1
|
Kehrer J, Pietsch E, Ricken D, Strauss L, Heinze JM, Gilberger T, Frischknecht F. APEX-based proximity labeling in Plasmodium identifies a membrane protein with dual functions during mosquito infection. PLoS Pathog 2024; 20:e1012788. [PMID: 39693377 DOI: 10.1371/journal.ppat.1012788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/02/2025] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Transmission of the malaria parasite Plasmodium to mosquitoes necessitates gamete egress from red blood cells to allow zygote formation and ookinete motility to enable penetration of the midgut epithelium. Both processes are dependent on the secretion of proteins from distinct sets of specialized vesicles. Inhibiting some of these proteins has shown potential for blocking parasite transmission to the mosquito. To identify new transmission blocking vaccine candidates, we aimed to define the microneme content from ookinetes of the rodent model organism Plasmodium berghei using APEX2-mediated rapid proximity-dependent biotinylation. Besides known proteins of ookinete micronemes, this identified over 50 novel candidates and sharpened the list of a previous survey based on subcellular fractionation. Functional analysis of a first candidate uncovered a dual role for this membrane protein in male gametogenesis and ookinete midgut traversal. Mutation of a putative trafficking motif in the C-terminus affected ookinete to oocyst transition but not gamete formation. This suggests the existence of distinct functional and transport requirements for Plasmodium proteins in different parasite stages.
Collapse
Affiliation(s)
- Jessica Kehrer
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| | - Emma Pietsch
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dominik Ricken
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Léanne Strauss
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia M Heinze
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Tim Gilberger
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Friedrich Frischknecht
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Sassmannshausen J, Bennink S, Distler U, Küchenhoff J, Minns AM, Lindner SE, Burda PC, Tenzer S, Gilberger TW, Pradel G. Comparative proteomics of vesicles essential for the egress of Plasmodium falciparum gametocytes from red blood cells. Mol Microbiol 2024; 121:431-452. [PMID: 37492994 DOI: 10.1111/mmi.15125] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Transmission of malaria parasites to the mosquito is mediated by sexual precursor cells, the gametocytes. Upon entering the mosquito midgut, the gametocytes egress from the enveloping erythrocyte while passing through gametogenesis. Egress follows an inside-out mode during which the membrane of the parasitophorous vacuole (PV) ruptures prior to the erythrocyte membrane. Membrane rupture requires exocytosis of specialized egress vesicles of the parasites; that is, osmiophilic bodies (OBs) involved in rupturing the PV membrane, and vesicles that harbor the perforin-like protein PPLP2 (here termed P-EVs) required for erythrocyte lysis. While some OB proteins have been identified, like G377 and MDV1/Peg3, the majority of egress vesicle-resident proteins is yet unknown. Here, we used high-resolution imaging and BioID methods to study the two egress vesicle types in Plasmodium falciparum gametocytes. We show that OB exocytosis precedes discharge of the P-EVs and that exocytosis of the P-EVs, but not of the OBs, is calcium sensitive. Both vesicle types exhibit distinct proteomes with the majority of proteins located in the OBs. In addition to known egress-related proteins, we identified novel components of OBs and P-EVs, including vesicle-trafficking proteins. Our data provide insight into the immense molecular machinery required for the inside-out egress of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Juliane Küchenhoff
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Wang Y, Qin W. Revealing protein trafficking by proximity labeling-based proteomics. Bioorg Chem 2024; 143:107041. [PMID: 38134520 DOI: 10.1016/j.bioorg.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Protein trafficking is a fundamental process with profound implications for both intracellular and intercellular functions. Proximity labeling (PL) technology has emerged as a powerful tool for capturing precise snapshots of subcellular proteomes by directing promiscuous enzymes to specific cellular locations. These enzymes generate reactive species that tag endogenous proteins, enabling their identification through mass spectrometry-based proteomics. In this comprehensive review, we delve into recent advancements in PL-based methodologies, placing particular emphasis on the label-and-fractionation approach and TransitID, for mapping proteome trafficking. These methodologies not only facilitate the exploration of dynamic intracellular protein trafficking between organelles but also illuminate the intricate web of intercellular and inter-organ protein communications.
Collapse
Affiliation(s)
- Yankun Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China; The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Bennink S, Pradel G. The Multiple Roles of LCCL Domain-Containing Proteins for Malaria Parasite Transmission. Microorganisms 2024; 12:279. [PMID: 38399683 PMCID: PMC10892792 DOI: 10.3390/microorganisms12020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Multi-protein complexes are crucial for various essential biological processes of the malaria parasite Plasmodium, such as protein synthesis, host cell invasion and adhesion. Especially during the sexual phase of the parasite, which takes place in the midgut of the mosquito vector, protein complexes are required for fertilization, sporulation and ultimately for the successful transmission of the parasite. Among the most noticeable protein complexes of the transmission stages are the ones formed by the LCCL domain-containing protein family that play critical roles in the generation of infective sporozoites. The six members of this protein family are characterized by numerous adhesive modules and domains typically found in secreted proteins. This review summarizes the findings of expression and functional studies on the LCCL domain-containing proteins of the human pathogenic P. falciparum and the rodent-infecting P. berghei and discusses the common features and differences of the homologous proteins.
Collapse
Affiliation(s)
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany;
| |
Collapse
|
5
|
Machado M, Klaus S, Klaschka D, Guizetti J, Ganter M. Plasmodium falciparum CRK4 links early mitotic events to the onset of S-phase during schizogony. mBio 2023; 14:e0077923. [PMID: 37345936 PMCID: PMC10470535 DOI: 10.1128/mbio.00779-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
Plasmodium falciparum proliferates through schizogony in the clinically relevant blood stage of infection. During schizogony, consecutive rounds of DNA replication and nuclear division give rise to multinucleated stages before cellularization occurs. Although these nuclei reside in a shared cytoplasm, DNA replication and nuclear division occur asynchronously. Here, by mapping the proteomic context of the S-phase-promoting kinase PfCRK4, we show that it has a dual role for nuclear-cycle progression: PfCRK4 orchestrates not only DNA replication, but in parallel also the rearrangement of intranuclear microtubules from hemispindles into early mitotic spindles. Live-cell imaging of a reporter parasite showed that these microtubule rearrangements coincide with the onset of DNA replication. Together, our data render PfCRK4 a key factor for nuclear-cycle progression, linking entry into S-phase with the initiation of mitotic events. In part, such links may compensate for the absence of canonical cell cycle checkpoints in P. falciparum. IMPORTANCE The human malaria parasite Plasmodium falciparum proliferates in erythrocytes through schizogony, forming multinucleated stages before cellularization occurs. In marked contrast to the pattern of proliferation seen in most model organisms, P. falciparum nuclei multiply asynchronously despite residing in a shared cytoplasm. This divergent mode of replication is, thus, a good target for therapeutic interventions. To exploit this potential, we investigated a key regulator of the parasite's unusual cell cycle, the kinase PfCRK4 and found that this kinase regulated not only DNA replication but also in parallel the rearrangement of nuclear microtubules into early mitotic spindles. Since canonical cell cycle checkpoints have not been described in P. falciparum parasites, linking entry into S-phase and the initiation of mitotic events via a kinase, may be an alternative means to exert control, which is typically achieved by checkpoints.
Collapse
Affiliation(s)
- Marta Machado
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Severina Klaus
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Darius Klaschka
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Julien Guizetti
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ganter
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
6
|
Mansfield CR, Chirgwin ME, Derbyshire ER. Labeling strategies to track protozoan parasite proteome dynamics. Curr Opin Chem Biol 2023; 75:102316. [PMID: 37192562 PMCID: PMC10895934 DOI: 10.1016/j.cbpa.2023.102316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/18/2023]
Abstract
Intracellular protozoan parasites are responsible for wide-spread infectious diseases. These unicellular pathogens have complex, multi-host life cycles, which present challenges for investigating their basic biology and for discovering vulnerabilities that could be exploited for disease control. Throughout development, parasite proteomes are dynamic and support stage-specific functions, but detection of these proteins is often technically challenging and complicated by the abundance of host proteins. Thus, to elucidate key parasite processes and host-pathogen interactions, labeling strategies are required to track pathogen proteins during infection. Herein, we discuss the application of bioorthogonal non-canonical amino acid tagging and proximity-dependent labeling to broadly study protozoan parasites and include outlooks for future applications to study Plasmodium, the causative agent of malaria. We highlight the potential of these technologies to provide spatiotemporal labeling with selective parasite protein enrichment, which could enable previously unattainable insight into the biology of elusive developmental stages.
Collapse
Affiliation(s)
| | | | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Abstract
Serine/arginine-rich protein kinases (SRPKs) are cell cycle-regulated serine/threonine protein kinases and are important regulators of splicing factors. In this study, we functionally characterize SRPK1 of the human malaria parasite Plasmodium falciparum. P. falciparum SRPK1 (PfSRPK1) was expressed in asexual blood-stage and sexual-stage gametocytes. Pfsrpk1- parasites formed asexual schizonts that generated far fewer merozoites than wild-type parasites, causing reduced replication rates. Pfsrpk1- parasites also showed a severe defect in the differentiation of male gametes, causing a complete block in parasite transmission to mosquitoes. RNA sequencing (RNA-seq) analysis of wild-type PfNF54 and Pfsrpk1- stage V gametocytes suggested a role for PfSRPK1 in regulating transcript splicing and transcript abundance of genes coding for (i) microtubule/cilium morphogenesis-related proteins, (ii) proteins involved in cyclic nucleotide metabolic processes, (iii) proteins involved in signaling such as PfMAP2, (iv) lipid metabolism enzymes, (v) proteins of osmophilic bodies, and (vi) crystalloid components. Our study reveals an essential role for PfSRPK1 in parasite cell morphogenesis and suggests this kinase as a target to prevent malaria transmission from humans to mosquitoes. IMPORTANCE Plasmodium sexual stages represent a critical bottleneck in the parasite life cycle. Gametocytes taken up in an infectious blood meal by female anopheline mosquito get activated to form gametes and fuse to form short-lived zygotes, which transform into ookinetes to infect mosquitoes. In the present study, we demonstrate that PfSRPK1 is important for merozoite formation and critical for male gametogenesis and is involved in transcript homeostasis for numerous parasite genes. Targeting PfSRPK1 and its downstream pathways may reduce parasite replication and help achieve effective malaria transmission-blocking strategies.
Collapse
|
8
|
TurboID Identification of Evolutionarily Divergent Components of the Nuclear Pore Complex in the Malaria Model Plasmodium berghei. mBio 2022; 13:e0181522. [PMID: 36040030 PMCID: PMC9601220 DOI: 10.1128/mbio.01815-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twenty years since the publication of the Plasmodium falciparum and P. berghei genomes one-third of their protein-coding genes still lack functional annotation. In the absence of sequence and structural homology, protein-protein interactions can facilitate functional prediction of such orphan genes by mapping protein complexes in their natural cellular environment. The Plasmodium nuclear pore complex (NPC) is a case in point: it remains poorly defined; its constituents lack conservation with the 30+ proteins described in the NPC of many opisthokonts, a clade of eukaryotes that includes fungi and animals, but not Plasmodium. Here, we developed a labeling methodology based on TurboID fusion proteins, which allows visualization of the P. berghei NPC and facilitates the identification of its components. Following affinity purification and mass spectrometry, we identified 4 known nucleoporins (Nups) (138, 205, 221, and the bait 313), and verify interaction with the putative phenylalanine-glycine (FG) Nup637; we assigned 5 proteins lacking annotation (and therefore meaningful homology with proteins outside the genus) to the NPC, which is confirmed by green fluorescent protein (GFP) tagging. Based on gene deletion attempts, all new Nups — Nup176, 269, 335, 390, and 434 — are essential to parasite survival. They lack primary sequence homology with proteins outside the Plasmodium genus; albeit 2 incorporate short domains with structural homology to human Nup155 and yeast Nup157, and the condensin SMC (Structural Maintenance Of Chromosomes 4). The protocols developed here showcase the power of proximity labeling for elucidating protein complex composition and annotation of taxonomically restricted genes in Plasmodium. It opens the door to exploring the function of the Plasmodium NPC and understanding its evolutionary position.
Collapse
|
9
|
Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission. Nat Commun 2022; 13:4400. [PMID: 35906227 PMCID: PMC9338275 DOI: 10.1038/s41467-022-32076-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Tryptophan C-mannosylation stabilizes proteins bearing a thrombospondin repeat (TSR) domain in metazoans. Here we show that Plasmodium falciparum expresses a DPY19 tryptophan C-mannosyltransferase in the endoplasmic reticulum and that DPY19-deficiency abolishes C-glycosylation, destabilizes members of the TRAP adhesin family and inhibits transmission to mosquitoes. Imaging P. falciparum gametogenesis in its entirety in four dimensions using lattice light-sheet microscopy reveals defects in ΔDPY19 gametocyte egress and exflagellation. While egress is diminished, ΔDPY19 microgametes still fertilize macrogametes, forming ookinetes, but these are abrogated for mosquito infection. The gametogenesis defects correspond with destabilization of MTRAP, which we show is C-mannosylated in P. falciparum, and the ookinete defect is concordant with defective CTRP secretion on the ΔDPY19 background. Genetic complementation of DPY19 restores ookinete infectivity, sporozoite production and C-mannosylation activity. Therefore, tryptophan C-mannosylation by DPY19 ensures TSR protein quality control at two lifecycle stages for successful transmission of the human malaria parasite. Here, Lopaticki et al. show that Plasmodium falciparum expresses a Dpy19 C-mannosyltransferase in the endoplasmic reticulum that glycosylates TSR domains. Functional characterization shows that PfDpy19 plays a critical role in transmission through mosquitoes as PfDpy19-deficiency abolishes C-glycosylation and destabilizes proteins relevant for gametogenesis and oocyst formation.
Collapse
|
10
|
Qian P, Wang X, Zhong CQ, Wang J, Cai M, Nguitragool W, Li J, Cui H, Yuan J. Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite. eLife 2022; 11:77447. [PMID: 35775739 PMCID: PMC9293000 DOI: 10.7554/elife.77447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Malaria is caused by infection of the erythrocytes by the parasites Plasmodium. Inside the erythrocytes, the parasites multiply via schizogony, an unconventional cell division mode. The inner membrane complex (IMC), an organelle located beneath the parasite plasma membrane, serving as the platform for protein anchorage, is essential for schizogony. So far, the complete repertoire of IMC proteins and their localization determinants remain unclear. Here we used biotin ligase (TurboID)-based proximity labeling to compile the proteome of the schizont IMC of the rodent malaria parasite Plasmodium yoelii. In total, 300 TurboID-interacting proteins were identified. 18 of 21 selected candidates were confirmed to localize in the IMC, indicating good reliability. In light of the existing palmitome of Plasmodium falciparum, 83 proteins of the P. yoelii IMC proteome are potentially palmitoylated. We further identified DHHC2 as the major resident palmitoyl-acyl-transferase of the IMC. Depletion of DHHC2 led to defective schizont segmentation and growth arrest both in vitro and in vivo. DHHC2 was found to palmitoylate two critical IMC proteins CDPK1 and GAP45 for their IMC localization. In summary, this study reports an inventory of new IMC proteins and demonstrates a central role of DHHC2 in governing the IMC localization of proteins during the schizont development.
Collapse
Affiliation(s)
- Pengge Qian
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xu Wang
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chuan-Qi Zhong
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jiaxu Wang
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Mengya Cai
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
| | - Jian Li
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jing Yuan
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Dash M, Sachdeva S, Bansal A, Sinha A. Gametogenesis in Plasmodium: Delving Deeper to Connect the Dots. Front Cell Infect Microbiol 2022; 12:877907. [PMID: 35782151 PMCID: PMC9241518 DOI: 10.3389/fcimb.2022.877907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the coming decades, eliminating malaria is the foremost goal of many tropical countries. Transmission control, along with an accurate and timely diagnosis of malaria, effective treatment and prevention are the different aspects that need to be met synchronously to accomplish the goal. The current review is focused on one of these aspects i.e., transmission control, by looking deeper into the event called gametogenesis. In the Plasmodium life cycle, gametocytes are the first life forms of the sexual phase. The transmission of the parasite and the disease is critically dependent on the number, viability and sex ratio of mature gametocytes and their further development inside mosquito vectors. Gametogenesis, the process of conversion of gametocytes into viable gametes, takes place inside the mosquito midgut, and is a tightly regulated event with fast and multiple rounds of DNA replication and diverse cellular changes going on within a short period. Interrupting the gametocyte-gamete transition is ought to restrict the successful transmission and progression of the disease and hence an area worth exploring for designing transmission-blocking strategies. This review summarizes an in-depth and up-to-date understanding of the biochemical and physiological mechanism of gametogenesis in Plasmodium, which could be targeted to control parasite and malaria transmission. This review also raises certain key questions regarding gametogenesis biology in Plasmodium and brings out gaps that still accompany in understanding the spectacular process of gametogenesis.
Collapse
Affiliation(s)
- Manoswini Dash
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- Central Molecular Laboratory, Govind Ballabh (GB) Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Sherry Sachdeva
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Sinha
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- *Correspondence: Abhinav Sinha,
| |
Collapse
|
12
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
13
|
Paoletta MS, Wilkowsky SE. Thrombospondin Related Anonymous Protein Superfamily in Vector-Borne Apicomplexans: The Parasite’s Toolkit for Cell Invasion. Front Cell Infect Microbiol 2022; 12:831592. [PMID: 35463644 PMCID: PMC9019593 DOI: 10.3389/fcimb.2022.831592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Apicomplexan parasites transmitted by vectors, including Babesia spp. and Plasmodium spp., cause severe disease in both humans and animals. These parasites have a complex life cycle during which they migrate, invade, and replicate in contrasting hosts such as the mammal and the invertebrate vector. The interaction of parasites with the host cell is mediated by adhesive proteins which play a key role in the different cellular processes regarding successful progression of the life cycle. Thrombospondin related anonymous protein (TRAP) is a superfamily of adhesins that are involved in motility, invasion and egress of the parasite. These proteins are stored and released from apical organelles and have either one or two types of adhesive domains, namely thrombospondin type 1 repeat and von Willebrand factor type A, that upon secretion are located in the extracellular portion of the molecule. Proteins from the TRAP superfamily have been intensively studied in Plasmodium species and to a lesser extent in Babesia spp., where they have proven to be functionally relevant throughout the entire parasite’s journey both in the arthropod vector and in the mammalian host. In recent years new findings provided answers to the role of TRAP proteins and in some cases the function of these adhesins during the parasite’s life cycle was redefined. In this review we will discuss the current knowledge of the diverse roles of the TRAP superfamily in vector-borne parasites from Class Aconoidasida. We will focus on the varied approaches that allowed the understanding of protein function and the relevance of TRAP- superfamily throughout the entire parasite’s cell cycle.
Collapse
|
14
|
Yu S, Wang J, Luo X, Zheng H, Wang L, Yang X, Wang Y. Transmission-Blocking Strategies Against Malaria Parasites During Their Mosquito Stages. Front Cell Infect Microbiol 2022; 12:820650. [PMID: 35252033 PMCID: PMC8889032 DOI: 10.3389/fcimb.2022.820650] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria is still the most widespread parasitic disease and causes the most infections globally. Owing to improvements in sanitary conditions and various intervention measures, including the use of antimalarial drugs, the malaria epidemic in many regions of the world has improved significantly in the past 10 years. However, people living in certain underdeveloped areas are still under threat. Even in some well-controlled areas, the decline in malaria infection rates has stagnated or the rates have rebounded because of the emergence and spread of drug-resistant malaria parasites. Thus, new malaria control methods must be developed. As the spread of the Plasmodium parasite is dependent on the part of its life cycle that occurs in mosquitoes, to eliminate the possibility of malaria infections, transmission-blocking strategies against the mosquito stage should be the first choice. In fact, after the gametocyte enters the mosquito body, it undergoes a series of transformation processes over a short period, thus providing numerous potential blocking targets. Many research groups have carried out studies based on targeting the blocking of transmission during the mosquito phase and have achieved excellent results. Meanwhile, the direct killing of mosquitoes could also significantly reduce the probability of malaria infections. Microorganisms that display complex interactions with Plasmodium, such as Wolbachia and gut flora, have shown observable transmission-blocking potential. These could be used as a biological control strategy and play an important part in blocking the transmission of malaria.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luhan Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
- *Correspondence: Ying Wang,
| |
Collapse
|
15
|
Takashima E, Tachibana M, Morita M, Nagaoka H, Kanoi BN, Tsuboi T. Identification of Novel Malaria Transmission-Blocking Vaccine Candidates. Front Cell Infect Microbiol 2021; 11:805482. [PMID: 34917521 PMCID: PMC8670312 DOI: 10.3389/fcimb.2021.805482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023] Open
Abstract
Control measures have significantly reduced malaria morbidity and mortality in the last two decades; however, the downward trends have stalled and have become complicated by the emergence of COVID-19. Significant efforts have been made to develop malaria vaccines, but currently only the RTS,S/AS01 vaccine against Plasmodium falciparum has been recommended by the WHO, for widespread use among children in sub-Saharan Africa. The efficacy of RTS,S/AS01 is modest, and therefore the development of more efficacious vaccines is still needed. In addition, the development of transmission-blocking vaccines (TBVs) to reduce the parasite transmission from humans to mosquitoes is required toward the goal of malaria elimination. Few TBVs have reached clinical development, and challenges include low immunogenicity or high reactogenicity in humans. Therefore, novel approaches to accelerate TBV research and development are urgently needed, especially novel TBV candidate discovery. In this mini review we summarize the progress in TBV research and development, novel TBV candidate discovery, and discuss how to accelerate novel TBV candidate discovery.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
16
|
Kimmel J, Kehrer J, Frischknecht F, Spielmann T. Proximity-dependent biotinylation approaches to study apicomplexan biology. Mol Microbiol 2021; 117:553-568. [PMID: 34587292 DOI: 10.1111/mmi.14815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
In the last 10 years, proximity-dependent biotinylation (PDB) techniques greatly expanded the ability to study protein environments in the living cell that range from specific protein complexes to entire compartments. This is achieved by using enzymes such as BirA* and APEX that are fused to proteins of interest and biotinylate proteins in their proximity. PDB techniques are now also increasingly used in apicomplexan parasites. In this review, we first give an overview of the main PDB approaches and how they compare with other techniques that address similar questions. PDB is particularly valuable to detect weak or transient protein associations under physiological conditions and to study cellular structures that are difficult to purify or have a poorly understood protein composition. We also highlight new developments such as novel smaller or faster-acting enzyme variants and conditional PDB approaches, providing improvements in both temporal and spatial resolution which may offer broader application possibilities useful in apicomplexan research. In the second part, we review work using PDB techniques in apicomplexan parasites and how this expanded our knowledge about these medically important parasites.
Collapse
Affiliation(s)
- Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,German Center for Infectious Disease Research, DZIF, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,German Center for Infectious Disease Research, DZIF, Heidelberg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
17
|
Rosenthal SM, Misra T, Abdouni H, Branon TC, Ting AY, Scott IC, Gingras AC. A Toolbox for Efficient Proximity-Dependent Biotinylation in Zebrafish Embryos. Mol Cell Proteomics 2021; 20:100128. [PMID: 34332124 PMCID: PMC8383115 DOI: 10.1016/j.mcpro.2021.100128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding how proteins are organized in compartments is essential to elucidating their function. While proximity-dependent approaches such as BioID have enabled a massive increase in information about organelles, protein complexes, and other structures in cell culture, to date there have been only a few studies on living vertebrates. Here, we adapted proximity labeling for protein discovery in vivo in the vertebrate model organism, zebrafish. Using lamin A (LMNA) as bait and green fluorescent protein (GFP) as a negative control, we developed, optimized, and benchmarked in vivo TurboID and miniTurbo labeling in early zebrafish embryos. We developed both an mRNA injection protocol and a transgenic system in which transgene expression is controlled by a heat shock promoter. In both cases, biotin is provided directly in the egg water, and we demonstrate that 12 h of labeling are sufficient for biotinylation of prey proteins, which should permit time-resolved analysis of development. After statistical scoring, we found that the proximal partners of LMNA detected in each system were enriched for nuclear envelope and nuclear membrane proteins and included many orthologs of human proteins identified as proximity partners of lamin A in mammalian cell culture. The tools and protocols developed here will allow zebrafish researchers to complement genetic tools with powerful proteomics approaches.
Collapse
Affiliation(s)
- Shimon M Rosenthal
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Tvisha Misra
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hala Abdouni
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Tess C Branon
- Department of Genetics, Stanford University, Stanford, California, USA; Department of Biology, Stanford University, Stanford, California, USA; Department of Chemistry, Stanford University, Stanford, California, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, California, USA; Department of Biology, Stanford University, Stanford, California, USA; Department of Chemistry, Stanford University, Stanford, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Ian C Scott
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
de Oliveira LS, Alborghetti MR, Carneiro RG, Bastos IMD, Amino R, Grellier P, Charneau S. Calcium in the Backstage of Malaria Parasite Biology. Front Cell Infect Microbiol 2021; 11:708834. [PMID: 34395314 PMCID: PMC8355824 DOI: 10.3389/fcimb.2021.708834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The calcium ion (Ca2+) is a ubiquitous second messenger involved in key biological processes in prokaryotes and eukaryotes. In Plasmodium species, Ca2+ signaling plays a central role in the parasite life cycle. It has been associated with parasite development, fertilization, locomotion, and host cell infection. Despite the lack of a canonical inositol-1,4,5-triphosphate receptor gene in the Plasmodium genome, pharmacological evidence indicates that inositol-1,4,5-triphosphate triggers Ca2+ mobilization from the endoplasmic reticulum. Other structures such as acidocalcisomes, food vacuole and mitochondria are proposed to act as supplementary intracellular Ca2+ reservoirs. Several Ca2+-binding proteins (CaBPs) trigger downstream signaling. Other proteins with no EF-hand motifs, but apparently involved with CaBPs, are depicted as playing an important role in the erythrocyte invasion and egress. It is also proposed that a cross-talk among kinases, which are not members of the family of Ca2+-dependent protein kinases, such as protein kinases G, A and B, play additional roles mediated indirectly by Ca2+ regulation. This statement may be extended for proteins directly related to invasion or egress, such as SUB1, ERC, IMC1I, IMC1g, GAP45 and EBA175. In this review, we update our understanding of aspects of Ca2+-mediated signaling correlated to the developmental stages of the malaria parasite life cycle.
Collapse
Affiliation(s)
- Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Marcos Rodrigo Alborghetti
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Renata Garcia Carneiro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rogerio Amino
- Unité Infection et Immunité Paludéennes, Institut Pasteur, Paris, France
| | - Philippe Grellier
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
19
|
PSOP1, putative secreted ookinete protein 1, is localized to the micronemes of Plasmodium yoelii and P. berghei ookinetes. Parasitol Int 2021; 84:102407. [PMID: 34147682 DOI: 10.1016/j.parint.2021.102407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022]
Abstract
Plasmodium parasites cause malaria in mammalian hosts and are transmitted by Anopheles mosquitoes. Activated gametocytes in the mosquito midgut egress from erythrocytes followed by fertilization and zygote formation. Zygotes differentiate into motile invasive ookinetes, which penetrate the midgut epithelium before forming oocysts beneath the basal lamina. Ookinete development and traversal across the mosquito midgut wall are major bottlenecks in the parasite life cycle. In ookinetes, surface proteins and proteins stored in apical organelles have been shown to be involved in parasite-host interactions. A group of ookinete proteins that are predicted to have such functions are named PSOPs (putative secreted ookinete protein). PSOP1 is possibly involved in migration through the midgut wall, and here its subcellular localization was examined in ookinetes by immunoelectron microscopy. PSOP1 localizes to the micronemes of Plasmodium yoelii and Plasmodium berghei ookinetes, indicating that it is stored and possibly apically secreted during ookinete penetration through the mosquito midgut wall.
Collapse
|
20
|
Wichers JS, Wunderlich J, Heincke D, Pazicky S, Strauss J, Schmitt M, Kimmel J, Wilcke L, Scharf S, von Thien H, Burda PC, Spielmann T, Löw C, Filarsky M, Bachmann A, Gilberger TW. Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell Microbiol 2021; 23:e13341. [PMID: 33830607 DOI: 10.1111/cmi.13341] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single-celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of 12 known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represents structures described as apical annuli in Toxoplasma gondii. Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Juliane Wunderlich
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dorothee Heincke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Samuel Pazicky
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Sarah Scharf
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Michael Filarsky
- Centre for Structural Systems Biology, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Braunschweig, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| |
Collapse
|
21
|
Bennink S, Pradel G. Vesicle dynamics during the egress of malaria gametocytes from the red blood cell. Mol Biochem Parasitol 2021; 243:111372. [PMID: 33961918 DOI: 10.1016/j.molbiopara.2021.111372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023]
Abstract
Malaria parasites are obligate intracellular pathogens that live in human red blood cells harbored by a parasitophorous vacuole. The parasites need to exit from the red blood cell to continue life-cycle progression and ensure human-to-mosquito transmission. Two types of blood stages are able to lyse the enveloping red blood cell to mediate egress, the merozoites and the gametocytes. The intraerythrocytic parasites exit the red blood cell via an inside-out mode during which the membrane of the parasitophorous vacuole ruptures prior to the red blood cell membrane. Membrane rupture is initiated by the exocytosis of specialized secretory vesicles following the perception of egress triggers. The molecular mechanisms of red blood cell egress have particularly been studied in malaria gametocytes. Upon activation by external factors, gametocytes successively discharge at least two types of vesicles, the osmiophilic bodies needed to rupture the parasitophorous vacuole membrane and recently identified egress vesicles that are important for the perforation of the erythrocyte membrane. In recent years, important components of the signaling cascades leading to red blood cell egress have been investigated and several proteins of the osmiophilic bodies have been identified. We here report on the newest findings on the egress of gametocytes from the red blood cell. We further focus on the content and function of the egress-related vesicles and discuss the molecular machinery that might drive vesicle discharge.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Biology 2, RWTH Aachen University, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology 2, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
22
|
Zapatero-Belinchón FJ, Carriquí-Madroñal B, Gerold G. Proximity labeling approaches to study protein complexes during virus infection. Adv Virus Res 2021; 109:63-104. [PMID: 33934830 DOI: 10.1016/bs.aivir.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular compartmentalization of proteins and protein complex formation allow cells to tightly control biological processes. Therefore, understanding the subcellular localization and interactions of a specific protein is crucial to uncover its biological function. The advent of proximity labeling (PL) has reshaped cellular proteomics in infection biology. PL utilizes a genetically modified enzyme that generates a "labeling cloud" by covalently labeling proteins in close proximity to the enzyme. Fusion of a PL enzyme to a specific antibody or a "bait" protein of interest in combination with affinity enrichment mass spectrometry (AE-MS) enables the isolation and identification of the cellular proximity proteome, or proxisome. This powerful methodology has been paramount for the mapping of membrane or membraneless organelles as well as for the understanding of hard-to-purify protein complexes, such as those of transmembrane proteins. Unsurprisingly, more and more infection biology research groups have recognized the potential of PL for the identification of host-pathogen interactions. In this chapter, we introduce the enzymes commonly used for PL labeling as well as recent promising advancements and summarize the major achievements in organelle mapping and nucleic acid PL. Moreover, we comprehensively describe the research on host-pathogen interactions using PL, giving special attention to studies in the field of virology.
Collapse
Affiliation(s)
- Francisco José Zapatero-Belinchón
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| | - Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| |
Collapse
|
23
|
Qin W, Cho KF, Cavanagh PE, Ting AY. Deciphering molecular interactions by proximity labeling. Nat Methods 2021; 18:133-143. [PMID: 33432242 PMCID: PMC10548357 DOI: 10.1038/s41592-020-01010-5] [Citation(s) in RCA: 336] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein 'baits', via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein-protein, protein-RNA and protein-DNA interactions in living cells and organisms.
Collapse
Affiliation(s)
- Wei Qin
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kelvin F Cho
- Department of Genetics, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Peter E Cavanagh
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
24
|
Xu Y, Fan X, Hu Y. In vivo interactome profiling by enzyme-catalyzed proximity labeling. Cell Biosci 2021; 11:27. [PMID: 33514425 PMCID: PMC7847152 DOI: 10.1186/s13578-021-00542-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
Enzyme-catalyzed proximity labeling (PL) combined with mass spectrometry (MS) has emerged as a revolutionary approach to reveal the protein-protein interaction networks, dissect complex biological processes, and characterize the subcellular proteome in a more physiological setting than before. The enzymatic tags are being upgraded to improve temporal and spatial resolution and obtain faster catalytic dynamics and higher catalytic efficiency. In vivo application of PL integrated with other state of the art techniques has recently been adapted in live animals and plants, allowing questions to be addressed that were previously inaccessible. It is timely to summarize the current state of PL-dependent interactome studies and their potential applications. We will focus on in vivo uses of newer versions of PL and highlight critical considerations for successful in vivo PL experiments that will provide novel insights into the protein interactome in the context of human diseases.
Collapse
Affiliation(s)
- Yangfan Xu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.,Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
25
|
Comparative proteomic analysis of kinesin-8B deficient Plasmodium berghei during gametogenesis. J Proteomics 2021; 236:104118. [PMID: 33486016 DOI: 10.1016/j.jprot.2021.104118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
Plasmodium blood stages, responsible for human to vector transmission, termed gametocytes, are the precursor cells that develop into gametes in the mosquito. Male gametogenesis works as a bottleneck for the parasite life cycle, where, during a peculiar and rapid exflagellation, a male gametocyte produces 8 intracellular axonemes that generate by budding 8 motile gametes. Understanding the molecular mechanisms of gametogenesis is key to design strategies for controlling malaria transmission. In the rodent P. berghei, the microtubule-based motor kinesin-8B (PbKIN8B) is essential for flagellum assembly during male gametogenesis and its gene disruption impacts on completion of the parasitic life cycle. In efforts to improve our knowledge about male gametogenesis, we performed an iTRAQ-based quantitative proteomic comparison of P. berghei mutants with disrupted kinesin-8B gene (ΔPbkin8B) and wild type parasites. During the 15 min of gametogenesis, ΔPbkin8B parasites exhibited important motor protein dysregulation that suggests an essential role of PbKIN8B for the correct interaction or integration of axonemal proteins within the growing axoneme. The energy metabolism of ΔPbkin8B mutants was further affected, as well as the response to stress proteins, protein synthesis, as well as chromatin organisation and DNA processes, although endomitoses seemed to occur. SIGNIFICANCE: Malaria continues to be a global scourge, mainly in subtropical and tropical areas. The disease is caused by parasites from the Plasmodium genus. Plasmodium life cycle alternates between female Anopheles mosquitoes and vertebrate hosts through bites. Gametocytes are the parasite blood forms responsible for transmission from vertebrates to vectors. Inside the mosquito midgut, after stimulation, male and female gametocytes transform into gametes resulting in fertilization. During male gametogenesis, one gametocyte generates eight intracytoplasmic axonemes that generate, by budding, flagellated motile gametes involving a process termed exflagellation. Sexual development has a central role in ensuring malaria transmission. However, molecular data on male gametogenesis and particularly on intracytoplasmic axoneme assembly are still lacking. Since rodent malaria parasites permit the combination of in vivo and in vitro experiments and reverse genetic studies, our group investigated the molecular events in rodent P. berghei gametogenesis. The P. berghei motor ATPase kinesin-8B is proposed as an important component for male gametogenesis. We generated Pbkin8B gene-disrupted gametocytes (ΔPbkin8B) that were morphologically similar to the wild- type (WT) parasites. However, in mutants, male gametogenesis is impaired, male gametocytes are disabled in their ability to assemble axonemes and to exflagellate to release gametes, reducing fertilization drastically. Using a comparative quantitative proteomic analysis, we associated the nonfunctional axoneme of the mutants with the abnormal differential expression of proteins essential to axoneme organisation and stability. We also observed a differential dysregulation of proteins involved in protein biosynthesis and degradation, chromatin organisation and DNA processes in ΔPbkin8B parasites, although DNA condensation, mitotic spindle formation and endomitoses seem to occur. This is the first functional proteomic study of a kinesin gene-disrupted Plasmodium parasite providing new insights into Plasmodium male gametogenesis.
Collapse
|
26
|
Rayaprolu S, Higginbotham L, Bagchi P, Watson CM, Zhang T, Levey AI, Rangaraju S, Seyfried NT. Systems-based proteomics to resolve the biology of Alzheimer's disease beyond amyloid and tau. Neuropsychopharmacology 2021; 46:98-115. [PMID: 32898852 PMCID: PMC7689445 DOI: 10.1038/s41386-020-00840-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/05/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
The repeated failures of amyloid-targeting therapies have challenged our narrow understanding of Alzheimer's disease (AD) pathogenesis and inspired wide-ranging investigations into the underlying mechanisms of disease. Increasing evidence indicates that AD develops from an intricate web of biochemical and cellular processes that extend far beyond amyloid and tau accumulation. This growing recognition surrounding the diversity of AD pathophysiology underscores the need for holistic systems-based approaches to explore AD pathogenesis. Here we describe how network-based proteomics has emerged as a powerful tool and how its application to the AD brain has provided an informative framework for the complex protein pathophysiology underlying the disease. Furthermore, we outline how the AD brain network proteome can be leveraged to advance additional scientific and translational efforts, including the discovery of novel protein biomarkers of disease.
Collapse
Affiliation(s)
- Sruti Rayaprolu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lenora Higginbotham
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Pritha Bagchi
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Caroline M Watson
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tian Zhang
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
27
|
Liu F, Yang F, Wang Y, Hong M, Zheng W, Min H, Li D, Jin Y, Tsuboi T, Cui L, Cao Y. A conserved malaria parasite antigen Pb22 plays a critical role in male gametogenesis in Plasmodium berghei. Cell Microbiol 2020; 23:e13294. [PMID: 33222390 DOI: 10.1111/cmi.13294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Gametogenesis, the formation of gametes from gametocytes, an essential step for malaria parasite transmission, is targeted by transmission-blocking drugs and vaccines. We identified a conserved protein (PBANKA_0305900) in Plasmodium berghei, which encodes a protein of 22 kDa (thus named Pb22) and is expressed in both asexual stages and gametocytes. Its homologues are present in all Plasmodium species and its closely related, Hepatocystis, but not in other apicomplexans. Pb22 protein was localised in the cytosols of schizonts, as well as male and female gametocytes. During gamete-to-ookinete development, Pb22 became localised on the plasma membranes of gametes and ookinetes. Compared to the wild-type (WT) parasites, P. berghei with pb22 knockout (KO) showed a significant reduction in exflagellation (~89%) of male gametocytes and ookinete number (~97%) during in vitro ookinete culture. Mosquito feeding assays showed that ookinete and oocyst formation of the pb22-KO line in mosquito midguts was almost completely abolished. These defects were rescued in parasites where pb22 was restored. Cross-fertilisation experiments with parasite lines defective in either male or female gametes confirmed that the defects in the pb22-KO line were restricted to the male gametes, whereas female gametes in the pb22-KO line were fertile at the WT level. Detailed analysis of male gametogenesis showed that 30% of the male gametocytes in the pb22-KO line failed to assemble the axonemes, whereas ~48.9% of the male gametocytes formed flagella but failed to egress from the host erythrocyte. To explore its transmission-blocking potential, recombinant Pb22 (rPb22) was expressed and used to immunise mice. in vitro assays showed that the rPb22-antisera significantly inhibited exflagellation by ~64.8% and ookinete formation by ~93.4%. Mosquitoes after feeding on rPb22-immunised mice also showed significant decreases in infection prevalence (83.3-93.3%) and oocyst density (93.5-99.6%). Further studies of the Pb22 orthologues in human malaria parasites are warranted.
Collapse
Affiliation(s)
- Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yaru Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Minsheng Hong
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Wenqi Zheng
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Danni Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ying Jin
- Division of Administration, Liaoning Research Institute of Family Planning, Shenyang, China
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Grasso F, Mochi S, Fratini F, Olivieri A, Currà C, Siden Kiamos I, Deligianni E, Birago C, Picci L, Pizzi E, Pace T, Ponzi M. A Comprehensive Gender-related Secretome of Plasmodium berghei Sexual Stages. Mol Cell Proteomics 2020; 19:1986-1997. [PMID: 32883804 PMCID: PMC7710150 DOI: 10.1074/mcp.ra120.002212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 11/06/2022] Open
Abstract
Plasmodium, the malaria parasite, undergoes a complex life cycle alternating between a vertebrate host and a mosquito vector of the genus Anopheles In red blood cells of the vertebrate host, Plasmodium multiplies asexually or differentiates into gamete precursors, the male and female gametocytes, responsible for parasite transmission. Sexual stage maturation occurs in the midgut of the mosquito vector, where male and female gametes egress from the host erythrocytes to fuse and form a zygote. Gamete egress entails the successive rupture of two membranes surrounding the parasite, the parasitophorous vacuole membrane and the erythrocyte plasma membrane. In this study, we used the rodent model parasite Plasmodium berghei to design a label-free quantitative proteomic approach aimed at identifying gender-related proteins differentially released/secreted by purified mature gametocytes when activated to form gametes. We compared the abundance of molecules secreted by wild type gametocytes of both genders with that of a transgenic line defective in male gamete maturation and egress. This enabled us to provide a comprehensive data set of egress-related molecules and their gender specificity. Using specific antibodies, we validated eleven candidate molecules, predicted as either gender-specific or common to both male and female gametocytes. All of them localize to punctuate, vesicle-like structures that relocate to cell periphery upon activation, but only three of them localize to the gametocyte-specific secretory vesicles named osmiophilic bodies. Our results confirm that the egress process involves a tightly coordinated secretory apparatus that includes different types of vesicles and may put the basis for functional studies aimed at designing novel transmission-blocking molecules.
Collapse
Affiliation(s)
- Felicia Grasso
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Stefania Mochi
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Federica Fratini
- Istituto Superiore di Sanità, Servizio Grandi Strumentazioni e Core Facilities, Rome, Italy
| | - Anna Olivieri
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Chiara Currà
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Inga Siden Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Cecilia Birago
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Leonardo Picci
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Elisabetta Pizzi
- Istituto Superiore di Sanità, Servizio Grandi Strumentazioni e Core Facilities, Rome, Italy
| | - Tomasino Pace
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Marta Ponzi
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| |
Collapse
|
29
|
Definition of constitutive and stage-enriched promoters in the rodent malaria parasite, Plasmodium yoelii. Malar J 2020; 19:424. [PMID: 33228734 PMCID: PMC7685602 DOI: 10.1186/s12936-020-03498-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022] Open
Abstract
Background Well-defined promoters are essential elements for genetic studies in all organisms, and enable controlled expression of endogenous genes, transgene expression, and gene editing. Despite this, there is a paucity of defined promoters for the rodent-infectious malaria parasites. This is especially true for Plasmodium yoelii, which is often used to study the mosquito and liver stages of malarial infection, as well as host immune responses to infection. Methods Here six promoters were selected from across the parasite’s life cycle (clag-a, dynein heavy chain delta, lap4, trap, uis4, lisp2) that have been invoked in the literature as controlling their genes in a stage-specific manner. A minimal promoter length for the constitutive pybip promoter that confers strong expression levels was also determined, which is useful for expression of reporters and gene editing enzymes. Results Instead, it was observed that these promoters confer stage-enriched gene control, as some parasites also effectively use these promoters in other stages. Thus, when used alone, these promoters could complicate the interpretation of results obtained from promoter swaps, stage-targeted recombination, or gene editing experiments. Conclusions Together these data indicate that achieving stage-specific effects, such as gene editing, is likely best done using a two-component system with independent promoter activities overlapping only in the intended life cycle stage.
Collapse
|
30
|
Sassmannshausen J, Pradel G, Bennink S. Perforin-Like Proteins of Apicomplexan Parasites. Front Cell Infect Microbiol 2020; 10:578883. [PMID: 33042876 PMCID: PMC7522308 DOI: 10.3389/fcimb.2020.578883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022] Open
Abstract
Perforins are secreted proteins of eukaryotes, which possess a membrane attack complex/perforin (MACPF) domain enabling them to form pores in the membranes of target cells. In higher eukaryotes, they are assigned to immune defense mechanisms required to kill invading microbes or infected cells. Perforin-like proteins (PLPs) are also found in apicomplexan parasites. Here they play diverse roles during lifecycle progression of the intracellularly replicating protozoans. The apicomplexan PLPs are best studied in Plasmodium and Toxoplasma, the causative agents of malaria and toxoplasmosis, respectively. The PLPs are expressed in the different lifecycle stages of the pathogens and can target and lyse a variety of cell membranes of the invertebrate and mammalian hosts. The PLPs thereby either function in host cell destruction during exit or in overcoming epithelial barriers during tissue passage. In this review, we summarize the various PLPs known for apicomplexan parasites and highlight their roles in Plasmodium and Toxoplasma lifecycle progression.
Collapse
Affiliation(s)
- Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
31
|
Bosch JA, Chen CL, Perrimon N. Proximity-dependent labeling methods for proteomic profiling in living cells: An update. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e392. [PMID: 32909689 DOI: 10.1002/wdev.392] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that generate reactive radicals to covalently tag neighboring proteins. The tagged endogenous proteins can then be isolated for further analysis by MS. To analyze protein-protein interactions or identify components that localize to discrete subcellular compartments, spatial expression is achieved by fusing the enzyme to specific proteins or signal peptides that target to particular subcellular regions. Although these technologies have only been introduced recently, they have already provided deep insights into a wide range of biological processes. Here, we provide an updated description and comparison of proximity labeling methods, as well as their applications and improvements. As each method has its own unique features, the goal of this review is to describe how different proximity labeling methods can be used to answer different biological questions. This article is categorized under: Technologies > Analysis of Proteins.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiao-Lin Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Nasamu AS, Polino AJ, Istvan ES, Goldberg DE. Malaria parasite plasmepsins: More than just plain old degradative pepsins. J Biol Chem 2020; 295:8425-8441. [PMID: 32366462 PMCID: PMC7307202 DOI: 10.1074/jbc.rev120.009309] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmepsins are a group of diverse aspartic proteases in the malaria parasite Plasmodium Their functions are strikingly multifaceted, ranging from hemoglobin degradation to secretory organelle protein processing for egress, invasion, and effector export. Some, particularly the digestive vacuole plasmepsins, have been extensively characterized, whereas others, such as the transmission-stage plasmepsins, are minimally understood. Some (e.g. plasmepsin V) have exquisite cleavage sequence specificity; others are fairly promiscuous. Some have canonical pepsin-like aspartic protease features, whereas others have unusual attributes, including the nepenthesin loop of plasmepsin V and a histidine in place of a catalytic aspartate in plasmepsin III. We have learned much about the functioning of these enzymes, but more remains to be discovered about their cellular roles and even their mechanisms of action. Their importance in many key aspects of parasite biology makes them intriguing targets for antimalarial chemotherapy. Further consideration of their characteristics suggests that some are more viable drug targets than others. Indeed, inhibitors of invasion and egress offer hope for a desperately needed new drug to combat this nefarious organism.
Collapse
Affiliation(s)
- Armiyaw S Nasamu
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander J Polino
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eva S Istvan
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
33
|
Andreadaki M, Pace T, Grasso F, Siden‐Kiamos I, Mochi S, Picci L, Bertuccini L, Ponzi M, Currà C. Plasmodium berghei
Gamete Egress Protein is required for fertility of both genders. Microbiologyopen 2020; 9:e1038. [PMID: 32352241 PMCID: PMC7349110 DOI: 10.1002/mbo3.1038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Male and female Plasmodium gametocytes ingested by the Anopheles mosquitoes during a blood meal egress from the red blood cells by rupturing the two surrounding membranes, the parasitophorous vacuole and the red blood cell membranes. Proteins of the so‐called osmiophilic bodies, (OBs), secretory organelles resident in the cytoplasm, are important players in this process. Once gametes emerge, the female is ready to be fertilized while the male develops into motile flagellar gametes. Here, we describe the function(s) of PBANKA_1115200, which we named Gamete Egress Protein (GEP), a protein specific to malaria parasites. GEP is restricted to gametocytes, expressed in gametocytes of both genders and partly localizes to the OBs. A mutant lacking the protein shows aberrant rupture of the two surrounding membranes, while OBs discharge is delayed but not aborted. Moreover, we identified a second function of GEP during exflagellation since the axonemes of the male flagellar gametes were not motile. Genetic crossing experiments reveal that both genders are unable to establish infections in mosquitoes and thus the lack of GEP leads to a complete block in Plasmodium transmission from mice to mosquitoes. The combination of our results reveals essential and pleiotropic functions of GEP in Plasmodium gametogenesis.
Collapse
Affiliation(s)
- Maria Andreadaki
- FORTH Institute of Molecular Biology and Biotechnology Heraklion Greece
| | - Tomasino Pace
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | - Felicia Grasso
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | - Inga Siden‐Kiamos
- FORTH Institute of Molecular Biology and Biotechnology Heraklion Greece
| | - Stefania Mochi
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | - Leonardo Picci
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | | | - Marta Ponzi
- Dipartimento di Malattie Infettive Istituto Superiore di Sanità Roma Italy
| | - Chiara Currà
- FORTH Institute of Molecular Biology and Biotechnology Heraklion Greece
| |
Collapse
|
34
|
May DG, Scott KL, Campos AR, Roux KJ. Comparative Application of BioID and TurboID for Protein-Proximity Biotinylation. Cells 2020; 9:cells9051070. [PMID: 32344865 PMCID: PMC7290721 DOI: 10.3390/cells9051070] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022] Open
Abstract
BioID is a well-established method for identifying protein–protein interactions and has been utilized within live cells and several animal models. However, the conventional labeling period requires 15–18 h for robust biotinylation which may not be ideal for some applications. Recently, two new ligases termed TurboID and miniTurbo were developed using directed evolution of the BioID ligase and were able to produce robust biotinylation following a 10 min incubation with excess biotin. However, there is reported concern about inducibility of biotinylation, cellular toxicity, and ligase stability. To further investigate the practical applications of TurboID and ascertain strengths and weaknesses compared to BioID, we developed several stable cell lines expressing BioID and TurboID fusion proteins and analyzed them via immunoblot, immunofluorescence, and biotin-affinity purification-based proteomics. For TurboID we observed signs of protein instability, persistent biotinylation in the absence of exogenous biotin, and an increase in the practical labeling radius. However, TurboID enabled robust biotinylation in the endoplasmic reticulum lumen compared to BioID. Induction of biotinylation could be achieved by combining doxycycline-inducible expression with growth in biotin depleted culture media. These studies should help inform investigators utilizing BioID-based methods as to the appropriate ligase and experimental protocol for their particular needs.
Collapse
Affiliation(s)
- Danielle G. May
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA; (D.G.M.); (K.L.S.)
| | - Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA; (D.G.M.); (K.L.S.)
| | - Alexandre R. Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA; (D.G.M.); (K.L.S.)
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
- Correspondence: ; Tel.: +1-605-312-6418
| |
Collapse
|
35
|
Moreau CA, Quadt KA, Piirainen H, Kumar H, Bhargav SP, Strauss L, Tolia NH, Wade RC, Spatz JP, Kursula I, Frischknecht F. A function of profilin in force generation during malaria parasite motility that is independent of actin binding. J Cell Sci 2020; 134:jcs233775. [PMID: 32034083 DOI: 10.1242/jcs.233775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/06/2020] [Indexed: 01/20/2023] Open
Abstract
During transmission of malaria-causing parasites from mosquito to mammal, Plasmodium sporozoites migrate at high speed within the skin to access the bloodstream and infect the liver. This unusual gliding motility is based on retrograde flow of membrane proteins and highly dynamic actin filaments that provide short tracks for a myosin motor. Using laser tweezers and parasite mutants, we previously suggested that actin filaments form macromolecular complexes with plasma membrane-spanning adhesins to generate force during migration. Mutations in the actin-binding region of profilin, a near ubiquitous actin-binding protein, revealed that loss of actin binding also correlates with loss of force production and motility. Here, we show that different mutations in profilin, that do not affect actin binding in vitro, still generate lower force during Plasmodium sporozoite migration. Lower force generation inversely correlates with increased retrograde flow suggesting that, like in mammalian cells, the slow down of flow to generate force is the key underlying principle governing Plasmodium gliding motility.
Collapse
Affiliation(s)
- Catherine A Moreau
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Katharina A Quadt
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research and Laboratory of Biophysical Chemistry, Heidelberg University, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Henni Piirainen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Hirdesh Kumar
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Saligram P Bhargav
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Léanne Strauss
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rebecca C Wade
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research and Laboratory of Biophysical Chemistry, Heidelberg University, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Nessel T, Beck JM, Rayatpisheh S, Jami-Alahmadi Y, Wohlschlegel JA, Goldberg DE, Beck JR. EXP1 is required for organisation of EXP2 in the intraerythrocytic malaria parasite vacuole. Cell Microbiol 2020; 22:e13168. [PMID: 31990132 DOI: 10.1111/cmi.13168] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Intraerythrocytic malaria parasites reside within a parasitophorous vacuole membrane (PVM) that closely overlays the parasite plasma membrane. Although the PVM is the site of several transport activities essential to parasite survival, the basis for organisation of this membrane system is unknown. Here, we performed proximity labeling at the PVM with BioID2, which highlighted a group of single-pass integral membrane proteins that constitute a major component of the PVM proteome but whose function remains unclear. We investigated EXP1, the longest known member of this group, by adapting a CRISPR/Cpf1 genome editing system to install the TetR-DOZI-aptamers system for conditional translational control. Importantly, although EXP1 was required for intraerythrocytic development, a previously reported in vitro glutathione S-transferase activity could not account for this essential EXP1 function in vivo. EXP1 knockdown was accompanied by profound changes in vacuole ultrastructure, including apparent increased separation of the PVM from the parasite plasma membrane and formation of abnormal membrane structures. Furthermore, although activity of the Plasmodium translocon of exported proteins was not impacted by depletion of EXP1, the distribution of the translocon pore-forming protein EXP2 but not the HSP101 unfoldase was substantially altered. Collectively, our results reveal a novel PVM defect that indicates a critical role for EXP1 in maintaining proper organisation of EXP2 within the PVM.
Collapse
Affiliation(s)
- Timothy Nessel
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - John M Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - Shima Rayatpisheh
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University, St. Louis, Missouri
| | - Josh R Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa.,Departments of Medicine and Molecular Microbiology, Washington University, St. Louis, Missouri
| |
Collapse
|
37
|
Ishino T, Tachibana M, Baba M, Iriko H, Tsuboi T, Torii M. Observation of morphological changes of female osmiophilic bodies prior to Plasmodium gametocyte egress from erythrocytes. Mol Biochem Parasitol 2020; 236:111261. [PMID: 31981605 DOI: 10.1016/j.molbiopara.2020.111261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Plasmodium parasites cause malaria in mammalian hosts and are transmitted by Anopheles mosquitoes. Gametocytes, which differentiate from asexual-stage parasites, are activated by environmental changes when ingested into the mosquito midgut, and are rapidly released from erythrocytes prior to fertilization. Secretory proteins localized to osmiophilic bodies (OBs), organelles unique to gametocytes, have been reported to be involved in female gametocyte egress. In this study, we investigate the dynamics of OBs in activated gametocytes of Plasmodium falciparum and Plasmodium yoelii using the female OB-specific marker protein, G377. After activation, female gametocyte OBs migrate to the parasite surface and fuse to form large vesicles beneath the parasite plasma membrane. At the marginal region of female gametocytes, fused vesicles secrete contents by exocytosis into the parasitophorous vacuole space, prior to parasite egress via the break-down of the erythrocyte membrane. This is the first detailed description of how proteins are transported through osmiophilic bodies.
Collapse
Affiliation(s)
- Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan.
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Hideyuki Iriko
- Division of Global Infectious Diseases, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan; Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
38
|
Béganton B, Solassol I, Mangé A, Solassol J. Protein interactions study through proximity-labeling. Expert Rev Proteomics 2019; 16:717-726. [PMID: 31269821 DOI: 10.1080/14789450.2019.1638769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: The proteome is a dynamic system in which protein-protein interactions play a crucial part in shaping the cell phenotype. However, given the current limitations of available technologies to describe the dynamic nature of these interactions, the identification of protein-protein interactions has long been a major challenge in proteomics. In recent years, the development of BioID and APEX, two proximity-tagging technologies, have opened-up new perspectives and have already started to change our conception of protein-protein interactions, and more generally, of the proteome. With a broad range of application encompassing health, these new technologies are currently setting milestones crucial to understand fine cellular mechanisms. Area covered: In this article, we describe both the recent and the more conventional available tools to study protein-protein interactions, compare the advantages and the limitations of these techniques, and discuss the recent advancements led by the proximity tagging techniques to refine our conception of the proteome. Expert opinion: The recent development of proximity labeling techniques emphasizes the growing importance of such technologies to decipher cellular mechanism. Although several challenges still need to be addressed, many fields can benefit from these tools and notably the detection of new therapeutic targets for patient care.
Collapse
Affiliation(s)
- Benoît Béganton
- IRCM, INSERM, Univ Montpellier, ICM , Montpellier , France.,Department of Pathology and onco-biology, CHU Montpellier , Montpellier , France
| | - Isabelle Solassol
- Translational Research Unit, Montpellier Cancer Institute , Montpellier , France
| | - Alain Mangé
- IRCM, INSERM, Univ Montpellier, ICM , Montpellier , France
| | - Jérôme Solassol
- IRCM, INSERM, Univ Montpellier, ICM , Montpellier , France.,Department of Pathology and onco-biology, CHU Montpellier , Montpellier , France
| |
Collapse
|
39
|
Dubois DJ, Soldati-Favre D. Biogenesis and secretion of micronemes in Toxoplasma gondii. Cell Microbiol 2019; 21:e13018. [PMID: 30791192 DOI: 10.1111/cmi.13018] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
One of the hallmarks of the parasitic phylum of Apicomplexa is the presence of highly specialised, apical secretory organelles, called the micronemes and rhoptries that play critical roles in ensuring survival and dissemination. Upon exocytosis, the micronemes release adhesin complexes, perforins, and proteases that are crucially implicated in egress from infected cells, gliding motility, migration across biological barriers, and host cell invasion. Recent studies on Toxoplasma gondii and Plasmodium species have shed more light on the signalling events and the machinery that trigger microneme secretion. Intracellular cyclic nucleotides, calcium level, and phosphatidic acid act as key mediators of microneme exocytosis, and several downstream effectors have been identified. Here, we review the key steps of microneme biogenesis and exocytosis, summarising the still fractal knowledge at the molecular level regarding the fusion event with the parasite plasma membrane.
Collapse
Affiliation(s)
- David J Dubois
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva, Switzerland
| |
Collapse
|
40
|
Béganton B, Coyaud E, Mangé A, Solassol J. Approches nouvelles pour l’étude des interactions protéine-protéine. Med Sci (Paris) 2019; 35:223-231. [DOI: 10.1051/medsci/2019035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Le protéome est un système dynamique où les interactions protéine-protéine occupent une place essentielle pour modeler ensemble le phénotype cellulaire. L’identification de ces interactions a toutefois longtemps représenté un obstacle important en protéomique tant les techniques disponibles ne permettaient pas de rendre compte de ces dynamiques d’interactions. Le développement récent du BioID et de l’APEX, deux technologies de marquage de proximité, ouvre aujourd’hui de nouvelles perspectives. Dans cette revue, nous décrivons les outils disponibles pour étudier les interactions protéine-protéine et discutons des progrès récents apportés par les marquages de proximité pour compléter notre vision du protéome et ainsi mieux comprendre les mécanismes cellulaires.
Collapse
|
41
|
Obrova K, Cyrklaff M, Frank R, Mair GR, Mueller AK. Transmission of the malaria parasite requires ferlin for gamete egress from the red blood cell. Cell Microbiol 2019; 21:e12999. [PMID: 30597708 DOI: 10.1111/cmi.12999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/15/2018] [Accepted: 12/09/2018] [Indexed: 02/02/2023]
Abstract
Ferlins mediate calcium-dependent vesicular fusion. Although conserved throughout eukaryotic evolution, their function in unicellular organisms including apicomplexan parasites is largely unknown. Here, we define a crucial role for a ferlin-like protein (FLP) in host-to-vector transmission of the rodent malaria parasite Plasmodium berghei. Infection of the mosquito vectors requires the formation of free gametes and their fertilisation in the mosquito midgut. Mature gametes will only emerge upon secretion of factors that stimulate the disruption of the red blood cell membrane and the parasitophorous vacuole membrane. Genetic depletion of FLP in sexual stages leads to a complete life cycle arrest in the mosquito. Although mature gametes form normally, mutants lacking FLP remain trapped in the red blood cell. The egress defect is rescued by detergent-mediated membrane lysis. In agreement with ferlin vesicular localisation, HA-tagged FLP labels intracellular speckles, which relocalise to the cell periphery during gamete maturation. Our data define FLP as a novel critical factor for Plasmodium fertilisation and transmission and suggest an evolutionarily conserved example of ferlin-mediated exocytosis.
Collapse
Affiliation(s)
- Klara Obrova
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Marek Cyrklaff
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Roland Frank
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Gunnar R Mair
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Ann-Kristin Mueller
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infectious Diseases (DZIF), Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
42
|
Abstract
BioID has become an increasingly utilized tool for identifying candidate protein-protein interactions (PPIs) in living cells. This method utilizes a promiscuous biotin ligase, called BioID, fused to a protein of interest that when expressed in cells can be induced to biotinylate interacting and proximate proteins over a period of hours, thus generating a history of protein associations. These biotinylated proteins are subsequently purified and identified via mass spectrometry. Compared to other conventional methods typically used to screen strong PPIs, BioID allows for the detection of weak and transient interactions within a relevant biological setting over a defined period of time. Here we briefly review the scientific progress enabled by the BioID technology, detail an updated protocol for applying the method to proteins in living cells, and offer insights for troubleshooting commonly encountered setbacks.
Collapse
Affiliation(s)
- Rhiannon M. Sears
- Enabling Technology Group, Sanford Research, Sioux Falls, SD 57104,Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Danielle G. May
- Enabling Technology Group, Sanford Research, Sioux Falls, SD 57104
| | - Kyle J. Roux
- Enabling Technology Group, Sanford Research, Sioux Falls, SD 57104,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| |
Collapse
|
43
|
Swearingen KE, Lindner SE. Plasmodium Parasites Viewed through Proteomics. Trends Parasitol 2018; 34:945-960. [PMID: 30146456 PMCID: PMC6204299 DOI: 10.1016/j.pt.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022]
Abstract
Early sequencing efforts that produced the genomes of several species of malaria parasites (Plasmodium genus) propelled transcriptomic and proteomic efforts. In this review, we focus upon some of the exciting proteomic advances from studies of Plasmodium parasites over approximately the past decade. With improvements to both instrumentation and data-processing capabilities, long-standing questions about the forms and functions of these important pathogens are rapidly being answered. In particular, global and subcellular proteomics, quantitative proteomics, and the detection of post-translational modifications have all revealed important features of the parasite's regulatory mechanisms. Finally, we provide our perspectives on future applications of proteomics to Plasmodium research, as well as suggestions for further improvement through standardization of data deposition, analysis, and accessibility.
Collapse
Affiliation(s)
- Kristian E Swearingen
- Institute for Systems Biology, Seattle, WA 98109, USA; Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
44
|
Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. MICROBIAL CELL 2018; 5:525-544. [PMID: 30533418 PMCID: PMC6282021 DOI: 10.15698/mic2018.12.659] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell exit is a critical step in the life-cycle of intracellular pathogens, intimately linked to barrier penetration, tissue dissemination, inflammation, and pathogen transmission. Like cell invasion and intracellular survival, host cell exit represents a well-regulated program that has evolved during host-pathogen co-evolution and that relies on the dynamic and intricate interplay between multiple host and microbial factors. Three distinct pathways of host cell exit have been identified that are employed by three different taxa of intracellular pathogens, bacteria, fungi and protozoa, namely (i) the initiation of programmed cell death, (ii) the active breaching of host cellderived membranes, and (iii) the induced membrane-dependent exit without host cell lysis. Strikingly, an increasing number of studies show that the majority of intracellular pathogens utilize more than one of these strategies, dependent on life-cycle stage, environmental factors and/or host cell type. This review summarizes the diverse exit strategies of intracellular-living bacterial, fungal and protozoan pathogens and discusses the convergently evolved commonalities as well as system-specific variations thereof. Key microbial molecules involved in host cell exit are highlighted and discussed as potential targets for future interventional approaches.
Collapse
Affiliation(s)
- Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | | | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology II, RWTH Aachen University, Germany
| |
Collapse
|
45
|
Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, Feldman JL, Perrimon N, Ting AY. Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 2018; 36:880-887. [PMID: 30125270 PMCID: PMC6126969 DOI: 10.1038/nbt.4201] [Citation(s) in RCA: 1186] [Impact Index Per Article: 169.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
Protein interaction networks and protein compartmentalization underlie all signaling and regulatory processes in cells. Enzyme-catalyzed proximity labeling (PL) has emerged as a new approach to study the spatial and interaction characteristics of proteins in living cells. However, current PL methods require over 18 h of labeling time or utilize chemicals with limited cell permeability or high toxicity. We used yeast display-based directed evolution to engineer two promiscuous mutants of biotin ligase, TurboID and miniTurbo, which catalyze PL with much greater efficiency than BioID or BioID2, and enable 10-min PL in cells with non-toxic and easily deliverable biotin. Furthermore, TurboID extends biotin-based PL to flies and worms.
Collapse
Affiliation(s)
- Tess C. Branon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Departments of Genetics, Stanford University, Stanford, California, USA
- Departments of Chemistry, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
| | - Justin A. Bosch
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ariana D. Sanchez
- Department of Biology, Stanford University, Stanford, California, USA
| | | | - Tanya Svinkina
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Alice Y. Ting
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Departments of Genetics, Stanford University, Stanford, California, USA
- Departments of Chemistry, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Seidi A, Muellner-Wong LS, Rajendran E, Tjhin ET, Dagley LF, Aw VYT, Faou P, Webb AI, Tonkin CJ, van Dooren GG. Elucidating the mitochondrial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome c oxidase. eLife 2018; 7:e38131. [PMID: 30204084 PMCID: PMC6156079 DOI: 10.7554/elife.38131] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022] Open
Abstract
The mitochondrion of apicomplexan parasites is critical for parasite survival, although the full complement of proteins that localize to this organelle has not been defined. Here we undertake two independent approaches to elucidate the mitochondrial proteome of the apicomplexan Toxoplasma gondii. We identify approximately 400 mitochondrial proteins, many of which lack homologs in the animals that these parasites infect, and most of which are important for parasite growth. We demonstrate that one such protein, termed TgApiCox25, is an important component of the parasite cytochrome c oxidase (COX) complex. We identify numerous other apicomplexan-specific components of COX, and conclude that apicomplexan COX, and apicomplexan mitochondria more generally, differ substantially in their protein composition from the hosts they infect. Our study highlights the diversity that exists in mitochondrial proteomes across the eukaryotic domain of life, and provides a foundation for defining unique aspects of mitochondrial biology in an important phylum of parasites.
Collapse
Affiliation(s)
- Azadeh Seidi
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | | | - Esther Rajendran
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Edwin T Tjhin
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical ResearchVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneVictoriaAustralia
| | - Vincent YT Aw
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Pierre Faou
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityVictoriaAustralia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical ResearchVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneVictoriaAustralia
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical ResearchVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneVictoriaAustralia
| | - Giel G van Dooren
- Research School of BiologyAustralian National UniversityCanberraAustralia
| |
Collapse
|
47
|
Boucher MJ, Ghosh S, Zhang L, Lal A, Jang SW, Ju A, Zhang S, Wang X, Ralph SA, Zou J, Elias JE, Yeh E. Integrative proteomics and bioinformatic prediction enable a high-confidence apicoplast proteome in malaria parasites. PLoS Biol 2018; 16:e2005895. [PMID: 30212465 PMCID: PMC6155542 DOI: 10.1371/journal.pbio.2005895] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/25/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Malaria parasites (Plasmodium spp.) and related apicomplexan pathogens contain a nonphotosynthetic plastid called the apicoplast. Derived from an unusual secondary eukaryote-eukaryote endosymbiosis, the apicoplast is a fascinating organelle whose function and biogenesis rely on a complex amalgamation of bacterial and algal pathways. Because these pathways are distinct from the human host, the apicoplast is an excellent source of novel antimalarial targets. Despite its biomedical importance and evolutionary significance, the absence of a reliable apicoplast proteome has limited most studies to the handful of pathways identified by homology to bacteria or primary chloroplasts, precluding our ability to study the most novel apicoplast pathways. Here, we combine proximity biotinylation-based proteomics (BioID) and a new machine learning algorithm to generate a high-confidence apicoplast proteome consisting of 346 proteins. Critically, the high accuracy of this proteome significantly outperforms previous prediction-based methods and extends beyond other BioID studies of unique parasite compartments. Half of identified proteins have unknown function, and 77% are predicted to be important for normal blood-stage growth. We validate the apicoplast localization of a subset of novel proteins and show that an ATP-binding cassette protein ABCF1 is essential for blood-stage survival and plays a previously unknown role in apicoplast biogenesis. These findings indicate critical organellar functions for newly discovered apicoplast proteins. The apicoplast proteome will be an important resource for elucidating unique pathways derived from secondary endosymbiosis and prioritizing antimalarial drug targets.
Collapse
Affiliation(s)
- Michael J. Boucher
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sreejoyee Ghosh
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lichao Zhang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Avantika Lal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Se Won Jang
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - An Ju
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Shuying Zhang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Xinzi Wang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic, Australia
| | - James Zou
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Joshua E. Elias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ellen Yeh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
48
|
Roth A, Adapa SR, Zhang M, Liao X, Saxena V, Goffe R, Li S, Ubalee R, Saggu GS, Pala ZR, Garg S, Davidson S, Jiang RHY, Adams JH. Unraveling the Plasmodium vivax sporozoite transcriptional journey from mosquito vector to human host. Sci Rep 2018; 8:12183. [PMID: 30111801 PMCID: PMC6093925 DOI: 10.1038/s41598-018-30713-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Malaria parasites transmitted by mosquito bite are remarkably efficient in establishing human infections. The infection process requires roughly 30 minutes and is highly complex as quiescent sporozoites injected with mosquito saliva must be rapidly activated in the skin, migrate through the body, and infect the liver. This process is poorly understood for Plasmodium vivax due to low infectivity in the in vitro models. To study this skin-to-liver-stage of malaria, we used quantitative bioassays coupled with transcriptomics to evaluate parasite changes linked with mammalian microenvironmental factors. Our in vitro phenotyping and RNA-seq analyses revealed key microenvironmental relationships with distinct biological functions. Most notable, preservation of sporozoite quiescence by exposure to insect-like factors coupled with strategic activation limits untimely activation of invasion-associated genes to dramatically increase hepatocyte invasion rates. We also report the first transcriptomic analysis of the P. vivax sporozoite interaction in salivary glands identifying 118 infection-related differentially-regulated Anopheles dirus genes. These results provide important new insights in malaria parasite biology and identify priority targets for antimalarial therapeutic interventions to block P. vivax infection.
Collapse
Affiliation(s)
- Alison Roth
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Swamy R Adapa
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Xiangyun Liao
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Vishal Saxena
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Raaven Goffe
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Suzanne Li
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Gagandeep S Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergic and Infectious Diseases, National Institute of Health, Rockville, Maryland, USA
| | - Zarna R Pala
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Shilpi Garg
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Silas Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|
49
|
Kehrer J, Kuss C, Andres-Pons A, Reustle A, Dahan N, Devos D, Kudryashev M, Beck M, Mair GR, Frischknecht F. Nuclear Pore Complex Components in the Malaria Parasite Plasmodium berghei. Sci Rep 2018; 8:11249. [PMID: 30050042 PMCID: PMC6062611 DOI: 10.1038/s41598-018-29590-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/08/2018] [Indexed: 12/13/2022] Open
Abstract
The nuclear pore complex (NPC) is a large macromolecular assembly of around 30 different proteins, so-called nucleoporins (Nups). Embedded in the nuclear envelope the NPC mediates bi-directional exchange between the cytoplasm and the nucleus and plays a role in transcriptional regulation that is poorly understood. NPCs display modular arrangements with an overall structure that is generally conserved among many eukaryotic phyla. However, Nups of yeast or human origin show little primary sequence conservation with those from early-branching protozoans leaving those of the malaria parasite unrecognized. Here we have combined bioinformatic and genetic methods to identify and spatially characterize Nup components in the rodent infecting parasite Plasmodium berghei and identified orthologs from the human malaria parasite P. falciparum, as well as the related apicomplexan parasite Toxoplasma gondii. For the first time we show the localization of selected Nups throughout the P. berghei life cycle. Largely restricted to apicomplexans we identify an extended C-terminal poly-proline extension in SEC13 that is essential for parasite survival and provide high-resolution images of Plasmodium NPCs obtained by cryo electron tomography. Our data provide the basis for full characterization of NPCs in malaria parasites, early branching unicellular eukaryotes with significant impact on human health.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Claudia Kuss
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Amparo Andres-Pons
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Anna Reustle
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Noa Dahan
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Damien Devos
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Centro Andaluz de Biología del Desarrollo CABD, Universidad Pablo de Olavide-CSIC, Carretera de Utrera, 41013, Sevilla, Spain
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Str. 17, 60438, Frankfurt am Main, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany. .,Iowa State University, Biomedical Sciences, College of Veterinary Medicine, 1800 Christensen Drive, Ames, IA, 50011, USA.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.
| |
Collapse
|
50
|
Huber S, Karagenc T, Ritler D, Rottenberg S, Woods K. Identification and characterisation of a Theileria annulata proline-rich microtubule and SH3 domain-interacting protein (TaMISHIP) that forms a complex with CLASP1, EB1, and CD2AP at the schizont surface. Cell Microbiol 2018; 20:e12838. [PMID: 29520916 PMCID: PMC6033098 DOI: 10.1111/cmi.12838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022]
Abstract
Theileria annulata is an apicomplexan parasite that modifies the phenotype of its host cell completely, inducing uncontrolled proliferation, resistance to apoptosis, and increased invasiveness. The infected cell thus resembles a cancer cell, and changes to various host cell signalling pathways accompany transformation. Most of the molecular mechanisms leading to Theileria-induced immortalization of leukocytes remain unknown. The parasite dissolves the surrounding host cell membrane soon after invasion and starts interacting with host proteins, ensuring its propagation by stably associating with the host cell microtubule network. By using BioID technology together with fluorescence microscopy and co-immunoprecipitation, we identified a CLASP1/CD2AP/EB1-containing protein complex that surrounds the schizont throughout the host cell cycle and integrates bovine adaptor proteins (CIN85, 14-3-3 epsilon, and ASAP1). This complex also includes the schizont membrane protein Ta-p104 together with a novel secreted T. annulata protein (encoded by TA20980), which we term microtubule and SH3 domain-interacting protein (TaMISHIP). TaMISHIP localises to the schizont surface and contains a functional EB1-binding SxIP motif, as well as functional SH3 domain-binding Px(P/A)xPR motifs that mediate its interaction with CD2AP. Upon overexpression in non-infected bovine macrophages, TaMISHIP causes binucleation, potentially indicative of a role in cytokinesis.
Collapse
Affiliation(s)
- Sandra Huber
- Institute for Animal Pathology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Tulin Karagenc
- Department of Parasitology, Faculty of Veterinary MedicineAdnan Menderes UniversityAydinTurkey
| | - Dominic Ritler
- Institute of Parasitology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Sven Rottenberg
- Institute for Animal Pathology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Kerry Woods
- Institute for Animal Pathology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| |
Collapse
|