1
|
Díez P, Pérez-Andrés M, Bøgsted M, Azkargorta M, García-Valiente R, Dégano RM, Blanco E, Mateos-Gomez S, Bárcena P, Santa Cruz S, Góngora R, Elortza F, Landeira-Viñuela A, Juanes-Velasco P, Segura V, Manzano-Román R, Almeida J, Dybkaer K, Orfao A, Fuentes M. Dynamic Intracellular Metabolic Cell Signaling Profiles During Ag-Dependent B-Cell Differentiation. Front Immunol 2021; 12:637832. [PMID: 33859640 PMCID: PMC8043114 DOI: 10.3389/fimmu.2021.637832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Human B-cell differentiation has been extensively investigated on genomic and transcriptomic grounds; however, no studies have accomplished so far detailed analysis of antigen-dependent maturation-associated human B-cell populations from a proteomic perspective. Here, we investigate for the first time the quantitative proteomic profiles of B-cells undergoing antigen-dependent maturation using a label-free LC-MS/MS approach applied on 5 purified B-cell subpopulations (naive, centroblasts, centrocytes, memory and plasma B-cells) from human tonsils (data are available via ProteomeXchange with identifier PXD006191). Our results revealed that the actual differences among these B-cell subpopulations are a combination of expression of a few maturation stage-specific proteins within each B-cell subset and maturation-associated changes in relative protein expression levels, which are related with metabolic regulation. The considerable overlap of the proteome of the 5 studied B-cell subsets strengthens the key role of the regulation of the stoichiometry of molecules associated with metabolic regulation and programming, among other signaling cascades (such as antigen recognition and presentation and cell survival) crucial for the transition between each B-cell maturation stage.
Collapse
Affiliation(s)
- Paula Díez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain.,Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Martín Pérez-Andrés
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Derio, Spain
| | | | - Rosa M Dégano
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Elena Blanco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Sheila Mateos-Gomez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Paloma Bárcena
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Santiago Santa Cruz
- Service of Otolaryngology and Cervical Facial Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Rafael Góngora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Derio, Spain
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Victor Segura
- Division of Hepatology and Gene Therapy, Proteomics and BioInformatics Unit, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Julia Almeida
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Karen Dybkaer
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Alberto Orfao
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain.,Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| |
Collapse
|
2
|
Gupta S, Mishra SK, Misra S, Pandey V, Agrawal L, Nautiyal CS, Chauhan PS. Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:88-102. [PMID: 32203884 DOI: 10.1016/j.plaphy.2020.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 05/02/2023]
Abstract
Global warming has reached an alarming situation, which led to a dangerous climatic condition. The irregular rainfalls and land degradation are the significant consequences of these climatic changes causing a decrease in crop productivity. The effect of drought and its tolerance mechanism, a comparative roots proteomic analysis of chickpea seedlings grown under hydroponic conditions for three weeks, performed at different time points using 2-Dimensional gel electrophoresis (2-DE). After PD-Quest analysis, 110 differentially expressed spots subjected to MALDI-TOF/TOF and 75 spots identified with a significant score. These identified proteins classified into eight categories based on their functional annotation. Proteins involved in carbon and energy metabolism comprised 23% of total identified proteins include mainly glyceraldehyde-3-phosphate dehydrogenase, malate dehydrogenase, transaldolase, and isocitrate dehydrogenase. Proteins related to stress response (heat-shock protein, CS domain protein, and chitinase 2-like) contributed 16% of total protein spots followed by 13% involved in protein metabolism (adenosine kinase 2, and protein disulfide isomerase). ROS metabolism contributed 13% (glutathione S-transferase, ascorbate peroxidase, and thioredoxin), and 9% for signal transduction (actin-101, and 14-3-3-like protein B). Five percent protein identified for secondary metabolism (cinnamoyl-CoA reductase-1 and chalcone-flavononeisomerase 2) and 7% for nitrogen (N) and amino acid metabolism (glutamine synthetase and homocysteine methyltransferase). The abundance of some proteins validated by using Western blotting and Real-Time-PCR. The detailed information for drought-responsive root protein(s) through comparative proteomics analysis can be utilized in the future for genetic improvement programs to develop drought-tolerant chickpea lines.
Collapse
Affiliation(s)
- Swati Gupta
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shashank Kumar Mishra
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sankalp Misra
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vivek Pandey
- Plant Ecology and Environmental Sciences, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Lalit Agrawal
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Department of Agriculture and Allied Sciences, Doon Business School, Dehradun, 248001, India.
| | - Chandra Shekhar Nautiyal
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| | - Puneet Singh Chauhan
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
3
|
Koskela EV, Gonzalez Salcedo A, Piirainen MA, Iivonen HA, Salminen H, Frey AD. Mining Data From Plasma Cell Differentiation Identified Novel Genes for Engineering of a Yeast Antibody Factory. Front Bioeng Biotechnol 2020; 8:255. [PMID: 32296695 PMCID: PMC7136540 DOI: 10.3389/fbioe.2020.00255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Saccharomyces cerevisiae is a common platform for production of therapeutic proteins, but it is not intrinsically suited for the manufacturing of antibodies. Antibodies are naturally produced by plasma cells (PCs) and studies conducted on PC differentiation provide a comprehensive blueprint for the cellular transformations needed to create an antibody factory. In this study we mined transcriptomics data from PC differentiation to improve antibody secretion by S. cerevisiae. Through data exploration, we identified several new target genes. We tested the effects of 14 genetic modifications belonging to different cellular processes on protein production. Four of the tested genes resulted in improved antibody expression. The ER stress sensor IRE1 increased the final titer by 1.8-fold and smaller effects were observed with PSA1, GOT1, and HUT1 increasing antibody titers by 1. 6-, 1. 4-, and 1.4-fold. When testing combinations of these genes, the highest increases were observed when co-expressing IRE1 with PSA1, or IRE1 with PSA1 and HUT1, resulting in 3.8- and 3.1-fold higher antibody titers. In contrast, strains expressing IRE1 alone or in combination with the other genes produced similar or lower levels of recombinantly expressed endogenous yeast acid phosphatase compared to the controls. Using a genetic UPR responsive GFP reporter construct, we show that IRE1 acts through constitutive activation of the unfolded protein response. Moreover, the positive effect of IRE1 expression was transferable to other antibody molecules. We demonstrate how data exploration from an evolutionary distant, but highly specialized cell type can pinpoint new genetic targets and provide a novel concept for rationalized cell engineering.
Collapse
Affiliation(s)
- Essi V Koskela
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | | | - Mari A Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Heidi A Iivonen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Heidi Salminen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
4
|
Valdés A, Bergström Lind S. Mass Spectrometry-Based Analysis of Time-Resolved Proteome Quantification. Proteomics 2019; 20:e1800425. [PMID: 31652013 DOI: 10.1002/pmic.201800425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/20/2019] [Indexed: 11/09/2022]
Abstract
The aspect of time is essential in biological processes and thus it is important to be able to monitor signaling molecules through time. Proteins are key players in cellular signaling and they respond to many stimuli and change their expression in many time-dependent processes. Mass spectrometry (MS) is an important tool for studying proteins, including their posttranslational modifications and their interaction partners-both in qualitative and quantitative ways. In order to distinguish the different trends over time, proteins, modification sites, and interacting proteins must be compared between different time points, and therefore relative quantification is preferred. In this review, the progress and challenges for MS-based analysis of time-resolved proteome dynamics are discussed. Further, aspects on model systems, technologies, sampling frequencies, and presentation of the dynamic data are discussed.
Collapse
Affiliation(s)
- Alberto Valdés
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Box 599, 75124, Uppsala, Sweden
| |
Collapse
|
5
|
Arefian M, Vessal S, Malekzadeh-Shafaroudi S, Siddique KHM, Bagheri A. Comparative proteomics and gene expression analyses revealed responsive proteins and mechanisms for salt tolerance in chickpea genotypes. BMC PLANT BIOLOGY 2019; 19:300. [PMID: 31288738 PMCID: PMC6617847 DOI: 10.1186/s12870-019-1793-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/22/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Salinity is a major abiotic stress that limits the growth, productivity, and geographical distribution of plants. A comparative proteomics and gene expression analysis was performed to better understand salinity tolerance mechanisms in chickpea. RESULTS Ten days of NaCl treatments resulted in the differential expression of 364 reproducible spots in seedlings of two contrasting chickpea genotypes, Flip 97-43c (salt tolerant, T1) and Flip 97-196c (salt susceptible, S1). Notably, after 3 days of salinity, 80% of the identified proteins in T1 were upregulated, while only 41% in S2 had higher expression than the controls. The proteins were classified into eight functional categories, and three groups of co-expression profile. The second co-expressed group of proteins had higher and/or stable expression in T1, relative to S2, suggesting coordinated regulation and the importance of some processes involved in salinity acclimation. This group was mainly enriched in proteins associated with photosynthesis (39%; viz. chlorophyll a-b binding protein, oxygen-evolving enhancer protein, ATP synthase, RuBisCO subunits, carbonic anhydrase, and fructose-bisphosphate aldolase), stress responsiveness (21%; viz. heat shock 70 kDa protein, 20 kDa chaperonin, LEA-2 and ascorbate peroxidase), and protein synthesis and degradation (14%; viz. zinc metalloprotease FTSH 2 and elongation factor Tu). Thus, the levels and/or early and late responses in the activation of targeted proteins explained the variation in salinity tolerance between genotypes. Furthermore, T1 recorded more correlations between the targeted transcripts and their corresponding protein expression profiles than S2. CONCLUSIONS This study provides insight into the proteomic basis of a salt-tolerance mechanism in chickpea, and offers unexpected and poorly understood molecular resources as reliable starting points for further dissection.
Collapse
Affiliation(s)
- Mohammad Arefian
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeedreza Vessal
- Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Saeid Malekzadeh-Shafaroudi
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Abdolreza Bagheri
- Plant Biotechnology and Breeding Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Schildknegt D, Lodder N, Pandey A, Chatsisvili A, Egmond M, Pena F, Braakman I, van der Sluijs P. Characterization of CNPY5 and its family members. Protein Sci 2019; 28:1276-1289. [PMID: 31050855 PMCID: PMC6566547 DOI: 10.1002/pro.3635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
The Canopy (CNPY) family consists of four members predicted to be soluble proteins localized to the endoplasmic reticulum (ER). They are involved in a wide array of processes, including angiogenesis, cell adhesion, and host defense. CNPYs are thought to do so via regulation of secretory transport of a diverse group of proteins, such as immunoglobulin M, growth factor receptors, toll‐like receptors, and the low‐density lipoprotein receptor. Thus far, a comparative analysis of the mammalian CNPY family is missing. Bioinformatic analysis shows that mammalian CNPYs, except the CNPY1 homolog, have N‐terminal signal sequences and C‐terminal ER‐retention signals and that mammals have an additional member CNPY5, also known as plasma cell‐induced ER protein 1/marginal zone B cell‐specific protein 1. Canopy proteins are particularly homologous in four hydrophobic alpha‐helical regions and contain three conserved disulfide bonds. This sequence signature is characteristic for the saposin‐like superfamily and strongly argues that CNPYs share this common saposin fold. We showed that CNPY2, 3, 4, and 5 (termed CNPYs) localize to the ER. In radioactive pulse‐chase experiments, we found that CNPYs rapidly form disulfide bonds and fold within minutes into their native forms. Disulfide bonds in native CNPYs remain sensitive to low concentrations of dithiothreitol (DTT) suggesting that the cysteine residues forming them are relatively accessible to solutes. Possible roles of CNPYs in the folding of secretory proteins in the ER are discussed.
Collapse
Affiliation(s)
- Danny Schildknegt
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Naomi Lodder
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Abhinav Pandey
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - Maarten Egmond
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Florentina Pena
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Lakra N, Kaur C, Singla-Pareek SL, Pareek A. Mapping the 'early salinity response' triggered proteome adaptation in contrasting rice genotypes using iTRAQ approach. RICE (NEW YORK, N.Y.) 2019; 12:3. [PMID: 30701331 PMCID: PMC6357216 DOI: 10.1186/s12284-018-0259-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/11/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND To delineate the adaptive mechanisms operative under salinity stress, it is essential to study plant responses at the very early stages of stress which are very crucial for governing plant survival and adaptation. We believe that it is the initial perception and response phase which sets the foundation for stress adaptation in rice seedlings where plants can be considered to be in a state of osmotic shock and ion buildup. RESULTS An isobaric Tags for Relative and Absolute Quantitation (iTRAQ) approach was used to analyze the pre-existing differences as well as the very early salt shock responsive changes in the proteome of seedlings of contrasting rice genotypes, viz salt-sensitive IR64 and salt-tolerant Pokkali. In response to a quick salt shock, shoots of IR64 exhibited hyperaccumulation of Na+, whereas in Pokkali, these ions accumulated more in roots. Interestingly, we could find 86 proteins to be differentially expressed in shoots of Pokkali seedlings under non-stress conditions whereas under stress, 63 proteins were differentially expressed in Pokkali shoots in comparison to IR64. However, only, 40 proteins under non-stress and eight proteins under stress were differentially expressed in Pokkali roots. A higher abundance of proteins involved in photosynthesis (such as, oxygen evolving enhancer proteins OEE1 & OEE3, PsbP) and stress tolerance (such as, ascorbate peroxidase, superoxide dismutase, peptidyl-prolyl cis-trans isomerases and glyoxalase II), was observed in shoots of Pokkali in comparison to IR64. In response to salinity, selected proteins such as, ribulose bisphosphate carboxylase/oxygenase activase, remained elevated in Pokkali shoots. Glutamate dehydrogenase - an enzyme which serves as an important link between Krebs cycle and metabolism of amino acids was found to be highly induced in Pokkali in response to stress. Similarly, other enzymes such as peroxidases and triose phosphate isomerase (TPI) were also altered in roots in response to stress. CONCLUSION We conclude that Pokkali rice seedlings are primed to face stress conditions where the proteins otherwise induced under stress in IR64, are naturally expressed in high abundance. Through specific alterations in its proteome, this proactive stress machinery contributes towards the observed salinity tolerance in this wild rice germplasm.
Collapse
Affiliation(s)
- Nita Lakra
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Charanpreet Kaur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
8
|
Narula K, Choudhary P, Ghosh S, Elagamey E, Chakraborty N, Chakraborty S. Comparative Nuclear Proteomics Analysis Provides Insight into the Mechanism of Signaling and Immune Response to Blast Disease Caused byMagnaportheoryzaein Rice. Proteomics 2019; 19:e1800188. [DOI: 10.1002/pmic.201800188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/23/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Kanika Narula
- National Institute of Plant Genome Research New Delhi 110067 India
| | - Pooja Choudhary
- National Institute of Plant Genome Research New Delhi 110067 India
| | - Sudip Ghosh
- National Institute of Plant Genome Research New Delhi 110067 India
| | - Eman Elagamey
- National Institute of Plant Genome Research New Delhi 110067 India
| | | | | |
Collapse
|
9
|
Koskela EV, de Ruijter JC, Frey AD. Following nature's roadmap: folding factors from plasma cells led to improvements in antibody secretion in S. cerevisiae. Biotechnol J 2017; 12. [PMID: 28429845 DOI: 10.1002/biot.201600631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Therapeutic protein production in yeast is a reality in industry with an untapped potential to expand to more complex proteins, such as full-length antibodies. Despite numerous engineering approaches, cellular limitations are preventing the use of Saccharomyces cerevisiae as the titers of recombinant antibodies are currently not competitive. Instead of a host specific approach, the possibility of adopting the features from native producers of antibodies, plasma cells, to improve antibody production in yeast. A subset of mammalian folding factors upregulated in plasma cells for expression in yeast and screened for beneficial effects on antibody secretion using a high-throughput ELISA platform was selected. Co-expression of the mammalian chaperone BiP, the co-chaperone GRP170, or the peptidyl-prolyl isomerase FKBP2, with the antibody improved specific product yields up to two-fold. By comparing strains expressing FKBP2 or the yeast PPIase Cpr5p, the authors demonstrate that speeding up peptidyl-prolyl isomerization by upregulation of catalyzing enzymes is a key factor to improve antibody titers in yeast. The findings show that following the route of plasma cells can improve product titers and contribute to developing an alternative yeast-based antibody factory.
Collapse
Affiliation(s)
- Essi V Koskela
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Jorg C de Ruijter
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.,Current address: Department of Biocatalysis and Isotope Chemistry, Almac Sciences, Craigavon, Northern Ireland, United Kingdom
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
10
|
Agrawal L, Gupta S, Mishra SK, Pandey G, Kumar S, Chauhan PS, Chakrabarty D, Nautiyal CS. Elucidation of Complex Nature of PEG Induced Drought-Stress Response in Rice Root Using Comparative Proteomics Approach. FRONTIERS IN PLANT SCIENCE 2016; 7:1466. [PMID: 27746797 PMCID: PMC5040710 DOI: 10.3389/fpls.2016.01466] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/14/2016] [Indexed: 05/22/2023]
Abstract
Along with many adaptive strategies, dynamic changes in protein abundance seem to be the common strategy to cope up with abiotic stresses which can be best explored through proteomics. Understanding of drought response is the key to decipher regulatory mechanism of better adaptation. Rice (Oryza sativa L.) proteome represents a phenomenal source of proteins that govern traits of agronomic importance, such as drought tolerance. In this study, a comparison of root cytoplasmic proteome was done for a drought tolerant rice (Heena) cultivar in PEG induced drought conditions. A total of 510 protein spots were observed by PDQuest analysis and 125 differentially regulated spots were subjected for MALDI-TOF MS-MS analysis out of which 102 protein spots identified which further led to identification of 78 proteins with a significant score. These 78 differentially expressed proteins appeared to be involved in different biological pathways. The largest percentage of identified proteins was involved in bioenergy and metabolism (29%) and mainly consists of malate dehydrogenase, succinyl-CoA, putative acetyl-CoA synthetase, and pyruvate dehydrogenase etc. This was followed by proteins related to cell defense and rescue (22%) such as monodehydroascorbate reductase and stress-induced protein sti1, then by protein biogenesis and storage class (21%) e.g. putative thiamine biosynthesis protein, putative beta-alanine synthase, and cysteine synthase. Further, cell signaling (9%) proteins like actin and prolyl endopeptidase, and proteins with miscellaneous function (19%) like Sgt1 and some hypothetical proteins were also represented a large contribution toward drought regulatory mechanism in rice. We propose that protein biogenesis, cell defense, and superior homeostasis may render better drought-adaptation. These findings might expedite the functional determination of the drought-responsive proteins and their prioritization as potential molecular targets for perfect adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chandra S. Nautiyal
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research-National Botanical Research InstituteLucknow, India
| |
Collapse
|
11
|
Narula K, Ghosh S, Aggarwal PR, Sinha A, Chakraborty N, Chakraborty S. Comparative Proteomics of Oxalate Downregulated Tomatoes Points toward Cross Talk of Signal Components and Metabolic Consequences during Post-harvest Storage. FRONTIERS IN PLANT SCIENCE 2016; 7:1147. [PMID: 27555852 PMCID: PMC4977721 DOI: 10.3389/fpls.2016.01147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Fruits of angiosperms evolved intricate regulatory machinery for sensorial attributes and storage quality after harvesting. Organic acid composition of storage organs forms the molecular and biochemical basis of organoleptic and nutritional qualities with metabolic specialization. Of these, oxalic acid (OA), determines the post-harvest quality in fruits. Tomato (Solanum lycopersicum) fruit has distinctive feature to undergo a shift from heterotrophic metabolism to carbon assimilation partitioning during storage. We have earlier shown that decarboxylative degradation of OA by FvOXDC leads to acid homeostasis besides increased fungal tolerance in E8.2-OXDC tomato. Here, we elucidate the metabolic consequences of oxalate down-regulation and molecular mechanisms that determine organoleptic features, signaling and hormonal regulation in E8.2-OXDC fruit during post-harvest storage. A comparative proteomics approach has been applied between wild-type and E8.2-OXDC tomato in temporal manner. The MS/MS analyses led to the identification of 32 and 39 differentially abundant proteins associated with primary and secondary metabolism, assimilation, biogenesis, and development in wild-type and E8.2-OXDC tomatoes, respectively. Next, we interrogated the proteome data using correlation network analysis that identified significant functional hubs pointing toward storage related coinciding processes through a common mechanism of function and modulation. Furthermore, physiochemical analyses exhibited reduced oxalic acid content with concomitant increase in citric acid, lycopene and marginal decrease in malic acid in E8.2-OXDC fruit. Nevertheless, E8.2-OXDC fruit maintained an optimal pH and a steady state acid pool. These might contribute to reorganization of pectin constituent, reduced membrane leakage and improved fruit firmness in E8.2-OXDC fruit with that of wild-type tomato during storage. Collectively, our study provides insights into kinetically controlled protein network, identified regulatory module for pathway formulation and provide basis toward understanding the context of storage quality maintenance as a consequence of oxalate downregulation in the sink organ.
Collapse
|
12
|
Ghosh S, Narula K, Sinha A, Ghosh R, Jawa P, Chakraborty N, Chakraborty S. Proteometabolomic Study of Compatible Interaction in Tomato Fruit Challenged with Sclerotinia rolfsii Illustrates Novel Protein Network during Disease Progression. FRONTIERS IN PLANT SCIENCE 2016; 7:1034. [PMID: 27507973 PMCID: PMC4960257 DOI: 10.3389/fpls.2016.01034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/30/2016] [Indexed: 05/27/2023]
Abstract
Fruit is an assimilator of metabolites, nutrients, and signaling molecules, thus considered as potential target for pathogen attack. In response to patho-stress, such as fungal invasion, plants reorganize their proteome, and reconfigure their physiology in the infected organ. This remodeling is coordinated by a poorly understood signal transduction network, hormonal cascades, and metabolite reallocation. The aim of the study was to explore organ-based proteomic alterations in the susceptibility of heterotrophic fruit to necrotrophic fungal attack. We conducted time-series protein profiling of Sclerotinia rolfsii invaded tomato (Solanum lycopersicum) fruit. The differential display of proteome revealed 216 patho-stress responsive proteins (PSRPs) that change their abundance by more than 2.5-fold. Mass spectrometric analyses led to the identification of 56 PSRPs presumably involved in disease progression; regulating diverse functions viz. metabolism, signaling, redox homeostasis, transport, stress-response, protein folding, modification and degradation, development. Metabolome study indicated differential regulation of organic acid, amino acids, and carbohydrates paralleling with the proteomics analysis. Further, we interrogated the proteome data using network analysis that identified two significant functional protein hubs centered around malate dehydrogenase, T-complex protein 1 subunit gamma, and ATP synthase beta. This study reports, for the first-time, kinetically controlled patho-stress responsive protein network during post-harvest storage in a sink tissue, particularly fruit and constitute the basis toward understanding the onset and context of disease signaling and metabolic pathway alterations. The network representation may facilitate the prioritization of candidate proteins for quality improvement in storage organ.
Collapse
|
13
|
Jiang H, Tian KW, Zhang F, Wang B, Han S. Reg-2, A Downstream Signaling Protein in the Ciliary Neurotrophic Factor Survival Pathway, Alleviates Experimental Autoimmune Encephalomyelitis. Front Neuroanat 2016; 10:50. [PMID: 27242448 PMCID: PMC4860402 DOI: 10.3389/fnana.2016.00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF), originally described as a neurocytokine that could support the survival of neurons, has been recently found to alleviate demyelination, prevent axon loss, and improve functional recovery in a rat model of acute experimental autoimmune encephalomyelitis (EAE). However, poor penetration into the brain parenchyma and unfavorable side effects limit the utility of CNTF. Here, we evaluated the therapeutic potential of a protein downstream of CNTF, regeneration gene protein 2 (Reg-2). Using multiple morphological, molecular biology, and electrophysiological methods to assess neuroinflammation, axonal loss, demyelination, and functional impairment, we observed that Reg-2 and CNTF exert similar effects in the acute phase of EAE. Both treatments attenuated axonal loss and demyelination, improved neuronal survival, and produced functional improvement. With a smaller molecular weight and improved penetration into the brain parenchyma, Reg-2 may be a useful substitute for CNTF therapy in EAE and multiple sclerosis (MS).
Collapse
Affiliation(s)
- Hong Jiang
- Department of Electrophysiology, Sir Run Run Shaw Hospital, Medical College, Zhejiang University Hangzhou, China
| | - Ke-Wei Tian
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University Hangzhou, China
| | - Fan Zhang
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University Hangzhou, China
| | - Beibei Wang
- Core Facilities, Zhejiang University School of Medicine Hangzhou, China
| | - Shu Han
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University Hangzhou, China
| |
Collapse
|
14
|
Choudhary MK, Nomura Y, Shi H, Nakagami H, Somers DE. Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE. FRONTIERS IN PLANT SCIENCE 2016; 7:1007. [PMID: 27462335 PMCID: PMC4940426 DOI: 10.3389/fpls.2016.01007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Clock-generated biological rhythms provide an adaptive advantage to an organism, resulting in increased fitness and survival. To better elucidate the plant response to the circadian system, we surveyed protein oscillations in Arabidopsis seedlings under constant light. Using large-scale two-dimensional difference in gel electrophoresis (2D-DIGE) the abundance of more than 1000 proteins spots was reproducibly resolved quantified and profiled across a circadian time series. A comparison between phenol-extracted samples and RuBisCO-depleted extracts identified 71 and 40 rhythmically-expressed proteins, respectively, and between 30 and 40% of these derive from non-rhythmic transcripts. These included proteins influencing transcriptional regulation, translation, metabolism, photosynthesis, protein chaperones, and stress-mediated responses. The phasing of maximum expression for the cyclic proteins was similar for both datasets, with a nearly even distribution of peak phases across the time series. STRING clustering analysis identified two interaction networks with a notable number of oscillating proteins: plastid-based and cytosolic chaperones and 10 proteins involved in photosynthesis. The oscillation of the ABA receptor, PYR1/RCAR11, with peak expression near dusk adds to a growing body of evidence that intimately ties ABA signaling to the circadian system. Taken together, this study provides new insights into the importance of post-transcriptional circadian control of plant physiology and metabolism.
Collapse
Affiliation(s)
- Mani K. Choudhary
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and TechnologyPohang, South Korea
| | - Yuko Nomura
- Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - Hua Shi
- Department of Molecular Genetics, Ohio State UniversityColumbus, OH, USA
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| | - David E. Somers
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and TechnologyPohang, South Korea
- Department of Molecular Genetics, Ohio State UniversityColumbus, OH, USA
- *Correspondence: David E. Somers
| |
Collapse
|
15
|
Choudhary MK, Nomura Y, Wang L, Nakagami H, Somers DE. Quantitative Circadian Phosphoproteomic Analysis of Arabidopsis Reveals Extensive Clock Control of Key Components in Physiological, Metabolic, and Signaling Pathways. Mol Cell Proteomics 2015; 14:2243-60. [PMID: 26091701 DOI: 10.1074/mcp.m114.047183] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 01/01/2023] Open
Abstract
The circadian clock provides adaptive advantages to an organism, resulting in increased fitness and survival. The phosphorylation events that regulate circadian-dependent signaling and the processes which post-translationally respond to clock-gated signals are largely unknown. To better elucidate post-translational events tied to the circadian system we carried out a survey of circadian-regulated protein phosphorylation events in Arabidopsis seedlings. A large-scale mass spectrometry-based quantitative phosphoproteomics approach employing TiO2-based phosphopeptide enrichment techniques identified and quantified 1586 phosphopeptides on 1080 protein groups. A total of 102 phosphopeptides displayed significant changes in abundance, enabling the identification of specific patterns of response to circadian rhythms. Our approach was sensitive enough to quantitate oscillations in the phosphorylation of low abundance clock proteins (early flowering4; ELF4 and pseudoresponse regulator3; PRR3) as well as other transcription factors and kinases. During constant light, extensive cyclic changes in phosphorylation status occurred in critical regulators, implicating direct or indirect regulation by the circadian system. These included proteins influencing transcriptional regulation, translation, metabolism, stress and phytohormones-mediated responses. We validated our analysis using the elf4-211 allele, in which an S45L transition removes the phosphorylation herein identified. We show that removal of this phosphorylatable site diminishes interaction with early flowering3 (ELF3), a key partner in a tripartite evening complex required for circadian cycling. elf4-211 lengthens period, which increases with increasing temperature, relative to the wild type, resulting in a more stable temperature compensation of circadian period over a wider temperature range.
Collapse
Affiliation(s)
- Mani Kant Choudhary
- From the ‡Division of Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790-784, Republic of Korea
| | - Yuko Nomura
- ¶Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - Lei Wang
- From the ‡Division of Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790-784, Republic of Korea §Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210; ‖Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hirofumi Nakagami
- ¶Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - David E Somers
- From the ‡Division of Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790-784, Republic of Korea §Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
16
|
Singh PK, Shrivastava AK, Chatterjee A, Pandey S, Rai S, Singh S, Rai LC. Cadmium toxicity in diazotrophic Anabaena spp. adjudged by hasty up-accumulation of transporter and signaling and severe down-accumulation of nitrogen metabolism proteins. J Proteomics 2015; 127:134-46. [PMID: 26021478 DOI: 10.1016/j.jprot.2015.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/29/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
Present study demonstrates interspecies variation in proteome and survival strategy of three Anabaena species i.e., Anabaena L31, Anabaena sp. PCC 7120 and Anabaena doliolum subjected to respective LC50 doses of Cd at 0, 1, 3, 5 and 7day intervals. The proteome coverage with 452 differentially accumulated proteins unveiled species and time specific expression and interaction network of proteins involved in important cellular functions. Statistical analysis of protein abundance across Cd-treated proteomes clustered their co-expression pattern into four groups viz., (i) early (days 1 and 3) accumulated proteins, (ii) proteins up-accumulated for longer duration, (iii) late (days 5 and 7) accumulated proteins, and (iv) mostly down-accumulated proteins. Appreciable growth of Cd treated A L31 over other two species may be ascribed to proteins contained in the first and second groups (belonging to energy and carbohydrate metabolism (TK, G6-PI, PGD, FBA, PPA, ATP synthase)), sulfur metabolism (GR, GST, PGDH, PAPS reductase, GDC-P, and SAM synthetase), fatty acid metabolism (AspD, PspA, SQD-1), phosphorous metabolism (PhoD, PstB and SQD1), molecular chaperones (Gro-EL, FKBP-type peptidylprolyl isomerase), and antioxidative defense enzymes (SOD-A, catalase). Anabaena sp. PCC 7120 harboring proteins largely from the third group qualified as a late accumulator and A. doliolum housing majority of proteins from the fourth group emerged as the most sensitive species. Thus early up-accumulation of transporter and signaling category proteins and drastic reduction of nitrogen assimilation proteins could be taken as a vital indicator of cadmium toxicity in Anabaena spp. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Prashant Kumar Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Alok Kumar Shrivastava
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Antra Chatterjee
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Sarita Pandey
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Snigdha Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
17
|
Jang SH, Jun CD, Park ZY. Label-free quantitative phosphorylation analysis of human transgelin2 in Jurkat T cells reveals distinct phosphorylation patterns under PKA and PKC activation conditions. Proteome Sci 2015; 13:14. [PMID: 25844069 PMCID: PMC4384351 DOI: 10.1186/s12953-015-0070-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 02/27/2015] [Indexed: 12/31/2022] Open
Abstract
Background Transgelin2, one of cytoskeletal actin binding proteins has recently been suggested to be involved in the formation of immune synapses. Although detailed function of transgelin2 is largely unknown, interactions between transgelin2 and actin appear to be important in regulating cellular functions of transgelin2. Because protein phosphorylation can change ability to interact with other proteins, comprehensive phosphorylation analysis of transgelin2 will be helpful in understanding its functional mechanisms. Results Here, a specific protein label-free quantitative phosphorylation analysis method combining immuno-precipitation, IMAC phosphopeptide enrichment technique and label-free relative quantification analysis was used to monitor the phosphorylation changes of transgelin2 overexpressed in Jurkat T cells under protein kinase C (PKC) and protein kinase A (PKA) activation conditions, two representative intracellular signalling pathways of immune cell activation and homeostasis. A total of six serine/threonine phosphorylation sites were identified including threonine-84, a novel phosphorylation site. Notably, distinct phosphorylation patterns of transgelin2 under the two kinase activation conditions were observed. Most phosphorylation sites showing specific kinase-dependent phosphorylation changes were discretely located in two previously characterized actin-binding regions: actin-binding site (ABS) and calponin repeat domain (CNR). PKC activation increased phosphorylation of threonine-180 and serine-185 in the CNR, and PKA activation increased phosphorylation of serine-163 in the ABS. Conclusions Multiple actin-binding regions of transgelin2 participate to accomplish its full actin-binding capability, and the actin-binding affinity of each actin-binding region appears to be modulated by specific kinase-dependent phosphorylation changes. Accordingly, different actin-binding properties or cellular functions of transgelin2 may result from distinct intracellular signalling events under immune response activation or homeostasis conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0070-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science & Technology, 123, Cheomdangwagi-Ro, Buk-Gu, 500-712 Gwangju Republic of Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science & Technology, 123, Cheomdangwagi-Ro, Buk-Gu, 500-712 Gwangju Republic of Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science & Technology, 123, Cheomdangwagi-Ro, Buk-Gu, 500-712 Gwangju Republic of Korea
| |
Collapse
|
18
|
Jaiswal DK, Ray D, Choudhary MK, Subba P, Kumar A, Verma J, Kumar R, Datta A, Chakraborty S, Chakraborty N. Comparative proteomics of dehydration response in the rice nucleus: new insights into the molecular basis of genotype-specific adaptation. Proteomics 2014; 13:3478-97. [PMID: 24133045 DOI: 10.1002/pmic.201300284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 01/04/2023]
Abstract
Dehydration is the most crucial environmental factor that considerably reduces the crop harvest index, and thus has become a concern for global agriculture. To better understand the role of nuclear proteins in water-deficit condition, a nuclear proteome was developed from a dehydration-sensitive rice cultivar IR-64 followed by its comparison with that of a dehydration-tolerant c.v. Rasi. The 2DE protein profiling of c.v. IR-64 coupled with MS/MS analysis led to the identification of 93 dehydration-responsive proteins (DRPs). Among those identified proteins, 78 were predicted to be destined to the nucleus, accounting for more than 80% of the dataset. While the detected number of protein spots in c.v. IR-64 was higher when compared with that of Rasi, the number of DRPs was found to be less. Fifty-seven percent of the DRPs were found to be common to both sensitive and tolerant cultivars, indicating significant differences between the two nuclear proteomes. Further, we constructed a functional association network of the DRPs of c.v. IR-64, which suggests that a significant number of the proteins are capable of interacting with each other. The combination of nuclear proteome and interactome analyses would elucidate stress-responsive signaling and the molecular basis of dehydration tolerance in plants.
Collapse
|
19
|
Dufort FJ, Gumina MR, Ta NL, Tao Y, Heyse SA, Scott DA, Richardson AD, Seyfried TN, Chiles TC. Glucose-dependent de novo lipogenesis in B lymphocytes: a requirement for atp-citrate lyase in lipopolysaccharide-induced differentiation. J Biol Chem 2014; 289:7011-7024. [PMID: 24469453 DOI: 10.1074/jbc.m114.551051] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacterially derived lipopolysaccharide (LPS) stimulates naive B lymphocytes to differentiate into immunoglobulin (Ig)-secreting plasma cells. Differentiation of B lymphocytes is characterized by a proliferative phase followed by expansion of the intracellular membrane secretory network to support Ig production. A key question in lymphocyte biology is how naive B cells reprogram metabolism to support de novo lipogenesis necessary for proliferation and expansion of the endomembrane network in response to LPS. We report that extracellularly acquired glucose is metabolized, in part, to support de novo lipogenesis in response to LPS stimulation of splenic B lymphocytes. LPS stimulation leads to increased levels of endogenous ATP-citrate lyase (ACLY), and this is accompanied by increased ACLY enzymatic activity. ACLY produces cytosolic acetyl-CoA from mitochondrially derived citrate. Inhibition of ACLY activity in LPS-stimulated B cells with the selective inhibitor 2-hydroxy-N-arylbenzenesulfonamide (compound-9; C-9) blocks glucose incorporation into de novo lipid biosynthesis, including cholesterol, free fatty acids, and neutral and acidic phospholipids. Moreover, inhibition of ACLY activity in splenic B cells results in inhibition of proliferation and defective endomembrane expansion and reduced expression of CD138 and Blimp-1, markers for plasma-like B cell differentiation. ACLY activity is also required for LPS-induced IgM production in CH12 B lymphoma cells. These data demonstrate that ACLY mediates glucose-dependent de novo lipogenesis in response to LPS signaling and identify a role for ACLY in several phenotypic changes that define plasma cell differentiation.
Collapse
Affiliation(s)
- Fay J Dufort
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467
| | - Maria R Gumina
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467
| | - Nathan L Ta
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467
| | - Yongzhen Tao
- Sanford-Burnham Medical Research Institute La Jolla, California 92037
| | - Shannon A Heyse
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467
| | - David A Scott
- Sanford-Burnham Medical Research Institute La Jolla, California 92037
| | - Adam D Richardson
- Sanford-Burnham Medical Research Institute La Jolla, California 92037
| | - Thomas N Seyfried
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467
| | - Thomas C Chiles
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467.
| |
Collapse
|
20
|
Missing links in antibody assembly control. Int J Cell Biol 2013; 2013:606703. [PMID: 24489546 PMCID: PMC3893805 DOI: 10.1155/2013/606703] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/07/2013] [Indexed: 12/21/2022] Open
Abstract
Fidelity of the humoral immune response requires that quiescent B lymphocytes display membrane bound immunoglobulin M (IgM) on B lymphocytes surface as part of the B cell receptor, whose function is to recognize an antigen. At the same time B lymphocytes should not secrete IgM until recognition of the antigen has occurred. The heavy chains of the secretory IgM have a C-terminal tail with a cysteine instead of a membrane anchor, which serves to covalently link the IgM subunits by disulfide bonds to form “pentamers” or “hexamers.” By virtue of the same cysteine, unassembled secretory IgM subunits are recognized and retained (via mixed disulfide bonds) by members of the protein disulfide isomerase family, in particular ERp44. This so-called “thiol-mediated retention” bars assembly intermediates from prematurely leaving the cell and thereby exerts quality control on the humoral immune response. In this essay we discuss recent findings on how ERp44 governs such assembly control in a pH-dependent manner, shuttling between the cisGolgi and endoplasmic reticulum, and finally on how pERp1/MZB1, possibly as a co-chaperone of GRP94, may help to overrule the thiol-mediated retention in the activated B cell to give way to antibody secretion.
Collapse
|
21
|
Salonen J, Rönnholm G, Kalkkinen N, Vihinen M. Proteomic changes during B cell maturation: 2D-DIGE approach. PLoS One 2013; 8:e77894. [PMID: 24205016 PMCID: PMC3812168 DOI: 10.1371/journal.pone.0077894] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022] Open
Abstract
B cells play a pivotal role in adaptive immune system, since they maintain a delicate balance between recognition and clearance of foreign pathogens and tolerance to self. During maturation, B cells progress through a series of developmental stages defined by specific phenotypic surface markers and the rearrangement and expression of immunoglobulin (Ig) genes. To get insight into B cell proteome during the maturation pathway, we studied differential protein expression in eight human cell lines, which cover four distinctive developmental stages; early pre-B, pre-B, plasma cell and immature B cell upon anti-IgM stimulation. Our two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry based proteomic study indicates the involvement of large number of proteins with various functions. Notably, proteins related to cytoskeleton were relatively highly expressed in early pre-B and pre-B cells, whereas plasma cell proteome contained endoplasmic reticulum and Golgi system proteins. Our long time series analysis in anti-IgM stimulated Ramos B cells revealed the dynamic regulation of cytoskeleton organization, gene expression and metabolic pathways, among others. The findings are related to cellular processes in B cells and are discussed in relation to experimental information for the proteins and pathways they are involved in. Representative 2D-DIGE maps of different B cell maturation stages are available online at http://structure.bmc.lu.se/BcellProteome/.
Collapse
Affiliation(s)
- Johanna Salonen
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- BioMediTech, Tampere, Finland
- Research Unit, Tampere University Hospital, Tampere, Finland
| | - Gunilla Rönnholm
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nisse Kalkkinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mauno Vihinen
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- BioMediTech, Tampere, Finland
- Research Unit, Tampere University Hospital, Tampere, Finland
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
22
|
Subba P, Barua P, Kumar R, Datta A, Soni KK, Chakraborty S, Chakraborty N. Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response. J Proteome Res 2013; 12:5025-47. [PMID: 24083463 DOI: 10.1021/pr400628j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reversible protein phosphorylation is a ubiquitous regulatory mechanism that plays critical roles in transducing stress signals to bring about coordinated intracellular responses. To gain better understanding of dehydration response in plants, we have developed a differential phosphoproteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water, and the changes in the phosphorylation status of a large repertoire of proteins were monitored. The proteins were resolved by 2-DE and stained with phosphospecific fluorescent Pro-Q Diamond dye. Mass spectrometric analysis led to the identification of 91 putative phosphoproteins, presumably involved in a variety of functions including cell defense and rescue, photosynthesis and photorespiration, molecular chaperones, and ion transport, among others. Multiple sites of phosphorylation were predicted on several key elements, which include both the regulatory as well as the functional proteins. A critical survey of the phosphorylome revealed a DREPP (developmentally regulated plasma membrane protein) plasma membrane polypeptide family protein, henceforth designated CaDREPP1. The transcripts of CaDREPP1 were found to be differentially regulated under dehydration stress, further corroborating the proteomic results. This work provides new insights into the possible phosphorylation events triggered by the conditions of progressive water-deficit in plants.
Collapse
Affiliation(s)
- Pratigya Subba
- National Institute of Plant Genome Research , Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Quantifying Changes in the Cellular Thiol-Disulfide Status during Differentiation of B Cells into Antibody-Secreting Plasma Cells. Int J Cell Biol 2013; 2013:898563. [PMID: 24223594 PMCID: PMC3800581 DOI: 10.1155/2013/898563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/21/2013] [Indexed: 01/08/2023] Open
Abstract
Plasma cells produce and secrete massive amounts of disulfide-containing antibodies. To accommodate this load on the secretory machinery, the differentiation of resting B cells into antibody-secreting plasma cells is accompanied by a preferential expansion of the secretory compartments of the cells and by an up-regulation of enzymes involved in redox regulation and protein folding. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated proteins in whole cells. The results show that while the global thiol-disulfide state is affected to some extent by the differentiation, steady-state levels of glutathionylated protein thiols are less than 0.3% of the total protein cysteines, even in fully differentiated cells, and the overall protein redox state is not affected until late in differentiation, when large-scale IgM production is ongoing. A general expansion of the ER does not affect global protein redox status until an extensive production of cargo proteins has started.
Collapse
|
24
|
Qin J, Li MJ, Wang P, Wong NS, Wong MP, Xia Z, Tsao GSW, Zhang MQ, Wang J. ProteoMirExpress: inferring microRNA and protein-centered regulatory networks from high-throughput proteomic and mRNA expression data. Mol Cell Proteomics 2013; 12:3379-87. [PMID: 23924514 DOI: 10.1074/mcp.o112.019851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression through translational repression and RNA degradation. Recently developed high-throughput proteomic methods measure gene expression changes at protein level and therefore can reveal the direct effects of miRNAs' translational repression. Here, we present a web server, ProteoMirExpress, that integrates proteomic and mRNA expression data together to infer miRNA-centered regulatory networks. With both types of high-throughput data from the users, ProteoMirExpress is able to discover not only miRNA targets that have decreased mRNA, but also subgroups of targets with suppressed proteins whose mRNAs are not significantly changed or with decreased mRNA whose proteins are not significantly changed, which are usually ignored by most current methods. Furthermore, both direct and indirect targets of miRNAs can be detected. Therefore, ProteoMirExpress provides more comprehensive miRNA-centered regulatory networks. We used several published data to assess the quality of our inferred networks and prove the value of our server. ProteoMirExpress is available online, with free access to academic users.
Collapse
Affiliation(s)
- Jing Qin
- Department of Biochemistry, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li RX, Ding YB, Zhao SL, Xiao YY, Li QR, Xia FY, Sun L, Lin X, Wu JR, Liao K, Zeng R. Secretome-Derived Isotope Tags (SDIT) Reveal Adipocyte-Derived Apolipoprotein C-I as a Predictive Marker for Cardiovascular Disease. J Proteome Res 2012; 11:2851-62. [DOI: 10.1021/pr201224e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rong-Xia Li
- Key Laboratory of Systems Biology,
Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Bo Ding
- State Key Laboratory of Cell
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes
for Biological Sciences, Graduate School, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shi-Lin Zhao
- Key Laboratory of Systems Biology,
Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan-Yuan Xiao
- State Key Laboratory of Cell
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes
for Biological Sciences, Graduate School, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing-run Li
- Key Laboratory of Systems Biology,
Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang-Ying Xia
- Key Laboratory of Systems Biology,
Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Sun
- Key Laboratory of Nutrition and
Metabolism, Institute for Nutritional Sciences, Shanghai Institutes
for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai,
China
| | - Xu Lin
- Key Laboratory of Nutrition and
Metabolism, Institute for Nutritional Sciences, Shanghai Institutes
for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai,
China
| | - Jia-Rui Wu
- Key Laboratory of Systems Biology,
Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kan Liao
- State Key Laboratory of Cell
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes
for Biological Sciences, Graduate School, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Zeng
- Key Laboratory of Systems Biology,
Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
26
|
Garcia-Manteiga JM, Mari S, Godejohann M, Spraul M, Napoli C, Cenci S, Musco G, Sitia R. Metabolomics of B to plasma cell differentiation. J Proteome Res 2011; 10:4165-76. [PMID: 21744784 DOI: 10.1021/pr200328f] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
When small B lymphocytes bind antigen in the context of suitable signals, a profound geno-proteomic metamorphosis is activated that generates antibody-secreting cells. To study the metabolic changes associated with this differentiation program, we compared the exometabolome of differentiating murine B lymphoma cells and primary B cells by monodimensional proton nuclear magnetic resonance spectroscopy and mass spectrometry coupled to liquid chromatography. Principal component analysis, a multivariate statistical analysis, highlighted metabolic hallmarks of the sequential differentiation phases discriminating between the proliferation and antibody secreting phases and revealing novel metabolic pathways. During proliferation, lactate production increased together with consumption of essential amino acids; massive Ig secretion was paralleled by alanine and glutamate production, glutamine being used as carbon and energy sources. Notably, ethanol and 5'-methylthioadenosine were produced during the last phase of protein secretion and the proliferative burst, respectively. Our metabolomics results are in agreement with previous genoproteomics studies. Thus, metabolic profiling of extracellular medium is a useful tool to characterize the functional state of differentiating B cells and to identify novel underlying metabolic pathways.
Collapse
|
27
|
Secretome Analysis of Skeletal Myogenesis Using SILAC and Shotgun Proteomics. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2011:329467. [PMID: 22084683 PMCID: PMC3200090 DOI: 10.1155/2011/329467] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/26/2011] [Indexed: 12/18/2022]
Abstract
Myogenesis, the formation of skeletal muscle, is a multistep event that commences with myoblast proliferation, followed by cell-cycle arrest, and finally the formation of multinucleated myotubes via fusion of mononucleated myoblasts. Each step is orchestrated by well-documented intracellular factors, such as cytoplasmic signalling molecules and nuclear transcription factors. Regardless, the key step in getting a more comprehensive understanding of the regulation of myogenesis is to explore the extracellular factors that are capable of eliciting the downstream intracellular factors. This could further provide valuable insight into the acute cellular response to extrinsic cues in maintaining normal muscle development. In this paper, we survey the intracellular factors that respond to extracellular cues that are responsible for the cascades of events during myogenesis: myoblast proliferation, cell-cycle arrest of myoblasts, and differentiation of myoblasts into myotubes. This focus on extracellular perspective of muscle development illustrates our mass spectrometry-based proteomic approaches to identify differentially expressed secreted factors during skeletal myogenesis.
Collapse
|
28
|
Vettermann C, Castor D, Mekker A, Gerrits B, Karas M, Jäck HM. Proteome profiling suggests a pro-inflammatory role for plasma cells through release of high-mobility group box 1 protein. Proteomics 2011; 11:1228-37. [PMID: 21319304 DOI: 10.1002/pmic.201000491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/07/2010] [Accepted: 12/13/2010] [Indexed: 02/06/2023]
Abstract
The final step of B-cell maturation is to differentiate into plasma cells, a process that is accompanied by gross changes in subcellular organization to enable antibody secretion. To better understand this critical step in mounting a humoral immune response, we analyzed proteome dynamics during plasma cell differentiation with combined 2-DE/MS. Thirty-two identified protein spots changed in relative abundance when lipopolysaccharide (LPS)-stimulated primary B cells differentiated into antibody-secreting plasma cells. A correlative analysis of protein and transcript abundance suggested that one third of these proteins are post-transcriptionally regulated. Apart from ER-resident chaperones, lipid metabolic enzymes, and translation initiation factors, we identified several proteins that had not been previously studied in plasma cells. Among them is the transiently upregulated proteasome activator (PA) 28γ, a component of the putative nuclear proteasome. Additionally, we discovered that the non-canonical inflammatory cytokine high-mobility group box 1 (HMG1) was released from plasma cells into the extracellular milieu. This suggests a novel role for plasma cells as pro-inflammatory mediators, which has important implications for various autoimmune diseases and chronic inflammation.
Collapse
Affiliation(s)
- Christian Vettermann
- Division of Molecular Immunology, Department of Internal Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Xiong L, Zhang J, Yuan B, Dong X, Jiang X, Wang Y. Global proteome quantification for discovering imatinib-induced perturbation of multiple biological pathways in K562 human chronic myeloid leukemia cells. J Proteome Res 2010; 9:6007-15. [PMID: 20949922 DOI: 10.1021/pr100814y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imatinib mesylate, currently marketed by Novartis as Gleevec in the U.S., has emerged as the leading compound to treat the chronic phase of chronic myeloid leukemia (CML), through its inhibition of Bcr-Abl tyrosine kinases, and other cancers. However, resistance to imatinib develops frequently, particularly in late-stage disease. To identify new cellular pathways affected by imatinib treatment, we applied mass spectrometry together with stable isotope labeling by amino acids in cell culture (SILAC) for the comparative study of protein expression in K562 cells that were untreated or treated with a clinically relevant concentration of imatinib. Our results revealed that, among the 1344 quantified proteins, 73 had significantly altered levels of expression induced by imatinib and could be quantified in both forward and reverse SILAC labeling experiments. These included the down-regulation of thymidylate synthase, S-adenosylmethionine synthetase, and glycerol-3-phosphate dehydrogenase as well as the up-regulation of poly(ADP-ribose) polymerase 1, hemoglobins, and enzymes involved in heme biosynthesis. We also found, by assessing alteration in the acetylation level in histone H4 upon imatinib treatment, that the imatinib-induced hemoglobinization and erythroid differentiation in K562 cells are associated with global histone H4 hyperacetylation. Overall, these results provided potential biomarkers for monitoring the therapeutic intervention of CML using imatinib and offered important new knowledge for gaining insight into the molecular mechanisms of action of imatinib.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | | | | | | | | | |
Collapse
|
30
|
Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A, Chakraborty S, Chakraborty N. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res 2010; 9:3443-64. [PMID: 20433195 DOI: 10.1021/pr901098p] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Water-deficit or dehydration impairs almost all physiological processes and greatly influences the geographical distribution of many crop species. It has been postulated that higher plants rely mostly on induction mechanisms to maintain cellular integrity during stress conditions. Plant cell wall or extracellular matrix (ECM) forms an important conduit for signal transduction between the apoplast and symplast and acts as front-line defense, thereby playing a key role in cell fate decision under various stress conditions. To better understand the molecular mechanism of dehydration response in plants, four-week-old rice seedlings were subjected to progressive dehydration by withdrawing water and the changes in the ECM proteome were examined using two-dimensional gel electrophoresis. Dehydration-responsive temporal changes revealed 192 proteins that change their intensities by more than 2.5-fold, at one or more time points during dehydration. The proteomic analysis led to the identification of about 100 differentially regulated proteins presumably involved in a variety of functions, including carbohydrate metabolism, cell defense and rescue, cell wall modification, cell signaling and molecular chaperones, among others. The differential rice proteome was compared with the dehydration-responsive proteome data of chickpea and maize. The results revealed an evolutionary divergence in the dehydration response as well as organ specificity, with few conserved proteins. The differential expression of the candidate proteins, in conjunction with previously reported results, may provide new insight into the underlying mechanisms of the dehydration response in plants. This may also facilitate the targeted alteration of metabolic routes in the cell wall for agricultural and industrial exploitation.
Collapse
Affiliation(s)
- Aarti Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Dong X, Xiong L, Jiang X, Wang Y. Quantitative proteomic analysis reveals the perturbation of multiple cellular pathways in jurkat-T cells induced by doxorubicin. J Proteome Res 2010; 9:5943-51. [PMID: 20822187 DOI: 10.1021/pr1007043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Doxorubicin remains an important part of chemotherapy regimens in the clinic and is considered an effective agent in the treatment of acute lymphoblastic leukemia (ALL). Although the cellular responses induced by doxorubicin treatment have been investigated for years, the precise mechanisms underlying its cytotoxicity and therapeutic activity remain unclear. Here we utilized mass spectrometry, together with stable isotope labeling by amino acids in cell culture (SILAC), to analyze comparatively the protein expression in Jurkat-T cells before and after treatment with a clinically relevant concentration of doxorubicin. We were able to quantify 1066 proteins in Jurkat-T cells with both forward and reverse SILAC measurements, among which 62 were with significantly altered levels of expression induced by doxorubicin treatment. These included the up-regulation of core histones, heterogeneous nuclear ribonucleoproteins, and superoxide dismutase 2 as well as the down-regulation of hydroxymethylglutaryl-CoA synthase and farnesyl diphosphate synthase. The latter two are essential enzymes for cholesterol biosynthesis. We further demonstrated that the doxorubicin-induced growth inhibition of Jurkat-T cells could be rescued by treatment with cholesterol, supporting that doxorubicin exerts its cytotoxic effect, in part, by suppressing the expression of hydroxymethylglutaryl-CoA synthase and farnesyl diphosphate synthase, thereby inhibiting the endogenous production of cholesterol. The results from the present study provide important new knowledge for gaining insights into the molecular mechanisms of action of doxorubicin.
Collapse
Affiliation(s)
- Xiaoli Dong
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | | | | | |
Collapse
|
32
|
Zhou J, Liang S, Fang L, Chen L, Tang M, Xu Y, Fu A, Yang J, Wei Y. Quantitative proteomic analysis of HepG2 cells treated with quercetin suggests IQGAP1 involved in quercetin-induced regulation of cell proliferation and migration. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 13:93-103. [PMID: 19207037 DOI: 10.1089/omi.2008.0075] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Quercetin, a wild distributed bioflavonoid, exhibits antitumor effects on murine models by inducing apoptosis and inhibiting growth of many cancer cell lines, while proteins involved in antitumor effects at proteomic level are still unclear. In our study, we used a quantitative proteomic strategy termed stable isotope labeling by amino acids in cell culture (SILAC)-mass spectrometry (MS) to study the differential proteomic profiling of HepG2 cells treated by quercetin. In all, there were 70 changed proteins among those quantified proteins in HepG2 cells treated by 50 microM quercetin for 48 h, and 14 proteins showed significant upregulation, whereas 56 proteins were downregulated. The functional classification of changed proteins includes signaling protein, protein synthesis, cytoskeleton, metabolism, etc. Of these, Ras GTPase-activating-like protein (IQGAP1) and beta-tubulin were found to be reduced at a large degree. The migration inhibition of HepG2 cells can be induced by quercetin, and the RNA and protein expression level of IQGAP1 and beta-tubulin were respectively decreased obviously in HepG2 cells exposed to quercetin for 48 h in the scratch migration assay. The downregulated expression of IQGAP1 and beta-tubulin by quercetin treatment correlated with cell migration ability, and quercetin probably inhibits HepG2 proliferation and migration through IQGAP1 and beta-tubulin expression changes and their interactions with other proteins.
Collapse
Affiliation(s)
- Jin Zhou
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Street 4, Gaopeng Street, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xiong L, Wang Y. Quantitative proteomic analysis reveals the perturbation of multiple cellular pathways in HL-60 cells induced by arsenite treatment. J Proteome Res 2010; 9:1129-37. [PMID: 20050688 DOI: 10.1021/pr9011359] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arsenic is ubiquitously present in the environment; it is a known human carcinogen and paradoxically it is also a successful drug for the clinical remission of acute promyelocytic leukemia (APL). The cellular responses induced by arsenite treatment have been investigated for years; however, the precise mechanisms underlying its cytotoxicity and therapeutic activity remain unclear. Here we report the use of mass spectrometry together with stable isotope labeling by amino acids in cell culture (SILAC) for the comparative study of protein expression in HL-60 cells that were untreated or treated with a clinically relevant concentration of arsenite. Our results revealed that, among the 1067 proteins quantified in both forward and reverse SILAC measurements, 56 had significantly altered levels of expression induced by arsenite treatment. These included the up-regulation of core histones, neutrophil elastase, alpha-mannosidase as well as the down-regulation of fatty acid synthase and protein phosphatase 1 alpha. We further demonstrated that the arsenite-induced growth inhibition of HL-60 cells could be rescued by treatment with palmitate, the final product of fatty acid synthase, supporting that arsenite exerts its cytotoxic effect, in part, via suppressing the expression of fatty acid synthase and inhibiting the endogenous production of fatty acid. The results from the present study offered important new knowledge for gaining insights into the molecular mechanisms of action of arsenite.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | |
Collapse
|
34
|
Mortensen P, Gouw JW, Olsen JV, Ong SE, Rigbolt KTG, Bunkenborg J, Cox J, Foster LJ, Heck AJR, Blagoev B, Andersen JS, Mann M. MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 2010; 9:393-403. [PMID: 19888749 DOI: 10.1021/pr900721e] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mass spectrometry-based proteomics critically depends on algorithms for data interpretation. A current bottleneck in the rapid advance of proteomics technology is the closed nature and slow development cycle of vendor-supplied software solutions. We have created an open source software environment, called MSQuant, which allows visualization and validation of peptide identification results directly on the raw mass spectrometric data. MSQuant iteratively recalibrates MS data thereby significantly increasing mass accuracy leading to fewer false positive peptide identifications. Algorithms to increase data quality include an MS(3) score for peptide identification and a post-translational modification (PTM) score that determines the probability that a modification such as phosphorylation is placed at a specific residue in an identified peptide. MSQuant supports relative protein quantitation based on precursor ion intensities, including element labels (e.g., (15)N), residue labels (e.g., SILAC and ICAT), termini labels (e.g., (18)O), functional group labels (e.g., mTRAQ), and label-free ion intensity approaches. MSQuant is available, including an installer and supporting scripts, at http://msquant.sourceforge.net .
Collapse
Affiliation(s)
- Peter Mortensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Center for Experimental Bioinformatics, Odense, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Physiology and pathology of proteostasis in the early secretory compartment. Semin Cell Dev Biol 2010; 21:520-5. [PMID: 20178856 DOI: 10.1016/j.semcdb.2010.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
The endoplasmic reticulum (ER), the port of entry for proteins into the secretory pathway, is a multifunctional organelle emerging as a central integrator of numerous signalling pathways. The mechanisms that control proteostasis are integral part of this signalling network, providing cues for morphological and functional cell remodelling, proliferation, inflammation and cell death. The complexity of ER responses is exploited during physiological and pathological tissue development, cell differentiation and lifespan control. This essay outlines some of the mechanisms that link proteostasis within the early secretory compartment to signalling in development and disease.
Collapse
|
36
|
Christis C, Fullaondo A, Schildknegt D, Mkrtchian S, Heck AJR, Braakman I. Regulated increase in folding capacity prevents unfolded protein stress in the ER. J Cell Sci 2010; 123:787-94. [PMID: 20144991 DOI: 10.1242/jcs.041111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stimulation of thyrocytes with thyroid stimulating hormone (TSH) leads to a morphological change and a massive increase in thyroglobulin (Tg) production. Although Tg is a demanding client of the endoplasmic reticulum (ER), its increase did not result in significant accumulation of unfolded protein in the ER. Instead, ER chaperones and folding enzymes reached maximum synthesis rates immediately after TSH stimulation, before significant upregulation of Tg synthesis. The resulting increase in folding capacity before client protein production prevented cellular unfolded-protein stress, confirmed by the silence of the most conserved branch of the unfolded protein response. Thyrocytes set an example of physiological adaptation of cells to a future potentially stress-causing situation, which suggests a general strategy for both non-secretory and specialized secretory cells.
Collapse
Affiliation(s)
- Chantal Christis
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Efficient IgM assembly and secretion require the plasma cell induced endoplasmic reticulum protein pERp1. Proc Natl Acad Sci U S A 2009; 106:17019-24. [PMID: 19805154 DOI: 10.1073/pnas.0903036106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plasma cells daily secrete their own mass in antibodies, which fold and assemble in the endoplasmic reticulum (ER). To reach these levels, cells require pERp1, a novel lymphocyte-specific small ER-resident protein, which attains expression levels as high as BiP when B cells differentiate into plasma cells. Although pERp1 has no homology with known ER proteins, it does contain a CXXC motif typical for oxidoreductases. In steady state, the CXXC cysteines are locked by two parallel disulfide bonds with a downstream C(X)(6)C motif, and pERp1 displays only modest oxidoreductase activity. pERp1 emerged as a dedicated folding factor for IgM, associating with both heavy and light chains and promoting assembly and secretion of mature IgM.
Collapse
|
38
|
Reeves EKM, Gordish-Dressman H, Hoffman EP, Hathout Y. Proteomic profiling of glucocorticoid-exposed myogenic cells: Time series assessment of protein translocation and transcription of inactive mRNAs. Proteome Sci 2009; 7:26. [PMID: 19642986 PMCID: PMC2725035 DOI: 10.1186/1477-5956-7-26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/30/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Prednisone, one of the most highly prescribed drugs, has well characterized effects on gene transcription mediated by the glucocorticoid receptor. These effects are typically occurring on the scale of hours. Prednisone also has a number of non-transcriptional effects (occurring on minutes scale) on protein signaling, yet these are less well studied. We sought to expand the understanding of acute effects of prednisone action on cell signaling using a combination of SILAC strategy and subcellular fractionations from C2C12 myotubes. RESULTS De novo translation of proteins was inhibited in both SILAC labeled and unlabeled C2C12 myotubes. Unlabeled cells were exposed to prednisone while SILAC labeled cells remained untreated. After 0, 5, 15, and 30 minutes of prednisone exposure, labeled and unlabeled cells were mixed at 1:1 ratios and fractionated into cytosolic and nuclear fractions. A total of 534 proteins in the cytosol and 626 proteins in the nucleus were identified and quantitated, using 3 or more peptides per protein with peptide based probability < or = 0.001. We identified significant increases (1.7- to 3.1- fold) in cytoplasmic abundance of 11 ribosomal proteins within 5 minutes of exposure, all of which returned to baseline by 30 min. We hypothesized that these drug-induced acute changes in the subcellular localization of the cell's protein translational machinery could lead to altered translation of quiescent RNAs. To test this, de novo protein synthesis was assayed after 15 minutes of drug exposure. Quantitative fluorography identified 16 2D gel spots showing rapid changes in translation; five of these were identified by MS/MS (pyruvate kinase, annexin A6 isoform A and isoform B, nasopharyngeal epithelium specific protein 1, and isoform 2 of Replication factor C subunit 1), and all showed the 5' terminal oligopyrimidine motifs associated with mRNA sequestration to and from inactive mRNA pools. CONCLUSION We describe novel approaches of subcellular proteomic profiling and assessment of acute changes on a minute-based time scale. These data expand the current knowledge of acute, non-transcriptional activities of glucocorticoids, including changes in protein subcellular localization, altered translation of quiescent RNA pools, and PKC-mediated cytoskeleton remodeling.
Collapse
Affiliation(s)
- Erica K M Reeves
- Research Center for Genetic Medicine, Children's National Medical Center, NW, Washington, DC 20010, USA.
| | | | | | | |
Collapse
|
39
|
Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S. Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 2009; 8:1579-98. [PMID: 19321431 DOI: 10.1074/mcp.m800601-mcp200] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Water deficit or dehydration is the most crucial environmental constraint on plant growth and development and crop productivity. It has been postulated that plants respond and adapt to dehydration by altering their cellular metabolism and by activating various defense machineries. The nucleus, the regulatory hub of the eukaryotic cell, is a dynamic system and a repository of various macromolecules that serve as modulators of cell signaling dictating the cell fate decision. To better understand the molecular mechanisms of dehydration-responsive adaptation in plants, we developed a comprehensive nuclear proteome of rice. The proteome was determined using a sequential method of organellar enrichment followed by two-dimensional electrophoresis-based protein identification by LC-ESI-MS/MS. We initially screened several commercial rice varieties and parental lines and established their relative dehydration tolerance. The differential display of nuclear proteins in the tolerant variety under study revealed 150 spots that showed changes in their intensities by more than 2.5-fold. The proteomics analysis led to the identification of 109 differentially regulated proteins presumably involved in a variety of functions, including transcriptional regulation and chromatin remodeling, signaling and gene regulation, cell defense and rescue, and protein degradation. The dehydration-responsive nuclear proteome revealed a coordinated response involving both regulatory and functional proteins, impinging upon the molecular mechanism of dehydration adaptation. Furthermore a comparison between the dehydration-responsive nuclear proteome of rice and that of a legume, the chickpea, showed an evolutionary divergence in dehydration response comprising a few conserved proteins, whereas most of the proteins may be involved in crop-specific adaptation. These results might help in understanding the spectrum of nuclear proteins and the biological processes they control under dehydration as well as having implications for strategies to improve dehydration tolerance in plants.
Collapse
|
40
|
Abstract
Lipids from dietary sources or from de novo synthesis are transported while bound to proteins to other tissues where they are used for cell membrane synthesis or stored for energy generation. In cell membranes or in plasma, lipids can undergo several modifications that are important in cell function. Several proteins orchestrate the transport, biosynthesis, and modification of lipids. Thus, the intersection of lipids and proteins is important in human metabolic pathways. Recent advances in mass spectrometry and bioinformatics have made it possible to obtain compositional (structural and functional) data of lipid molecular species and proteins in biological samples. This combination of lipidomics and proteomics is advantageous because it allows us to better define biochemical pathways, discover new drug targets, and better understand the pathophysiology of several diseases.
Collapse
Affiliation(s)
- Alfred N Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA, USA
| | | |
Collapse
|
41
|
Kiss E, Nagy P, Balogh A, Szöllosi J, Matkó J. Cytometry of raft and caveola membrane microdomains: from flow and imaging techniques to high throughput screening assays. Cytometry A 2008; 73:599-614. [PMID: 18473380 DOI: 10.1002/cyto.a.20572] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The evolutionarily developed microdomain structure of biological membranes has gained more and more attention in the past decade. The caveolin-free "membrane rafts," the caveolin-expressing rafts (caveolae), as well as other membrane microdomains seem to play an essential role in controlling and coordinating cell-surface molecular recognition, internalization/endocytosis of the bound molecules or pathogenic organisms and in regulation of transmembrane signal transduction processes. Therefore, in many research fields (e.g. neurobiology and immunology), there is an ongoing need to understand the nature of these microdomains and to quantitatively characterize their lipid and protein composition under various physiological and pathological conditions. Flow and image cytometry offer many sophisticated and routine tools to study these questions. In this review, we give an overview of the past efforts to detect and characterize these membrane microdomains by the use of classical cytometric technologies, and finally we will discuss the results and perspectives of a new line of raft cytometry, the "high throughput screening assays of membrane microdomains," based on "lipidomic" and "proteomic" approaches.
Collapse
Affiliation(s)
- Endre Kiss
- Immunology Research Group of the Hungarian Academy of Sciences at Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
42
|
Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, Chakraborty N. Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). J Proteome Res 2008; 7:3803-17. [PMID: 18672926 DOI: 10.1021/pr8000755] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tuberization in potato ( Solanum tuberosum L.) is a developmental process that serves a double function, as a storage organ and as a vegetative propagation system. It is a multistep, complex process and the underlying mechanisms governing these overlapping steps are not fully understood. To understand the molecular basis of tuberization in potato, a comparative proteomic approach has been applied to monitor differentially expressed proteins at different development stages using two-dimensional gel electrophoresis (2-DE). The differentially displayed proteomes revealed 219 protein spots that change their intensities more than 2.5-fold. The LC-ES-MS/MS analyses led to the identification of 97 differentially regulated proteins that include predicted and novel tuber-specific proteins. Nonhierarchical clustering revealed coexpression patterns of functionally similar proteins. The expression of reactive oxygen species catabolizing enzymes, viz., superoxide dismutase, ascorbate peroxidase and catalase, were induced by more than 2-fold indicating their possible role during the developmental transition from stolons into tubers. We demonstrate that nearly 100 proteins, some presumably associated with tuber cell differentiation, regulate diverse functions like protein biogenesis and storage, bioenergy and metabolism, and cell defense and rescue impinge on the complexity of tuber development in potato.
Collapse
Affiliation(s)
- Lalit Agrawal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | |
Collapse
|
43
|
Ringrose JH, van Solinge WW, Mohammed S, O'Flaherty MC, van Wijk R, Heck AJR, Slijper M. Highly efficient depletion strategy for the two most abundant erythrocyte soluble proteins improves proteome coverage dramatically. J Proteome Res 2008; 7:3060-3. [PMID: 18494517 DOI: 10.1021/pr8001029] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In-depth human erythrocyte proteome studies are severely hampered by the presence of hemoglobin and carbonic anhydrase-1, which account for more than 98% of the total erythrocyte soluble protein content. We developed a specific depletion approach that resulted in a drastic increase in the number of identified proteins. This depletion technique is valuable for proteome studies of human erythrocyte disorders with unknown etiology and of tissue samples that contain blood.
Collapse
Affiliation(s)
- Jeffrey H Ringrose
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
Masciarelli S, Sitia R. Building and operating an antibody factory: redox control during B to plasma cell terminal differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:578-88. [PMID: 18241675 DOI: 10.1016/j.bbamcr.2008.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/20/2007] [Accepted: 01/04/2008] [Indexed: 01/24/2023]
Abstract
When small B lymphocytes bind their cognate antigens in the context of suitable signals, a dramatic differentiation program is activated that leads to the formation of plasma cells. These are short-lived specialized elements, each capable of secreting several thousands antibodies per second. The massive increase in Ig synthesis and transport entails a dramatic architectural and functional metamorphosis that involves the development of the endoplasmic reticulum (ER) and secretory organelles. Massive Ig secretion poses novel metabolic requirements, particularly for what concerns aminoacid import, ATP synthesis and redox homeostasis. Ig H and L chains enter the ER in the reduced state, to be rapidly oxidised mainly via protein driven relays based on the resident enzymes PDI and Ero1. How do plasma cells cope with the ensuing metabolic and redox stresses? In this essay, we discuss the physiological implications that increased Ig production could have in the control of plasma cell generation, function and lifespan, with emphasis on the potential role of ROS generation in mitochondria and ER.
Collapse
Affiliation(s)
- Silvia Masciarelli
- Department of Biology and Technology (DiBiT), San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy.
| | | |
Collapse
|
45
|
Chapter 17 Mass Spectrometry-Driven Approaches to Quantitative Proteomics and Beyond. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0166-526x(08)00217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Abstract
The systematic study of proteins and protein networks, that is, proteomics, calls for qualitative and quantitative analysis of proteins and peptides. Mass spectrometry (MS) is a key analytical technology in current proteomics and modern mass spectrometers generate large amounts of high-quality data that in turn allow protein identification, annotation of secondary modifications, and determination of the absolute or relative abundance of individual proteins. Advances in mass spectrometry-driven proteomics rely on robust bioinformatics tools that enable large-scale data analysis. This chapter describes some of the basic concepts and current approaches to the analysis of MS and MS/MS data in proteomics.
Collapse
|
47
|
Romijn EP, Yates JR. Analysis of organelles by on-line two-dimensional liquid chromatography-tandem mass spectrometry. Methods Mol Biol 2008; 432:1-16. [PMID: 18370007 DOI: 10.1007/978-1-59745-028-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The sequencing of the genomes of many different species has greatly helped our understanding of organelles. This information has driven the development of mass spectrometry (MS)-based methods for large-scale analysis of proteins. One of these methods uses two-dimensional liquid chromatography (2DLC) coupled on-line to tandem MS and is described here. In this method, proteins are first proteolytically digested, and then the peptides are separated in two dimensions. Typically, separation in the first dimension is based on charge interactions with a strong cation exchange (SCX) resin, whereas separation in the second dimension is based on hydrophobic interactions with a reversed-phase (RP) support. Peptides are eluted from the SCX resin using increasing concentrations of a salt and subsequently trapped on the RP resin. Next, the salt is washed from the system, and the peptides are eluted using an increasing gradient of a non-polar organic solvent. Eluting peptides are mass analyzed and fragmented to generate tandem mass spectra. These tandem mass spectra can be used to search sequence databases to identify peptides by matching amino-acid sequences to each spectrum.
Collapse
Affiliation(s)
- Edein P Romijn
- Philips Research Eindhoven, High Tech Campus, Eindhoven, The Netherlands
| | | |
Collapse
|
48
|
Yee JC, de Leon Gatti M, Philp RJ, Yap M, Hu WS. Genomic and proteomic exploration of CHO and hybridoma cells under sodium butyrate treatment. Biotechnol Bioeng 2008; 99:1186-204. [DOI: 10.1002/bit.21665] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Differential proteomic analysis of HeLa cells treated with Honokiol using a quantitative proteomic strategy. Amino Acids 2007; 35:115-22. [DOI: 10.1007/s00726-007-0615-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Accepted: 10/03/2007] [Indexed: 11/25/2022]
|
50
|
Mousson F, Kolkman A, Pijnappel WWMP, Timmers HTM, Heck AJR. Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes. Mol Cell Proteomics 2007; 7:845-52. [PMID: 18087068 DOI: 10.1074/mcp.m700306-mcp200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Affinity purification in combination with isotope labeling of proteins has proven to be a powerful method to discriminate specific from nonspecific interactors. However, in the standard SILAC (stable isotope labeling by amino acids in cell culture) approach dynamic components may easily be assigned as nonspecific. We compared two affinity purification protocols, which in combination revealed information on the dynamics of protein complexes. We focused on the central component in eukaryotic transcription, the human TATA-binding protein, which is involved in different complexes. All known TATA-binding protein-associated factors (TAFs) were detected as specific interactors. Interestingly one of them, BTAF1, exchanged significantly in cell extracts during the affinity purification. The other TAFs did not display this behavior. Cell cycle synchronization showed that BTAF1 exchange was regulated during mitosis. The combination of the two affinity purification protocols allows a quantitative approach to identify transient components in any protein complex.
Collapse
Affiliation(s)
- Florence Mousson
- Department of Physiological Chemistry, University Medical Centre Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|