1
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
2
|
Jarocki VM, Rezcallah MC, Coulon PML, Padula MP, Djordjevic SP. Updated Methods for Elucidating Bacterial Surfaceomes. Methods Mol Biol 2025; 2908:125-138. [PMID: 40304907 DOI: 10.1007/978-1-0716-4434-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The bacterial surfaceome, representing the full complement of surface-expressed proteins, is integral to interactions between bacteria, their hosts, and the environment, influencing processes such as adhesion, invasion, immune evasion, and biofilm formation. These proteins, due to their accessibility and vital roles in bacterial physiology, are prime targets for therapeutic intervention. This protocol describes a detailed methodology for mapping bacterial surfaceomes, including enzymatic surface shaving, cell surface biotinylation, solid-phase extraction, and liquid chromatography-tandem mass spectrometry.
Collapse
Affiliation(s)
- Veronica M Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Maria C Rezcallah
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Pauline M L Coulon
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Matthew P Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
3
|
Di Meo F, Kale B, Koomen JM, Perna F. Mapping the cancer surface proteome in search of target antigens for immunotherapy. Mol Ther 2024; 32:2892-2904. [PMID: 39068512 PMCID: PMC11403220 DOI: 10.1016/j.ymthe.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
Immune-based therapeutic interventions recognizing proteins localized on the cell surface of cancer cells are emerging as a promising cancer treatment. Antibody-based therapies and engineered T cells are now approved by the Food and Drug Administration to treat some malignancies. These therapies utilize a few cell surface proteins highly expressed on cancer cells to release the negative regulation of immune activation that limits antitumor responses (e.g., PD-1, PD-L1, CTLA4) or to redirect the T cell specificity toward blood cancer cells (e.g., CD19 and B cell maturation antigen). One limitation preventing broader application of these novel therapeutic strategies to all cancer types is the lack of suitable target antigens for all indications owing in part to the challenges in identifying such targets. Ideal target antigens are cell surface proteins highly expressed on malignant cells and absent in healthy tissues. Technological advances in mass spectrometry, enrichment protocols, and computational tools for cell surface protein isolation and annotation have recently enabled comprehensive analyses of the cancer cell surface proteome, from which novel immunotherapeutic target antigens may emerge. Here, we review the most recent progress in this field.
Collapse
Affiliation(s)
- Francesco Di Meo
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Tampa, FL, USA
| | - Brandon Kale
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Tampa, FL, USA
| | - John M Koomen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Fabiana Perna
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Tampa, FL, USA.
| |
Collapse
|
4
|
Xu X, Yin K, Xu S, Wang Z, Wu R. Mass spectrometry-based methods for investigating the dynamics and organization of the surfaceome: exploring potential clinical implications. Expert Rev Proteomics 2024; 21:99-113. [PMID: 38300624 PMCID: PMC10928381 DOI: 10.1080/14789450.2024.2314148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Cell-surface proteins are extremely important for many cellular events, such as regulating cell-cell communication and cell-matrix interactions. Aberrant alterations in surface protein expression, modification (especially glycosylation), and interactions are directly related to human diseases. Systematic investigation of surface proteins advances our understanding of protein functions, cellular activities, and disease mechanisms, which will lead to identifying surface proteins as disease biomarkers and drug targets. AREAS COVERED In this review, we summarize mass spectrometry (MS)-based proteomics methods for global analysis of cell-surface proteins. Then, investigations of the dynamics of surface proteins are discussed. Furthermore, we summarize the studies for the surfaceome interaction networks. Additionally, biological applications of MS-based surfaceome analysis are included, particularly highlighting the significance in biomarker identification, drug development, and immunotherapies. EXPERT OPINION Modern MS-based proteomics provides an opportunity to systematically characterize proteins. However, due to the complexity of cell-surface proteins, the labor-intensive workflow, and the limit of clinical samples, comprehensive characterization of the surfaceome remains extraordinarily challenging, especially in clinical studies. Developing and optimizing surfaceome enrichment methods and utilizing automated sample preparation workflow can expand the applications of surfaceome analysis and deepen our understanding of the functions of cell-surface proteins.
Collapse
Affiliation(s)
- Xing Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zeyu Wang
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
5
|
Shuster SA, Li J, Chon UR, Sinantha-Hu MC, Luginbuhl DJ, Udeshi ND, Carey DK, Takeo YH, Xie Q, Xu C, Mani DR, Han S, Ting AY, Carr SA, Luo L. In situ cell-type-specific cell-surface proteomic profiling in mice. Neuron 2022; 110:3882-3896.e9. [PMID: 36220098 PMCID: PMC9742329 DOI: 10.1016/j.neuron.2022.09.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Cell-surface proteins (CSPs) mediate intercellular communication throughout the lives of multicellular organisms. However, there are no generalizable methods for quantitative CSP profiling in specific cell types in vertebrate tissues. Here, we present in situ cell-surface proteome extraction by extracellular labeling (iPEEL), a proximity labeling method in mice that enables spatiotemporally precise labeling of cell-surface proteomes in a cell-type-specific environment in native tissues for discovery proteomics. Applying iPEEL to developing and mature cerebellar Purkinje cells revealed differential enrichment in CSPs with post-translational protein processing and synaptic functions in the developing and mature cell-surface proteomes, respectively. A proteome-instructed in vivo loss-of-function screen identified a critical, multifaceted role for Armh4 in Purkinje cell dendrite morphogenesis. Armh4 overexpression also disrupts dendrite morphogenesis; this effect requires its conserved cytoplasmic domain and is augmented by disrupting its endocytosis. Our results highlight the utility of CSP profiling in native mammalian tissues for identifying regulators of cell-surface signaling.
Collapse
Affiliation(s)
- S Andrew Shuster
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, CA 94305, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - URee Chon
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, CA 94305, USA
| | - Miley C Sinantha-Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Yukari H Takeo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, CA 94305, USA
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Romano LEL, Aw WY, Hixson KM, Novoselova TV, Havener TM, Howell S, Taylor-Blake B, Hall CL, Xing L, Beri J, Nethisinghe S, Perna L, Hatimy A, Altadonna GC, Graves LM, Herring LE, Hickey AJ, Thalassinos K, Chapple JP, Wolter JM. Multi-omic profiling reveals the ataxia protein sacsin is required for integrin trafficking and synaptic organization. Cell Rep 2022; 41:111580. [PMID: 36323248 PMCID: PMC9647044 DOI: 10.1016/j.celrep.2022.111580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/30/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset cerebellar ataxia caused by mutations in SACS, which encodes the protein sacsin. Cellular ARSACS phenotypes include mitochondrial dysfunction, intermediate filament disorganization, and progressive death of cerebellar Purkinje neurons. It is unclear why the loss of sacsin causes these deficits or why they manifest as cerebellar ataxia. Here, we perform multi-omic profiling in sacsin knockout (KO) cells and identify alterations in microtubule dynamics and mislocalization of focal adhesion (FA) proteins, including multiple integrins. Deficits in FA structure, signaling, and function can be rescued by targeting PTEN, a negative regulator of FA signaling. ARSACS mice possess mislocalization of ITGA1 in Purkinje neurons and synaptic disorganization in the deep cerebellar nucleus (DCN). The sacsin interactome reveals that sacsin regulates interactions between cytoskeletal and synaptic adhesion proteins. Our findings suggest that disrupted trafficking of synaptic adhesion proteins is a causal molecular deficit in ARSACS.
Collapse
Affiliation(s)
- Lisa E L Romano
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wen Yih Aw
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn M Hixson
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tatiana V Novoselova
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK; Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London NW4 4BT, UK
| | - Tammy M Havener
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stefanie Howell
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bonnie Taylor-Blake
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charlotte L Hall
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lei Xing
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Josh Beri
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Suran Nethisinghe
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Laura Perna
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Ginevra Chioccioli Altadonna
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lee M Graves
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anthony J Hickey
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - J Paul Chapple
- Faculty of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Justin M Wolter
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Lu C, Glisovic-Aplenc T, Bernt KM, Nestler K, Cesare J, Cao L, Lee H, Fazelinia H, Chinwalla A, Xu Y, Shestova O, Xing Y, Gill S, Li M, Garcia B, Aplenc R. Longitudinal Large-Scale Semiquantitative Proteomic Data Stability Across Multiple Instrument Platforms. J Proteome Res 2021; 20:5203-5211. [PMID: 34669412 DOI: 10.1021/acs.jproteome.1c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the rapid developments in mass spectrometry (MS)-based proteomics methods, label-free semiquantitative proteomics has become an increasingly popular tool for profiling global protein abundances in an unbiased manner. However, the reproducibility of these data across time and LC-MS platforms is not well characterized. Here, we evaluate the performance of three LC-MS platforms (Orbitrap Elite, Q Exactive HF, and Orbitrap Fusion) in label-free semiquantitative analysis of cell surface proteins over a six-year period. Sucrose gradient ultracentrifugation was used for surfaceome enrichment, following gel separation for in-depth protein identification. With our established workflow, we consistently detected and reproducibly quantified >2300 putative cell surface proteins in a human acute myeloid leukemia (AML) cell line on all three platforms. To our knowledge this is the first study reporting highly reproducible semiquantitative proteomic data collection of biological replicates across multiple years and LC-MS platforms. These data provide experimental justification for semiquantitative proteomic study designs that are executed over multiyear time intervals and on different platforms. Multiyear and multiplatform experimental designs will likely enable larger scale proteomic studies and facilitate longitudinal proteomic studies by investigators lacking access to high throughput MS facilities. Data are available via ProteomeXchange with identifier PXD022721.
Collapse
Affiliation(s)
- Congcong Lu
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Tina Glisovic-Aplenc
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Kathrin M Bernt
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Kevin Nestler
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Joseph Cesare
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Lusha Cao
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Hyoungjoo Lee
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Hossein Fazelinia
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Asif Chinwalla
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Yang Xu
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Olga Shestova
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Yi Xing
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin Garcia
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Richard Aplenc
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Akdag M, Yunt ZS, Kamacioglu A, Qureshi MH, Akarlar BA, Ozlu N. Proximal Biotinylation-Based Combinatory Approach for Isolating Integral Plasma Membrane Proteins. J Proteome Res 2020; 19:3583-3592. [DOI: 10.1021/acs.jproteome.0c00113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mehmet Akdag
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Zeynep Sabahat Yunt
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Altug Kamacioglu
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | | | - Busra A. Akarlar
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| |
Collapse
|
9
|
Li J, Han S, Li H, Udeshi ND, Svinkina T, Mani DR, Xu C, Guajardo R, Xie Q, Li T, Luginbuhl DJ, Wu B, McLaughlin CN, Xie A, Kaewsapsak P, Quake SR, Carr SA, Ting AY, Luo L. Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators. Cell 2020; 180:373-386.e15. [PMID: 31955847 DOI: 10.1016/j.cell.2019.12.029] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023]
Abstract
Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.
Collapse
Affiliation(s)
- Jiefu Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chuanyun Xu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Bing Wu
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Anthony Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Pornchai Kaewsapsak
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA.
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Yoneten KK, Kasap M, Akpinar G, Kanli A, Karaoz E. Comparative Proteomics Analysis of Four Commonly Used Methods for Identification of Novel Plasma Membrane Proteins. J Membr Biol 2019; 252:587-608. [PMID: 31346646 DOI: 10.1007/s00232-019-00084-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 11/25/2022]
Abstract
Plasma membrane proteins perform a variety of important tasks in the cells. These tasks can be diverse as carrying nutrients across the plasma membrane, receiving chemical signals from outside the cell, translating them into intracellular action, and anchoring the cell in a particular location. When these crucial roles of plasma membrane proteins are considered, the need for their characterization becomes inevitable. Certain characteristics of plasma membrane proteins such as hydrophobicity, low solubility, and low abundance limit their detection by proteomic analyses. Here, we presented a comparative proteomics study in which the most commonly used plasma membrane protein enrichment methods were evaluated. The methods that were utilized include biotinylation, selective CyDye labeling, temperature-dependent phase partition, and density-gradient ultracentrifugation. Western blot analysis was performed to assess the level of plasma membrane protein enrichment using plasma membrane and cytoplasmic protein markers. Quantitative evaluation of the level of enrichment was performed by two-dimensional electrophoresis (2-DE) and benzyldimethyl-n-hexadecylammonium chloride/sodium dodecyl sulfate polyacrylamide gel electrophoresis (16-BAC/SDS-PAGE) from which the protein spots were cut and identified. Results from this study demonstrated that density-gradient ultracentrifugation method was superior when coupled with 16-BAC/SDS-PAGE. This work presents a valuable contribution and provides a future direction to the membrane sub-proteome research by evaluating commonly used methods for plasma membrane protein enrichment.
Collapse
Affiliation(s)
| | - Murat Kasap
- Department of Medical Biology, School of Medicine, Kocaeli University, 41380, Kocaeli, Turkey.
| | - Gurler Akpinar
- Department of Medical Biology, School of Medicine, Kocaeli University, 41380, Kocaeli, Turkey
| | - Aylin Kanli
- Department of Medical Biology, School of Medicine, Kocaeli University, 41380, Kocaeli, Turkey
| | - Erdal Karaoz
- Department of Histology and Embryology, School of Medicine, Istinye University, 34010, Istanbul, Turkey
| |
Collapse
|
11
|
Quantitative proteomics of MDCK cells identify unrecognized roles of clathrin adaptor AP-1 in polarized distribution of surface proteins. Proc Natl Acad Sci U S A 2019; 116:11796-11805. [PMID: 31142645 PMCID: PMC6575629 DOI: 10.1073/pnas.1821076116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epithelial cells perform critical protective, secretory, absorptive, and sensory functions, for which they require plasma membrane polarization into apical and basolateral domains. Impaired polarity causes cancer and developmental and degenerative disorders. Research on fundamental polarity mechanisms has been hindered by the paucity of model proteins and by the use of overexpression systems. Here, we introduce a high-throughput surface proteomics approach based on domain-selective biotinylation and quantitative mass spectrometry that provides candidate proteins to study polarity under normal expression levels. Using this approach, we described that clathrin adaptors mediate apical and basolateral distribution of surface proteins, expanding the traditional notion that clathrin adaptors mediate only basolateral polarity. Our results establish quantitative surface proteomics as a powerful tool to study epithelial polarity. The current model of polarized plasma membrane protein sorting in epithelial cells has been largely generated on the basis of experiments characterizing the polarized distribution of a relatively small number of overexpressed model proteins under various experimental conditions. Thus, the possibility exists that alternative roles of various types of sorting machinery may have been underestimated or missed. Here, we utilize domain-selective surface biotinylation combined with stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry to quantitatively define large populations of apical and basolateral surface proteins in Madin-Darby canine kidney (MDCK) cells. We identified 313 plasma membrane proteins, of which 38% were apical, 51% were basolateral, and 11% were nonpolar. Silencing of clathrin adaptor proteins (AP) AP-1A, AP-1B, or both caused redistribution of basolateral proteins as expected but also, of a large population of apical proteins. Consistent with their previously reported ability to compensate for one another, the strongest loss of polarity was observed when we silenced AP-1A and AP-1B simultaneously. We found stronger evidence of compensation in the apical pathway compared with the basolateral pathway. Surprisingly, we also found subgroups of proteins that were affected after silencing just one adaptor, indicating previously unrecognized independent roles for AP-1A and AP-1B. While AP-1B silencing mainly affected basolateral polarity, AP-1A silencing seemed to cause comparable loss of apical and basolateral polarity. Our results uncover previously overlooked roles of AP-1 in polarized distribution of apical and basolateral proteins and introduce surface proteomics as a method to examine mechanisms of polarization with a depth not possible until now.
Collapse
|
12
|
Bastounis EE, Yeh YT, Theriot JA. Matrix stiffness modulates infection of endothelial cells by Listeria monocytogenes via expression of cell surface vimentin. Mol Biol Cell 2018; 29:1571-1589. [PMID: 29718765 PMCID: PMC6080647 DOI: 10.1091/mbc.e18-04-0228] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix stiffness (ECM) is one of the many mechanical forces acting on mammalian adherent cells and an important determinant of cellular function. While the effect of ECM stiffness on many aspects of cellular behavior has been studied previously, how ECM stiffness might mediate susceptibility of host cells to infection by bacterial pathogens is hitherto unexplored. To address this open question, we manufactured hydrogels of varying physiologically relevant stiffness and seeded human microvascular endothelial cells (HMEC-1) on them. We then infected HMEC-1 with the bacterial pathogen Listeria monocytogenes (Lm) and found that adhesion of Lm to host cells increases monotonically with increasing matrix stiffness, an effect that requires the activity of focal adhesion kinase (FAK). We identified cell surface vimentin as a candidate surface receptor mediating stiffness-dependent adhesion of Lm to HMEC-1 and found that bacterial infection of these host cells is decreased when the amount of surface vimentin is reduced. Our results provide the first evidence that ECM stiffness can mediate the susceptibility of mammalian host cells to infection by a bacterial pathogen.
Collapse
Affiliation(s)
- Effie E Bastounis
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Yi-Ting Yeh
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Julie A Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
13
|
Özkan Küçük NE, Şanal E, Tan E, Mitchison T, Özlü N. Labeling Carboxyl Groups of Surface-Exposed Proteins Provides an Orthogonal Approach for Cell Surface Isolation. J Proteome Res 2018; 17:1784-1793. [PMID: 29651847 DOI: 10.1021/acs.jproteome.7b00825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantitative profiling of cell surface proteins is critically important for the understanding of cell-cell communication, signaling, tissue development, and homeostasis. Traditional proteomics methods are challenging for cell surface proteins due to their hydrophobic nature and low abundance, necessitating alternative methods to efficiently identify and quantify this protein group. Here we established carboxyl-reactive biotinylation for selective and efficient biotinylation and isolation of surface-exposed proteins of living cells. We assessed the efficiency of carboxyl-reactive biotinylation for plasma membrane proteins by comparing it with a well-established protocol, amine-reactive biotinylation, using SILAC (stable isotope labeling in cell culture). Our results show that carboxyl-reactive biotinylation of cell surface proteins is both more selective and more efficient than amine-reactive biotinylation. We conclude that it is a useful approach, which is partially orthogonal to amine-reactive biotinylation, allowing us to cast a wider net for a comprehensive profiling of cell surface proteins.
Collapse
Affiliation(s)
- Nazlı E Özkan Küçük
- Department of Molecular Biology and Genetics , Koç University , Istanbul 34450 , Turkey
| | - Erdem Şanal
- Department of Molecular Biology and Genetics , Koç University , Istanbul 34450 , Turkey
| | - Edwin Tan
- Department of Systems Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Timothy Mitchison
- Department of Systems Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Nurhan Özlü
- Department of Molecular Biology and Genetics , Koç University , Istanbul 34450 , Turkey
| |
Collapse
|
14
|
Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc Natl Acad Sci U S A 2018; 115:E4473-E4482. [PMID: 29686080 PMCID: PMC5949005 DOI: 10.1073/pnas.1802354115] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Advanced prostate cancer is a deadly disease made up of multiple cancer subtypes that evolve during its natural history. Unfortunately, antibody- and cell-based therapies in development that target single tumor antigens found in conventional prostate cancer do not account for this heterogeneity. Here, we show that two major subtypes of advanced prostate cancer, prostate adenocarcinoma (PrAd) and neuroendocrine prostate cancer (NEPC), exhibit distinct cell-surface expression profiles. Integrated analysis of gene expression and cell-surface protein expression of prostate cancer nominated multiple subtype-specific cell-surface antigens. We specifically characterize FXYD3 and CEACAM5 as targets for immune-based therapies in PrAd and NEPC and provide preliminary evidence of the antigen-specific cytotoxic activity of CEACAM5-directed chimeric antigen receptor T cells in NEPC. Prostate cancer is a heterogeneous disease composed of divergent molecular and histologic subtypes, including prostate adenocarcinoma (PrAd) and neuroendocrine prostate cancer (NEPC). While PrAd is the major histology in prostate cancer, NEPC can evolve from PrAd as a mechanism of treatment resistance that involves a transition from an epithelial to a neurosecretory cancer phenotype. Cell surface markers are often associated with specific cell lineages and differentiation states in normal development and cancer. Here, we show that PrAd and NEPC can be broadly discriminated by cell-surface profiles based on the analysis of prostate cancer gene expression datasets. To overcome a dependence on predictions of human cell-surface genes and an assumed correlation between mRNA levels and protein expression, we integrated transcriptomic and cell-surface proteomic data generated from a panel of prostate cancer cell lines to nominate cell-surface markers associated with these cancer subtypes. FXYD3 and CEACAM5 were validated as cell-surface antigens enriched in PrAd and NEPC, respectively. Given the lack of effective treatments for NEPC, CEACAM5 appeared to be a promising target for cell-based immunotherapy. As a proof of concept, engineered chimeric antigen receptor T cells targeting CEACAM5 induced antigen-specific cytotoxicity in NEPC cell lines. Our findings demonstrate that the surfaceomes of PrAd and NEPC reflect unique cancer differentiation states and broadly represent vulnerabilities amenable to therapeutic targeting.
Collapse
|
15
|
Yoon C, Song H, Yin T, Bausch-Fluck D, Frei AP, Kattman S, Dubois N, Witty AD, Hewel JA, Guo H, Emili A, Wollscheid B, Keller G, Zandstra PW. FZD4 Marks Lateral Plate Mesoderm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell-Derived Cardiac Progenitors. Stem Cell Reports 2017; 10:87-100. [PMID: 29249665 PMCID: PMC5768897 DOI: 10.1016/j.stemcr.2017.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/14/2023] Open
Abstract
The identification of cell surface proteins on stem cells or stem cell derivatives is a key strategy for the functional characterization, isolation, and understanding of stem cell population dynamics. Here, using an integrated mass spectrometry- and microarray-based approach, we analyzed the surface proteome and transcriptome of cardiac progenitor cells (CPCs) generated from the stage-specific differentiation of mouse and human pluripotent stem cells. Through bioinformatics analysis, we have identified and characterized FZD4 as a marker for lateral plate mesoderm. Additionally, we utilized FZD4, in conjunction with FLK1 and PDGFRA, to further purify CPCs and increase cardiomyocyte (CM) enrichment in both mouse and human systems. Moreover, we have shown that NORRIN presented to FZD4 further increases CM output via proliferation through the canonical WNT pathway. Taken together, these findings demonstrate a role for FZD4 in mammalian cardiac development. Identified and characterized FZD4 as a new marker for lateral plate mesoderm FZD4, in conjunction with FLK1 and PDGFRA, increases cardiomyocyte enrichment FZD4 is expressed in the human system and shows enrichment in cardiomyocytes NORRIN addition shows increase in cardiomyocyte output from FZD4 progenitor cells
Collapse
Affiliation(s)
- Charles Yoon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Hannah Song
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Ting Yin
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Damaris Bausch-Fluck
- Institute of Molecular Systems Biology at the Department of Health Sciences and Technology, Zurich 8092, Switzerland
| | - Andreas P Frei
- Institute of Molecular Systems Biology at the Department of Health Sciences and Technology, Zurich 8092, Switzerland
| | - Steven Kattman
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Nicole Dubois
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Alec D Witty
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Johannes A Hewel
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bernd Wollscheid
- Institute of Molecular Systems Biology at the Department of Health Sciences and Technology, Zurich 8092, Switzerland
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Centre for Commercialization of Regenerative Medicine, Toronto, ON M5G 1M1, Canada; Medicine by Design: A Canada First Research Excellence Fund Program, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
16
|
Megger DA, Pott LL, Rosowski K, Zülch B, Tautges S, Bracht T, Sitek B. NHS-based Tandem Mass Tagging of Proteins at the Level of Whole Cells: A Critical Evaluation in Comparison to Conventional TMT-Labeling Approaches for Quantitative Proteome Analysis. ANAL SCI 2017; 33:1387-1394. [PMID: 29225229 DOI: 10.2116/analsci.33.1387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tandem mass tags (TMT) are usually introduced at the levels of isolated proteins or peptides. Here, for the first time, we report the labeling of whole cells and a critical evaluation of its performance in comparison to conventional labeling approaches. The obtained results indicated that TMT protein labeling using intact cells is generally possible, if it is coupled to a subsequent enrichment using anti-TMT antibody. The quantitative results were similar to those obtained after labeling of isolated proteins and both were found to be slightly complementary to peptide labeling. Furthermore, when using NHS-based TMT, no specificity towards cell surface proteins was observed in the case of cell labeling. In summary, the conducted study revealed first evidence for the general possibility of TMT cell labeling and highlighted limitations of NHS-based labeling reagents. Future studies should therefore focus on the synthesis and investigation of membrane impermeable TMTs to increase specificity towards cell surface proteins.
Collapse
Affiliation(s)
- Dominik A Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstr.,Institute for Virology, University Hospital Essen, University Duisburg-Essen
| | - Leona L Pott
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstr
| | - Kristin Rosowski
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstr
| | - Birgit Zülch
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstr
| | - Stephanie Tautges
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstr
| | - Thilo Bracht
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstr
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstr
| |
Collapse
|
17
|
Glisovic-Aplenc T, Gill S, Spruce LA, Smith IR, Fazelinia H, Shestova O, Ding H, Tasian SK, Aplenc R, Seeholzer SH. Improved surfaceome coverage with a label-free nonaffinity-purified workflow. Proteomics 2017; 17. [PMID: 28116781 DOI: 10.1002/pmic.201600344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/05/2017] [Accepted: 01/19/2017] [Indexed: 01/17/2023]
Abstract
The proteins of the cellular plasma membrane (PM) perform important functions relating to homeostasis and intercellular communication. Due to its overall low cellular abundance, amphipathic character, and low membrane-to-cytoplasm ratio, the PM proteome has been challenging to isolate and characterize, and is poorly represented in standard LC-MS/MS analyses. In this study, we employ sucrose gradient ultracentrifugation for the enrichment of the PM proteome, without chemical labeling and affinity purification, together with GeLCMS and use subsequent bioinformatics tools to select proteins associated with the PM/cell surface, herein referred to as the surfaceome. Using this methodology, we identify over 1900 cell surface associated proteins in a human acute myeloid leukemia cell line. These surface proteins comprise almost 50% of all detected cellular proteins, a number that substantially exceeds the depth of coverage in previously published studies describing the leukemia surfaceome.
Collapse
Affiliation(s)
- Tina Glisovic-Aplenc
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lynn A Spruce
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Ian R Smith
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Olga Shestova
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hua Ding
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Sarah K Tasian
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Richard Aplenc
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Steven H Seeholzer
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| |
Collapse
|
18
|
Efficient isolation and proteomic analysis of cell plasma membrane proteins in gastric cancer reveal a novel differentiation and progression related cell surface marker, R-cadherin. Tumour Biol 2016; 37:11775-11787. [PMID: 27029387 PMCID: PMC5080335 DOI: 10.1007/s13277-016-5032-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/18/2016] [Indexed: 12/28/2022] Open
Abstract
Cell plasma membrane proteins, playing a crucial role in cell malignant transformation and development, were the main targets of tumor detection and therapy. In this study, CyDye/biotin double-labeling proteomic approach was adopted to profile the membrane proteome of gastric cancer cell line BGC-823 and paired immortalized gastric epithelial cell GES-1. Real-time PCR, Western blotting, and immunohistochemical staining were used to validate the differential expression of a novel identified cell surface marker R-cadherin in gastric cancer cells and tissues. Clinicopathological study and survival analysis were performed to estimate its roles in tumor progression and outcome prediction. Real-time PCR and Western blotting showed that the expression level of R-cadherin in gastric cancer were significantly lower than non-cancerous epithelial cell and tissues. Clinicopathological study indicated that R-cadherin was dominantly expressed on cell surface of normal gastric epithelium, and its expression deletion in gastric cancer tissues was associated with tumor site, differentiation, lymph node metastasis, and pTNM (chi-square test, P < 0.05). Those patients with R-cadherin positive expression displayed better overall survivals than negative expression group (log-rank test, P = 0.000). Cox multivariate survival analysis revealed lacking the expression of R-cadherin was a main independent predictor for poor clinical outcome in gastric cancer (RR = 5.680, 95 % CI 2.250–14.341, P < 0.01). We have established a fundamental membrane proteome database for gastric cancer and identified R-cadherin as a tumor differentiation and progression-related cell surface marker of gastric cancer. Lacking the expression of R-cadherin indicates poor prognosis in patients with gastric cancer.
Collapse
|
19
|
Ducret A, Kux van Geijtenbeek S, Röder D, Simon S, Chin D, Berrera M, Gruenbaum L, Ji C, Cutler P. Identification of six cell surface proteins for specific liver targeting. Proteomics Clin Appl 2016; 9:651-61. [PMID: 26097162 DOI: 10.1002/prca.201400194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/27/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE Cell surface proteins are the primary means for a cell to sense and interact with its environment and their dysregulation has been linked to numerous diseases. In particular, the identification of proteins specific to a single tissue type or to a given disease phenotype may enable the characterization of novel therapeutic targets. We tested here the feasibility of a cell surface proteomics approach to identify pertinent markers directly in a clinically relevant tissue. EXPERIMENTAL DESIGN We analyzed the cell surface proteome of freshly isolated primary heptatocytes using a glycocapture-specific approach combined with a robust bioinformatics filtering. RESULTS Using primary lung epithelial cell cultures as negative controls, we identified 32 hepatocyte-specific cell surface proteins candidates. We used mRNA expression to select six markers that may provide adequate specificity for targeting therapeutics to the liver. CONCLUSIONS AND CLINICAL RELEVANCE We demonstrate the feasibility and the importance of conducting such studies directly in a clinically relevant tissue. In particular, the cell surface proteome of freshly isolated hepatocytes differed substantially from cultured cell lines.
Collapse
Affiliation(s)
- Axel Ducret
- Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Sabine Kux van Geijtenbeek
- Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Daniel Röder
- Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Sandrine Simon
- Drug Disposition and Safety, Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Daniel Chin
- Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Marco Berrera
- Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Lore Gruenbaum
- Translational Medicine - Infectious Diseases, Pharma Research and Early Development (pRED), Roche Innovation Center New York, New York, NY, USA
| | - Changhua Ji
- External Alliances and Portfolio Management, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Shanghai, Pudong, Shanghai, P. R. China
| | - Paul Cutler
- Translational Technologies and Bioinformatics, Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| |
Collapse
|
20
|
Yasueda Y, Tamura T, Kuwara K, Takaoka Y, Hamachi I. Biomembrane-embedded Catalysts for Membrane-associated Protein Labeling on Red Blood Cells. CHEM LETT 2015. [DOI: 10.1246/cl.150797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuki Yasueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| | - Keiko Kuwara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University
| | | | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| |
Collapse
|
21
|
Raut MP, Karunakaran E, Mukherjee J, Biggs CA, Wright PC. Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85. PLoS One 2015; 10:e0141197. [PMID: 26492413 PMCID: PMC4619616 DOI: 10.1371/journal.pone.0141197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/06/2015] [Indexed: 12/02/2022] Open
Abstract
Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane.
Collapse
Affiliation(s)
- Mahendra P. Raut
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Esther Karunakaran
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Joy Mukherjee
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Catherine A. Biggs
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Phillip C. Wright
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Wright GJ, Bianchi E. The challenges involved in elucidating the molecular basis of sperm-egg recognition in mammals and approaches to overcome them. Cell Tissue Res 2015. [PMID: 26224538 PMCID: PMC4700105 DOI: 10.1007/s00441-015-2243-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sexual reproduction is used by many different organisms to create a new generation of genetically distinct progeny. Cells originating from separate sexes or mating types segregate their genetic material into haploid gametes which must then recognize and fuse with each other in a process known as fertilization to form a diploid zygote. Despite the central importance of fertilization, we know remarkably little about the molecular mechanisms that are involved in how gametes recognize each other, particularly in mammals, although the proteins that are displayed on their surfaces are almost certainly involved. This paucity of knowledge is largely due to both the unique biological properties of mammalian gametes (sperm and egg) which make them experimentally difficult to manipulate, and the technical challenges of identifying interactions between membrane-embedded cell surface receptor proteins. In this review, we will discuss our current knowledge of animal gamete recognition, highlighting where important contributions to our understanding were made, why particular model systems were helpful, and why progress in mammals has been particularly challenging. We discuss how the development of mammalian in vitro fertilization and targeted gene disruption in mice were important technological advances that triggered progress. We argue that approaches employed to discover novel interactions between cell surface gamete recognition proteins should account for the unusual biochemical properties of membrane proteins and the typically highly transient nature of their interactions. Finally, we describe how these principles were applied to identify Juno as the egg receptor for sperm Izumo1, an interaction that is essential for mammalian fertilization.
Collapse
Affiliation(s)
- Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| |
Collapse
|
23
|
Hwang HI, Lee TH, Kang KJ, Ryu CJ, Jang YJ. Immunomic Screening of Cell Surface Molecules on Undifferentiated Human Dental Pulp Stem Cells. Stem Cells Dev 2015; 24:1934-45. [PMID: 25919113 DOI: 10.1089/scd.2014.0493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human adult dental pulp tissue is a source of adult stem cells that have a potential to differentiate into various tissues, although the primary cell suspensions cultured from pulp tissue are mixtures of both stem cell and nonstem cell populations with heterogeneous phenotypes and various differentiation efficiencies. Therefore, cell surface protein markers on dental pulp stem cells are critical for detection and purification of stem cell populations. Yet, little is known about the cell surface molecules that are specifically associated with the undifferentiated and progenitor state of human adult dental pulp stem cells (hDPSCs). Presently, cell surface proteins expressed on hDPSCs were assessed by screening surface molecules specifically expressed on dentinogenic progenitors. Using a decoy immunization strategy, a set of monoclonal antibodies (MAbs) was generated against undifferentiated pulp progenitor cells. Forty-five hybridomas produced MAbs that interacted weakly, if at all, to differentiated pulp cells. Of these, 19 MAbs (18 IgG, 1 IgM) recognized surface molecules on undifferentiated hDPSCs. By multicolor flow cytometric analysis, 40%-60% of newly identified MAb-positive cells were demonstrated to be positive for the CD44 and CD90 mesenchymal markers. When MAb-positive cells were sorted from the heterogeneous pulp cell suspension, mineralization efficiency was increased three to five times compared with MAb-negative cells. The results suggest that the decoy immunization is an efficient method for isolation of MAbs against dentinogenic progenitors. These MAbs will be helpful for identification and enrichment of hDPSCs for efficient dentin regeneration.
Collapse
Affiliation(s)
- Hyo-In Hwang
- 1 Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University , Cheonan, Korea
| | - Tae-Hyung Lee
- 1 Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University , Cheonan, Korea
| | - Kyung-Jung Kang
- 1 Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University , Cheonan, Korea
| | - Chun-Jeih Ryu
- 2 Department of Bioscience and Biotechnology, Sejong University , Seoul, Korea
| | - Young-Joo Jang
- 1 Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University , Cheonan, Korea.,3 Laboratory of Oral Biochemistry, the School of Dentistry, Dankook University , Cheonan, Korea
| |
Collapse
|
24
|
Sun B. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins. Proteomics 2014; 15:1152-63. [DOI: 10.1002/pmic.201400300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/07/2014] [Accepted: 09/08/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Bingyun Sun
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University; Burnaby British Columbia Canada
| |
Collapse
|
25
|
Artemenko K, Horáková J, Steinberger B, Besenfelder U, Brem G, Bergquist J, Mayrhofer C. A proteomic approach to monitor the dynamic response of the female oviductal epithelial cell surface to male gametes. J Proteomics 2014; 113:1-14. [PMID: 25281772 DOI: 10.1016/j.jprot.2014.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Sophisticated strategies to analyze cell surface proteins are indispensable to study fundamental biological processes, such as the response of cells to environmental changes or cell-cell communication. Herein, we describe a refined mass spectrometry-based approach for the specific characterization and quantitation of cell surface proteins expressed in the female reproductive tract. The strategy is based on in situ biotinylation of rabbit oviducts, affinity enrichment of surface exposed biotin tagged proteins and dimethyl labeling of the obtained tryptic peptides followed by LC-MS/MS analysis. This approach proved to be sensitive enough to analyze small sample amounts (<1μg) and allowed further to trace the dynamic composition of the surface proteome of the oviductal epithelium in response to male gametes. The relative protein expression ratios of 175 proteins were quantified. Thirty-one of them were found to be altered over time, namely immediately, 1h and 2h after insemination compared to the time-matched control groups. Functional analysis demonstrated that structural reorganization of the oviductal epithelial cell surface was involved in the early response of the female organ to semen. In summary, this study outlines a workflow that is capable to monitor alterations in the female oviduct that are related to key reproductive processes in vivo. BIOLOGICAL SIGNIFICANCE The proper interaction between the female reproductive tract, in particular, the oviduct and the male gametes, is fundamental to fertilization and embryonic development under physiological conditions. Thereby the oviductal epithelial cell surface proteins play an important role. Besides their direct interaction with male gametes, these molecules participate in signal transduction and, thus, are involved in the mandatory cellular response of the oviductal epithelium. In this study we present a refined LC-MS/MS based workflow that is capable to quantitatively analyze the expression of oviductal epithelial cell surface proteins in response to insemination in vivo. A special focus was on the very early interaction between the female organ and the male gametes. At first, this study clearly revealed an immediate response of the surface proteome to semen, which was modulated over time. The described methodology can be applied for studies of further distinct biological events in the oviduct and therefore contribute to a deeper insight into the formation of new life.
Collapse
Affiliation(s)
- Konstantin Artemenko
- Institute of Analytical Chemistry, Department of Chemistry - Biomedical Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Jana Horáková
- Institute of Analytical Chemistry, Department of Chemistry - Biomedical Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Birgit Steinberger
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria; Institute of Biotechnology in Animal Production, Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences, Vienna, Tulln, Austria
| | - Urban Besenfelder
- Institute of Biotechnology in Animal Production, Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences, Vienna, Tulln, Austria
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Jonas Bergquist
- Institute of Analytical Chemistry, Department of Chemistry - Biomedical Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Corina Mayrhofer
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria; Institute of Biotechnology in Animal Production, Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences, Vienna, Tulln, Austria
| |
Collapse
|
26
|
Main H, Radenkovic J, Kosobrodova E, McKenzie D, Bilek M, Lendahl U. Cell surface antigen profiling using a novel type of antibody array immobilised to plasma ion-implanted polycarbonate. Cell Mol Life Sci 2014; 71:3841-57. [PMID: 24623559 PMCID: PMC11113427 DOI: 10.1007/s00018-014-1595-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/21/2014] [Indexed: 01/13/2023]
Abstract
To identify and sort out subpopulations of cells from more complex and heterogeneous assemblies of cells is important for many biomedical applications, and the development of cost- and labour-efficient techniques to accomplish this is warranted. In this report, we have developed a novel array-based platform to discriminate cellular populations based on differences in cell surface antigen expressions. These cell capture microarrays were produced through covalent immobilisation of CD antibodies to plasma ion immersion implantation-treated polycarbonate (PIII-PC), which offers the advantage of a transparent matrix, allowing direct light microscopy visualisation of captured cells. The functionality of the PIII-PC array was validated using several cell types, resulting in unique surface antigen expression profiles. PIII-PC results were compatible with flow cytometry, nitrocellulose cell capture arrays and immunofluorescent staining, indicating that the technique is robust. We report on the use of this PIII-PC cluster of differentiation (CD) antibody array to gain new insights into neural differentiation of mouse embryonic stem (ES) cells and into the consequences of genetic targeting of the Notch signalling pathway, a key signalling mechanism for most cellular differentiation processes. Specifically, we identify CD98 as a novel marker for neural precursors and polarised expression of CD9 in the apical domain of ES cell-derived neural rosettes. We further identify expression of CD9 in hitherto uncharacterised non-neural cells and enrichment of CD49e- and CD117-positive cells in Notch signalling-deficient ES cell differentiations. In conclusion, this work demonstrates that covalent immobilisation of antibody arrays to the PIII-PC surface provides faithful cell surface antigen data in a cost- and labour-efficient manner. This may be used to facilitate high throughput identification and standardisation of more precise marker profiles during stem cell differentiation and in various genetic and disease contexts.
Collapse
Affiliation(s)
- Heather Main
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden,
| | | | | | | | | | | |
Collapse
|
27
|
Tacchi JL, Raymond BBA, Jarocki VM, Berry IJ, Padula MP, Djordjevic SP. Cilium Adhesin P216 (MHJ_0493) Is a Target of Ectodomain Shedding and Aminopeptidase Activity on the Surface of Mycoplasma hyopneumoniae. J Proteome Res 2014; 13:2920-30. [DOI: 10.1021/pr500087c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jessica L. Tacchi
- The ithree institute and ‡Proteomics Core Facility, University of Technology Sydney, P.O.
Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Benjamin B. A. Raymond
- The ithree institute and ‡Proteomics Core Facility, University of Technology Sydney, P.O.
Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Veronica M. Jarocki
- The ithree institute and ‡Proteomics Core Facility, University of Technology Sydney, P.O.
Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Iain J. Berry
- The ithree institute and ‡Proteomics Core Facility, University of Technology Sydney, P.O.
Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Matthew P. Padula
- The ithree institute and ‡Proteomics Core Facility, University of Technology Sydney, P.O.
Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Steven P. Djordjevic
- The ithree institute and ‡Proteomics Core Facility, University of Technology Sydney, P.O.
Box 123, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
28
|
Sun B, Hood L. Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins. J Proteome Res 2014; 13:2705-14. [PMID: 24754784 PMCID: PMC4053080 DOI: 10.1021/pr500187g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The advent of proteomics technology
has transformed our understanding
of biological membranes. The challenges for studying membrane proteins
have inspired the development of many analytical and bioanalytical
tools, and the techniques of glycoproteomics have emerged as an effective
means to enrich and characterize membrane and plasma-membrane proteomes.
This Review summarizes the development of various glycoproteomics
techniques to overcome the hurdles formed by the unique structures
and behaviors of membrane proteins with a focus on N-glycoproteomics.
Example contributions of N-glycoproteomics to the understanding of
membrane biology are provided, and the areas that require future technical
breakthroughs are discussed.
Collapse
Affiliation(s)
- Bingyun Sun
- Department of Chemistry, Simon Fraser University , 8888 University Drive, Burnaby, British Columbia V5A1S6, Canada
| | | |
Collapse
|
29
|
Abstract
Human embryonic stem cells potentially represent an unlimited source of cells and tissues for regenerative medicine. Understanding signaling events that drive proliferation and specialization of these cells into various differentiated derivatives is of utmost importance for controlling their behavior in vitro. Major progress has been made in unraveling these signaling events with large-scale studies at the transcriptional level, but analysis of protein expression, interaction and modification has been more limited, since it requires different strategies. Recent advances in mass spectrometry-based proteomics indicate that proteome characterization can contribute significantly to our understanding of embryonic stem cell biology. In this article, we review mass spectrometry-based studies of human and mouse embryonic stem cells and their differentiated progeny, as well as studies of conditioned media that have been reported to support self-renewal of the undifferentiated cells in the absence of the more commonly used feeder cells. In addition, we make concise comparisons with related transcriptome profiling reports.
Collapse
Affiliation(s)
- Dennis Van Hoof
- Netherlands Institute of Developmental Biology, Hubrecht Laboratory, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Panfoli I, Ravera S, Bruschi M, Candiano G, Morelli A. Proteomics unravels the exportability of mitochondrial respiratory chains. Expert Rev Proteomics 2014; 8:231-9. [DOI: 10.1586/epr.11.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Shekari F, Baharvand H, Salekdeh GH. Organellar proteomics of embryonic stem cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:215-230. [PMID: 24985774 DOI: 10.1016/b978-0-12-800453-1.00007-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Embryonic stem cells (ESCs) are undifferentiated cells with two common remarkable features known as self-renewal and differentiation. Proteomics plays an increasingly important role in understanding molecular mechanisms underlying self-renewal and pluripotency of ESCs and their applications in cell therapy and developmental biology studies. As the function of a protein is strongly associated with its localization in cell, a complete and accurate picture of the proteome of ESCs cannot be achieved without knowing the subcellular locations of proteins. Subcellular fractionation allows enrichment of low abundant proteins and signaling complexes and reduces the complexity of the sample. It also provided insight into tracking proteins that shuttle between different compartments. Despite the substantial interest and efforts in ESC subcellular proteomics area, progress has been relatively limited. In this review, we present an overview on current status of ESCs organelle proteomics research and discuss challenges in subcellular proteomics.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.
| |
Collapse
|
32
|
Raymond BBA, Tacchi JL, Jarocki VM, Minion FC, Padula MP, Djordjevic SP. P159 from Mycoplasma hyopneumoniae Binds Porcine Cilia and Heparin and Is Cleaved in a Manner Akin to Ectodomain Shedding. J Proteome Res 2013; 12:5891-903. [DOI: 10.1021/pr400903s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Benjamin B. A. Raymond
- The
ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Jessica L. Tacchi
- The
ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Veronica M. Jarocki
- The
ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - F. Chris Minion
- Department
of Preventive and Veterinary Medicine, Iowa State University, 2180
Veterinary Medicine, Ames, Iowa 50011, United States
| | - Matthew P. Padula
- The
ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Steven P. Djordjevic
- The
ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
33
|
Lim CW, Le HT, Han JH, Kim DH, Jang JG, Kim TW. New Water-soluble Alkynylating Agent for Cell Surface Protein: Sulfosuccinimidyl 4-Pentynoate. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.6.1895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Profiling and semiquantitative analysis of the cell surface proteome in human mesenchymal stem cells. Anal Bioanal Chem 2013; 405:5501-17. [DOI: 10.1007/s00216-013-6969-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/13/2013] [Accepted: 04/03/2013] [Indexed: 12/20/2022]
|
35
|
Sun B, Ma L, Yan X, Lee D, Alexander V, Hohmann LJ, Lorang C, Chandrasena L, Tian Q, Hood L. N-glycoproteome of E14.Tg2a mouse embryonic stem cells. PLoS One 2013; 8:e55722. [PMID: 23405203 PMCID: PMC3565968 DOI: 10.1371/journal.pone.0055722] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
E14.Tg2a mouse embryonic stem (mES) cells are a widely used host in gene trap and gene targeting techniques. Molecular characterization of host cells will provide background information for a better understanding of functions of the knockout genes. Using a highly selective glycopeptide-capture approach but ordinary liquid chromatography coupled mass spectrometry (LC-MS), we characterized the N-glycoproteins of E14.Tg2a cells and analyzed the close relationship between the obtained N-glycoproteome and cell-surface proteomes. Our results provide a global view of cell surface protein molecular properties, in which receptors seem to be much more diverse but lower in abundance than transporters on average. In addition, our results provide a systematic view of the E14.Tg2a N-glycosylation, from which we discovered some striking patterns, including an evolutionarily preserved and maybe functionally selected complementarity between N-glycosylation and the transmembrane structure in protein sequences. We also observed an environmentally influenced N-glycosylation pattern among glycoenzymes and extracellular matrix proteins. We hope that the acquired information enhances our molecular understanding of mES E14.Tg2a as well as the biological roles played by N-glycosylation in cell biology in general.
Collapse
Affiliation(s)
- Bingyun Sun
- Institute for Systems Biology, Seattle, Washington, United States of America
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (LH); (BS)
| | - Li Ma
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Xiaowei Yan
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Denis Lee
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Vinita Alexander
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Laura J. Hohmann
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Cynthia Lorang
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Lalangi Chandrasena
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Qiang Tian
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (LH); (BS)
| |
Collapse
|
36
|
|
37
|
Chimenti I, Forte E, Angelini F, Messina E, Giacomello A. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells. Biochim Biophys Acta Gen Subj 2012; 1830:2459-69. [PMID: 22921810 DOI: 10.1016/j.bbagen.2012.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/10/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. SCOPE OF REVIEW In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. MAJOR CONCLUSIONS Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. GENERAL SIGNIFICANCE Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, Sapienza University, Italy
| | | | | | | | | |
Collapse
|
38
|
Surface glycoproteomic analysis of hepatocellular carcinoma cells by affinity enrichment and mass spectrometric identification. Glycoconj J 2012; 29:411-24. [DOI: 10.1007/s10719-012-9420-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 12/30/2022]
|
39
|
A systems biology approach reveals common metastatic pathways in osteosarcoma. BMC SYSTEMS BIOLOGY 2012; 6:50. [PMID: 22640921 PMCID: PMC3431263 DOI: 10.1186/1752-0509-6-50] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 05/28/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. The survival rate of patients with metastatic disease remains very dismal. Nevertheless, metastasis is a complex process and a single-level analysis is not likely to identify its key biological determinants. In this study, we used a systems biology approach to identify common metastatic pathways that are jointly supported by both mRNA and protein expression data in two distinct human metastatic OS models. RESULTS mRNA expression microarray and N-linked glycoproteomic analyses were performed on two commonly used isogenic pairs of human metastatic OS cell lines, namely HOS/143B and SaOS-2/LM7. Pathway analysis of the differentially regulated genes and glycoproteins separately revealed pathways associated to metastasis including cell cycle regulation, immune response, and epithelial-to-mesenchymal-transition. However, no common significant pathway was found at both genomic and proteomic levels between the two metastatic models, suggesting a very different biological nature of the cell lines. To address this issue, we used a topological significance analysis based on a "shortest-path" algorithm to identify topological nodes, which uncovered additional biological information with respect to the genomic and glycoproteomic profiles but remained hidden from the direct analyses. Pathway analysis of the significant topological nodes revealed a striking concordance between the models and identified significant common pathways, including "Cytoskeleton remodeling/TGF/WNT", "Cytoskeleton remodeling/Cytoskeleton remodeling", and "Cell adhesion/Chemokines and adhesion". Of these, the "Cytoskeleton remodeling/TGF/WNT" was the top ranked common pathway from the topological analysis of the genomic and proteomic profiles in the two metastatic models. The up-regulation of proteins in the "Cytoskeleton remodeling/TGF/WNT" pathway in the SaOS-2/LM7 and HOS/143B models was further validated using an orthogonal Reverse Phase Protein Array platform. CONCLUSIONS In this study, we used a systems biology approach by integrating genomic and proteomic data to identify key and common metastatic mechanisms in OS. The use of the topological analysis revealed hidden biological pathways that are known to play critical roles in metastasis. Wnt signaling has been previously implicated in OS and other tumors, and inhibitors of Wnt signaling pathways are available for clinical testing. Further characterization of this common pathway and other topological pathways identified from this study may lead to a novel therapeutic strategy for the treatment of metastatic OS.
Collapse
|
40
|
Nakamura Y, Ishiguro A, Miyakawa S. RNA plasticity and selectivity applicable to therapeutics and novel biosensor development. Genes Cells 2012; 17:344-64. [PMID: 22487172 PMCID: PMC3444689 DOI: 10.1111/j.1365-2443.2012.01596.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/03/2012] [Indexed: 12/25/2022]
Abstract
Aptamers are short, single-stranded nucleic acid sequences that are selected in vitro from large oligonucleotide libraries based on their high affinity to a target molecule. Hence, aptamers can be thought of as a nucleic acid analog to antibodies. However, several viewpoints hold that the potential of aptamers arises from interesting characteristics that are distinct from, or in some cases, superior to those of antibodies. This review summarizes the recent achievements in aptamer programs developed in our laboratory against basic and therapeutic protein targets. Through these studies, we became aware of the remarkable conformational plasticity and selectivity of RNA, on which the published report has not shed much light even though this is evidently a crucial feature for the strong specificity and affinity of RNA aptamers.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Department of Basic Medical Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | |
Collapse
|
41
|
Gundry RL, Riordon DR, Tarasova Y, Chuppa S, Bhattacharya S, Juhasz O, Wiedemeier O, Milanovich S, Noto FK, Tchernyshyov I, Raginski K, Bausch-Fluck D, Tae HJ, Marshall S, Duncan SA, Wollscheid B, Wersto RP, Rao S, Van Eyk JE, Boheler KR. A cell surfaceome map for immunophenotyping and sorting pluripotent stem cells. Mol Cell Proteomics 2012; 11:303-16. [PMID: 22493178 DOI: 10.1074/mcp.m112.018135] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Induction of a pluripotent state in somatic cells through nuclear reprogramming has ushered in a new era of regenerative medicine. Heterogeneity and varied differentiation potentials among induced pluripotent stem cell (iPSC) lines are, however, complicating factors that limit their usefulness for disease modeling, drug discovery, and patient therapies. Thus, there is an urgent need to develop nonmutagenic rapid throughput methods capable of distinguishing among putative iPSC lines of variable quality. To address this issue, we have applied a highly specific chemoproteomic targeting strategy for de novo discovery of cell surface N-glycoproteins to increase the knowledge-base of surface exposed proteins and accessible epitopes of pluripotent stem cells. We report the identification of 500 cell surface proteins on four embryonic stem cell and iPSCs lines and demonstrate the biological significance of this resource on mouse fibroblasts containing an oct4-GFP expression cassette that is active in reprogrammed cells. These results together with immunophenotyping, cell sorting, and functional analyses demonstrate that these newly identified surface marker panels are useful for isolating iPSCs from heterogeneous reprogrammed cultures and for isolating functionally distinct stem cell subpopulations.
Collapse
Affiliation(s)
- Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Iwagawa T, Ohuchi SP, Watanabe S, Nakamura Y. Selection of RNA aptamers against mouse embryonic stem cells. Biochimie 2011; 94:250-7. [PMID: 22085640 DOI: 10.1016/j.biochi.2011.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/28/2011] [Indexed: 12/30/2022]
Abstract
Embryonic stem cells (ESCs) are capable of unlimited self-renewal and differentiation into multiple cell types. Recent large-scale analyses have identified various cell surface molecules on ESCs. Some of them are considered to be beneficial markers for characterization of cellular phenotypes and/or play an essential role for regulating the differentiation state. Thus, it is desired to efficiently produce affinity reagents specific to these molecules. In this study, to develop such reagents for mouse ESCs (mESCs), we selected RNA aptamers against intact, live mESCs using several selection strategies. The initial selection provided us with several anti-mESC aptamers of distinct sequences, which unexpectedly react with the same molecule on mESCs. Then, to isolate aptamers against different surface markers on mESCs, one of the selected aptamers was used as a competitor in the subsequent selections. In addition, one of the selections further employed negative selection against differentiated mouse cells. Consequently, we successfully isolated three classes of anti-mESC aptamers that do not compete with one another. The isolated aptamers were shown to distinguish mESCs from differentiated mouse cell lines and trace the differentiation process of mESCs. These aptamers could prove useful for developing molecular probes and manipulation tools for mESCs.
Collapse
Affiliation(s)
- Toshiro Iwagawa
- Division of Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
43
|
Bogema DR, Scott NE, Padula MP, Tacchi JL, Raymond BBA, Jenkins C, Cordwell SJ, Minion FC, Walker MJ, Djordjevic SP. Sequence TTKF ↓ QE defines the site of proteolytic cleavage in Mhp683 protein, a novel glycosaminoglycan and cilium adhesin of Mycoplasma hyopneumoniae. J Biol Chem 2011; 286:41217-41229. [PMID: 21969369 DOI: 10.1074/jbc.m111.226084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasma hyopneumoniae colonizes the ciliated respiratory epithelium of swine, disrupting mucociliary function and inducing chronic inflammation. P97 and P102 family members are major surface proteins of M. hyopneumoniae and play key roles in colonizing cilia via interactions with glycosaminoglycans and mucin. The p102 paralog, mhp683, and homologs in strains from different geographic origins encode a 135-kDa pre-protein (P135) that is cleaved into three fragments identified here as P45(683), P48(683), and P50(683). A peptide sequence (TTKF↓QE) was identified surrounding both cleavage sites in Mhp683. N-terminal sequences of P48(683) and P50(683), determined by Edman degradation and mass spectrometry, confirmed cleavage after the phenylalanine residue. A similar proteolytic cleavage site was identified by mass spectrometry in another paralog of the P97/P102 family. Trypsin digestion and surface biotinylation studies showed that P45(683), P48(683), and P50(683) reside on the M. hyopneumoniae cell surface. Binding assays of recombinant proteins F1(683)-F5(683), spanning Mhp683, showed saturable and dose-dependent binding to biotinylated heparin that was inhibited by unlabeled heparin, fucoidan, and mucin. F1(683)-F5(683) also bound porcine epithelial cilia, and antisera to F2(683) and F5(683) significantly inhibited cilium binding by M. hyopneumoniae cells. These data suggest that P45(683), P48(683), and P50(683) each display cilium- and proteoglycan-binding sites. Mhp683 is the first characterized glycosaminoglycan-binding member of the P102 family.
Collapse
Affiliation(s)
- Daniel R Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2567, New South Wales, Australia; School of Biological Sciences, University of Wollongong, Wollongong 2522, New South Wales, Australia
| | - Nichollas E Scott
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney 2006, New South Wales, Australia
| | - Matthew P Padula
- The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia
| | - Jessica L Tacchi
- The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia
| | - Benjamin B A Raymond
- The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2567, New South Wales, Australia
| | - Stuart J Cordwell
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney 2006, New South Wales, Australia
| | - F Chris Minion
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011
| | - Mark J Walker
- School of Biological Sciences, University of Wollongong, Wollongong 2522, New South Wales, Australia; School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Steven P Djordjevic
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2567, New South Wales, Australia; The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia.
| |
Collapse
|
44
|
Gundry RL, Burridge PW, Boheler KR. Pluripotent stem cell heterogeneity and the evolving role of proteomic technologies in stem cell biology. Proteomics 2011; 11:3947-61. [PMID: 21834136 DOI: 10.1002/pmic.201100100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 12/13/2022]
Abstract
Stem cells represent obvious choices for regenerative medicine and are invaluable for studies of human development and drug testing. The proteomic landscape of pluripotent stem cells (PSCs), in particular, is not yet clearly defined; consequently, this field of research would greatly benefit from concerted efforts designed to better characterize these cells. In this concise review, we provide an overview of stem cell potency, highlight the types and practical implications of heterogeneity in PSCs and provide a detailed analysis of the current view of the pluripotent proteome in a unique resource for this rapidly evolving field. Our goal in this review is to provide specific insights into the current status of the known proteome of both mouse and human PSCs. This has been accomplished by integrating published data into a unified PSC proteome to facilitate the identification of proteins, which may be informative for the stem cell state as well as to reveal areas where our current view is limited. These analyses provide insight into the challenges faced in the proteomic analysis of PSCs and reveal one area--the cell surface subproteome--that would especially benefit from enhanced research efforts.
Collapse
Affiliation(s)
- Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
45
|
Lakowski J, Han YT, Pearson RA, Gonzalez-Cordero A, West EL, Gualdoni S, Barber AC, Hubank M, Ali RR, Sowden JC. Effective transplantation of photoreceptor precursor cells selected via cell surface antigen expression. Stem Cells 2011; 29:1391-404. [PMID: 21774040 PMCID: PMC3303132 DOI: 10.1002/stem.694] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Retinal degenerative diseases are a major cause of untreatable blindness. Stem cell therapy to replace lost photoreceptors represents a feasible future treatment. We previously demonstrated that postmitotic photoreceptor precursors expressing an NrlGFP transgene integrate into the diseased retina and restore some light sensitivity. As genetic modification of precursor cells derived from stem cell cultures is not desirable for therapy, we have tested cell selection strategies using fluorochrome-conjugated antibodies recognizing cell surface antigens to sort photoreceptor precursors. Microarray analysis of postnatal NrlGFP-expressing precursors identified four candidate genes encoding cell surface antigens (Nt5e, Prom1, Podxl, and Cd24a). To test the feasibility of using donor cells isolated using cell surface markers for retinal therapy, cells selected from developing retinae by fluorescence-activated cell sorting based on Cd24a expression (using CD24 antibody) and/or Nt5e expression (using CD73 antibody) were transplanted into the wild-type or Crb1(rd8/rd8) or Prph2(rd2/rd2) mouse eye. The CD73/CD24-sorted cells migrated into the outer nuclear layer, acquired the morphology of mature photoreceptors and expressed outer segment markers. They showed an 18-fold higher integration efficiency than that of unsorted cells and 2.3-fold higher than cells sorted based on a single genetic marker, NrlGFP, expression. These proof-of-principle studies show that transplantation competent photoreceptor precursor cells can be efficiently isolated from a heterogeneous mix of cells using cell surface antigens without loss of viability for the purpose of retinal stem cell therapy. Refinement of the selection of donorphotoreceptor precursor cells can increase the number of integrated photoreceptor cells,which is a prerequisite for the restoration of sight.
Collapse
Affiliation(s)
- J Lakowski
- UCL Institute of Child Health, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Reiland S, Salekdeh GH, Krijgsveld J. Defining pluripotent stem cells through quantitative proteomic analysis. Expert Rev Proteomics 2011; 8:29-42. [PMID: 21329426 DOI: 10.1586/epr.10.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Embryonic stem cells (ESCs) are at the center stage of intense research, inspired by their potential to give rise to all cell types of the adult individual. This property makes ESCs suitable candidates for generating specialized cells to replace damaged tissue lost after injury or disease. However, such clinical applications require a detailed insight of the molecular mechanisms underlying the self-renewal, expansion and differentiation of stem cells. This has gained further relevance since the introduction of induced pluripotent stem cells (iPSCs), which are functionally very similar to ESCs. The key property that iPSCs can be derived from somatic cells lifts some of the major ethical issues related to the need for embryos to generate ESCs. Yet, this has only increased the need to define the similarity of iPSCs and ESCs at the molecular level, both before and after they are induced to differentiate. In this article, we describe the proteomic approaches that have been used to characterize ESCs with regard to self-renewal and differentiation, with an emphasis on signaling cascades and histone modifications. We take this as a lead to discuss how quantitative proteomics can be deployed to study reprogramming and iPSC identity. In addition, we discuss how emerging proteomic technologies can become a useful tool to monitor the (de)differentiation status of ESCs and iPSCs.
Collapse
Affiliation(s)
- Sonja Reiland
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | | | | |
Collapse
|
47
|
Nagano K, Shinkawa T, Kato K, Inomata N, Yabuki N, Haramura M. Distinct cell surface proteome profiling by biotin labeling and glycoprotein capturing. J Proteomics 2011; 74:1985-93. [PMID: 21621025 DOI: 10.1016/j.jprot.2011.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/12/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
We performed here MS-based cell surface proteome profiling of HCT-116 cells by two distinct methods based on biotin labeling and glycoprotein capturing. In total, 742 biotinylated and 219 glycosylated proteins were identified by the biotin labeling and glycoprotein capturing, of which 224 and 138 proteins known to be located on plasma membrane were included, respectively, according to ingenuity pathway analysis. Although 104 plasma membrane proteins were identified by both methods, the rest of 154 were identified only by one. Almost all the identified plasma membrane proteins possessed consensus N-glycosylation sites, and proteins having various numbers of glycosylation sites were identified by both methods. Thus, the discrepancies of the identified proteins obtained from those two methods might not be only due to the number of glycosylation sites, but also to the expression and/or glycosylation level of the cell surface proteins. We also identified 312 N-glycosylated proteins from xenograft samples by glycoprotein capturing of which 135 were known as plasma membrane proteins. Although a number of highly-expressed plasma membrane proteins were common between culture and xenograft cells, some proteins showed culture- or xenograft-specific expression, suggesting that those proteins might contribute to grow in different environment.
Collapse
Affiliation(s)
- Kohji Nagano
- Discovery Science & Technology Dept., Chugai Pharmaceutical Co. Ltd., Kanagawa, 247-8530, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The concept of using stem cells for cardiovascular repair holds great potential, but uncertainties in preclinical experiments must be addressed before their therapeutic application. Contemporary proteomic techniques can help to characterize cell preparations more thoroughly and identify some of the potential causes that may lead to a high failure rate in clinical trials. The first part of this review discusses the broader application of proteomics to stem cell research by providing an overview of the main proteomic technologies and how they might help the translation of stem cell therapy. The second part focuses on the controversy about endothelial progenitor cells (EPCs) and raises cautionary flags for marker assignment and assessment of cell purity. A proteomics-led approach in early outgrowth EPCs has already raised the awareness that markers used to define their endothelial potential may arise from an uptake of platelet proteins. A platelet microparticle-related transfer of endothelial characteristics to mononuclear cells can result in a misinterpretation of the assay. The necessity to perform counterstaining for platelet markers in this setting is not fully appreciated. Similarly, the presence of platelets and platelet microparticles is not taken into consideration when functional improvements are directly attributed to EPCs, whereas saline solutions or plain medium serve as controls. Thus, proteomics shed new light on the caveats of a common stem cell assay in cardiovascular research, which might explain some of the inconsistencies in the field.
Collapse
Affiliation(s)
- Marianna Prokopi
- King's British Heart Foundation Centre, King's College London, United Kingdom
| | | |
Collapse
|
49
|
Mathias RA, Chen YS, Goode RJA, Kapp EA, Mathivanan S, Moritz RL, Zhu HJ, Simpson RJ. Tandem application of cationic colloidal silica and Triton X-114 for plasma membrane protein isolation and purification: towards developing an MDCK protein database. Proteomics 2011; 11:1238-53. [PMID: 21337516 DOI: 10.1002/pmic.201000591] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 11/07/2022]
Abstract
Plasma membrane (PM) proteins are attractive therapeutic targets because of their accessibility to drugs. Although genes encoding PM proteins represent 20-30% of eukaryotic genomes, a detailed characterisation of their encoded proteins is underrepresented, due, to their low copy number and the inherent difficulties in their isolation and purification as a consequence of their high hydrophobicity. We describe here a strategy that combines two orthogonal methods to isolate and purify PM proteins from Madin Darby canine kidney (MDCK) cells. In this two-step method, we first used cationic colloidal silica (CCS) to isolate adherent (Ad) and non-adherent (nAd) PM fractions, and then subjected each fraction to Triton X-114 (TX-114) phase partitioning to further enrich for hydrophobic proteins. While CCS alone identified 255/757 (34%) membrane proteins, CCS/TX-114 in combination yielded 453/745 (61%). Strikingly, of those proteins unique to CCS/TX-114, 277/393 (70%) had membrane annotation. Further characterisation of the CCS/TX-114 data set using Uniprot and transmembrane hidden Markov model revealed that 306/745 (41%) contained one or more transmembrane domains (TMDs), including proteins with 25 and 17 TMDs. Of the remaining proteins in the data set, 69/439 (16%) are known to contain lipid modifications. Of all membrane proteins identified, 93 had PM origin, including proteins that mediate cell adhesion, modulate transmembrane ion transport, and cell-cell communication. These studies reveal that the application of CCS to first isolate Ad and nAd PM fractions, followed by their detergent-phase TX-114 partitioning, to be a powerful method to isolate low-abundance PM proteins, and a useful adjunct for in-depth cell surface proteome analyses.
Collapse
Affiliation(s)
- Rommel A Mathias
- Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Tan Z, Zhang J, Su Z, Gu B, Jiang X, Luo J, Ji H, Wang G, Tao B, Zhao X, Chen L, Yu G, Zhu W, Zhang M. Production of rabbit monoclonal antibodies against mouse embryonic stem cells and identification of pluripotency-associated surface antigens. J Immunol Methods 2011; 365:149-57. [DOI: 10.1016/j.jim.2010.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/05/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
|