1
|
Chen J, Cheng Z, Chen J, Qian L, Wang H, Liu Y. Advances in human norovirus research: Vaccines, genotype distribution and antiviral strategies. Virus Res 2024; 350:199486. [PMID: 39428038 PMCID: PMC11539660 DOI: 10.1016/j.virusres.2024.199486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Norovirus, belonging to the Caliciviridae family, is a non-enveloped, positive-sense single-stranded RNA virus. It is widely acknowledged as a significant etiological agent responsible for non-bacterial acute gastroenteritis and considered a major cause thereof. Norovirus is primarily tranmitted via fecal-oral route, but can also be transmitted via airborne routes. Clinical manifestations often include symptoms associated with acute gastroenteritis, like nausea, vomiting, watery diarrhea, stomach cramps, and others. Due to the specific pathogenic mechanism of the virus, and genomic diversity, there are currently no preventive vaccines or effective antiviral drugs available for treating norovirus-induced acute gastroenteritis infections. The management of such infections mainly relies on oral rehydration therapy while prevention necessitates adherence to personal hygiene measures. The present paper discusses the nature, transmission route, clinical manifestations, immune response mechanism, and vaccine research of Norovirus. The objective of this review manuscript is to systematically gather, analyze, and summarize recent research and investigations on norovirus in order to enhance our understanding of its characteristics and pathogenesis. This not only facilitates subsequent researchers in acquiring a more expedited and comprehensive grasp of the existing knowledge about norovirus but also provides clearer directions and goals for future studies.
Collapse
Affiliation(s)
- JunLi Chen
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China
| | - ZhengChao Cheng
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China
| | - Jing Chen
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China
| | - Lingling Qian
- Central laboratory of Changshu Medicine Examination Institute, Changshu, Jiangsu 215500, PR China.
| | - Haoran Wang
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China.
| | - YuWei Liu
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China.
| |
Collapse
|
2
|
Arhab Y, Pestova TV, Hellen CUT. Translation of Overlapping Open Reading Frames Promoted by Type 2 IRESs in Avian Calicivirus Genomes. Viruses 2024; 16:1413. [PMID: 39339889 PMCID: PMC11436067 DOI: 10.3390/v16091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Caliciviruses have positive-sense RNA genomes, typically with short 5'-untranslated regions (5'UTRs) that precede the long open reading frame 1 (ORF1). Exceptionally, some avian caliciviruses have long 5'UTRs containing a picornavirus-like internal ribosomal entry site (IRES), which was likely acquired by horizontal gene transfer. Here, we identified numerous additional avian calicivirus genomes with IRESs, predominantly type 2, and determined that many of these genomes contain a ~200-300 codon-long ORF (designated ORF1*) that overlaps the 5'-terminal region of ORF1. The activity of representative type 2 IRESs from grey teal calicivirus (GTCV) and Caliciviridae sp. isolate yc-13 (RaCV1) was confirmed by in vitro translation. Toeprinting showed that in cell-free extracts and in vitro reconstituted reactions, ribosomal initiation complexes assembled on the ORF1* initiation codon and at one or two AUG codons in ORF1 at the 3'-border and/or downstream of the IRES. Initiation at all three sites required eIF4A and eIF4G, which bound to a conserved region of the IRES; initiation on the ORF1* and principal ORF1 initiation codons involved eIF1/eIF1A-dependent scanning from the IRES's 3'-border. Initiation on these IRESs was enhanced by the IRES trans-acting factors (ITAFs) Ebp1/ITAF45, which bound to the apical subdomain Id of the IRES, and PTB (GTCV) or PCBP2 (RaCV1).
Collapse
Affiliation(s)
- Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
3
|
Aktepe TE, Deerain JM, Hyde JL, Fritzlar S, Mead EM, Carrera Montoya J, Hachani A, Pearson JS, White PA, Mackenzie JM. Norovirus-mediated translation repression promotes macrophage cell death. PLoS Pathog 2024; 20:e1012480. [PMID: 39226332 PMCID: PMC11398682 DOI: 10.1371/journal.ppat.1012480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/13/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Norovirus infection is characterised by a rapid onset of disease and the development of debilitating symptoms including projectile vomiting and diffuse diarrhoea. Vaccines and antivirals are sorely lacking and developments in these areas are hampered by the lack of an adequate cell culture system to investigate human norovirus replication and pathogenesis. Herein, we describe how the model norovirus, Mouse norovirus (MNV), produces a viral protein, NS3, with the functional capacity to attenuate host protein translation which invokes the activation of cell death via apoptosis. We show that this function of NS3 is conserved between human and mouse viruses and map the protein domain attributable to this function. Our study highlights a critical viral protein that mediates crucial activities during replication, potentially identifying NS3 as a worthy target for antiviral drug development.
Collapse
Affiliation(s)
- Turgut E Aktepe
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Joshua M Deerain
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jennifer L Hyde
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Eleanor M Mead
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Julio Carrera Montoya
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jaclyn S Pearson
- The Hudson Institute of Medical Research, Centre for Innate Immunity and Infectious Diseases, Melbourne, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Bernard-Raichon L, Cadwell K. Immunomodulation by Enteric Viruses. Annu Rev Virol 2023; 10:477-502. [PMID: 37380186 DOI: 10.1146/annurev-virology-111821-112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Enteric viruses display intricate adaptations to the host mucosal immune system to successfully reproduce in the gastrointestinal tract and cause maladies ranging from gastroenteritis to life-threatening disease upon extraintestinal dissemination. However, many viral infections are asymptomatic, and their presence in the gut is associated with an altered immune landscape that can be beneficial or adverse in certain contexts. Genetic variation in the host and environmental factors including the bacterial microbiota influence how the immune system responds to infections in a remarkably viral strain-specific manner. This immune response, in turn, determines whether a given virus establishes acute versus chronic infection, which may have long-lasting consequences such as susceptibility to inflammatory disease. In this review, we summarize our current understanding of the mechanisms involved in the interaction between enteric viruses and the immune system that underlie the impact of these ubiquitous infectious agents on our health.
Collapse
Affiliation(s)
- Lucie Bernard-Raichon
- Cell Biology Department, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine; Department of Systems Pharmacology and Translational Therapeutics; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
5
|
Sullender ME, Pierce LR, Annaswamy Srinivas M, Crockett SL, Dunlap BF, Rodgers R, Schriefer LA, Kennedy EA, Stewart BM, Doench JG, Baldridge MT, Orchard RC. Selective Polyprotein Processing Determines Norovirus Sensitivity to Trim7. J Virol 2022; 96:e0070722. [PMID: 35972292 PMCID: PMC9472627 DOI: 10.1128/jvi.00707-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
Noroviruses are a leading cause of gastroenteritis worldwide, yet the molecular mechanisms of how host antiviral factors restrict norovirus infection are poorly understood. Here, we present a CRISPR activation screen that identifies mouse genes which inhibit murine norovirus (MNV) replication. Detailed analysis of the major hit Trim7 demonstrates a potent inhibition of the early stages of MNV replication. Leveraging in vitro evolution, we identified MNV mutants that escape Trim7 restriction by altering the cleavage of the viral NS6-7 polyprotein precursor. NS6, but not the NS6-7 precursor, directly binds the substrate-binding domain of Trim7. Surprisingly, the selective polyprotein processing that enables Trim7 evasion inflicts a significant evolutionary burden, as viruses with decreased NS6-7 cleavage are strongly attenuated in viral replication and pathogenesis. Our data provide an unappreciated mechanism of viral evasion of cellular antiviral factors through selective polyprotein processing and highlight the evolutionary tradeoffs in acquiring resistance to host restriction factors. IMPORTANCE To maximize a limited genetic capacity, viruses encode polyproteins that can be subsequently separated into individual components by viral proteases. While classically viewed as a means of economy, recent findings have indicated that polyprotein processing can spatially and temporally coordinate the distinct phases of the viral life cycle. Here, we present a function for alternative polyprotein processing centered on immune defense. We discovered that selective polyprotein processing of the murine norovirus polyprotein shields MNV from restriction by the host antiviral protein Trim7. Trim7 can bind the viral protein NS6 but not the viral precursor protein NS6-7. Our findings provide insight into the evolutionary pressures that define patterns of viral polyprotein processing and uncover a trade-off between viral replication and immune evasion.
Collapse
Affiliation(s)
- Meagan E. Sullender
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linley R. Pierce
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Stacey L. Crockett
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bria F. Dunlap
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rachel Rodgers
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lawrence A. Schriefer
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A. Kennedy
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brittany M. Stewart
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John G. Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Bhar S, Zhao G, Bartel JD, Sterchele H, Del Mazo A, Emerson LE, Edelmann MJ, Jones MK. Bacterial extracellular vesicles control murine norovirus infection through modulation of antiviral immune responses. Front Immunol 2022; 13:909949. [PMID: 35990695 PMCID: PMC9386532 DOI: 10.3389/fimmu.2022.909949] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Human norovirus is the primary cause of non-bacterial gastroenteritis globally and is the second leading cause of diarrheal deaths in children in developing countries. However, effective therapeutics which prevent or clear norovirus infection are not yet available due to a lack of understanding regarding norovirus pathogenesis. Evidence shows that noroviruses can bind to the surface of commensal bacteria, and the presence of these bacteria alters both acute and persistent murine norovirus infection through the modulation of host immune responses. Interestingly, norovirus-bacterial interactions also affect the bacteria by inducing bacterial stress responses and increasing the production of bacterial extracellular vesicles. Given the established ability of these vesicles to easily cross the intestinal barriers, enter the lamina propria, and modulate host responses, we hypothesized that bacterial extracellular vesicles influence murine norovirus infection through modulation of the antiviral immune response. In this study, we show that murine norovirus can attach to purified bacterial vesicles, facilitating co-inoculation of target cells with both virus and vesicle. Furthermore, we have found that when murine noroviruses and vesicles are used to co-inoculate macrophages, viral infection is reduced compared to virus infection alone. Specifically, co-inoculation with bacterial vesicles results in higher production and release of pro-inflammatory cytokines in response to viral infection. Ultimately, given that murine norovirus infection increases bacterial vesicle production in vivo, these data indicate that bacterial vesicles may serve as a mechanism by which murine norovirus infection is ultimately controlled and limited to a short-term disease.
Collapse
|
7
|
Peñaflor-Téllez Y, Chávez-Munguía B, Lagunes-Guillén A, Salazar-Villatoro L, Gutiérrez-Escolano AL. The Feline Calicivirus Leader of the Capsid Protein Has the Functional Characteristics of a Viroporin. Viruses 2022; 14:v14030635. [PMID: 35337042 PMCID: PMC8955107 DOI: 10.3390/v14030635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
The leader of the capsid (LC) protein is exclusive to the Vesivirus genus, and it is needed for successful feline calicivirus (FCV) replication, as well as an efficient apoptosis induction through the mitochondrial pathway. In this work, we aimed to determine if the LC protein from the FCV is a viroporin. Although lacking in a transmembrane domain or an amphipathic helix, the LC protein from the FCV is toxic when expressed in bacteria and it oligomerizes through disulfide bonds, which are both key characteristics of viroporins. An electron microscopy analysis of LC-expressing E. coli cells suggest that the protein induces osmotic stress. Moreover, we found that the previously studied C40A LC mutant, that fails to induce apoptosis and that hinders the replication cycle, also oligomerizes but it has a reduced toxicity and fails to induce osmotic stress in bacteria. We propose that the LC protein is a viroporin that acts as a disulfide bond-dependent antimicrobial peptide, similar to the Ebola virus delta peptide.
Collapse
|
8
|
Identification of mRNA 5' cap-associated proteins in the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2021; 247:111443. [PMID: 34890716 DOI: 10.1016/j.molbiopara.2021.111443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 11/23/2022]
Abstract
Eukaryotic messenger RNA is translated via a 5' cap-dependent initiation mechanism. Experimental evidence for proteins involved with translation initiation among eukaryotic parasites is lacking, including Plasmodium falciparum, the human malaria parasite. Native P. falciparum proteins from asexual stage parasites were enriched using a 5' cap affinity matrix. Proteomic analysis of enriched protein eluates revealed proteins putatively associated with the 5' cap. The canonical 5' cap-binding protein eIF4E (PF3D7_0315100) was the most reproducibly enriched protein. The eIF4A and eIF4G proteins hypothesized to form the eIF4F initiation complex with eIF4E were also detected as 5' cap enriched, albeit with low reproducibility. Surprisingly, enolase (ENO) was the second most enriched protein after eIF4E. Recombinant ENO protein did not demonstrate 5' cap activity, suggesting an indirect association of the native ENO with the 5' cap.
Collapse
|
9
|
Abstract
Human noroviruses (HuNoVs) are increasingly becoming the main cause of transmissible gastroenteritis worldwide, with hundreds of thousands of deaths recorded annually. Yet, decades after their discovery, there is still no effective treatment or vaccine. Efforts aimed at developing vaccines or treatment will benefit from a greater understanding of norovirus-host interactions, including the host response to infection. In this review, we provide a concise overview of the evidence establishing the significance of type I and type III interferon (IFN) responses in the restriction of noroviruses. We also critically examine our current understanding of the molecular mechanisms of IFN induction in norovirus-infected cells, and outline the diverse strategies deployed by noroviruses to supress and/or avoid host IFN responses. It is our hope that this review will facilitate further discussion and increase interest in this area.
Collapse
Affiliation(s)
- Aminu S. Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- *Correspondence: Aminu S. Jahun,
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
10
|
Brocard M, Lu J, Hall B, Borah K, Moller-Levet C, Georgana I, Sorgeloos F, Beste DJV, Goodfellow IG, Locker N. Murine Norovirus Infection Results in Anti-inflammatory Response Downstream of Amino Acid Depletion in Macrophages. J Virol 2021; 95:e0113421. [PMID: 34346771 PMCID: PMC8475529 DOI: 10.1128/jvi.01134-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Murine norovirus (MNV) infection results in a late translation shutoff that is proposed to contribute to the attenuated and delayed innate immune response observed both in vitro and in vivo. Recently, we further demonstrated the activation of the α subunit of eukaryotic initiation factor 2 (eIF2α) kinase GCN2 during MNV infection, which has been previously linked to immunomodulation and resistance to inflammatory signaling during metabolic stress. While viral infection is usually associated with activation of double-stranded RNA (dsRNA) binding pattern recognition receptor PKR, we hypothesized that the establishment of a metabolic stress in infected cells is a proviral event, exploited by MNV to promote replication through weakening the activation of the innate immune response. In this study, we used multi-omics approaches to characterize cellular responses during MNV replication. We demonstrate the activation of pathways related to the integrated stress response, a known driver of anti-inflammatory phenotypes in macrophages. In particular, MNV infection causes an amino acid imbalance that is associated with GCN2 and ATF2 signaling. Importantly, this reprogramming lacks the features of a typical innate immune response, with the ATF/CHOP target GDF15 contributing to the lack of antiviral responses. We propose that MNV-induced metabolic stress supports the establishment of host tolerance to viral replication and propagation. IMPORTANCE During viral infection, host defenses are typically characterized by the secretion of proinflammatory autocrine and paracrine cytokines, potentiation of the interferon (IFN) response, and induction of the antiviral response via activation of JAK and Stat signaling. To avoid these and propagate, viruses have evolved strategies to evade or counteract host sensing. In this study, we demonstrate that murine norovirus controls the antiviral response by activating a metabolic stress response that activates the amino acid response and impairs inflammatory signaling. This highlights novel tools in the viral countermeasures arsenal and demonstrates the importance of the currently poorly understood metabolic reprogramming occurring during viral infections.
Collapse
Affiliation(s)
- Michèle Brocard
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Jia Lu
- Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Belinda Hall
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Khushboo Borah
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Carla Moller-Levet
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Iliana Georgana
- Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Dany J. V. Beste
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
11
|
Meyer B, Chiaravalli J, Gellenoncourt S, Brownridge P, Bryne DP, Daly LA, Grauslys A, Walter M, Agou F, Chakrabarti LA, Craik CS, Eyers CE, Eyers PA, Gambin Y, Jones AR, Sierecki E, Verdin E, Vignuzzi M, Emmott E. Characterising proteolysis during SARS-CoV-2 infection identifies viral cleavage sites and cellular targets with therapeutic potential. Nat Commun 2021; 12:5553. [PMID: 34548480 PMCID: PMC8455558 DOI: 10.1038/s41467-021-25796-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 is the causative agent behind the COVID-19 pandemic, responsible for over 170 million infections, and over 3.7 million deaths worldwide. Efforts to test, treat and vaccinate against this pathogen all benefit from an improved understanding of the basic biology of SARS-CoV-2. Both viral and cellular proteases play a crucial role in SARS-CoV-2 replication. Here, we study proteolytic cleavage of viral and cellular proteins in two cell line models of SARS-CoV-2 replication using mass spectrometry to identify protein neo-N-termini generated through protease activity. We identify previously unknown cleavage sites in multiple viral proteins, including major antigens S and N: the main targets for vaccine and antibody testing efforts. We discover significant increases in cellular cleavage events consistent with cleavage by SARS-CoV-2 main protease, and identify 14 potential high-confidence substrates of the main and papain-like proteases. We show that siRNA depletion of these cellular proteins inhibits SARS-CoV-2 replication, and that drugs targeting two of these proteins: the tyrosine kinase SRC and Ser/Thr kinase MYLK, show a dose-dependent reduction in SARS-CoV-2 titres. Overall, our study provides a powerful resource to understand proteolysis in the context of viral infection, and to inform the development of targeted strategies to inhibit SARS-CoV-2 and treat COVID-19.
Collapse
Affiliation(s)
- Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS, UMR 3569, Institut Pasteur, CEDEX 15, Paris, France
| | - Jeanne Chiaravalli
- Chemogenomic and Biological Screening Core Facility, C2RT, Departments of Cell Biology & Infection and of Structural Biology & Chemistry, Institut Pasteur, CEDEX 15, Paris, France
| | - Stacy Gellenoncourt
- CIVIC Group, Virus & Immunity Unit, Institut Pasteur and CNRS, UMR 3569, Paris, France
| | - Philip Brownridge
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Dominic P Bryne
- Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Leonard A Daly
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Arturas Grauslys
- Computational Biology Facility, LIV-SRF, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Marius Walter
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Fabrice Agou
- Chemogenomic and Biological Screening Core Facility, C2RT, Departments of Cell Biology & Infection and of Structural Biology & Chemistry, Institut Pasteur, CEDEX 15, Paris, France
| | - Lisa A Chakrabarti
- CIVIC Group, Virus & Immunity Unit, Institut Pasteur and CNRS, UMR 3569, Paris, France
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Patrick A Eyers
- Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Yann Gambin
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andrew R Jones
- Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Emma Sierecki
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS, UMR 3569, Institut Pasteur, CEDEX 15, Paris, France
| | - Edward Emmott
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
12
|
Noroviruses-The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 2021; 13:v13081541. [PMID: 34452406 PMCID: PMC8402810 DOI: 10.3390/v13081541] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Human noroviruses are recognised as the major global cause of viral gastroenteritis. Here, we provide an overview of notable advances in norovirus research and provide a short recap of the novel model systems to which much of the recent progress is owed. Significant advances include an updated classification system, the description of alternative virus-like protein morphologies and capsid dynamics, and the further elucidation of the functions and roles of various viral proteins. Important milestones include new insights into cell tropism, host and microbial attachment factors and receptors, interactions with the cellular translational apparatus, and viral egress from cells. Noroviruses have been detected in previously unrecognised hosts and detection itself is facilitated by improved analytical techniques. New potential transmission routes and/or viral reservoirs have been proposed. Recent in vivo and in vitro findings have added to the understanding of host immunity in response to norovirus infection, and vaccine development has progressed to preclinical and even clinical trial testing. Ongoing development of therapeutics includes promising direct-acting small molecules and host-factor drugs.
Collapse
|
13
|
Smertina E, Hall RN, Urakova N, Strive T, Frese M. Calicivirus Non-structural Proteins: Potential Functions in Replication and Host Cell Manipulation. Front Microbiol 2021; 12:712710. [PMID: 34335548 PMCID: PMC8318036 DOI: 10.3389/fmicb.2021.712710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
The Caliciviridae are a family of viruses with a single-stranded, non-segmented RNA genome of positive polarity. The ongoing discovery of caliciviruses has increased the number of genera in this family to 11 (Norovirus, Nebovirus, Sapovirus, Lagovirus, Vesivirus, Nacovirus, Bavovirus, Recovirus, Salovirus, Minovirus, and Valovirus). Caliciviruses infect a wide range of hosts that include fishes, amphibians, reptiles, birds, and marine and land mammals. All caliciviruses have a genome that encodes a major and a minor capsid protein, a genome-linked viral protein, and several non-structural proteins. Of these non-structural proteins, only the helicase, protease, and RNA-dependent RNA polymerase share clear sequence and structural similarities with proteins from other virus families. In addition, all caliciviruses express two or three non-structural proteins for which functions have not been clearly defined. The sequence diversity of these non-structural proteins and a multitude of processing strategies suggest that at least some have evolved independently, possibly to counteract innate and adaptive immune responses in a host-specific manner. Studying these proteins is often difficult as many caliciviruses cannot be grown in cell culture. Nevertheless, the study of recombinant proteins has revealed many of their properties, such as intracellular localization, capacity to oligomerize, and ability to interact with viral and/or cellular proteins; the release of non-structural proteins from transfected cells has also been investigated. Here, we will summarize these findings and discuss recent in silico studies that identified previously overlooked putative functional domains and structural features, including transmembrane domains that suggest the presence of viroporins.
Collapse
Affiliation(s)
- Elena Smertina
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Robyn N. Hall
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Centre for Invasive Species Solutions, Canberra, ACT, Australia
| | - Nadya Urakova
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Centre for Invasive Species Solutions, Canberra, ACT, Australia
| | - Michael Frese
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
14
|
Feline Calicivirus Proteinase-Polymerase Protein Degrades mRNAs To Inhibit Host Gene Expression. J Virol 2021; 95:e0033621. [PMID: 33853967 DOI: 10.1128/jvi.00336-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To replicate efficiently and evade the antiviral immune response of the host, some viruses degrade host mRNA to induce host gene shutoff via encoding shutoff factors. In this study, we found that feline calicivirus (FCV) infection promotes the degradation of endogenous and exogenous mRNAs and induces host gene shutoff, which results in global inhibition of host protein synthesis. Screening assays revealed that proteinase-polymerase (PP) is a most effective factor in reducing mRNA expression. Moreover, PP from differently virulent strains of FCV could induce mRNA degradation. Further, we found that the key sites of the PP protein required for its proteinase activity are also essential for its shutoff activity but also required for viral replication. The mechanism analysis showed that PP mainly targets Pol II-transcribed RNA in a ribosome-, 5' cap-, and 3' poly(A) tail-independent manner. Moreover, purified glutathione S-transferase (GST)-PP fusion protein exhibits RNase activity in vitro in assays using green fluorescent protein (GFP) RNA transcribed in vitro as a substrate in the absence of other viral or cellular proteins. Finally, PP-induced shutoff requires host Xrn1 to complete further RNA degradation. This study provides a newly discovered strategy in which FCV PP protein induces host gene shutoff by promoting the degradation of host mRNAs. IMPORTANCE Virus infection-induced shutoff is the result of targeted or global manipulation of cellular gene expression and leads to efficient viral replication and immune evasion. FCV is a highly contagious pathogen that persistently infects cats. It is unknown how FCV blocks the host immune response and persistently exists in cats. In this study, we found that FCV infection promotes the degradation of host mRNAs and induces host gene shutoff via a common strategy. Further, PP protein for different FCV strains is a key factor that enhances mRNA degradation. An in vitro assay showed that the GST-PP fusion protein possesses RNase activity in the absence of other viral or cellular proteins. This study demonstrates that FCV induces host gene shutoff by promoting the degradation of host mRNAs, thereby introducing a potential mechanism by which FCV infection inhibits the immune response.
Collapse
|
15
|
Yu P, Li Y, Li Y, Miao Z, Wang Y, Peppelenbosch MP, Pan Q. Murine norovirus replicase augments RIG-I-like receptors-mediated antiviral interferon response. Antiviral Res 2020; 182:104877. [PMID: 32755662 DOI: 10.1016/j.antiviral.2020.104877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023]
Abstract
Noroviruses are the main causative agents for acute viral gastroenteritis worldwide. RIG-I-like receptors (RLRs) triggered interferon (IFN) activation is essential for host defense against viral infections. In turn, viruses have developed sophisticated strategies to counteract host antiviral response. This study aims to investigate how murine norovirus (MNV) replicase interacts with RLRs-mediated antiviral IFN response. Counterintuitively, we found that the MNV replicase NS7 enhances the activation of poly (I:C)-induced IFN response and the transcription of downstream interferon-stimulated genes (ISGs). Interestingly, NS7 protein augments RIG-I and MDA5-triggered antiviral IFN response, which conceivably involves direct interactions with the caspase activation and recruitment domains (CARDs) of RIG-I and MDA5. Consistently, RIG-I and MDA5 exert anti-MNV activity in human HEK293T cells with ectopic expression of viral receptor CD300lf. This effect requires the activation of JAK/STAT pathway, and is further enhanced by NS7 overexpression. These findings revealed an unconventional role of MNV NS7 as augmenting RLRs-mediated IFN response to inhibit viral replication.
Collapse
Affiliation(s)
- Peifa Yu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
16
|
Trujillo-Uscanga A, Gutiérrez-Escolano AL. Host cell p53 associates with the feline calicivirus major viral capsid protein VP1, the protease-polymerase NS6/7, and the double-stranded RNA playing a role in virus replication. Virology 2020; 550:78-88. [PMID: 32890980 PMCID: PMC7451061 DOI: 10.1016/j.virol.2020.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 11/03/2022]
Abstract
p53 is implicated in several cellular pathways such as induction of cell-cycle arrest, differentiation, senescence, and apoptosis. p53 is activated by a broad range of stress signals, including viral infections. While some viruses activate p53, others induce its inactivation, and occasionally p53 is differentially modulated during the replicative cycle. During calicivirus infections, apoptosis is required for virus exit and spread into the host; yet, the role of p53 during infection is unknown. By confocal microscopy, we found that p53 associates with FCV VP1, the protease-polymerase NS6/7, and the dsRNA. This interaction was further confirmed by proximity ligation assays, suggesting that p53 participates in the FCV replication. Knocked-down of p53 expression in CrFK cells before infection, resulted in a strong reduction of the non-structural protein levels and a decrease of the viral progeny production. These results indicate that p53 is associated with the viral replication complex and is required for an efficient FCV replication. Host cell p53 protein levels and subcellular localization do not change during FCV infection. Host cell p53 associates with FCV major viral capsid protein VP1, protease-polymerase NS6/7, and the dsRNA in FCV infected cells. Host cell p53 is required for a FCV replication.
Collapse
Affiliation(s)
- Adrian Trujillo-Uscanga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
17
|
Yu P, Wang Y, Li Y, Li Y, Miao Z, Peppelenbosch MP, Pan Q. 2'-Fluoro-2'-deoxycytidine inhibits murine norovirus replication and synergizes MPA, ribavirin and T705. Arch Virol 2020; 165:2605-2613. [PMID: 32770483 PMCID: PMC7414258 DOI: 10.1007/s00705-020-04759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022]
Abstract
Noroviruses are the main causative agents of acute viral gastroenteritis worldwide. However, no vaccine or specific antiviral treatment is available, imposing a heavy global health burden. The nucleoside analogue 2’-fluoro-2’-deoxycytidine (2’-FdC) has been reported to have broad antiviral activity. Here, we report that 2’-FdC significantly inhibits murine norovirus replication in macrophages. This effect was partially reversed by exogenous supplementation of cytidine triphosphate. The combination of 2’-FdC with mycophenolic acid, ribavirin or favipiravir (T705) exerts synergistic antiviral effects. These results indicate that 2’-FdC is a potential candidate for antiviral drug development against norovirus infection.
Collapse
Affiliation(s)
- Peifa Yu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Room Na-1005, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Kennedy S, Leroux MM, Simons A, Malve B, Devocelle M, Varbanov M. Apoptosis and autophagy as a turning point in viral–host interactions: the case of human norovirus and its surrogates. Future Virol 2020. [DOI: 10.2217/fvl-2019-0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human gastroenteritis viruses are amid the major causes of disease worldwide, responsible for more than 2 million deaths per year. Human noroviruses play a leading role in the gastroenteritis outbreaks and the continuous emergence of new strains contributes to the significant morbidity and mortality. Many aspects of the viral entry and infection process remain unclear, including the major response of the host cell to the virus, which is the trigger of several programmed cell death related mechanisms. In this review, we assessed apoptosis and autophagy at various stages in the infection process to provide better understanding of the viral–host interaction. This brings us closer to fully understanding how noroviruses work, thus allowing the development of specific antiviral therapies.
Collapse
Affiliation(s)
- Sean Kennedy
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, 1st Floor Ardilaun House Block B, 111 St Stephen’s Green, Dublin 2, Ireland
| | - Mélanie M Leroux
- Faculté de Pharmacie, 7 avenue de la forêt de Haye, 54505 Vandoeuvre-Lès-Nancy, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université deLorraine, F‐54000, Nancy, France
| | - Alexis Simons
- Faculté de Pharmacie, 7 avenue de la forêt de Haye, 54505 Vandoeuvre-Lès-Nancy, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Bactéries Pathogènes et Santé, Faculté de Pharmacie, 5 Rue Jean-Baptiste Clément, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 92296 Châtenay-Malabry, France
| | - Brice Malve
- Université deLorraine, CHRU-Nancy, Laboratoire de Virologie, F-54000 Nancy, France
| | - Marc Devocelle
- Synthesis & Solid State Pharmaceutical Centre, Research Centre and Department of Chemistry, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, Dublin 2, Ireland
| | - Mihayl Varbanov
- Faculté de Pharmacie, 7 avenue de la forêt de Haye, 54505 Vandoeuvre-Lès-Nancy, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| |
Collapse
|
19
|
Norovirus infection results in eIF2α independent host translation shut-off and remodels the G3BP1 interactome evading stress granule formation. PLoS Pathog 2020; 16:e1008250. [PMID: 31905230 PMCID: PMC6964919 DOI: 10.1371/journal.ppat.1008250] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/16/2020] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Viral infections impose major stress on the host cell. In response, stress pathways can rapidly deploy defence mechanisms by shutting off the protein synthesis machinery and triggering the accumulation of mRNAs into stress granules to limit the use of energy and nutrients. Because this threatens viral gene expression, viruses need to evade these pathways to propagate. Human norovirus is responsible for gastroenteritis outbreaks worldwide. Here we examined how norovirus interacts with the eIF2α signaling axis controlling translation and stress granules. While norovirus infection represses host cell translation, our mechanistic analyses revealed that eIF2α signaling mediated by the stress kinase GCN2 is uncoupled from translational stalling. Moreover, infection results in a redistribution of the RNA-binding protein G3BP1 to replication complexes and remodelling of its interacting partners, allowing the avoidance from canonical stress granules. These results define novel strategies by which norovirus undergo efficient replication whilst avoiding the host stress response and manipulating the G3BP1 interactome. Viruses have evolved elegant strategies to evade host responses that restrict viral propagation by targeting the protein synthesis machinery and stress granules, which are membrane-less RNA granules with antiviral properties. Previous studies have unravelled how viruses, including norovirus the leading cause of gastroenteritis, regulate the activity of translation factors to affect the antiviral response. Furthermore, stress granules evasion strategies have been linked to targeting the scaffolding protein G3BP1. Here we dissect how murine norovirus, the main model for norovirus, evades the cellular stress responses. Our work challenges the dogma that translational control during infection is mainly mediated by eIF2α and demonstrate that norovirus evades this stress pathway. We further show that norovirus evades the stress granule response in a novel way by isolating and characterising the G3BP1 interactome for the first time in the context of a viral infection. We conclude that norovirus infection results in a redistribution of G3BP1 and its cellular partners to replication complexes, thereby preventing the assembly of stress granules. Overall, we define a novel evasion strategy by which norovirus escapes stress granule formation by rewiring the G3BP1 interactome.
Collapse
|
20
|
Survivin Overexpression Has a Negative Effect on Feline Calicivirus Infection. Viruses 2019; 11:v11110996. [PMID: 31671627 PMCID: PMC6893618 DOI: 10.3390/v11110996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
It is known that levels of the anti-apoptotic protein survivin are reduced during Murine norovirus MNV-1 and Feline calicivirus (FCV) infection as part of the apoptosis establishment required for virus release and propagation in the host. Recently, our group has reported that overexpression of survivin causes a reduction of FCV protein synthesis and viral progeny production, suggesting that survivin may affect early steps of the replicative cycle. Using immunofluorescence assays, we observed that overexpression of survivin, resulted in the reduction of FCV infection not only in transfected but also in the neighboring nontransfected CrFK cells, thus suggesting autocrine and paracrine protective effects. Cells treated with the supernatants collected from CrFK cells overexpressing survivin showed a reduction in FCV but not MNV-1 protein production and viral yield, suggesting that FCV binding and/or entry were specifically altered. The reduced ability of FCV to bind to the surface of the cells overexpressing survivin, or treated with the supernatants collected from these cells, correlate with the reduction in the cell surface of the FCV receptor, the feline junctional adhesion molecule (fJAM) 1, while no effect was observed in the cells transfected with the pAm-Cyan vector or in cells treated with the corresponding supernatants. Moreover, the overexpression of survivin affects neither Vaccinia virus (VACV) production in CrFK cells nor MNV-1 virus production in RAW 267.4 cells, indicating that the effect is specific for FCV. All of these results taken together indicate that cells that overexpress survivin, or cell treatment with the conditioned medium from these cells, results in the reduction of the fJAM-1 molecule and, therefore, a specific reduction in FCV entry and infection.
Collapse
|
21
|
Peñaflor-Téllez Y, Trujillo-Uscanga A, Escobar-Almazán JA, Gutiérrez-Escolano AL. Immune Response Modulation by Caliciviruses. Front Immunol 2019; 10:2334. [PMID: 31632406 PMCID: PMC6779827 DOI: 10.3389/fimmu.2019.02334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Noroviruses and Sapoviruses, classified in the Caliciviridae family, are small positive-stranded RNA viruses, considered nowadays the leading cause of acute gastroenteritis globally in both children and adults. Although most noroviruses have been associated with gastrointestinal disease in humans, almost 50 years after its discovery, there is still a lack of comprehensive evidence regarding its biology and pathogenesis mainly because they can be neither conveniently grown in cultured cells nor propagated in animal models. However, other members of this family such as Feline calicivirus (FCV), Murine norovirus (MNV), Rabbit hemorrhagic disease virus (RHDV), and Porcine sapovirus (PS), from which there are accessible propagation systems, have been useful to study the calicivirus replication strategies. Using cell cultures and animal models, many of the functions of the viral proteins in the viral replication cycles have been well-characterized. Moreover, evidence of the role of viral proteins from different members of the family in the establishment of infection has been generated and the mechanism of their immunopathogenesis begins to be understood. In this review, we discuss different aspects of how caliciviruses are implicated in membrane rearrangements, apoptosis, and evasion of the immune responses, highlighting some of the pathogenic mechanisms triggered by different members of the Caliciviridae family.
Collapse
Affiliation(s)
- Yoatzin Peñaflor-Téllez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| | - Adrian Trujillo-Uscanga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| | - Jesús Alejandro Escobar-Almazán
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| |
Collapse
|
22
|
Lasso G, Mayer SV, Winkelmann ER, Chu T, Elliot O, Patino-Galindo JA, Park K, Rabadan R, Honig B, Shapira SD. A Structure-Informed Atlas of Human-Virus Interactions. Cell 2019; 178:1526-1541.e16. [PMID: 31474372 PMCID: PMC6736651 DOI: 10.1016/j.cell.2019.08.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/17/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022]
Abstract
While knowledge of protein-protein interactions (PPIs) is critical for understanding virus-host relationships, limitations on the scalability of high-throughput methods have hampered their identification beyond a number of well-studied viruses. Here, we implement an in silico computational framework (pathogen host interactome prediction using structure similarity [P-HIPSTer]) that employs structural information to predict ∼282,000 pan viral-human PPIs with an experimental validation rate of ∼76%. In addition to rediscovering known biology, P-HIPSTer has yielded a series of new findings: the discovery of shared and unique machinery employed across human-infecting viruses, a likely role for ZIKV-ESR1 interactions in modulating viral replication, the identification of PPIs that discriminate between human papilloma viruses (HPVs) with high and low oncogenic potential, and a structure-enabled history of evolutionary selective pressure imposed on the human proteome. Further, P-HIPSTer enables discovery of previously unappreciated cellular circuits that act on human-infecting viruses and provides insight into experimentally intractable viruses.
Collapse
Affiliation(s)
- Gorka Lasso
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Sandra V Mayer
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Evandro R Winkelmann
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Tim Chu
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Oliver Elliot
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Kernyu Park
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY, USA; Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, USA.
| | - Sagi D Shapira
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
23
|
Hosmillo M, Lu J, McAllaster MR, Eaglesham JB, Wang X, Emmott E, Domingues P, Chaudhry Y, Fitzmaurice TJ, Tung MKH, Panas MD, McInerney G, Locker N, Wilen CB, Goodfellow IG. Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation. eLife 2019; 8:e46681. [PMID: 31403400 PMCID: PMC6739877 DOI: 10.7554/elife.46681] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Knowledge of the host factors required for norovirus replication has been hindered by the challenges associated with culturing human noroviruses. We have combined proteomic analysis of the viral translation and replication complexes with a CRISPR screen, to identify host factors required for norovirus infection. The core stress granule component G3BP1 was identified as a host factor essential for efficient human and murine norovirus infection, demonstrating a conserved function across the Norovirus genus. Furthermore, we show that G3BP1 functions in the novel paradigm of viral VPg-dependent translation initiation, contributing to the assembly of translation complexes on the VPg-linked viral positive sense RNA genome by facilitating ribosome recruitment. Our data uncovers a novel function for G3BP1 in the life cycle of positive sense RNA viruses and identifies the first host factor with pan-norovirus pro-viral activity.
Collapse
Affiliation(s)
- Myra Hosmillo
- Division of Virology, Department of PathologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Jia Lu
- Division of Virology, Department of PathologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Michael R McAllaster
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - James B Eaglesham
- Division of Virology, Department of PathologyUniversity of CambridgeCambridgeUnited Kingdom
- Department of MicrobiologyHarvard Medical SchoolBostonUnited States
| | - Xinjie Wang
- Division of Virology, Department of PathologyUniversity of CambridgeCambridgeUnited Kingdom
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhouChina
| | - Edward Emmott
- Division of Virology, Department of PathologyUniversity of CambridgeCambridgeUnited Kingdom
- Department of BioengineeringNortheastern UniversityBostonUnited States
- Barnett Institute for Chemical and Biological AnalysesNortheastern UniversityBostonUnited States
| | - Patricia Domingues
- Division of Virology, Department of PathologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Yasmin Chaudhry
- Division of Virology, Department of PathologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Tim J Fitzmaurice
- Division of Virology, Department of PathologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Matthew KH Tung
- Division of Virology, Department of PathologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Marc Dominik Panas
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstituteStockholmSweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstituteStockholmSweden
| | - Nicolas Locker
- School of Biosciences and MedicineUniversity of SurreyGuildfordUnited Kingdom
| | - Craig B Wilen
- Department of Laboratory MedicineYale School of MedicineNew HavenUnited States
| | - Ian G Goodfellow
- Division of Virology, Department of PathologyUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
24
|
Mouse Norovirus Infection Arrests Host Cell Translation Uncoupled from the Stress Granule-PKR-eIF2α Axis. mBio 2019; 10:mBio.00960-19. [PMID: 31213553 PMCID: PMC6581855 DOI: 10.1128/mbio.00960-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrated stress response (ISR) is a cellular response system activated upon different types of stresses, including viral infection, to restore cellular homeostasis. However, many viruses manipulate this response for their own advantage. In this study, we investigated the association between murine norovirus (MNV) infection and the ISR and demonstrate that MNV regulates the ISR by activating and recruiting key ISR host factors. We observed that during MNV infection, there is a progressive increase in phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in the suppression of host translation, and yet MNV translation still progresses under these conditions. Interestingly, the shutoff of host translation also impacts the translation of key signaling cytokines such as beta interferon, interleukin-6, and tumor necrosis factor alpha. Our subsequent analyses revealed that the phosphorylation of eIF2α was mediated via protein kinase R (PKR), but further investigation revealed that PKR activation, phosphorylation of eIF2α, and translational arrest were uncoupled during infection. We further observed that stress granules (SGs) are not induced during MNV infection and that MNV can restrict SG nucleation and formation. We observed that MNV recruited the key SG nucleating protein G3BP1 to its replication sites and intriguingly the silencing of G3BP1 negatively impacts MNV replication. Thus, it appears that MNV utilizes G3BP1 to enhance replication but equally to prevent SG formation, suggesting an anti-MNV property of SGs. Overall, this study highlights MNV manipulation of SGs, PKR, and translational control to regulate cytokine translation and to promote viral replication.IMPORTANCE Viruses hijack host machinery and regulate cellular homeostasis to actively replicate their genome, propagate, and cause disease. In retaliation, cells possess various defense mechanisms to detect, destroy, and clear infecting viruses, as well as signal to neighboring cells to inform them of the imminent threat. In this study, we demonstrate that the murine norovirus (MNV) infection stalls host protein translation and the production of antiviral and proinflammatory cytokines. However, virus replication and protein translation still ensue. We show that MNV further prevents the formation of cytoplasmic RNA granules, called stress granules (SGs), by recruiting the key host protein G3BP1 to the MNV replication complex, a recruitment that is crucial to establishing and maintaining virus replication. Thus, MNV promotes immune evasion of the virus by altering protein translation. Together, this evasion strategy delays innate immune responses to MNV infection and accelerates disease onset.
Collapse
|
25
|
Cross ST, Michalski D, Miller MR, Wilusz J. RNA regulatory processes in RNA virus biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1536. [PMID: 31034160 PMCID: PMC6697219 DOI: 10.1002/wrna.1536] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Numerous post‐transcriptional RNA processes play a major role in regulating the quantity, quality and diversity of gene expression in the cell. These include RNA processing events such as capping, splicing, polyadenylation and modification, but also aspects such as RNA localization, decay, translation, and non‐coding RNA‐associated regulation. The interface between the transcripts of RNA viruses and the various RNA regulatory processes in the cell, therefore, has high potential to significantly impact virus gene expression, regulation, cytopathology and pathogenesis. Furthermore, understanding RNA biology from the perspective of an RNA virus can shed considerable light on the broad impact of these post‐transcriptional processes in cell biology. Thus the goal of this article is to provide an overview of the richness of cellular RNA biology and how RNA viruses use, usurp and/or avoid the associated machinery to impact the outcome of infection. This article is categorized under:RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Shaun T Cross
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Daniel Michalski
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Megan R Miller
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
26
|
Emmott E, de Rougemont A, Hosmillo M, Lu J, Fitzmaurice T, Haas J, Goodfellow I. Polyprotein processing and intermolecular interactions within the viral replication complex spatially and temporally control norovirus protease activity. J Biol Chem 2019; 294:4259-4271. [PMID: 30647130 PMCID: PMC6422069 DOI: 10.1074/jbc.ra118.006780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 11/26/2022] Open
Abstract
Norovirus infections are a major cause of acute viral gastroenteritis and a significant burden on global human health. A vital process for norovirus replication is the processing of the nonstructural polyprotein by a viral protease into the viral components required to form the viral replication complex. This cleavage occurs at different rates, resulting in the accumulation of stable precursor forms. Here, we characterized how precursor forms of the norovirus protease accumulate during infection. Using stable forms of the protease precursors, we demonstrated that all of them are proteolytically active in vitro, but that when expressed in cells, their activities are determined by both substrate and protease localization. Although all precursors could cleave a replication complex-associated substrate, only a subset of precursors lacking the NS4 protein were capable of efficiently cleaving a cytoplasmic substrate. By mapping the full range of protein-protein interactions among murine and human norovirus proteins with the LUMIER assay, we uncovered conserved interactions between replication complex members that modify the localization of a protease precursor subset. Finally, we demonstrate that fusion to the membrane-bound replication complex components permits efficient cleavage of a fused substrate when active polyprotein-derived protease is provided in trans These findings offer a model for how norovirus can regulate the timing of substrate cleavage throughout the replication cycle. Because the norovirus protease represents a key target in antiviral therapies, an improved understanding of its function and regulation, as well as identification of interactions among the other nonstructural proteins, offers new avenues for antiviral drug design.
Collapse
Affiliation(s)
- Edward Emmott
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom,
| | - Alexis de Rougemont
- the National Reference Centre for Gastroenteritis Viruses, Labology of Biology and Pathology, University Hospital Dijon Bourgogne, Dijon 21700, France
- the AgroSup Dijon, PAM UMR A 02.102 Bourgogne Franche-Comte University, Dijon 21000, France, and
| | - Myra Hosmillo
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Jia Lu
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Timothy Fitzmaurice
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Jürgen Haas
- the Division of Infection and Pathway Medicine, University of Edinburgh Medical School, Edinburgh EH16 4SB, United Kingdom
| | - Ian Goodfellow
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom,
| |
Collapse
|
27
|
Genomics Analyses of GIV and GVI Noroviruses Reveal the Distinct Clustering of Human and Animal Viruses. Viruses 2019; 11:v11030204. [PMID: 30823663 PMCID: PMC6466045 DOI: 10.3390/v11030204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 01/23/2023] Open
Abstract
Noroviruses are highly diverse viruses that are the major viral cause of acute gastroenteritis in humans. Although these viruses can infect multiple mammalian species, their potential for zoonosis is not well understood, especially within Genogroup IV (GIV), which contains viruses that infect humans, canines, and felines. The study of GIV viruses has been, in part, hindered by the limited number of complete genomes. Here, we developed a full-genome amplicon-based platform that facilitated the sequencing of canine noroviruses circulating in the United States. Eight novel nearly full-length canine norovirus genomes and two nearly complete VP1 sequences, including four GIV.2, three GVI.1, and three GVI.2 viruses, were successfully obtained. Only animal strains exhibited GVI/GIV chimeric viruses, demonstrating restrictions in norovirus recombination. Using genomic, phylogenetic, and structural analyses, we show that differences within the major capsid protein and the non-structural proteins of GIV and GVI noroviruses could potentially limit cross-species transmission between humans, canines, and felines.
Collapse
|
28
|
Levenson EA, Martens C, Kanakabandi K, Turner CV, Virtaneva K, Paneru M, Ricklefs S, Sosnovtsev SV, Johnson JA, Porcella SF, Green KY. Comparative Transcriptomic Response of Primary and Immortalized Macrophages to Murine Norovirus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:4157-4169. [PMID: 29735480 DOI: 10.4049/jimmunol.1700384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
Abstract
Murine norovirus (NoV) is genetically similar to human NoV and offers both an efficient in vitro cell culture system and an animal model by which to investigate the molecular basis of replication. In this study, we present a detailed global view of host alterations to cellular pathways that occur during the progression of a NoV infection. This was accomplished for both Mus musculus BALB/c-derived RAW264.7 (RAW) cells, an immortalized cell line widely used in in vitro replication studies, and primary bone marrow-derived macrophages (BMDM), representing a permissive in vivo target cell in the host. Murine NoV replicated in both cell types, although detected genome copies were approximately one log lower in BMDM compared with RAW cells. RAW and BMDM cells shared an IRF3/7-based IFN response that occurred early in infection. In RAW cells, transcriptional upregulation and INF-β expression were not coupled in that a significant delay in the detection of secreted INF-β was observed. In contrast, primary BMDM showed an early upregulation of transcripts and immediate release of INF-β that might account for lower virus yield. Differences in the transcriptional pathway responses included a marked decrease in expression of key genes in the cell cycle and lipid pathways in RAW cells compared with that of BMDM. Our comparative analysis indicates the existence of varying host responses to virus infection in populations of permissive cells. Awareness of these differences at the gene level will be important in the application of a given permissive culture system to the study of NoV immunity, pathogenesis, and drug development.
Collapse
Affiliation(s)
- Eric A Levenson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Craig Martens
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Kishore Kanakabandi
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Charles V Turner
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Kimmo Virtaneva
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Monica Paneru
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Stacy Ricklefs
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Stanislav V Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jordan A Johnson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Stephen F Porcella
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
29
|
Kitano M, Hosmillo M, Emmott E, Lu J, Goodfellow I. Selection and Characterization of Rupintrivir-Resistant Norwalk Virus Replicon Cells In Vitro. Antimicrob Agents Chemother 2018; 62:e00201-18. [PMID: 29530860 PMCID: PMC5923142 DOI: 10.1128/aac.00201-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/02/2018] [Indexed: 12/30/2022] Open
Abstract
Human norovirus (HuNoV) is a major cause of nonbacterial gastroenteritis worldwide, yet despite its impact on society, vaccines and antivirals are currently lacking. A HuNoV replicon system has been widely applied to the evaluation of antiviral compounds and has thus accelerated the process of drug discovery against HuNoV infection. Rupintrivir, an irreversible inhibitor of the human rhinovirus 3C protease, has been reported to inhibit the replication of the Norwalk virus replicon via the inhibition of the norovirus protease. Here we report, for the first time, the generation of rupintrivir-resistant human Norwalk virus replicon cells in vitro Sequence analysis revealed that these replicon cells contained amino acid substitutions of alanine 105 to valine (A105V) and isoleucine 109 to valine (I109V) in the viral protease NS6. The application of a cell-based fluorescence resonance energy transfer (FRET) assay for protease activity demonstrated that these substitutions were involved in the enhanced resistance to rupintrivir. Furthermore, we validated the effect of these mutations using reverse genetics in murine norovirus (MNV), demonstrating that a recombinant MNV strain with a single I109V substitution in the protease also showed reduced susceptibility to rupintrivir. In summary, using a combination of different approaches, we have demonstrated that, under the correct conditions, mutations in the norovirus protease that lead to the generation of resistant mutants can rapidly occur.
Collapse
Affiliation(s)
- Mitsutaka Kitano
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Edward Emmott
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jia Lu
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
30
|
Ingle H, Peterson ST, Baldridge MT. Distinct Effects of Type I and III Interferons on Enteric Viruses. Viruses 2018; 10:E46. [PMID: 29361691 PMCID: PMC5795459 DOI: 10.3390/v10010046] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are key host cytokines in the innate immune response to viral infection, and recent work has identified unique roles for IFN subtypes in regulating different aspects of infection. Currently emerging is a common theme that type III IFNs are critical in localized control of infection at mucosal barrier sites, while type I IFNs are important for broad systemic control of infections. The intestine is a particular site of interest for exploring these effects, as in addition to being the port of entry for a multitude of pathogens, it is a complex tissue with a variety of cell types as well as the presence of the intestinal microbiota. Here we focus on the roles of type I and III IFNs in control of enteric viruses, discussing what is known about signaling downstream from these cytokines, including induction of specific IFN-stimulated genes. We review viral strategies to evade IFN responses, effects of IFNs on the intestine, interactions between IFNs and the microbiota, and briefly discuss the role of IFNs in controlling viral infections at other barrier sites. Enhanced understanding of the coordinate roles of IFNs in control of viral infections may facilitate development of antiviral therapeutic strategies; here we highlight potential avenues for future exploration.
Collapse
Affiliation(s)
- Harshad Ingle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Stefan T Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Megan T Baldridge
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Bastide A, Yewdell JW, David A. The RiboPuromycylation Method (RPM): an Immunofluorescence Technique to Map Translation Sites at the Sub-cellular Level. Bio Protoc 2018; 8:e2669. [PMID: 29552591 PMCID: PMC5856242 DOI: 10.21769/bioprotoc.2669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023] Open
Abstract
While isotopic labeling of amino acids remains the reference method in the field for quantifying translation rate, it does not provide any information on spatial localization of translation sites. The rationale behind developing the ribopuromycylation method (RPM) was primarily to map translation sites at the sub-cellular level while avoiding detection of newly synthesized proteins released from ribosomes. RPM visualizes actively translating ribosomes in cells via standard immunofluorescence microscopy in fixed and permeabilized cells using a puromycin-specific monoclonal antibody to detect puromycylated nascent chains trapped on ribosomes treated with a chain elongation inhibitor.
Collapse
Affiliation(s)
- Amandine Bastide
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, USA
| | - Alexandre David
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| |
Collapse
|
32
|
Lee S, Baldridge MT. Interferon-Lambda: A Potent Regulator of Intestinal Viral Infections. Front Immunol 2017; 8:749. [PMID: 28713375 PMCID: PMC5491552 DOI: 10.3389/fimmu.2017.00749] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon-lambda (IFN-λ) is a recently described cytokine found to be of critical importance in innate immune regulation of intestinal viruses. Endogenous IFN-λ has potent antiviral effects and has been shown to control multiple intestinal viruses and may represent a factor that contributes to human variability in response to infection. Importantly, recombinant IFN-λ has therapeutic potential against enteric viral infections, many of which lack other effective treatments. In this mini-review, we describe recent advances regarding IFN-λ-mediated regulation of enteric viruses with important clinical relevance including rotavirus, reovirus, and norovirus. We also briefly discuss IFN-λ interactions with other cytokines important in the intestine, and how IFN-λ may play a role in regulation of intestinal viruses by the commensal microbiome. Finally, we indicate currently outstanding questions regarding IFN-λ control of enteric infections that remain to be explored to enhance our understanding of this important immune molecule.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
33
|
Chhabra P, Ranjan P, Cromeans T, Sambhara S, Vinjé J. Critical role of RIG-I and MDA5 in early and late stages of Tulane virus infection. J Gen Virol 2017; 98:1016-1026. [PMID: 28530548 DOI: 10.1099/jgv.0.000769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human noroviruses are a major cause of acute gastroenteritis worldwide, but the lack of a robust cell culture system or small animal model have hampered a better understanding of innate immunity against these viruses. Tulane virus (TV) is the prototype virus of a tentative new genus, Recovirus, in the family Caliciviridae. Its epidemiology and biological properties most closely resemble human norovirus. The host innate immune response to RNA virus infection primarily involves pathogen-sensing toll-like receptors (TLRs) TLR3 and TLR7 and retinoic acid-inducible gene I-like receptor RIG-I and melanoma differentiation associated gene 5 (MDA5). In this study, by using siRNA knockdown, we report that TV infection in LLC-MK2 cells results in an early [3 h post infection (h p.i.), P<0.05] RIG-I-dependent and type I interferon-mediated antiviral response, whereas an MDA5-mediated antiviral effect was observed at later (12 h p.i.; P<0.05) stages of TV replication. Induction of RIG-I and MDA5 was critical for inhibition of TV replication. Furthermore, pre-activation of the RIG-I/MDA5 pathway prevented TV replication (>900-fold decrease; P<0.05), suggesting that RIG-I and MDA5 ligands could be used to develop novel preventive and therapeutic measures against norovirus.
Collapse
Affiliation(s)
- Preeti Chhabra
- Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Priya Ranjan
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | | | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Jan Vinjé
- Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| |
Collapse
|
34
|
Cristea IM. The Host-Pathogen Ecosystem Viewed Through the Prism of Proteomics. Mol Cell Proteomics 2017; 16:S1-S4. [PMID: 28283547 DOI: 10.1074/mcp.e117.068270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/10/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ileana M Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|