1
|
Bian H, Song F, Wang S, Sun W, Hu B, Liang X, Yang H, Huang C. Matrix vesicle-inspired delivery system based on nanofibrous chitosan microspheres for enhanced bone regeneration. Mater Today Bio 2025; 30:101448. [PMID: 39866778 PMCID: PMC11762186 DOI: 10.1016/j.mtbio.2025.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Inspired by the initial mineralization process with bone matrix vesicles (MVs), this study innovatively developed a delivery system to mediate mineralization during bone regeneration. The system comprises nanofibrous chitosan microspheres (NCM) and poly (allylamine hydrochloride)-stabilized amorphous calcium phosphate (PAH-ACP), which is thereafter referred to as NCMP. NCM is synthesized through the thermal induction of chitosan molecular chains, serving as the carrier, while PAH-ACP functions as the mineralization precursor. Additionally, the nanofibrous network of NCMP mimics the architecture of natural extracellular matrix (ECM), creating an optimal niche for the active adhesion of stem cells to its surface, exhibiting good biocompatibility, immunoregulation, and osteogenic performance. In vivo, NCMP effectively recruits cells and mineralizes collagen, modulates cell behavior and differentiation, and promotes in situ biomineralization in rat calvarial defects. These results underscore the dual efficacy of NCMP not only as an effective delivery system for mineralization precursors but also as ECM-mimicking bio-blocks, offering a promising avenue for enhancing the repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Haolin Bian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Fangfang Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shilei Wang
- Key Laboratory of Resources and Compound of Traditional Chinese Medicine, Ministry of Education, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Wei Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bo Hu
- Research and Application of Regenerative Cellulose Fiber Key Laboratory of Sichuan Province, YiBin Grace Group Co., LTD, Yibin, 644000, China
| | - Xichao Liang
- Research and Application of Regenerative Cellulose Fiber Key Laboratory of Sichuan Province, YiBin Grace Group Co., LTD, Yibin, 644000, China
| | - Hongye Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
2
|
Liao ZQ, Lv YF, Kang MD, Ji YL, Liu Y, Wang LR, Tang JL, Deng ZQ, Yi Y, Tang Q. Inhibition of XPR1-dependent phosphate efflux induces mitochondrial dysfunction: A potential molecular target therapy for hepatocellular carcinoma? Mol Carcinog 2024; 63:2332-2345. [PMID: 39136583 DOI: 10.1002/mc.23812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 11/16/2024]
Abstract
Xenotropic and polytropic retrovirus receptor 1 (XPR1) is the only known transporter associated with Pi efflux in mammals, and its impact on tumor progression is gradually being revealed. However, the role of XPR1 in hepatocellular carcinoma (HCC) is unknown. A bioinformatics screen for the phosphate exporter XPR1 was performed in HCC patients. The expression of XPR1 in clinical specimens was analyzed using quantitative real-time PCR, Western blot analysis, and immunohistochemical assays. Knockdown of the phosphate exporter XPR1 was performed by shRNA transfection to investigate the cellular phenotype and phosphate-related cytotoxicity of the Huh7 and HLF cell lines. In vivo tests were conducted to investigate the tumorigenicity of HCC cells xenografted into immunocompromised mice after silencing XPR1. Compared with that in paracancerous tissue, XPR1 expression in HCC tissues was markedly upregulated. High XPR1 expression significantly correlated with poor patient survival. Silencing of XPR1 leads to decreased proliferation, migration, invasion, and colony formation in HCC cells. Mechanistically, knockdown of XPR1 causes an increase in intracellular phosphate levels; mitochondrial dysfunction characterized by reduced mitochondrial membrane potential and adenosine triphosphate levels; increased reactive oxygen species levels; abnormal mitochondrial morphology; and downregulation of key mitochondrial fusion, fission, and inner membrane genes. This ultimately results in mitochondria-dependent apoptosis. These findings reveal the prognostic value of XPR1 in HCC progression and, more importantly, suggest that XPR1 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Zi-Qiang Liao
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Yang-Feng Lv
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Mei-Diao Kang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Long Ji
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Le-Ran Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | | | - Zhi-Qiang Deng
- Department of Oncology, The First People's Hospital of Fuzhou, Fuzhou, China
| | - Yun Yi
- Biobank Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qun Tang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute for Advanced Study, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
4
|
The Localized Ionic Microenvironment in Bone Modelling/Remodelling: A Potential Guide for the Design of Biomaterials for Bone Tissue Engineering. J Funct Biomater 2023; 14:jfb14020056. [PMID: 36826855 PMCID: PMC9959312 DOI: 10.3390/jfb14020056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Bone is capable of adjusting size, shape, and quality to maintain its strength, toughness, and stiffness and to meet different needs of the body through continuous remodeling. The balance of bone homeostasis is orchestrated by interactions among different types of cells (mainly osteoblasts and osteoclasts), extracellular matrix, the surrounding biological milieus, and waste products from cell metabolisms. Inorganic ions liberated into the localized microenvironment during bone matrix degradation not only form apatite crystals as components or enter blood circulation to meet other bodily needs but also alter cellular activities as molecular modulators. The osteoinductive potential of inorganic motifs of bone has been gradually understood since the last century. Still, few have considered the naturally generated ionic microenvironment's biological roles in bone remodeling. It is believed that a better understanding of the naturally balanced ionic microenvironment during bone remodeling can facilitate future biomaterial design for bone tissue engineering in terms of the modulatory roles of the ionic environment in the regenerative process.
Collapse
|
5
|
Michigami T, Tachikawa K, Yamazaki M, Nakanishi T, Kawai M, Ozono K. Growth-related skeletal changes and alterations in phosphate metabolism. Bone 2022; 161:116430. [PMID: 35577326 DOI: 10.1016/j.bone.2022.116430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022]
Abstract
Serum inorganic phosphate (Pi) levels are higher in children than in adults; however, the underlying mechanisms remain unclear. Therefore, we herein attempted to elucidate the mechanisms altering Pi metabolism from youth to adulthood using 4-week-old (young) and 12-week-old (adult) mice. Despite higher serum Pi levels, serum fibroblast growth factor 23 (FGF23) levels were lower in young mice, and the amount of FGF23 in bone tended to increase from youth to adulthood. Increases in serum FGF23 levels during growth were associated with the up- and down-regulation of the renal expression of Cyp24a1 encoding vitamin D-24-hydroxylase and Slc34a3 encoding the type IIc sodium/phosphate (Na+/Pi) co-transporter, respectively, suggesting an enhancement in the FGF23-mediated bone-kidney axis from youth to adulthood. We then isolated osteoblasts and osteocytes from young and adult mice and compared the expression of genes involved in Pi metabolism and/or mineralization. In contrast to the growth-related increase in Fgf23 expression, the expression of some genes, including the dentin matrix protein 1 (Dmp1) and phosphate-regulating gene with homologies to endopeptidases on the X chromosome (Phex) markedly decreased from youth to adulthood. The down-regulation of Dmp1 and Phex may contribute to growth-related increases in FGF23. The responses of isolated osteoblasts and osteocytes to high Pi levels also markedly differed between young and adult mice. Treatment of isolated osteocytes with high Pi increased the production of FGF23 in adult mice but not in young mice. These results indicate a close relationship between skeletal changes from youth to adulthood and an alteration in Pi metabolism, and provide insights into the mechanisms by which osteoblasts and osteocytes maintain Pi homeostasis.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan.
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Tatsuro Nakanishi
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Bartlett CL, Cave EM, Crowther NJ, Ferris WF. A new perspective on the function of Tissue Non-Specific Alkaline Phosphatase: from bone mineralization to intra-cellular lipid accumulation. Mol Cell Biochem 2022; 477:2093-2106. [PMID: 35471716 DOI: 10.1007/s11010-022-04429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is one of four isozymes, which include germ cell, placental and intestinal alkaline phosphatases. The TNAP isozyme has 3 isoforms (liver, bone and kidney) which differ by tissue expression and glycosylation pattern. Despite a long history of investigation, the exact function of TNAP in many tissues is largely unknown. Only the bone isoform has been well characterised during mineralization where the enzyme hydrolyses pyrophosphate to inorganic phosphate, which combines with calcium to form hydroxyapatite crystals deposited as new bone. The inorganic phosphate also increases gene expression of proteins that support tissue mineralization. Recent studies have shown that TNAP is expressed in preadipocytes from several species, and that inhibition of TNAP activity causes attenuation of intracellular lipid accumulation in these and other lipid-storing cells. The mechanism by which TNAP stimulates lipid accumulation is not known; however, proteins that are important for controlling phosphate levels in bone are also expressed in adipocytes. This review examines the evidence that inorganic phosphate generated by TNAP promotes transcription that enhances the expression of the regulators of lipid storage and consequently, that TNAP has a major function of lipid metabolism.
Collapse
Affiliation(s)
- Cara-Lesley Bartlett
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eleanor Margaret Cave
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | - Nigel John Crowther
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa.,Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, South Africa
| | - William Frank Ferris
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
7
|
Hetz R, Beeler E, Janoczkin A, Kiers S, Li L, Willard BB, Razzaque MS, He P. Excessive Inorganic Phosphate Burden Perturbed Intracellular Signaling: Quantitative Proteomics and Phosphoproteomics Analyses. Front Nutr 2022; 8:765391. [PMID: 35096927 PMCID: PMC8795896 DOI: 10.3389/fnut.2021.765391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Inorganic phosphate (Pi) is an essential nutrient for the human body which exerts adverse health effects in excess and deficit. High Pi-mediated cytotoxicity has been shown to induce systemic organ damage, though the underlying molecular mechanisms are poorly understood. In this study, we employed proteomics and phosphoproteomics to analyze Pi-mediated changes in protein abundance and phosphorylation. Bioinformatic analyses and literature review revealed that the altered proteins and phosphorylation were enriched in signaling pathways and diverse biological processes. Western blot analysis confirms the extensive change in protein level and phosphorylation in key effectors that modulate pre-mRNA alternative splicing. Global proteome and phospho-profiling provide a bird-eye view of excessive Pi-rewired cell signaling networks, which deepens our understanding of the molecular mechanisms of phosphate toxicity.
Collapse
Affiliation(s)
- Rebecca Hetz
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Erik Beeler
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Alexis Janoczkin
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Spencer Kiers
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Ling Li
- Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Belinda B Willard
- Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| |
Collapse
|
8
|
Phosphate Toxicity and Epithelial to Mesenchymal Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:73-84. [DOI: 10.1007/978-3-030-91623-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Michigami T, Yamazaki M, Razzaque MS. Extracellular Phosphate, Inflammation and Cytotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:15-25. [DOI: 10.1007/978-3-030-91623-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Cannata-Andía JB, Carrillo-López N, Messina OD, Hamdy NAT, Panizo S, Ferrari SL, on behalf of the International Osteoporosis Foundation (IOF) Working Group on Bone and Cardiovascular Diseases. Pathophysiology of Vascular Calcification and Bone Loss: Linked Disorders of Ageing? Nutrients 2021; 13:3835. [PMID: 34836090 PMCID: PMC8623966 DOI: 10.3390/nu13113835] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Vascular Calcification (VC), low bone mass and fragility fractures are frequently observed in ageing subjects. Although this clinical observation could be the mere coincidence of frequent age-dependent disorders, clinical and experimental data suggest that VC and bone loss could share pathophysiological mechanisms. Indeed, VC is an active process of calcium and phosphate precipitation that involves the transition of the vascular smooth muscle cells (VSMCs) into osteoblast-like cells. Among the molecules involved in this process, parathyroid hormone (PTH) plays a key role acting through several mechanisms which includes the regulation of the RANK/RANKL/OPG system and the Wnt/ß-catenin pathway, the main pathways for bone resorption and bone formation, respectively. Furthermore, some microRNAs have been implicated as common regulators of bone metabolism, VC, left ventricle hypertrophy and myocardial fibrosis. Elucidating the common mechanisms between ageing; VC and bone loss could help to better understand the potential effects of osteoporosis drugs on the CV system.
Collapse
Affiliation(s)
- Jorge B. Cannata-Andía
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.)
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.)
| | - Osvaldo D. Messina
- Investigaciones Reumatológicas y Osteológicas (IRO), Buenos Aires 1114, Argentina;
| | - Neveen A. T. Hamdy
- Center for Bone Quality, Division Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Sara Panizo
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Retic REDinREN-ISCIII, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (N.C.-L.); (S.P.)
| | - Serge L. Ferrari
- Service and Laboratory of Bone Diseases, Department of Medicine, Faculty of Medicine, Geneva University Hospital, 1211 Geneva, Switzerland;
| | | |
Collapse
|
11
|
Yamazaki M, Kawai M, Kinoshita S, Tachikawa K, Nakanishi T, Ozono K, Michigami T. Clonal osteoblastic cell lines with CRISPR/Cas9-mediated ablation of Pit1 or Pit2 show enhanced mineralization despite reduced osteogenic gene expression. Bone 2021; 151:116036. [PMID: 34118444 DOI: 10.1016/j.bone.2021.116036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Multiple actions of extracellular Pi on the skeletal cells are likely to be partly mediated by type III sodium/phosphate (Na+/Pi) cotransporters Pit1 and Pit2, although the details are not fully understood. In the current study, to determine the roles of Pit1 and Pit2 in osteoblasts, we generated Pit1-knockout (KO) and Pit2-KO osteoblastic cells by applying CRISPR/Cas9 genome editing to an osteoblastic cell line MC3T3-E1 subclone 4. The extracellular Pi level was increased in the Pit1-KO and Pit2-KO clones due to the reduced Pi uptake. Interestingly, in vitro mineralization was accelerated in the Pit1-KO and Pit2-KO clones, although the induction of the expression of osteogenic marker genes was suppressed. In the cells before mineralization, extracellular levels of pyrophosphate (PPi) and adenosine triphosphate (ATP) were increased in the Pit1-KO and Pit2-KO clones, which might be attributable to the reduced expression and activity of tissue-nonspecific alkaline phosphatase (TNSALP). A 24-h treatment with high Pi reduced the expression and activity of TNSALP, suggesting that the suppression of TNSALP in the Pit1-KO and Pit2-KO clones was caused by the increased availability of extracellular Pi. Lentiviral gene transfer of Pit1 and Pit2 restored the changes observed in Pit1-KO and Pit2-KO clones, respectively. The expressions of P2Y2 and P2X7 which encode receptors for extracellular ATP were altered in the Pit1-KO and Pit2-KO clones, suggesting an influence on purinergic signaling. In mineralized cells after long-term culture, intracellular levels of PPi and ATP were higher in the Pit1-KO and Pit2-KO clones. Taken together, ablation of Pit1 or Pit2 in this osteoblastic cell model led to accelerated mineralization, suppressed TNSALP and altered the levels of extracellular and intracellular PPi and ATP, which might be partly mediated by changes in the availability of extracellular Pi.
Collapse
Affiliation(s)
- Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Saori Kinoshita
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Tatsuro Nakanishi
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan.
| |
Collapse
|
12
|
Kwan KKL, Wong TY, Yu AXD, Dong TTX, Lam HHN, Tsim KWK. Integrated Omics Reveals the Orchestrating Role of Calycosin in Danggui Buxue Tang, a Herbal Formula Containing Angelicae Sinensis Radix and Astragali Radix, in Inducing Osteoblastic Differentiation and Proliferation. Front Pharmacol 2021; 12:670947. [PMID: 34248625 PMCID: PMC8260986 DOI: 10.3389/fphar.2021.670947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Systems biology unravels the black box of signaling pathway of cells; but which has not been extensively applied to reveal the mechanistic synergy of a herbal formula. The therapeutic efficacies of a herbal formula having multi-target, multi-function and multi-pathway are the niches of traditional Chinese medicine (TCM). Here, we reported an integrated omics approach, coupled with the knockout of an active compound, to measure the regulation of cellular signaling, as to reveal the landscape in cultured rat osteoblasts having synergistic pharmacological efficacy of Danggui Buxue Tang (DBT), a Chinese herbal formula containing Angelicae Sinensis Radix and Astragali Radix. The changes in signaling pathways responsible for energy metabolism, RNA metabolism and protein metabolism showed distinct features between DBT and calycosin-depleted DBT. Here, our results show that calycosin within DBT can orchestrate the osteoblastic functions and signaling pathways of the entire herbal formula. This finding reveals the harmony of herbal medicine in pharmacological functions, as well as the design of drug/herbal medicine formulation. The integration of systems biology can provide novel and essential insights into the synergistic property of a herbal formula, which is a key in modernizing TCM.
Collapse
Affiliation(s)
- Kenneth K L Kwan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, China
| | - Anna X D Yu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Tina T X Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Henry H N Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, China
| | - Karl W K Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
In-Vivo Degradation Behavior and Osseointegration of 3D Powder-Printed Calcium Magnesium Phosphate Cement Scaffolds. MATERIALS 2021; 14:ma14040946. [PMID: 33671265 PMCID: PMC7923127 DOI: 10.3390/ma14040946] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Calcium magnesium phosphate cements (CMPCs) are promising bone substitutes and experience great interest in research. Therefore, in-vivo degradation behavior, osseointegration and biocompatibility of three-dimensional (3D) powder-printed CMPC scaffolds were investigated in the present study. The materials Mg225 (Ca0.75Mg2.25(PO4)2) and Mg225d (Mg225 treated with diammonium hydrogen phosphate (DAHP)) were implanted as cylindrical scaffolds (h = 5 mm, Ø = 3.8 mm) in both lateral femoral condyles in rabbits and compared with tricalcium phosphate (TCP). Treatment with DAHP results in the precipitation of struvite, thus reducing pore size and overall porosity and increasing pressure stability. Over 6 weeks, the scaffolds were evaluated clinically, radiologically, with Micro-Computed Tomography (µCT) and histological examinations. All scaffolds showed excellent biocompatibility. X-ray and in-vivo µCT examinations showed a volume decrease and increasing osseointegration over time. Structure loss and volume decrease were most evident in Mg225. Histologically, all scaffolds degraded centripetally and were completely traversed by new bone, in which the remaining scaffold material was embedded. While after 6 weeks, Mg225d and TCP were still visible as a network, only individual particles of Mg225 were present. Based on these results, Mg225 and Mg225d appear to be promising bone substitutes for various loading situations that should be investigated further.
Collapse
|
14
|
Abstract
Phosphorus plays a vital role in diverse biological processes including intracellular signaling, membrane integrity, and skeletal biomineralization; therefore, the regulation of phosphorus homeostasis is essential to the well-being of the organism. Cells and whole organisms respond to changes in inorganic phosphorus (Pi) concentrations in their environment by adjusting Pi uptake and altering biochemical processes in cells (local effects) and distant organs (endocrine effects). Unicellular organisms, such as bacteria and yeast, express specific Pi-binding proteins on the plasma membrane that respond to changes in ambient Pi availability and transduce intracellular signals that regulate the expression of genes involved in cellular Pi uptake. Multicellular organisms, including humans, respond at a cellular level to adapt to changes in extracellular Pi concentrations and also have endocrine pathways which integrate signals from various organs (e.g., intestine, kidneys, parathyroid glands, bone) to regulate serum Pi concentrations and whole-body phosphorus balance. In mammals, alterations in the concentrations of extracellular Pi modulate type III sodium-phosphate cotransporter activity on the plasma membrane, and trigger changes in cellular function. In addition, elevated extracellular Pi induces activation of fibroblast growth factor receptor, Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) and Akt pathways, which modulate gene expression in various mammalian cell types. Excessive Pi exposure, especially in patients with chronic kidney disease, leads to endothelial dysfunction, accelerated vascular calcification, and impaired insulin secretion.
Collapse
Affiliation(s)
- Kittrawee Kritmetapak
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Division of Nephrology and Hypertension, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55902, USA
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55902, USA.
- Nephrology Research, Medical Sciences 1-120, 200 First Street Southwest, Rochester, MN, 55902, USA.
| |
Collapse
|
15
|
Ferreira SA, Young G, Jones JR, Rankin S. Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111393. [PMID: 33254998 DOI: 10.1016/j.msec.2020.111393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022]
Abstract
OssiMend® Bioactive (Collagen Matrix Inc., NJ) is a three-component porous composite bone graft device of 45S5 Bioglass/carbonate apatite/collagen. Our in vitro studies showed that conditioned media of the dissolution products of OssiMend Bioactive stimulated primary human osteoblasts to form mineralized bone-like nodules in vitro in one week, in basal culture media (no osteogenic supplements). Osteoblast differentiation was followed by gene expression analysis and a mineralization assay. In contrast, the dissolution products from commercial OssiMend (Bioglass-free carbonate apatite/collagen scaffolds), or from 45S5 Bioglass particulate alone, did not induce the mineralization of the extracellular matrix, but did induce osteoblast differentiation to mature osteoblasts, evidenced by the strong upregulation of BGLAP and IBSP mRNA levels. The calcium ions and soluble silicon species released from 45S5 Bioglass particles and additional phosphorus release from OssiMend mediated the osteostimulatory effects. Medium conditioned with OssiMend Bioactive dissolution had a much higher concentration of phosphorus and silicon than media conditioned with OssiMend and 45S5 Bioglass alone. While OssiMend and OssiMend Bioactive led to calcium precipitation in cell culture media, OssiMend Bioactive produced a higher concentration of soluble silicon than 45S5 Bioglass and higher dissolution of phosphorus than OssiMend. These in vitro results suggest that adding 45S5 Bioglass to OssiMend produces a synergistic osteostimulation effect on primary human osteoblasts. In summary, dissolution products of a Bioglass/carbonate apatite/collagen composite scaffold (OssiMend® Bioactive) stimulate human osteoblast differentiation and mineralization of extracellular matrix in vitro without any osteogenic supplements. The mineralization was faster than for dissolution products of ordinary Bioglass.
Collapse
Affiliation(s)
- Silvia A Ferreira
- National Heart & Lung Institute, Imperial College London, London, UK.
| | - Gloria Young
- Department of Materials, Imperial College London, London, UK.
| | - Julian R Jones
- Department of Materials, Imperial College London, London, UK.
| | - Sara Rankin
- National Heart & Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
16
|
Socorro M, Shinde A, Yamazaki H, Khalid S, Monier D, Beniash E, Napierala D. Trps1 transcription factor represses phosphate-induced expression of SerpinB2 in osteogenic cells. Bone 2020; 141:115673. [PMID: 33022456 PMCID: PMC7680451 DOI: 10.1016/j.bone.2020.115673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Serine protease inhibitor SerpinB2 is one of the most upregulated proteins following cellular stress. This multifunctional serpin has been attributed a number of pleiotropic activities, including roles in cell survival, proliferation, differentiation, immunity and extracellular matrix (ECM) remodeling. Studies of cancer cells demonstrated that expression of SerpinB2 is directly repressed by the Trps1 transcription factor, which is a regulator of skeletal and dental tissues mineralization. In our previous studies, we identified SerpinB2 as one of the novel genes highly upregulated by phosphate (Pi) at the initiation of the mineralization process, however SerpinB2 has never been implicated in formation nor homeostasis of mineralized tissues. The aim of this study was to establish, if SerpinB2 is involved in function of cells producing mineralized ECM and to determine the interplay between Pi signaling and Trps1 in the regulation of SerpinB2 expression specifically in cells producing mineralized ECM. Analyses of the SerpinB2 expression pattern in mouse skeletal and dental tissues detected high SerpinB2 protein levels specifically in cells producing mineralized ECM. qRT-PCR and Western blot analyses demonstrated that SerpinB2 expression is activated by elevated Pi specifically in osteogenic cells. However, the Pi-induced SerpinB2 expression was diminished by overexpression of Trps1. Decreased SerpinB2 levels were also detected in osteoblasts and odontoblasts of 2.3Col1a1-Trps1 transgenic mice. Chromatin immunoprecipitation assay (ChIP) revealed that the occupancy of Trps1 on regulatory elements in the SerpinB2 gene changes in response to Pi. In vitro functional assessment of the consequences of SerpinB2 deficiency in cells producing mineralized ECM detected impaired mineralization in SerpinB2-deficient cells in comparison with controls. In conclusion, high and specific expression of SerpinB2 in cells producing mineralized ECM, the impaired mineralization of SerpinB2-deficient cells and regulation of SerpinB2 expression by two molecules regulating formation of mineralized tissues suggest involvement of SerpinB2 in physiological mineralization.
Collapse
Affiliation(s)
- Mairobys Socorro
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Apurva Shinde
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Hajime Yamazaki
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Sana Khalid
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Daisy Monier
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Elia Beniash
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dobrawa Napierala
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Arnst JL, Beck GR. Modulating phosphate consumption, a novel therapeutic approach for the control of cancer cell proliferation and tumorigenesis. Biochem Pharmacol 2020; 183:114305. [PMID: 33129806 DOI: 10.1016/j.bcp.2020.114305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Phosphorus, often in the form of inorganic phosphate (Pi), is critical to cellular function on many levels; it is required as an integral component of kinase signaling, in the formation and function of DNA and lipids, and energy metabolism in the form of ATP. Accordingly, crucial aspects of cell mitosis - such as DNA synthesis and ATP energy generation - elevate the cellular requirement for Pi, with rapidly dividing cells consuming increased levels. Mechanisms to sense, respond, acquire, accumulate, and potentially seek Pi have evolved to support highly proliferative cellular states such as injury and malignant transformation. As such, manipulating Pi availability to target rapidly dividing cells presents a novel strategy to reduce or prevent unrestrained cell growth. Currently, limited knowledge exists regarding how modulating Pi consumption by pre-cancerous cells might influence the initiation of aberrant growth during malignant transformation, and if reducing the bioavailability or suppressing Pi consumption by malignant cells could alter tumorigenesis. The concept of targeting Pi-regulated pathways and/or consumption by pre-cancerous or tumor cells represents a novel approach to cancer prevention and control, although current data remains insufficient as to rigorously assess the therapeutic value and physiological relevance of this strategy. With this review, we present a critical evaluation of the paradox of how an element critical to essential cellular functions can, when available in excess, influence and promote a cancer phenotype. Further, we conjecture how Pi manipulation could be utilized as a therapeutic intervention, either systemically or at the cell level, to ultimately suppress or treat cancer initiation and/or progression.
Collapse
Affiliation(s)
- Jamie L Arnst
- Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States
| | - George R Beck
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033, United States; Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
18
|
Serna J, Bergwitz C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020; 12:E3001. [PMID: 33007883 PMCID: PMC7599912 DOI: 10.3390/nu12103001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) plays a critical function in many tissues of the body: for example, as part of the hydroxyapatite in the skeleton and as a substrate for ATP synthesis. Pi is the main source of dietary phosphorus. Reduced bioavailability of Pi or excessive losses in the urine causes rickets and osteomalacia. While critical for health in normal amounts, dietary phosphorus is plentiful in the Western diet and is often added to foods as a preservative. This abundance of phosphorus may reduce longevity due to metabolic changes and tissue calcifications. In this review, we examine how dietary phosphorus is absorbed in the gut, current knowledge about Pi sensing, and endocrine regulation of Pi levels. Moreover, we also examine the roles of Pi in different tissues, the consequences of low and high dietary phosphorus in these tissues, and the implications for healthy aging.
Collapse
Affiliation(s)
- Juan Serna
- Yale College, Yale University, New Haven, CT 06511, USA;
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
19
|
He P, Mann-Collura O, Fling J, Edara N, Hetz R, Razzaque MS. High phosphate actively induces cytotoxicity by rewiring pro-survival and pro-apoptotic signaling networks in HEK293 and HeLa cells. FASEB J 2020; 35:e20997. [PMID: 32892444 DOI: 10.1096/fj.202000799rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inorganic phosphate (Pi) is an essential nutrient for human health. Due to the changes in our dietary pattern, dietary Pi overload engenders systemic phosphotoxicity, including excessive Pi-related vascular calcification and chronic tissue injury. The molecular mechanisms of the seemingly distinct phenotypes remain elusive. In this study, we investigated Pi-mediated cellular response in HEK293 and HeLa cells. We found that abnormally high Pi directly mediates diverse cellular toxicity in a dose-dependent manner. Up to 10 mM extracellular Pi promotes cell proliferation by activating AKT signaling cascades and augmenting cell cycle progression. By introducing additional Pi, higher than the concentration of 40 mM, we observed significant cell damage caused by the interwoven Pi-related biological processes. Elevated Pi activates mitogen-activated protein kinase (MAPK) signaling, encompassing extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and Jun amino-terminal kinase (JNK), which consequently potentiates Pi triggered lethal epithelial-mesenchymal transition (EMT). Synergistically, high Pi-caused endoplasmic reticulum (ER) stress also contributes to apparent apoptosis. To counteract, Pi-activated AKT signaling promotes cell survival by activating the mammalian target of rapamycin (mTOR) signaling and blocking ER stress. Pharmacologically or genetically abrogating Pi transport, the impact of high Pi-induced cytotoxicity could be reduced. Taken together, abnormally high extracellular Pi results in a broad spectrum of toxicity by rewiring complicated signaling networks that control cell growth, cell death, and homeostasis.
Collapse
Affiliation(s)
- Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Olivia Mann-Collura
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Jacob Fling
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Naga Edara
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Rebecca Hetz
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| |
Collapse
|
20
|
uORFs: Important Cis-Regulatory Elements in Plants. Int J Mol Sci 2020; 21:ijms21176238. [PMID: 32872304 PMCID: PMC7503886 DOI: 10.3390/ijms21176238] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 11/17/2022] Open
Abstract
Gene expression is regulated at many levels, including mRNA transcription, translation, and post-translational modification. Compared with transcriptional regulation, mRNA translational control is a more critical step in gene expression and allows for more rapid changes of encoded protein concentrations in cells. Translation is highly regulated by complex interactions between cis-acting elements and trans-acting factors. Initiation is not only the first phase of translation, but also the core of translational regulation, because it limits the rate of protein synthesis. As potent cis-regulatory elements in eukaryotic mRNAs, upstream open reading frames (uORFs) generally inhibit the translation initiation of downstream major ORFs (mORFs) through ribosome stalling. During the past few years, with the development of RNA-seq and ribosome profiling, functional uORFs have been identified and characterized in many organisms. Here, we review uORF identification, uORF classification, and uORF-mediated translation initiation. More importantly, we summarize the translational regulation of uORFs in plant metabolic pathways, morphogenesis, disease resistance, and nutrient absorption, which open up an avenue for precisely modulating the plant growth and development, as well as environmental adaption. Additionally, we also discuss prospective applications of uORFs in plant breeding.
Collapse
|
21
|
Choi SW, Kang J, Wang C, Lee HM, Oh SJ, Pak K, Shin N, Lee IW, Lee J, Kong SK. Human Tonsil-Derived Mesenchymal Stem Cells-Loaded Hydroxyapatite-Chitosan Patch for Mastoid Obliteration. ACS APPLIED BIO MATERIALS 2020; 3:1008-1017. [DOI: 10.1021/acsabm.9b01018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sung-Won Choi
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Jieun Kang
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Caifeng Wang
- Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Min Lee
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Se-Joon Oh
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Nari Shin
- Department of Pathology, Hanmaeum Changwon Hospital, Changwon 51497, Republic of Korea
| | - Il-Woo Lee
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soo-Keun Kong
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| |
Collapse
|
22
|
van der Horst S, Snel B, Hanson J, Smeekens S. Novel pipeline identifies new upstream ORFs and non-AUG initiating main ORFs with conserved amino acid sequences in the 5' leader of mRNAs in Arabidopsis thaliana. RNA (NEW YORK, N.Y.) 2019; 25:292-304. [PMID: 30567971 PMCID: PMC6380273 DOI: 10.1261/rna.067983.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/10/2018] [Indexed: 05/10/2023]
Abstract
Eukaryotic mRNAs contain a 5' leader sequence preceding the main open reading frame (mORF) and, depending on the species, 20%-50% of eukaryotic mRNAs harbor an upstream ORF (uORF) in the 5' leader. An unknown fraction of these uORFs encode sequence conserved peptides (conserved peptide uORFs, CPuORFs). Experimentally validated CPuORFs demonstrated to regulate the translation of downstream mORFs often do so in a metabolite concentration-dependent manner. Previous research has shown that most CPuORFs possess a start codon context suboptimal for translation initiation, which turns out to be favorable for translational regulation. The suboptimal initiation context may even include non-AUG start codons, which makes CPuORFs hard to predict. For this reason, we developed a novel pipeline to identify CPuORFs unbiased of start codon using well-annotated sequence data from 31 eudicot plant species and rice. Our new pipeline was able to identify 29 novel Arabidopsis thaliana (Arabidopsis) CPuORFs, conserved across a wide variety of eudicot species of which 15 do not initiate with an AUG start codon. In addition to CPuORFs, the pipeline was able to find 14 conserved coding regions directly upstream and in frame with the mORF, which likely initiate translation on a non-AUG start codon. Altogether, our pipeline identified highly conserved coding regions in the 5' leaders of Arabidopsis transcripts, including in genes with proven functional importance such as LHY, a key regulator of the circadian clock, and the RAPTOR1 subunit of the target of rapamycin (TOR) kinase.
Collapse
Affiliation(s)
- Sjors van der Horst
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Johannes Hanson
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
23
|
Abstract
Phosphate is essential for skeletal mineralization, and its chronic deficiency leads to rickets and osteomalacia. Skeletal mineralization starts in matrix vesicles (MVs) derived from the plasma membrane of osteoblasts and chondrocytes. MVs contain high activity of tissue non-specific alkaline phosphatase (TNSALP), which hydrolyzes phosphoric esters such as pyrophosphates (PPi) to produce inorganic orthophosphates (Pi). Extracellular Pi in the skeleton is taken up by MVs through type III sodium/phosphate (Na+/Pi) cotransporters and forms hydroxyapatite. In addition to its roles in MV-mediated skeletal mineralization, accumulating evidence has revealed that extracellular Pi evokes signal transduction and regulates cellular function. Pi induces apoptosis of hypertrophic chondrocytes, which is a critical step for endochondral ossification. Extracellular Pi also regulates the expression of various genes including those related to proliferation, differentiation, and mineralization. In vitro cell studies have demonstrated that an elevation in extracellular Pi level leads to the activation of fibroblast growth factor receptor (FGFR), Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway, where the type III Na+/Pi cotransporter PiT-1 may be involved. Responsiveness of skeletal cells to extracellular Pi suggests their ability to sense and adapt to an alteration in Pi availability in their environment. Involvement of FGFR in the Pi-evoked signal transduction is interesting because enhanced FGFR signaling in osteoblasts/osteocytes might be responsible for the overproduction of FGF23, a key molecule in phosphate homeostasis, in a mouse model for human X-linked hypophosphatemic rickets (XLH). Impaired Pi sensing may be a pathogenesis of XLH, which needs to be clarified in future.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Japan
- *Correspondence: Toshimi Michigami
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
24
|
Basic fibroblast growth factor regulates phosphate/pyrophosphate regulatory genes in stem cells isolated from human exfoliated deciduous teeth. Stem Cell Res Ther 2018; 9:345. [PMID: 30526676 PMCID: PMC6288970 DOI: 10.1186/s13287-018-1093-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background Basic fibroblast growth factor (bFGF) regulates maintenance of stemness and modulation of osteo/odontogenic differentiation and mineralization in stem cells from human exfoliated deciduous teeth (SHEDs). Mineralization in the bones and teeth is in part controlled by pericellular levels of inorganic phosphate (Pi), a component of hydroxyapatite, and inorganic pyrophosphate (PPi), an inhibitor of mineralization. The progressive ankylosis protein (gene ANKH; protein ANKH) and ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1/ENPP1) increase PPi and inhibit mineralization, while tissue-nonspecific alkaline phosphatase (ALPL; TNAP) is a critical pro-mineralization enzyme that hydrolyzes PPi. We hypothesized that regulation by bFGF of mineralization in SHEDs occurs by modulation of Pi/PPi-associated genes. Methods Cells were isolated from human exfoliated deciduous teeth and characterized for mesenchymal stem cell characteristics. Cells were treated with bFGF, and the osteogenic differentiation ability was determined. The mRNA expression was evaluated using real-time polymerase chain reaction. The mineralization was examined using alizarin red S staining. Results Cells isolated from primary teeth expressed mesenchymal stem cell markers, CD44, CD90, and CD105, and were able to differentiate into osteo/odontogenic and adipogenic lineages. Addition of 10 ng/ml bFGF to SHEDs during in vitro osteo/odontogenic differentiation decreased ALPL mRNA expression and ALP enzyme activity, increased ANKH mRNA, and decreased both Pi/PPi ratio and mineral deposition. Effects of bFGF on ALPL and ANKH expression were detected within 24 h. Addition of 20 mM fibroblast growth factor receptor (FGFR) inhibitor SU5402 revealed the necessity of FGFR-mediated signaling, and inclusion of 1 μg/ml cyclohexamide (CHX) implicated the necessity of protein synthesis for effects on ALPL and ANKH. Addition of exogenous 10 μm PPi inhibited mineralization and increased ANKH, collagen type 1a1 (COL1A1), and osteopontin (SPP1) mRNA, while addition of exogenous Pi increased mineralization and osterix (OSX), ANKH, SPP1, and dentin matrix protein 1 (DMP1) mRNA. The effects of PPi and Pi on mineralization could be replicated by short-term 3- and 7-day treatments, suggesting signaling effects in addition to physicochemical regulation of mineral deposition. Conclusion This study reveals for the first time the effects of bFGF on Pi/PPi regulators in SHEDs and implicates these factors in how bFGF directs osteo/odontogenic differentiation and mineralization by these cells. Electronic supplementary material The online version of this article (10.1186/s13287-018-1093-9) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Abstract
Inorganic phosphate (Pi) is essential for signal transduction and cell metabolism, and is also an essential structural component of the extracellular matrix of the skeleton. Pi is sensed in bacteria and yeast at the plasma membrane, which activates intracellular signal transduction to control the expression of Pi transporters and other genes that control intracellular Pi levels. In multicellular organisms, Pi homeostasis must be maintained in the organism and at the cellular level, requiring an endocrine and metabolic Pi-sensing mechanism, about which little is currently known. This Review will discuss the metabolic effects of Pi, which are mediated by Pi transporters, inositol pyrophosphates and SYG1-Pho81-XPR1 (SPX)-domain proteins to maintain cellular phosphate homeostasis in the musculoskeletal system. In addition, we will discuss how Pi is sensed by the human body to regulate the production of fibroblast growth factor 23 (FGF23), parathyroid hormone and calcitriol to maintain serum levels of Pi in a narrow range. New findings on the crosstalk between iron and Pi homeostasis in the regulation of FGF23 expression will also be outlined. Mutations in components of these metabolic and endocrine phosphate sensors result in genetic disorders of phosphate homeostasis, cardiomyopathy and familial basal ganglial calcifications, highlighting the importance of this newly emerging area of research.
Collapse
Affiliation(s)
- Sampada Chande
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
26
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
27
|
Allegrini S, da Silva AC, Tsujita M, Salles MB, Gehrke SA, Braga FJC. Amorphous calcium phosphate (ACP) in tissue repair process. Microsc Res Tech 2018. [PMID: 29532542 DOI: 10.1002/jemt.23013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synthetic biomaterials submitted to new structural technologies have become ideal for the recovery of traumatized bone tissues and some bone substitutes such as bioactive glass, β-Tricalcium phosphate (β-TCP) and amorphous calcium phosphate (ACP) are being used in areas of tissue defects. For this study, ACP was produced in the form of fibers and then submitted to cytotoxicity testing. A sample of ACP was inserted into the mandibular region of a patient with a lost implant so after removal and curettage, the remaining bone site was filled with the ACP biomaterial. Preliminary cytotoxicity test was negative. After 15 weeks of healing, a titanium implant was inserted at the site. Clinical and radiographic follow-up was conducted for 12 months and sequential radiographic analyses revealed tissue formation resembling spongy bone. Images under immunohistochemistry demonstrated efficient deposition and osteoconduction of the newly deposited tissue. Residual portion of the CaO:P2 O5 outer layers served as a substrate for osteoid matrix deposition, aiding growth, and the results of fiber absorption favored maturation of the new bone tissue.
Collapse
Affiliation(s)
- Sergio Allegrini
- Program of Science Dentistry, Ibirapuera University (UNIB), São Paulo, SP, Brazil
| | - Antonio Carlos da Silva
- Materials Science and Technology Center, CCTM, Nuclear and Energy Research Institute (IPEN), São Paulo, SP, Brazil
| | - Maristela Tsujita
- Institute of Health Sciences, Paulista University (UNIP), São Paulo, SP, Brazil
| | - Marcos Barbosa Salles
- Department of Health Sciences - School of Dentistry, 9 de Julho University, São Paulo, SP, Brazil. Post-Doc in Materials Engineering - Pontifical Catholic University of Rio Grande do Sul (PUC-RS), Rio Grande do Sul, RS, Brazil
| | - Sergio Alexandre Gehrke
- Department of Research, Biotecnos - Technology and Science, Montevideo, Uruguay. Director of International Dental Research Group, Catholic University of Uruguay, Montevideo, Uruguay
| | - Francisco José Correa Braga
- Materials Science and Technology Center, CCTM, Nuclear and Energy Research Institute (IPEN), São Paulo, SP, Brazil
| |
Collapse
|
28
|
Yang H, Chen S, Liu L, Lai C, Shi X. Synthesis, characterization and osteogenesis of phosphorylated methacrylamide chitosan hydrogels. RSC Adv 2018; 8:36331-36337. [PMID: 35558475 PMCID: PMC9088424 DOI: 10.1039/c8ra05378b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022] Open
Abstract
Phosphorylated biopolymers can induce mineralization, mimic the process of natural bone formation, and have the potential as scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Huishang Yang
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- School of Material Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Shenggui Chen
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- School of Material Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Lei Liu
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- School of Material Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Chen Lai
- Peking University Shenzhen Institute
- Peking University
- Shenzhen
- China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- School of Material Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
29
|
Liu L, Li X, Shi X, Wang Y. Injectable alendronate-functionalized GelMA hydrogels for mineralization and osteogenesis. RSC Adv 2018; 8:22764-22776. [PMID: 35539745 PMCID: PMC9081581 DOI: 10.1039/c8ra03550d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022] Open
Abstract
Injectable alendronate-modified GelMA hydrogel greatly improved mineralization and in vitro osteogenesis both at the surface and inside of the hydrogel, which have potential in treatment of irregular bone defects.
Collapse
Affiliation(s)
- Lei Liu
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- PR China
- School of Material Science and Engineering
| | - Xiaoyu Li
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- PR China
- School of Material Science and Engineering
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- PR China
- School of Material Science and Engineering
| | - Yingjun Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- PR China
- School of Material Science and Engineering
| |
Collapse
|
30
|
Yamada S, Wallingford MC, Borgeia S, Cox TC, Giachelli CM. Loss of PiT-2 results in abnormal bone development and decreased bone mineral density and length in mice. Biochem Biophys Res Commun 2018; 495:553-559. [PMID: 29133259 PMCID: PMC5739526 DOI: 10.1016/j.bbrc.2017.11.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/31/2023]
Abstract
Normal bone mineralization requires phosphate oversaturation in bone matrix vesicles, as well as normal regulation of phosphate metabolism via the interplay among bone, intestine, and kidney. In turn, derangement of phosphate metabolism greatly affects bone function and structure. The type III sodium-dependent phosphate transporters, PiT-1 and PiT-2, are believed to be important in tissue phosphate metabolism and physiological bone formation, but their requirement and molecular roles in bone remain poorly investigated. In order to decipher the role of PiT-2 in bone, we examined normal bone development, growth, and mineralization in global PiT-2 homozygous knockout mice. PiT-2 deficiency resulted in reduced vertebral column, femur, and tibia length as well as mandibular dimensions. Micro-computed tomography analysis revealed that bone mineral density in the mandible, femur, and tibia were decreased, indicating that maintenance of bone function and structure is impaired in both craniofacial and long bones of PiT-2 deficient mice. Both cortical and trabecular thickness and mineral density were reduced in PiT-2 homozygous knockout mice compared with wild-type mice. These results suggest that PiT-2 is involved in normal bone development and growth and plays roles in cortical and trabecular bone metabolism feasibly by regulating local phosphate transport and mineralization processes in the bone. Further studies that evaluate bone cell-specific loss of PiT-2 are now warranted and may yield insight into complex mechanisms of bone development and growth, leading to identification of new therapeutic options for patients with bone diseases.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Mary C Wallingford
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Suhaib Borgeia
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Timothy C Cox
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
31
|
Bon N, Couasnay G, Bourgine A, Sourice S, Beck-Cormier S, Guicheux J, Beck L. Phosphate (P i)-regulated heterodimerization of the high-affinity sodium-dependent P i transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular P i sensing independently of P i uptake. J Biol Chem 2017; 293:2102-2114. [PMID: 29233890 DOI: 10.1074/jbc.m117.807339] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/16/2017] [Indexed: 12/24/2022] Open
Abstract
Extracellular phosphate (Pi) can act as a signaling molecule that directly alters gene expression and cellular physiology. The ability of cells or organisms to detect changes in extracellular Pi levels implies the existence of a Pi-sensing mechanism that signals to the body or individual cell. However, unlike in prokaryotes, yeasts, and plants, the molecular players involved in Pi sensing in mammals remain unknown. In this study, we investigated the involvement of the high-affinity, sodium-dependent Pi transporters PiT1 and PiT2 in mediating Pi signaling in skeletal cells. We found that deletion of PiT1 or PiT2 blunted the Pi-dependent ERK1/2-mediated phosphorylation and subsequent gene up-regulation of the mineralization inhibitors matrix Gla protein and osteopontin. This result suggested that both PiTs are necessary for Pi signaling. Moreover, the ERK1/2 phosphorylation could be rescued by overexpressing Pi transport-deficient PiT mutants. Using cross-linking and bioluminescence resonance energy transfer approaches, we found that PiT1 and PiT2 form high-abundance homodimers and Pi-regulated low-abundance heterodimers. Interestingly, in the absence of sodium-dependent Pi transport activity, the PiT1-PiT2 heterodimerization was still regulated by extracellular Pi levels. Of note, when two putative Pi-binding residues, Ser-128 (in PiT1) and Ser-113 (in PiT2), were substituted with alanine, the PiT1-PiT2 heterodimerization was no longer regulated by extracellular Pi These observations suggested that Pi binding rather than Pi uptake may be the key factor in mediating Pi signaling through the PiT proteins. Taken together, these results demonstrate that Pi-regulated PiT1-PiT2 heterodimerization mediates Pi sensing independently of Pi uptake.
Collapse
Affiliation(s)
- Nina Bon
- From INSERM, U1229, RMeS "Regenerative Medicine and Skeleton," STEP team "Skeletal Physiopathology and Joint Regenerative Medicine," Nantes F-44042, France.,the Université de Nantes, UMR-S 1229, RMeS, UFR Odontologie, Nantes F-44042, France, and
| | - Greig Couasnay
- From INSERM, U1229, RMeS "Regenerative Medicine and Skeleton," STEP team "Skeletal Physiopathology and Joint Regenerative Medicine," Nantes F-44042, France.,the Université de Nantes, UMR-S 1229, RMeS, UFR Odontologie, Nantes F-44042, France, and
| | - Annabelle Bourgine
- From INSERM, U1229, RMeS "Regenerative Medicine and Skeleton," STEP team "Skeletal Physiopathology and Joint Regenerative Medicine," Nantes F-44042, France.,the Université de Nantes, UMR-S 1229, RMeS, UFR Odontologie, Nantes F-44042, France, and
| | - Sophie Sourice
- From INSERM, U1229, RMeS "Regenerative Medicine and Skeleton," STEP team "Skeletal Physiopathology and Joint Regenerative Medicine," Nantes F-44042, France.,the Université de Nantes, UMR-S 1229, RMeS, UFR Odontologie, Nantes F-44042, France, and
| | - Sarah Beck-Cormier
- From INSERM, U1229, RMeS "Regenerative Medicine and Skeleton," STEP team "Skeletal Physiopathology and Joint Regenerative Medicine," Nantes F-44042, France.,the Université de Nantes, UMR-S 1229, RMeS, UFR Odontologie, Nantes F-44042, France, and
| | - Jérôme Guicheux
- From INSERM, U1229, RMeS "Regenerative Medicine and Skeleton," STEP team "Skeletal Physiopathology and Joint Regenerative Medicine," Nantes F-44042, France.,the Université de Nantes, UMR-S 1229, RMeS, UFR Odontologie, Nantes F-44042, France, and.,CHU Nantes, PHU 4 OTONN, Nantes F-44042, France
| | - Laurent Beck
- From INSERM, U1229, RMeS "Regenerative Medicine and Skeleton," STEP team "Skeletal Physiopathology and Joint Regenerative Medicine," Nantes F-44042, France, .,the Université de Nantes, UMR-S 1229, RMeS, UFR Odontologie, Nantes F-44042, France, and
| |
Collapse
|
32
|
Nakamura-Takahashi A, Miyake K, Watanabe A, Hirai Y, Iijima O, Miyake N, Adachi K, Nitahara-Kasahara Y, Kinoshita H, Noguchi T, Abe S, Narisawa S, Millán JL, Shimada T, Okada T. Treatment of hypophosphatasia by muscle-directed expression of bone-targeted alkaline phosphatase via self-complementary AAV8 vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15059. [PMID: 26904710 PMCID: PMC4739158 DOI: 10.1038/mtm.2015.59] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/13/2015] [Accepted: 12/16/2015] [Indexed: 01/18/2023]
Abstract
Hypophosphatasia (HPP) is an inherited disease caused by genetic mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNALP). This results in defects in bone and tooth mineralization. We recently demonstrated that TNALP-deficient (Akp2 (-/-) ) mice, which mimic the phenotype of the severe infantile form of HPP, can be treated by intravenous injection of a recombinant adeno-associated virus (rAAV) expressing bone-targeted TNALP with deca-aspartates at the C-terminus (TNALP-D10) driven by the tissue-nonspecific CAG promoter. To develop a safer and more clinically applicable transduction strategy for HPP gene therapy, we constructed a self-complementary type 8 AAV (scAAV8) vector that expresses TNALP-D10 via the muscle creatine kinase (MCK) promoter (scAAV8-MCK-TNALP-D10) and examined the efficacy of muscle-directed gene therapy. When scAAV8-MCK-TNALP-D10 was injected into the bilateral quadriceps of neonatal Akp2 (-/-) mice, the treated mice grew well and survived for more than 3 months, with a healthy appearance and normal locomotion. Improved bone architecture, but limited elongation of the long bone, was demonstrated on X-ray images. Micro-CT analysis showed hypomineralization and abnormal architecture of the trabecular bone in the epiphysis. These results suggest that rAAV-mediated, muscle-specific expression of TNALP-D10 represents a safe and practical option to treat the severe infantile form of HPP.
Collapse
Affiliation(s)
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Atsushi Watanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan; Division of Clinical Genetics, Nippon Medical School Hospital, Tokyo, Japan
| | - Yukihiko Hirai
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Osamu Iijima
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Noriko Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Kumi Adachi
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | | | - Hideaki Kinoshita
- Department of Dental Materials Science, Tokyo Dental College , Tokyo, Japan
| | - Taku Noguchi
- Department of Anatomy, Tokyo Dental College , Tokyo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College , Tokyo, Japan
| | - Sonoko Narisawa
- Sanford Children's Health Research Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California, USA
| | - Jose Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California, USA
| | - Takashi Shimada
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| |
Collapse
|
33
|
Wang X, Schröder HC, Müller WEG. Polyphosphate as a metabolic fuel in Metazoa: A foundational breakthrough invention for biomedical applications. Biotechnol J 2016; 11:11-30. [PMID: 26356505 DOI: 10.1002/biot.201500168] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
In animals, energy-rich molecules like ATP are generated in the intracellular compartment from metabolites, e.g. glucose, taken up by the cells. Recent results revealed that inorganic polyphosphates (polyP) can provide an extracellular system for energy transport and delivery. These polymers of multiple phosphate units, linked by high-energy phosphoanhydride bonds, use blood platelets as transport vehicles to reach their target cells. In this review it is outlined how polyP affects cell metabolism. It is discussed that polyP influences cell activity in a dual way: (i) as a metabolic fuel transferring metabolic energy through the extracellular space; and (ii) as a signaling molecule that amplifies energy/ATP production in mitochondria. Several metabolic pathways are triggered by polyP, among them biomineralization/hydroxyapatite formation onto bone cells. The accumulation of polyP in the platelets allows long-distance transport of the polymer in the extracellular space. The discovery of polyP as metabolic fuel and signaling molecule initiated the development of novel techniques for encapsulation of polyP into nanoparticles. They facilitate cellular uptake of the polymer by receptor-mediated endocytosis and allow the development of novel strategies for therapy of metabolic diseases associated with deviations in energy metabolism or mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
| |
Collapse
|
34
|
Liu J, Campbell C, Nam HK, Caron A, Yadav MC, Millán JL, Hatch NE. Enzyme replacement for craniofacial skeletal defects and craniosynostosis in murine hypophosphatasia. Bone 2015; 78:203-11. [PMID: 25959417 PMCID: PMC4466206 DOI: 10.1016/j.bone.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/13/2015] [Accepted: 05/02/2015] [Indexed: 12/30/2022]
Abstract
Hypophosphatasia (HPP) is an inborn-error-of-metabolism disorder characterized by deficient bone and tooth mineralization due to loss-of function mutations in the gene (Alpl) encoding tissue-nonspecific alkaline phosphatase (TNAP). Alpl(-/-) mice exhibit many characteristics seen in infantile HPP including long bone and tooth defects, vitamin B6 responsive seizures and craniosynostosis. Previous reports demonstrated that a mineral-targeted form of TNAP rescues long bone, vertebral and tooth mineralization defects in Alpl(-/-) mice. Here we report that enzyme replacement with mineral-targeted TNAP (asfotase-alfa) also prevents craniosynostosis (the premature fusion of cranial bones) and additional craniofacial skeletal abnormalities in Alpl(-/-) mice. Craniosynostosis, cranial bone volume and density, and craniofacial shape abnormalities were assessed by microscopy, histology, digital caliper measurements and micro CT. We found that craniofacial shape defects, cranial bone mineralization and craniosynostosis were corrected in Alpl(-/-) mice injected daily subcutaneously starting at birth with recombinant enzyme. Analysis of Alpl(-/-) calvarial cells indicates that TNAP deficiency leads to aberrant osteoblastic gene expression and diminished proliferation. Some but not all of these cellular abnormalities were rescued by treatment with inorganic phosphate. These results confirm an essential role for TNAP in craniofacial skeletal development and demonstrate the efficacy of early postnatal mineral-targeted enzyme replacement for preventing craniofacial abnormalities including craniosynostosis in murine infantile HPP.
Collapse
Affiliation(s)
- Jin Liu
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Cassie Campbell
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Manisha C Yadav
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA..
| |
Collapse
|
35
|
Ha SW, Jang HL, Nam KT, Beck GR. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials 2015; 65:32-42. [PMID: 26141836 DOI: 10.1016/j.biomaterials.2015.06.039] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/26/2022]
Abstract
Hydroxyapatite (HA) is the primary structural component of the skeleton and dentition. Under biological conditions, HA does not occur spontaneously and therefore must be actively synthesized by mineralizing cells such as osteoblasts. The mechanism(s) by which HA is actively synthesized by cells and deposited to create a mineralized matrix are not fully understood and the consequences of mineralization on cell function are even less well understood. HA can be chemically synthesized (HAp) and is therefore currently being investigated as a promising therapeutic biomaterial for use as a functional scaffold and implant coating for skeletal repair and dental applications. Here we investigated the biological effects of nano-HAp (10 × 100 nm) on the lineage commitment and differentiation of bone forming osteoblasts. Exposure of early stage differentiating osteoblasts resulted in dramatic and sustained changes in gene expression, both increased and decreased, whereas later stage osteoblasts were much less responsive. Analysis of the promoter region one of the most responsive genes, alkaline phosphatase, identified the stimulation of DNA methylation following cell exposure to nano-HAp. Collectively, the results reveal the novel epigenetic regulation of cell function by nano-HAp which has significant implication on lineage determination as well as identifying a novel potential therapeutic use of nanomaterials.
Collapse
Affiliation(s)
- Shin-Woo Ha
- Department of Medicine, Division of Endocrinology Metabolism and Lipids, Emory University, Atlanta, GA 30322, United States
| | - Hae Lin Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | - George R Beck
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033, United States; Department of Medicine, Division of Endocrinology Metabolism and Lipids, Emory University, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
36
|
Wei N, Wang Y, Xu RX, Wang GQ, Xiong Y, Yu TY, Yang GS, Pang WJ. PU.1antisense lncRNA against its mRNA translation promotes adipogenesis in porcine preadipocytes. Anim Genet 2015; 46:133-40. [DOI: 10.1111/age.12275] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2014] [Indexed: 01/31/2023]
Affiliation(s)
- N. Wei
- Laboratory of Animal Fat Deposition & Muscle Development; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Y. Wang
- Laboratory of Animal Fat Deposition & Muscle Development; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| | - R.-X. Xu
- Laboratory of Animal Fat Deposition & Muscle Development; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| | - G.-Q. Wang
- Laboratory of Animal Fat Deposition & Muscle Development; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Y. Xiong
- Laboratory of Animal Fat Deposition & Muscle Development; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| | - T.-Y. Yu
- Laboratory of Animal Fat Deposition & Muscle Development; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| | - G.-S. Yang
- Laboratory of Animal Fat Deposition & Muscle Development; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| | - W.-J. Pang
- Laboratory of Animal Fat Deposition & Muscle Development; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| |
Collapse
|
37
|
Wulaningsih W, Van Hemelrijck M, Michaelsson K, Kanarek N, Nelson WG, Ix JH, Platz EA, Rohrmann S. Association of serum inorganic phosphate with sex steroid hormones and vitamin D in a nationally representative sample of men. Andrology 2014; 2:967-76. [PMID: 25270590 PMCID: PMC4324600 DOI: 10.1111/andr.285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022]
Abstract
Defects in bone regulatory pathways have been linked to chronic diseases including cardiovascular disease and cancer. In men, a link between bone metabolism and gonadal hormones has been suggested. However, to date, there is lack of evidence on the association between serum inorganic phosphate (Pi) and sex steroid hormones. The objective of this study was to investigate the association between Pi, sex steroid hormones and a known Pi metabolic regulator, vitamin D, in men in the National Health and Nutrition Examination Survey III (NHANES III). From NHANES III, we selected 1412 men aged 20+ who participated in the morning session of Phase I (1988-1991) with serum measurements of Pi, sex hormones, and vitamin D. Multivariable linear regression was used to calculate crude and geometric mean Pi by total and estimated free testosterone and estradiol, sex hormone-binding globulin, androstanediol glucuronide (AAG), and vitamin D. Similar analyses were performed while stratifying by race/ethnicity and vitamin D levels. We found a lack of statistically significant difference in geometric means of Pi across quintiles of concentrations of sex hormones, indicating a tight regulation of Pi. However, Pi levels were inversely associated with calculated free testosterone in non-Hispanic black men, with geometric mean levels of Pi of 1.16 and 1.02 ng/mL for those in the lowest and highest quintiles of free testosterone, respectively (p-trend < 0.05). A similar but weaker pattern was seen between total testosterone and Pi. An inverse association was also seen between AAG and Pi in men with vitamin D concentration below the median (<24.2 ng/mL). No associations were observed among men with vitamin D levels at or above the median. Our findings suggest a weak link among sex hormones, vitamin D, and Pi in men. The observed effects of race/ethnicity and vitamin D indicate a complex association involving various regulators of Pi homeostasis.
Collapse
Affiliation(s)
- W Wulaningsih
- Cancer Epidemiology Unit, Division of Cancer Studies, King's College London, School of Medicine, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhao WJ, Song Q, Wang YH, Li KJ, Mao L, Hu X, Lian HZ, Zheng WJ, Hua ZC. Zn-responsive proteome profiling and time-dependent expression of proteins regulated by MTF-1 in A549 cells. PLoS One 2014; 9:e105797. [PMID: 25162517 PMCID: PMC4146543 DOI: 10.1371/journal.pone.0105797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/24/2014] [Indexed: 12/11/2022] Open
Abstract
Zinc plays a critical role in many biological processes. However, it is toxic at high concentrations and its homeostasis is strictly regulated by metal-responsive transcription factor 1 (MTF-1) together with many other proteins to protect cells against metal toxicity and oxidative stresses. In this paper, we used high-resolution two-dimensional gel electrophoresis (2DE) to profile global changes of the whole soluble proteome in human lung adenocarcinoma (A549) cells in response to exogenous zinc treatment for 24 h. Eighteen differentially expressed proteins were identified by MALDI TOF/TOF and MASCOT search. In addition, we used Western blotting and RT-PCR to examine the time-dependent changes in expression of proteins regulated by MTF-1 in response to Zn treatment, including the metal binding protein MT-1, the zinc efflux protein ZnT-1, and the zinc influx regulator ZIP-1. The results indicated that variations in their mRNA and protein levels were consistent with their functions in maintaining the homeostasis of zinc. However, the accumulation of ZIP-1 transcripts was down-regulated while the protein level was up-regulated during the same time period. This may be due to the complex regulatory mechanism of ZIP-1, which is involved in multiple signaling pathways. Maximal changes in protein abundance were observed at 10 h following Zn treatment, but only slight changes in protein or mRNA levels were observed at 24 h, which was the time-point frequently used for 2DE analyses. Therefore, further study of the time-dependent Zn-response of A549 cells would help to understand the dynamic nature of the cellular response to Zn stress. Our findings provide the basis for further study into zinc-regulated cellular signaling pathways.
Collapse
Affiliation(s)
- Wen-jie Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, PR China
| | - Qun Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, PR China
| | - Yan-hong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, PR China
| | - Ke-jin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, PR China
| | - Li Mao
- MOE Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, PR China
| | - Hong-zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, PR China
| | - Wei-juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, PR China
| | - Zi-chun Hua
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, PR China
| |
Collapse
|
39
|
Rendenbach C, Yorgan TA, Heckt T, Otto B, Baldauf C, Jeschke A, Streichert T, David JP, Amling M, Schinke T. Effects of extracellular phosphate on gene expression in murine osteoblasts. Calcif Tissue Int 2014; 94:474-83. [PMID: 24366459 DOI: 10.1007/s00223-013-9831-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 12/01/2013] [Indexed: 02/07/2023]
Abstract
That phosphate homeostasis is tightly linked to skeletal mineralization is probably best underscored by the fact that the phosphaturic hormone FGF23 is primarily expressed by terminally differentiated osteoblasts/osteocytes and that increased circulating FGF23 levels are causative for different types of hypophosphatemic rickets. In contrast, FGF23 inactivation results in hyperphosphatemia, and unexpectedly this phenotype is associated with severe osteomalacia in Fgf23-deficient mice. In this context it is interesting that different cell types have been shown to respond to extracellular phosphate, thereby raising the concept that phosphate can act as a signaling molecule. To identify phosphate-responsive genes in primary murine osteoblasts we performed genome wide expression analysis with cells maintained in medium containing either 1 or 4 mM sodium phosphate for 6 h. As confirmed by qRT-PCR, this analysis revealed that several known osteoblast differentiation markers (Bglap, Ibsp, and Phex) were unaffected by raising extracellular phosphate levels. In contrast, we found that the expression of Enpp1 and Ank, two genes encoding inhibitors of matrix mineralization, was induced by extracellular phosphate, while the expression of Sost and Dkk1, two genes encoding inhibitors of bone formation, was negatively regulated. The ability of osteoblasts to respond to extracellular phosphate was dependent on their differentiation state, and shRNA-dependent repression of the phosphate transporter Slc20a1 in MC3T3-E1 cells partially abolished their molecular response to phosphate. Taken together, our results provide further evidence for a role of extracellular phosphate as a signaling molecule and raise the possibility that severe hyperphosphatemia can negatively affect skeletal mineralization.
Collapse
Affiliation(s)
- C Rendenbach
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, 20246, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Camalier CE, Yi M, Yu LR, Hood BL, Conrads KA, Lee YJ, Lin Y, Garneys LM, Bouloux GF, Young MR, Veenstra TD, Stephens RM, Colburn NH, Conrads TP, Beck GR. An integrated understanding of the physiological response to elevated extracellular phosphate. J Cell Physiol 2013; 228:1536-50. [PMID: 23280476 DOI: 10.1002/jcp.24312] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022]
Abstract
Recent studies have suggested that changes in serum phosphate levels influence pathological states associated with aging such as cancer, bone metabolism, and cardiovascular function, even in individuals with normal renal function. The causes are only beginning to be elucidated but are likely a combination of endocrine, paracrine, autocrine, and cell autonomous effects. We have used an integrated quantitative biology approach, combining transcriptomics and proteomics to define a multi-phase, extracellular phosphate-induced, signaling network in pre-osteoblasts as well as primary human and mouse mesenchymal stromal cells. We identified a rapid mitogenic response stimulated by elevated phosphate that results in the induction of immediate early genes including c-fos. The mechanism of activation requires FGF receptor signaling followed by stimulation of N-Ras and activation of AP-1 and serum response elements. A distinct long-term response also requires FGF receptor signaling and results in N-Ras activation and expression of genes and secretion of proteins involved in matrix regulation, calcification, and angiogenesis. The late response is synergistically enhanced by addition of FGF23 peptide. The intermediate phase results in increased oxidative phosphorylation and ATP production and is necessary for the late response providing a functional link between the phases. Collectively, the results define elevated phosphate, as a mitogen and define specific mechanisms by which phosphate stimulates proliferation and matrix regulation. Our approach provides a comprehensive understanding of the cellular response to elevated extracellular phosphate, functionally connecting temporally coordinated signaling, transcriptional, and metabolic events with changes in long-term cell behavior.
Collapse
Affiliation(s)
- Corinne E Camalier
- Division of Endocrinology, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pang WJ, Lin LG, Xiong Y, Wei N, Wang Y, Shen QW, Yang GS. Knockdown of PU.1 AS lncRNA inhibits adipogenesis through enhancing PU.1 mRNA translation. J Cell Biochem 2013; 114:2500-12. [PMID: 23749759 DOI: 10.1002/jcb.24595] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 05/14/2013] [Indexed: 12/30/2022]
Abstract
PU.1 is an Ets family transcription factor involved in the myelo-lymphoid differentiation. We have previously demonstrated that PU.1 is also expressed in the adipocyte lineage. However, the expression levels of PU.1 mRNA and protein in preadipocytes do not match the levels in mature adipocytes. PU.1 mRNA level is higher in preadipocytes, whereas its protein is expressed in the adipocytes but not in the preadipocytes. The underlying mechanism remains elusive. Here, we find that miR-155 knockdown or overexpression has no effect on the levels of PU.1 mRNA and protein in preadipocytes or adipocytes. MiR-155 regulates adipogenesis not through PU.1, but via C/EBPβ which is another target of miR-155. We also checked the expression levels of PU.1 mRNA and antisense long non-coding RNA (AS lncRNA). Interestingly, compared with the level of PU.1 mRNA, the level of PU.1 AS lncRNA is much higher in preadipocytes, whereas it is opposite in the adipocytes. We further discover that PU.1 AS lncRNA binds to its mRNA forming an mRNA/AS lncRNA compound. The knockdown of PU.1 AS by siRNA inhibits adipogenesis and promotes PU.1 protein expression in both preadipocytes and adipocytes. Furthermore, the repression of PU.1 AS decreases the expression and secretion of adiponectin. We also find that the effect of retroviral-mediated PU.1 AS knockdown on adipogenesis is consistent with that of PU.1 AS knockdown by siRNA. Taken together, our results suggest that PU.1 AS lncRNA promotes adipogenesis through preventing PU.1 mRNA translation via binding to PU.1 mRNA to form mRNA/AS lncRNA duplex in preadipocytes.
Collapse
Affiliation(s)
- Wei-Jun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, 77030
| | | | | | | | | | | | | |
Collapse
|
42
|
Lim YH, Ovejero D, Sugarman JS, Deklotz CMC, Maruri A, Eichenfield LF, Kelley PK, Jüppner H, Gottschalk M, Tifft CJ, Gafni RI, Boyce AM, Cowen EW, Bhattacharyya N, Guthrie LC, Gahl WA, Golas G, Loring EC, Overton JD, Mane SM, Lifton RP, Levy ML, Collins MT, Choate KA. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Hum Mol Genet 2013; 23:397-407. [PMID: 24006476 DOI: 10.1093/hmg/ddt429] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pathologically elevated serum levels of fibroblast growth factor-23 (FGF23), a bone-derived hormone that regulates phosphorus homeostasis, result in renal phosphate wasting and lead to rickets or osteomalacia. Rarely, elevated serum FGF23 levels are found in association with mosaic cutaneous disorders that affect large proportions of the skin and appear in patterns corresponding to the migration of ectodermal progenitors. The cause and source of elevated serum FGF23 is unknown. In those conditions, such as epidermal and large congenital melanocytic nevi, skin lesions are variably associated with other abnormalities in the eye, brain and vasculature. The wide distribution of involved tissues and the appearance of multiple segmental skin and bone lesions suggest that these conditions result from early embryonic somatic mutations. We report five such cases with elevated serum FGF23 and bone lesions, four with large epidermal nevi and one with a giant congenital melanocytic nevus. Exome sequencing of blood and affected skin tissue identified somatic activating mutations of HRAS or NRAS in each case without recurrent secondary mutation, and we further found that the same mutation is present in dysplastic bone. Our finding of somatic activating RAS mutation in bone, the endogenous source of FGF23, provides the first evidence that elevated serum FGF23 levels, hypophosphatemia and osteomalacia are associated with pathologic Ras activation and may provide insight in the heretofore limited understanding of the regulation of FGF23.
Collapse
|
43
|
Sirt1 inhibits akt2-mediated porcine adipogenesis potentially by direct protein-protein interaction. PLoS One 2013; 8:e71576. [PMID: 23951196 PMCID: PMC3741135 DOI: 10.1371/journal.pone.0071576] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 07/07/2013] [Indexed: 12/19/2022] Open
Abstract
Compared with the rodent, the domestic pig is a much better animal model for studying adipogenesis and obesity-related diseases. Currently, the role of Akt2 and Sirt1 in porcine adipogenesis remains elusive. In this study, we defined the effect of Akt2 and Sirt1 on porcine preadipocyte lipogenesis and the regulatory mechanism. First, we found that Akt2 was widely expressed in porcine various tissues and at high level in adipose tissue. Further analysis showed that the expression level of Akt2 was much higher in adipose tissue and adipocytes of the Bamei pig breed (a Chinese indigenous fatty pig) than in that of the Large White pig breed (a Lean type pig), whereas the level of Sirt1 expression was opposite. The expression levels of Sirt1 and Akt2 gradually increased during adipogenic differentiation. Adipogenesis was robustly inhibited in Akt2 deficient fat cells, whereas it was promoted in Sirt1 deficient cells using the lentiviral–mediated shRNA approach. Interestingly, adipogenesis returned to normal in Akt2 and Sirt1 dual–deficient cells, showing that the pro- and anti–adipogenic effects were balanced. Sirt1 inhibited transcriptional activity of Akt2 in a dose-dependent way. Interaction of endogenous Akt2 and Sirt1 was gradually enhanced before day 6 of differentiation, and then attenuated. Akt2 and Sirt1 also interacted with C/EBPα in adipocytes. Moreover, knockdown of Akt2 or/and Sirt1 affected pro–lipogenesis of insulin–stimulated by PI3K/Akt pathway. We further found that Sirt1 respectively interacted with PI3K and GSK3β which were key upstream and downstream components of PI3K/Akt pathway. Based on the above findings, we concluded that the crosstalk between C/EBPα and PI3K/Akt signaling pathways is implicated in Akt2 and Sirt1 regulation of adipogenesis.
Collapse
|
44
|
Wulaningsih W, Michaelsson K, Garmo H, Hammar N, Jungner I, Walldius G, Holmberg L, Van Hemelrijck M. Inorganic phosphate and the risk of cancer in the Swedish AMORIS study. BMC Cancer 2013; 13:257. [PMID: 23706176 PMCID: PMC3664604 DOI: 10.1186/1471-2407-13-257] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/21/2013] [Indexed: 01/08/2023] Open
Abstract
Background Both dietary and serum levels of inorganic phosphate (Pi) have been linked to development of cancer in experimental studies. This is the first population-based study investigating the relation between serum Pi and risk of cancer in humans. Methods From the Swedish Apolipoprotein Mortality Risk (AMORIS) study, we selected all participants (> 20 years old) with baseline measurements of serum Pi, calcium, alkaline phosphatase, glucose, and creatinine (n = 397,292). Multivariable Cox proportional hazards regression analyses were used to assess serum Pi in relation to overall cancer risk. Similar analyses were performed for specific cancer sites. Results We found a higher overall cancer risk with increasing Pi levels in men ( HR: 1.02 (95% CI: 1.00-1.04) for every SD increase in Pi), and a negative association in women (HR: 0.97 (95% CI: 0.96-0.99) for every SD increase in Pi). Further analyses for specific cancer sites showed a positive link between Pi quartiles and the risk of cancer of the pancreas, lung, thyroid gland and bone in men, and cancer of the oesophagus, lung, and nonmelanoma skin cancer in women. Conversely, the risks for developing breast and endometrial cancer as well as other endocrine cancer in both men and women were lower in those with higher Pi levels. Conclusions Abnormal Pi levels are related to development of cancer. Furthermore, the in verse association between Pi levels and risk of breast, endometrial and other endocrine cancers may indicate the role of hormonal factors in the relation between Pi metabolism and cancer.
Collapse
Affiliation(s)
- Wahyu Wulaningsih
- King's College London, School of Medicine, Division of Cancer Studies, Cancer Epidemiology Unit, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Burgers TA, Hoffmann MF, Collins CJ, Zahatnansky J, Alvarado MA, Morris MR, Sietsema DL, Mason JJ, Jones CB, Ploeg HL, Williams BO. Mice lacking pten in osteoblasts have improved intramembranous and late endochondral fracture healing. PLoS One 2013; 8:e63857. [PMID: 23675511 PMCID: PMC3652860 DOI: 10.1371/journal.pone.0063857] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/09/2013] [Indexed: 11/30/2022] Open
Abstract
The failure of an osseous fracture to heal (development of a non-union) is a common and debilitating clinical problem. Mice lacking the tumor suppressor Pten in osteoblasts have dramatic and progressive increases in bone volume and density throughout life. Since fracture healing is a recapitulation of bone development, we investigated the process of fracture healing in mice lacking Pten in osteoblasts (Ocn-cretg/+;Ptenflox/flox). Mid-diaphyseal femoral fractures induced in wild-type and Ocn-cretg/+;Ptenflox/flox mice were studied via micro-computed tomography (µCT) scans, biomechanical testing, histological and histomorphometric analysis, and protein expression analysis. Ocn-cretg/+;Ptenflox/flox mice had significantly stiffer and stronger intact bones relative to controls in all cohorts. They also had significantly stiffer healing bones at day 28 post-fracture (PF) and significantly stronger healing bones at days 14, 21, and 28 PF. At day 7 PF, the proximal and distal ends of the Pten mutant calluses were more ossified. By day 28 PF, Pten mutants had larger and more mineralized calluses. Pten mutants had improved intramembranous bone formation during healing originating from the periosteum. They also had improved endochondral bone formation later in the healing process, after mature osteoblasts are present in the callus. Our results indicate that the inhibition of Pten can improve fracture healing and that the local or short-term use of commercially available Pten-inhibiting agents may have clinical application for enhancing fracture healing.
Collapse
Affiliation(s)
- Travis A. Burgers
- Center for Skeletal Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Martin F. Hoffmann
- Grand Rapids Medical Education Partners, Grand Rapids, Michigan, United States of America
- Trauma Center, Orthopaedic Associates of Michigan, Grand Rapids, Michigan, United States of America
| | - Caitlyn J. Collins
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Juraj Zahatnansky
- Center for Skeletal Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Martin A. Alvarado
- Creston High School, Grand Rapids, Michigan, United States of America
- Grand Rapids Area Pre-College Engineering Program, Grand Rapids, Michigan, United States of America
| | - Michael R. Morris
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Debra L. Sietsema
- Trauma Center, Orthopaedic Associates of Michigan, Grand Rapids, Michigan, United States of America
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - James J. Mason
- Center for Skeletal Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Clifford B. Jones
- Trauma Center, Orthopaedic Associates of Michigan, Grand Rapids, Michigan, United States of America
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Heidi L. Ploeg
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bart O. Williams
- Center for Skeletal Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
46
|
Chai Y, Carlier A, Bolander J, Roberts S, Geris L, Schrooten J, Van Oosterwyck H, Luyten F. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater 2012; 8:3876-87. [PMID: 22796326 DOI: 10.1016/j.actbio.2012.07.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP) has traditionally been used for the repair of bone defects because of its strong resemblance to the inorganic phase of bone matrix. Nowadays, a variety of natural or synthetic CaP-based biomaterials are produced and have been extensively used for dental and orthopaedic applications. This is justified by their biocompatibility, osteoconductivity and osteoinductivity (i.e. the intrinsic material property that initiates de novo bone formation), which are attributed to the chemical composition, surface topography, macro/microporosity and the dissolution kinetics. However, the exact molecular mechanism of action is unknown. This review paper first summarizes the most important aspects of bone biology in relation to CaP and the mechanisms of bone matrix mineralization. This is followed by the research findings on the effects of calcium (Ca²⁺) and phosphate (PO₄³⁻) ions on the migration, proliferation and differentiation of osteoblasts during in vivo bone formation and in vitro culture conditions. Further, the rationale of using CaP for bone regeneration is explained, focusing thereby specifically on the material's osteoinductive properties. Examples of different material forms and production techniques are given, with the emphasis on the state-of-the art in fine-tuning the physicochemical properties of CaP-based biomaterials for improved bone induction and the use of CaP as a delivery system for bone morphogenetic proteins. The use of computational models to simulate the CaP-driven osteogenesis is introduced as part of a bone tissue engineering strategy in order to facilitate the understanding of cell-material interactions and to gain further insight into the design and optimization of CaP-based bone reparative units. Finally, limitations and possible solutions related to current experimental and computational techniques are discussed.
Collapse
|
47
|
Kim JM, Kim J, Kim YH, Kim KT, Ryu SH, Lee TG, Suh PG. Comparative secretome analysis of human bone marrow-derived mesenchymal stem cells during osteogenesis. J Cell Physiol 2012; 228:216-24. [DOI: 10.1002/jcp.24123] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Cao Z, Han Z, Shao Y, Liu X, Sun J, Yu D, Kong X, Liu S. Proteomics analysis of differentially expressed proteins in chicken trachea and kidney after infection with the highly virulent and attenuated coronavirus infectious bronchitis virus in vivo. Proteome Sci 2012; 10:24. [PMID: 22463732 PMCID: PMC3342233 DOI: 10.1186/1477-5956-10-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/31/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Infectious bronchitis virus (IBV) is first to be discovered coronavirus which is probably endemic in all regions with intensive impact on poultry production. In this study, we used two-dimensional gel electrophoresis (2-DE) and two-dimensional fluorescence difference gel electrophoresis (2-DIGE), coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS), to explore the global proteome profiles of trachea and kidney tissues from chicken at different stages infected in vivo with the highly virulent ck/CH/LDL/97I P5 strain of infectious bronchitis virus (IBV) and the embryo-passaged, attenuated ck/CH/LDL/97I P115 strain. RESULTS Fifty-eight differentially expressed proteins were identified. Results demonstrated that some proteins which had functions in cytoskeleton organization, anti-oxidative stress, and stress response, showed different change patterns in abundance from chicken infected with the highly virulent ck/CH/LDL/97I P5 strain and those given the embryo-passaged, attenuated P115 stain. In addition, the dynamic transcriptional alterations of 12 selected proteins were analyzed by the real-time RT-PCR, and western blot analysis confirmed the change in abundance of heat shock proteins (HSP) beta-1, annexin A2, and annexin A5. CONCLUSIONS The proteomic alterations described here may suggest that these changes to protein expression correlate with IBV virus' virulence in chicken, hence provides valuable insights into the interactions of IBV with its host and may also assist with investigations of the pathogenesis of IBV and other coronavirus infections.
Collapse
Affiliation(s)
- Zhongzan Cao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yoon JH, Song P, Jang JH, Kim DK, Choi S, Kim J, Ghim J, Kim D, Park S, Lee H, Kwak D, Yea K, Hwang D, Suh PG, Ryu SH. Proteomic analysis of tumor necrosis factor-alpha (TNF-α)-induced L6 myotube secretome reveals novel TNF-α-dependent myokines in diabetic skeletal muscle. J Proteome Res 2011; 10:5315-25. [PMID: 22023146 DOI: 10.1021/pr200573b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is a strong possibility that skeletal muscle can respond to irregular metabolic states by secreting specific cytokines. Obesity-related chronic inflammation, mediated by pro-inflammatory cytokines, is believed to be one of the causes of insulin resistance that results in type 2 diabetes. Here, we attempted to identify and characterize the members of the skeletal muscle secretome in response to tumor necrosis factor-alpha (TNF-α)-induced insulin resistance. To conduct this study, we comparatively analyzed the media levels of proteins released from L6 skeletal muscle cells. We found 28 TNF-α modulated secretory proteins by using separate filtering methods: Gene Ontology, SignalP, and SecretomeP, as well as the normalized Spectral Index for label-free quantification. Ten of these secretory proteins were increased and 18 secretory proteins were decreased by TNF-α treatment. Using microarray analysis of Zuker diabetic rat skeletal muscle combined with bioinformatics and Q-PCR, we found a correlation between TNF-α-mediated insulin resistance and type 2 diabetes. This novel approach combining analysis of the conditioned secretome and transcriptome has identified several previously unknown, TNF-α-dependent secretory proteins, which establish a foothold for research on the different causes of insulin resistance and their relationships with each other.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Søfteland L, Petersen K, Stavrum AK, Wu T, Olsvik PA. Hepatic in vitro toxicity assessment of PBDE congeners BDE47, BDE153 and BDE154 in Atlantic salmon (Salmo salar L.). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:246-263. [PMID: 21767471 DOI: 10.1016/j.aquatox.2011.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/11/2011] [Accepted: 03/22/2011] [Indexed: 05/31/2023]
Abstract
The brominated flame retardant congeners BDE47, BDE153 and BDE154 are among the congeners accumulating to the highest degree in fish. In order to gain knowledge about the toxicological effects of PBDEs in fish, microarray-based transcriptomic and 2D-DIGE/MALDI-TOF/TOF proteomic approaches were used to screen for effects in primary Atlantic salmon hepatocytes exposed to these congeners alone or in combination (PBDE-MIX). A small set of stress related transcripts and proteins were differentially expressed in the PBDE exposed hepatocytes. The PBDE-MIX, and BDE153 to a lesser degree, seems to have induced metabolic disturbances by affecting several pathways related to glucose homeostasis. Further, effects on cell cycle control and proliferation signal pathways in PBDE-MIX-exposed hepatocytes clearly suggest that the PBDE exposure affected cell proliferation processes. CYP1A was 7.41- and 7.37-fold up-regulated in hepatocytes exposed to BDE47 and PBDE-MIX, respectively, and was the only biotransformation pathway affected by the PBDE exposure. The factorial design and PLS regression analyses of the effect of the PBDE-MIX indicated that BDE47 contributed the most to the observed CYP1A response, suggesting that this congener should be incorporated in the toxic equivalent (TEQ) concept in future risk assessment of dioxin-like chemicals. Additionally, a significant up-regulation of the ER-responsive genes VTG and ZP3 was observed in cells exposed to BDE47 and PBDE-MIX. Further analyses suggested that BDE47 and BDE154 have an estrogenic effect in male fish. The data also suggested an antagonistic interaction between BDE153 and BDE154. In conclusion, this study shows that PBDEs can affect several biological systems in Atlantic salmon cells, and demonstrates the need for more studies on the simultaneous exposure to chemical mixtures to identify combined effects of chemicals.
Collapse
Affiliation(s)
- Liv Søfteland
- National Institute of Nutrition and Seafood Research, PO Box 2029 Nordnes, N-5817 Bergen, Norway.
| | | | | | | | | |
Collapse
|