure of S Typhimurium to MTA or disruption of the bacterial methionine metabolism pathway suppresses S Typhimurium virulence.
Collapse
|
19
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
20
|
Systems Analyses Reveal Physiological Roles and Genetic Regulators of Liver Lipid Species. Cell Syst 2018; 6:722-733.e6. [PMID: 29909277 DOI: 10.1016/j.cels.2018.05.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022]
Abstract
The genetics of individual lipid species and their relevance in disease is largely unresolved. We profiled a subset of storage, signaling, membrane, and mitochondrial liver lipids across 385 mice from 47 strains of the BXD mouse population fed chow or high-fat diet and integrated these data with complementary multi-omics datasets. We identified several lipid species and lipid clusters with specific phenotypic and molecular signatures and, in particular, cardiolipin species with signatures of healthy and fatty liver. Genetic analyses revealed quantitative trait loci for 68% of the lipids (lQTL). By multi-layered omics analyses, we show the reliability of lQTLs to uncover candidate genes that can regulate the levels of lipid species. Additionally, we identified lQTLs that mapped to genes associated with abnormal lipid metabolism in human GWASs. This work provides a foundation and resource for understanding the genetic regulation and physiological significance of lipid species.
Collapse
|
21
|
Abstract
Bioinformatic analysis can not only accelerate drug target identification and drug candidate screening and refinement, but also facilitate characterization of side effects and predict drug resistance. High-throughput data such as genomic, epigenetic, genome architecture, cistromic, transcriptomic, proteomic, and ribosome profiling data have all made significant contribution to mechanismbased drug discovery and drug repurposing. Accumulation of protein and RNA structures, as well as development of homology modeling and protein structure simulation, coupled with large structure databases of small molecules and metabolites, paved the way for more realistic protein-ligand docking experiments and more informative virtual screening. I present the conceptual framework that drives the collection of these high-throughput data, summarize the utility and potential of mining these data in drug discovery, outline a few inherent limitations in data and software mining these data, point out news ways to refine analysis of these diverse types of data, and highlight commonly used software and databases relevant to drug discovery.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Ottawa Institute of Systems Biology, Ottawa K1H 8M5, Canada
| |
Collapse
|
22
|
Van Eyk JE, Corrales FJ, Aebersold R, Cerciello F, Deutsch EW, Roncada P, Sanchez JC, Yamamoto T, Yang P, Zhang H, Omenn GS. Highlights of the Biology and Disease-driven Human Proteome Project, 2015-2016. J Proteome Res 2016; 15:3979-3987. [PMID: 27573249 PMCID: PMC5129618 DOI: 10.1021/acs.jproteome.6b00444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Biology and Disease-driven Human Proteome Project (B/D-HPP) is aimed at supporting and enhancing the broad use of state-of-the-art proteomic methods to characterize and quantify proteins for in-depth understanding of the molecular mechanisms of biological processes and human disease. Based on a foundation of the pre-existing HUPO initiatives begun in 2002, the B/D-HPP is designed to provide standardized methods and resources for mass spectrometry and specific protein affinity reagents and facilitate accessibility of these resources to the broader life sciences research and clinical communities. Currently there are 22 B/D-HPP initiatives and 3 closely related HPP resource pillars. The B/D-HPP groups are working to define sets of protein targets that are highly relevant to each particular field to deliver relevant assays for the measurement of these selected targets and to disseminate and make publicly accessible the information and tools generated. Major developments are the 2016 publications of the Human SRM Atlas and of "popular protein sets" for six organ systems. Here we present the current activities and plans of the BD-HPP initiatives as highlighted in numerous B/D-HPP workshops at the 14th annual HUPO 2015 World Congress of Proteomics in Vancouver, Canada.
Collapse
Affiliation(s)
- Jennifer E. Van Eyk
- Advanced Clinical BioSystems Research Institute, Department of Medicine, Cedars-Sinai Medical Centre, Los Angeles, California 90038, United States
| | - Fernando J. Corrales
- Department of Hepatology, Proteomics Laboratory, CIMA, University of Navarra; Ciberhed; PRB2, ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Ferdinando Cerciello
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Eric W. Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Paola Roncada
- Istituto Sperimentale Italiano L. Spallanzani, 20133 Milano, Italy
| | - Jean-Charles Sanchez
- Centre Medicale Universitaire, Human Protein Sciences Department, CH-1211 Geneva, Switzerland
| | - Tadashi Yamamoto
- Niigata University, Department of Structural Pathology, Institute of Nephrology, Medical and Dental School, Asachimachidori Niigata 951-8510, Japan
| | - Pengyuan Yang
- Fudan University, Department of Chemistry, Shanghai 200433, P.R. China
| | - Hui Zhang
- Johns Hopkins University, Department of Pathology, Baltimore, Maryland 21287, United States
| | - Gilbert S. Omenn
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|