1
|
Liu J, Li W, Deng KQ, Tian S, Liu H, Shi H, Fang Q, Liu Z, Chen Z, Tian T, Gan S, Hu F, Hu M, Cheng X, Ji YX, Zhang P, She ZG, Zhang XJ, Chen S, Cai J, Li H. The E3 Ligase TRIM16 Is a Key Suppressor of Pathological Cardiac Hypertrophy. Circ Res 2022; 130:1586-1600. [PMID: 35437018 DOI: 10.1161/circresaha.121.318866] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pathological cardiac hypertrophy is one of the leading causes of heart failure with highly complicated pathogeneses. The E3 ligase TRIM16 (tripartite motif-containing protein 16) has been recognized as a pivotal regulator to control cell survival, immune response, and oxidativestress. However, the role of Trim16 in cardiac hypertrophy is unknown. METHODS We generated cardiac-specific knockout mice and adeno-associated virus serotype 9-Trim16 mice to evaluate the function of Trim16 in pathological myocardial hypertrophy. The direct effect of TRIM16 on cardiomyocyte enlargement was examined using an adenovirus system. Furthermore, we combined RNA-sequencing and interactome analysis that was followed by multiple molecular biological methodologies to identify the direct target and corresponding molecular events contributing to TRIM16 function. RESULTS We found an intimate correlation of Trim16 expression with hypertrophy-related heart failure in both human and mouse. Our functional investigations and unbiased transcriptomic analyses clearly demonstrated that Trim16 deficiency markedly exacerbated cardiomyocyte enlargement in vitro and in transverse aortic constriction-induced cardiac hypertrophy mouse model, whereas Trim16 overexpression attenuated cardiac hypertrophy and remodeling. Mechanistically, Prdx1 (peroxiredoxin 1) is an essential target of Trim16 in cardiac hypertrophy. We found that Trim16 interacts with Prdx1 and inhibits its phosphorylation, leading to a robust enhancement of its downstream Nrf2 (nuclear factor-erythroid 2-related factor 2) pathway to block cardiac hypertrophy. Trim16-blocked Prdx1 phosphorylation was largely dependent on a direct interaction between Trim16 and Src and the resultant Src ubiquitinational degradation. Notably, Prdx1 knockdown largely abolished the anti-hypertrophic effects of Trim16 overexpression. CONCLUSIONS Our findings provide the first evidence supporting Trim16 as a novel suppressor of pathological cardiac hypertrophy and indicate that targeting the Trim16-Prdx1 axis represents a promising therapeutic strategy for hypertrophy-related heart failure.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.L., W.L., T.T., Z.-G.S., H.Li.)
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.L., W.L., T.T., Z.-G.S., H.Li.)
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
| | - Ke-Qiong Deng
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
- Department of Cardiology (K.-Q.D., Z.C.), Zhongnan Hospital of Wuhan University, China
| | - Song Tian
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
| | - Hui Liu
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
- Gannan Innovation and Translational Medicine Research Institute (H. Liu, M.H., X.C.), Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education (H. Liu, M.H., X.C.), Gannan Medical University, Ganzhou, China
| | - Hongjie Shi
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
- School of Basic Medical Sciences, Wuhan University, China (H.S., S.G., Y.-X.J., P.Z., X.-J.Z., H. Li)
| | - Qian Fang
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
| | - Zhen Liu
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
| | - Ze Chen
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
- Department of Cardiology (K.-Q.D., Z.C.), Zhongnan Hospital of Wuhan University, China
| | - Tian Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.L., W.L., T.T., Z.-G.S., H.Li.)
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
| | - Shanyu Gan
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
- School of Basic Medical Sciences, Wuhan University, China (H.S., S.G., Y.-X.J., P.Z., X.-J.Z., H. Li)
| | - Fengjiao Hu
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
- Medical Science Research Center (F.H., H. Li), Zhongnan Hospital of Wuhan University, China
| | - Manli Hu
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
- Gannan Innovation and Translational Medicine Research Institute (H. Liu, M.H., X.C.), Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education (H. Liu, M.H., X.C.), Gannan Medical University, Ganzhou, China
| | - Xu Cheng
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
- Gannan Innovation and Translational Medicine Research Institute (H. Liu, M.H., X.C.), Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education (H. Liu, M.H., X.C.), Gannan Medical University, Ganzhou, China
| | - Yan-Xiao Ji
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
- School of Basic Medical Sciences, Wuhan University, China (H.S., S.G., Y.-X.J., P.Z., X.-J.Z., H. Li)
| | - Peng Zhang
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
- School of Basic Medical Sciences, Wuhan University, China (H.S., S.G., Y.-X.J., P.Z., X.-J.Z., H. Li)
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.L., W.L., T.T., Z.-G.S., H.Li.)
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
| | - Xiao-Jing Zhang
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
- School of Basic Medical Sciences, Wuhan University, China (H.S., S.G., Y.-X.J., P.Z., X.-J.Z., H. Li)
| | - Shaoze Chen
- Department of Cardiology, Huanggang Central Hospital, China (S.C.)
- Huanggang Institute of Translational Medicine, Huanggang, China (S.C.)
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (J.L., W.L., T.T., Z.-G.S., H.Li.)
- Institute of Model Animal of Wuhan University, China (J.L., W.L., K.-Q.D., S.T., H. Liu, H.S., Q.F., Z.L., Z.C., T.T., S.G., F.H., M.H., X.C., Y.-X.J., P.Z., Z.-G.S., X.-J.Z., H. Li)
- Medical Science Research Center (F.H., H. Li), Zhongnan Hospital of Wuhan University, China
- School of Basic Medical Sciences, Wuhan University, China (H.S., S.G., Y.-X.J., P.Z., X.-J.Z., H. Li)
| |
Collapse
|
2
|
Cardiovascular protection associated with cilostazol, colchicine and target of rapamycin inhibitors. J Cardiovasc Pharmacol 2022; 80:31-43. [PMID: 35384911 DOI: 10.1097/fjc.0000000000001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT An alteration in extracellular matrix production by vascular smooth muscle cells is a crucial event in the pathogenesis of vascular diseases such as aging-related, atherosclerosis and allograft vasculopathy. The human target of rapamycin (TOR) is involved in the synthesis of extracellular matrix by vascular smooth muscle cells. TOR inhibitors reduce arterial stiffness, blood pressure, and left ventricle hypertrophy and decrease cardiovascular risk in kidney graft recipients and patients with coronary artery disease and heart allograft vasculopathy. Other drugs that modulate extracellular matrix production such as cilostazol and colchicine have also demonstrated a beneficial cardiovascular effect. Clinical studies have consistently shown that cilostazol confers cardiovascular protection in peripheral vascular disease, coronary artery disease, and cerebrovascular disease. In patients with type 2 diabetes, cilostazol prevents the progression of subclinical coronary atherosclerosis. Colchicine reduces arterial stiffness in patients with Familial Mediterranean Fever and patients with coronary artery disease. Pathophysiological mechanisms underlying the cardioprotective effect of these drugs may be related to interactions between the cytoskeleton, TOR signaling and cyclic AMP synthesis that remain to be fully elucidated. Adult vascular smooth muscle cells exhibit a contractile phenotype and produce little extracellular matrix. Conditions that upregulate extracellular matrix synthesis induce a phenotypic switch toward a synthetic phenotype. TOR inhibition with rapamycin reduces extracellular matrix production by promoting the change to the contractile phenotype. Cilostazol increases the cytosolic level of cyclic AMP, which in turn leads to a reduction in extracellular matrix synthesis. Colchicine is a microtubule-destabilizing agent that may enhance the synthesis of cyclic AMP.
Collapse
|
3
|
Kilbas PO, Can ND, Kizilboga T, Ezberci F, Doganay HL, Arisan ED, Dinler Doganay G. CRISPR/Cas9-mediated Bag-1 knockout increased mesenchymal characteristics of MCF-7 cells via Akt hyperactivation-mediated actin cytoskeleton remodeling. PLoS One 2022; 17:e0261062. [PMID: 34995286 PMCID: PMC8741009 DOI: 10.1371/journal.pone.0261062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Bag-1 protein is a crucial target in cancer to increase the survival and proliferation of cells. The Bag-1 expression is significantly upregulated in primary and metastatic cancer patients compared to normal breast tissue. Overexpression of Bag-1 decreases the efficiency of conventional chemotherapeutic drugs, whereas Bag-1 silencing enhances the apoptotic efficiency of therapeutics, mostly in hormone-positive breast cancer subtypes. In this study, we generated stable Bag-1 knockout (KO) MCF-7 breast cancer cells to monitor stress-mediated cellular alterations in comparison to wild type (wt) and Bag-1 overexpressing (Bag-1 OE) MCF-7 cells. Validation and characterization studies of Bag-1 KO cells showed different cellular morphology with hyperactive Akt signaling, which caused stress-mediated actin reorganization, focal adhesion decrease and led to mesenchymal characteristics in MCF-7 cells. A potent Akt inhibitor, MK-2206, suppressed mesenchymal transition in Bag-1 KO cells. Similar results were obtained following the recovery of Bag-1 isoforms (Bag-1S, M, or L) in Bag-1 KO cells. The findings of this study emphasized that Bag-1 is a mediator of actin-mediated cytoskeleton organization through regulating Akt activation.
Collapse
Affiliation(s)
- Pelin Ozfiliz Kilbas
- Department of Molecular Biology Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul, Turkey
| | - Nisan Denizce Can
- Department of Molecular Biology Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Tugba Kizilboga
- Department of Molecular Biology Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Fikret Ezberci
- Department of General Surgery, Umraniye Teaching and Research Hospital, Istanbul, Turkey
| | - Hamdi Levent Doganay
- Genomic Laboratory (GLAB), Umraniye Teaching And Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Gizem Dinler Doganay
- Department of Molecular Biology Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Zandi F, Khalaj V, Goshadrou F, Meyfour A, Gholami A, Enayati S, Mehranfar M, Rahmati S, Kheiri EV, Badie HG, Vaziri B. Rabies virus matrix protein targets host actin cytoskeleton: a protein-protein interaction analysis. Pathog Dis 2020; 79:6027507. [PMID: 33289839 DOI: 10.1093/femspd/ftaa075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Multifunctional matrix protein (M) of rabies virus (RABV) plays essential roles in the pathogenesis of rabies infection. Identification of M protein interacting partners in target hosts could help to elucidate the biological pathways and molecular mechanisms involved in the pathogenesis of this virus. In this study, two-dimensional Far-western blotting (2D-Far-WB) technique was applied to find possible matrix protein partners in the rat brainstem. Recombinant RABV M was expressed in Pichia pastoris and was partially purified. Subsequently, 2D-Far-WB-determined six rat brainstem proteins interacted with recombinant M proteins that were identified by mass spectrometry. Functional annotation by gene ontology analysis determined these proteins were involved in the regulation of synaptic transmission processes, metabolic process and cell morphogenesis-cytoskeleton organization. The interaction of viral M protein with selected host proteins in mouse Neuro-2a cells infected with RABV was verified by super-resolution confocal microscopy. Molecular docking simulations also demonstrated the formation of RABV M complexes. However, further confirmation with co-immunoprecipitation was only successful for M-actin cytoplasmic 1 interaction. Our study revealed actin cytoplasmic 1 as a binding partner of M protein, which might have important role(s) in rabies pathogenesis.
Collapse
Affiliation(s)
- Fatemeh Zandi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.,Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313, Iran
| | - Vahid Khalaj
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Goshadrou
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, 16635-148, Iran
| | - Alireza Gholami
- Department of Virology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Somayeh Enayati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahsa Mehranfar
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | | | - Hamid Gholamipour Badie
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
5
|
de la Ballina NR, Villalba A, Cao A. Differences in proteomic profile between two haemocyte types, granulocytes and hyalinocytes, of the flat oyster Ostrea edulis. FISH & SHELLFISH IMMUNOLOGY 2020; 100:456-466. [PMID: 32205190 DOI: 10.1016/j.fsi.2020.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Haemocytes play a dominant role in shellfish immunity, being considered the main defence effector cells in molluscs. These cells are known to be responsible for many functions, including chemotaxis, cellular recognition, attachment, aggregation, shell repair and nutrient transport and digestion. There are two basic cell types of bivalve haemocytes morphologically distinguishable, hyalinocytes and granulocytes; however, functional differences and specific abilities are poorly understood: granulocytes are believed to be more efficient in killing microorganisms, while hyalinocytes are thought to be more specialised in clotting and wound healing. A proteomic approach was implemented to find qualitative differences in the protein profile between granulocytes and hyalinocytes of the European flat oyster, Ostrea edulis, as a way to evaluate functional differences. Oyster haemolymph cells were differentially separated by Percoll® density gradient centrifugation. Granulocyte and hyalinocyte proteins were separated by 2D-PAGE and their protein profiles were analysed and compared with PD Quest software; the protein spots exclusive for each haemocyte type were excised from gels and analysed by MALDI-TOF/TOF with a combination of mass spectrometry (MS) and MS/MS for sequencing and protein identification. A total of 34 proteins were identified, 20 unique to granulocytes and 14 to hyalinocytes. The results suggested differences between the haemocyte types in signal transduction, apoptosis, oxidation reduction processes, cytoskeleton, phagocytosis and pathogen recognition. These results contribute to identify differential roles of each haemocyte type and to better understand the oyster immunity mechanisms, which should help to fight oyster diseases.
Collapse
Affiliation(s)
- Nuria R de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Spain.
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| |
Collapse
|
6
|
Barzilai-Tutsch H, Genin O, Pines M, Halevy O. Early pathological signs in young dysf -/- mice are improved by halofuginone. Neuromuscul Disord 2020; 30:472-482. [PMID: 32451154 DOI: 10.1016/j.nmd.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
Dysferlinopathies are a non-lethal group of late-onset muscular dystrophies. Here, we evaluated the fusion ability of primary myoblasts from young dysf-/- mice and the muscle histopathology prior to, and during early stages of disease onset. The ability of primary myoblasts of 5-week-old dysf-/- mice to form large myotubes was delayed compared to their wild-type counterparts, as evaluated by scanning electron microscopy. However, their fusion activity, as reflected by the presence of actin filaments connecting several cells, was enhanced by the antifibrotic drug halofuginone. Early dystrophic signs were already apparent in 4-week-old dysf-/- mice; their collagen level was double that in wild-type mice and continued to rise until 5 months of age. Continuous treatment with halofuginone from 4 weeks to 5 months of age reduced muscle fibrosis in a phosphorylated-Smad3 inhibition-related manner. Halofuginone also enhanced myofiber hypertrophy, reduced the percentage of centrally nucleated myofibers, and increased muscle performance. Together, the data suggest an inhibitory effect of halofuginone on the muscle histopathology at very early stages of dysferlinopathy, and enhancement of muscle performance. These results offer new opportunities for early pharmaceutical treatment in dysferlinopathies with favorable outcomes at later stages of life.
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Olga Genin
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Mark Pines
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|
7
|
Landa-Galvan HV, Rios-Castro E, Romero-Garcia T, Rueda A, Olivares-Reyes JA. Metabolic syndrome diminishes insulin-induced Akt activation and causes a redistribution of Akt-interacting proteins in cardiomyocytes. PLoS One 2020; 15:e0228115. [PMID: 31995605 PMCID: PMC6988918 DOI: 10.1371/journal.pone.0228115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors, with insulin resistance as a critical component for its development. Insulin signaling in the heart leads to Akt (also known as PKB) activation, a serine/threonine protein kinase, which regulates cardiac glucose metabolism and growth. Cardiac metabolic inflexibility, characterized by impaired insulin-induced glucose uptake and oxidation, has been reported as an early and consistent change in the heart of different models of MetS and diabetes; however, the evaluation of Akt activation has yielded variable results. Here we report in cardiomyocytes of MetS rats, diminished insulin-induced glucose uptake and Akt activation, evaluated by its impaired mobilization towards the plasma membrane and phosphorylation, and reflected in a re-distribution of its interacting proteins, assessed by label-free mass spectrometry (data are available via ProteomeXchange with identifier PXD013260). We report 45 proteins with diminished abundance in Akt complex of MetS cardiomyocytes, mainly represented by energy metabolism-related proteins, and also, 31 Akt-interacting proteins with increased abundance, which were mainly related to contraction, endoplasmic reticulum stress, and Akt negative regulation. These results emphasize the relevance of Akt in the regulation of energy metabolism in the heart and highlight Akt-interacting proteins that could be involved in the detrimental effects of MetS in the heart.
Collapse
Affiliation(s)
| | - Emmanuel Rios-Castro
- Unidad de Genomica, Proteomica y Metabolomica (UGPM), LaNSE-Cinvestav-IPN, Mexico City, Mexico
| | | | - Angelica Rueda
- Departamento de Bioquimica, Cinvestav-IPN, Mexico City, Mexico
| | | |
Collapse
|
8
|
Tentler D, Lomert E, Novitskaya K, Barlev NA. Role of ACTN4 in Tumorigenesis, Metastasis, and EMT. Cells 2019; 8:cells8111427. [PMID: 31766144 PMCID: PMC6912194 DOI: 10.3390/cells8111427] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 12/11/2022] Open
Abstract
The actin-binding protein ACTN4 belongs to a family of actin-binding proteins and is a non-muscle alpha-actinin that has long been associated with cancer development. Numerous clinical studies showed that changes in ACTN4 gene expression are correlated with aggressiveness, invasion, and metastasis in certain tumors. Amplification of the 19q chromosomal region where the gene is located has also been reported. Experimental manipulations with ACTN4 expression further confirmed its involvement in cell proliferation, motility, and epithelial-mesenchymal transition (EMT). However, both clinical and experimental data suggest that the effects of ACTN4 up- or down-regulation may vary a lot between different types of tumors. Functional studies demonstrated its engagement in a number of cytoplasmic and nuclear processes, ranging from cytoskeleton reorganization to regulation of different signaling pathways. Such a variety of functions may be the reason behind cell type and cell line specific responses. Herein, we will review research progress and controversies regarding the prognostic and functional significance of ACTN4 for tumorigenesis.
Collapse
Affiliation(s)
- Dmitri Tentler
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
- Correspondence: or ; Tel.: +7-921-406-2058
| | - Ekaterina Lomert
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
| | - Ksenia Novitskaya
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
| | - Nikolai A. Barlev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 Saint Petersburg, Russia; (E.L.); (K.N.); (N.A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia
| |
Collapse
|
9
|
Elzaiat M, Herman L, Legois B, Léger T, Todeschini AL, Veitia RA. High-throughput Exploration of the Network Dependent on AKT1 in Mouse Ovarian Granulosa Cells. Mol Cell Proteomics 2019; 18:1307-1319. [PMID: 30992313 PMCID: PMC6601207 DOI: 10.1074/mcp.ra119.0014613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
The PI3K/AKT signaling pathway is known to regulate a broad range of cellular processes, and it is often altered in several types of cancers. Recently, somatic AKT1 mutations leading to a strong activation of this kinase have been reported in juvenile granulosa cell tumors. However, the molecular role of AKT1 in the supporting cell lineage of the ovary is still poorly understood. To get insights into its function in such cells, we depleted Akt1 in murine primary granulosa cells and assessed the molecular consequences at both the transcript and protein levels. We were able to corroborate the involvement of AKT1 in the regulation of metabolism, apoptosis, cell cycle, or cytoskeleton dynamics in this ovarian cell type. Consistently, we showed in established granulosa cells that depletion of Akt1 provoked altered directional persistent migration and increased its velocity. This study also allowed us to put forward new direct and indirect targets of the kinase. Indeed, a series of proteins involved in intracellular transport and mitochondrial physiology were significantly affected by Akt1 depletion. Using in silico analyses, we also propose a set of kinases and transcription factors that can mediate the action of AKT1 on the deregulated transcripts and proteins. Taken altogether, our results provide a resource of direct and indirect AKT1 targets in granulosa cells and may help understand its roles in this ovarian cell type.
Collapse
Affiliation(s)
- Maëva Elzaiat
- From the ‡Institut Jacques Monod, Université Paris-Diderot, 75013 Paris, France;; §Université Paris-Diderot, 75013 Paris, France
| | - Laetitia Herman
- From the ‡Institut Jacques Monod, Université Paris-Diderot, 75013 Paris, France;; §Université Paris-Diderot, 75013 Paris, France
| | - Bérangère Legois
- From the ‡Institut Jacques Monod, Université Paris-Diderot, 75013 Paris, France;; §Université Paris-Diderot, 75013 Paris, France
| | - Thibaut Léger
- From the ‡Institut Jacques Monod, Université Paris-Diderot, 75013 Paris, France
| | - Anne-Laure Todeschini
- From the ‡Institut Jacques Monod, Université Paris-Diderot, 75013 Paris, France;; §Université Paris-Diderot, 75013 Paris, France.
| | - Reiner A Veitia
- From the ‡Institut Jacques Monod, Université Paris-Diderot, 75013 Paris, France;; §Université Paris-Diderot, 75013 Paris, France.
| |
Collapse
|
10
|
Elzaiat M, Herman L, Legois B, Léger T, Todeschini AL, Veitia RA. High-throughput Exploration of the Network Dependent on AKT1 in Mouse Ovarian Granulosa Cells. Mol Cell Proteomics 2019. [PMID: 30992313 DOI: 10.1074/mcp.ra119.001461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PI3K/AKT signaling pathway is known to regulate a broad range of cellular processes, and it is often altered in several types of cancers. Recently, somatic AKT1 mutations leading to a strong activation of this kinase have been reported in juvenile granulosa cell tumors. However, the molecular role of AKT1 in the supporting cell lineage of the ovary is still poorly understood. To get insights into its function in such cells, we depleted Akt1 in murine primary granulosa cells and assessed the molecular consequences at both the transcript and protein levels. We were able to corroborate the involvement of AKT1 in the regulation of metabolism, apoptosis, cell cycle, or cytoskeleton dynamics in this ovarian cell type. Consistently, we showed in established granulosa cells that depletion of Akt1 provoked altered directional persistent migration and increased its velocity. This study also allowed us to put forward new direct and indirect targets of the kinase. Indeed, a series of proteins involved in intracellular transport and mitochondrial physiology were significantly affected by Akt1 depletion. Using in silico analyses, we also propose a set of kinases and transcription factors that can mediate the action of AKT1 on the deregulated transcripts and proteins. Taken altogether, our results provide a resource of direct and indirect AKT1 targets in granulosa cells and may help understand its roles in this ovarian cell type.
Collapse
Affiliation(s)
- Maëva Elzaiat
- From the ‡Institut Jacques Monod, Université Paris-Diderot, 75013 Paris, France;; §Université Paris-Diderot, 75013 Paris, France
| | - Laetitia Herman
- From the ‡Institut Jacques Monod, Université Paris-Diderot, 75013 Paris, France;; §Université Paris-Diderot, 75013 Paris, France
| | - Bérangère Legois
- From the ‡Institut Jacques Monod, Université Paris-Diderot, 75013 Paris, France;; §Université Paris-Diderot, 75013 Paris, France
| | - Thibaut Léger
- From the ‡Institut Jacques Monod, Université Paris-Diderot, 75013 Paris, France
| | - Anne-Laure Todeschini
- From the ‡Institut Jacques Monod, Université Paris-Diderot, 75013 Paris, France;; §Université Paris-Diderot, 75013 Paris, France.
| | - Reiner A Veitia
- From the ‡Institut Jacques Monod, Université Paris-Diderot, 75013 Paris, France;; §Université Paris-Diderot, 75013 Paris, France.
| |
Collapse
|
11
|
AKT2 phosphorylation of hexokinase 2 at T473 promotes tumorigenesis and metastasis in colon cancer cells via NF-κB, HIF1α, MMP2, and MMP9 upregulation. Cell Signal 2019; 58:99-110. [PMID: 30877036 DOI: 10.1016/j.cellsig.2019.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/10/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022]
Abstract
It has been well-established that AKT2 plays an important role in the development and progression of colon cancer; however, its precise function remains unclear. In the present study, we found that AKT2 can interact with and phosphorylate hexokinase 2 (HK2), the rate-limiting enzyme in glycolysis. Moreover, threonine phosphorylation dramatically increases its catalytic activity and enhances glycolysis. Mechanistically, AKT2 phosphorylation of HK2 at T473 was found to increase hexokinase activity and lactic acid production. A mutation in the AKT2 phosphorylation site of HK2 substantially reduced the stimulating effects of AKT2 on glycolysis, cellular apoptosis, invasion, tumorigenesis, and metastasis. In addition, AKT2 regulated NF-κB, HIF1Α, MMP2, and MMP9 via the phosphorylation of HK2 at the T473 site. Taken together, AKT2 increases the invasion, tumorigenesis, and metastasis of colon cancer cells in vitro and promotes lung metastasis in nude mice in vivo through the phosphorylation of the T473 site of HK2 by upregulating NF-κB, HIF1α, MMP2, and MMP9. In conclusion, our findings highlight a novel mechanism for the AKT2-HK2-NF-κB/HIF1α/MMP2/MMP9 axis in the regulation of colon cancer progression. Moreover, our results suggest that both AKT2 and HK2 may be potential targets for the treatment of colon cancer.
Collapse
|
12
|
AKT/protein kinase B associates with β-actin in the nucleus of melanoma cells. Biosci Rep 2019; 39:BSR20181312. [PMID: 30643008 PMCID: PMC6356016 DOI: 10.1042/bsr20181312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022] Open
Abstract
The serine-threonine kinase AKT/PKB is a critical regulator of various essential cellular processes, and dysregulation of AKT has been implicated in many diseases, including cancer. Despite AKT action is known to function mainly in the cytoplasm, AKT has been reported to translocate to the nucleus. However, very little is known about the mechanism required for the nuclear import of AKT as well as its function in this cellular compartment. In the present study, we characterized the presence of endogenous nuclear AKT in human melanoma cells and addressed the possible role of AKT by exploring its potential association with key interaction nuclear partners. Confocal and Western blot analyses showed that both phosphorylated and non-phosphorylated forms of AKT are present in melanoma cells nuclei. Using mass spectrometry in combination with protein-crosslinking and co-immunoprecipitation, we identified a series of putative protein partners of nuclear AKT, including heterogeneous nuclear ribonucleoprotein (hnRNP), cytoskeleton proteins β-actin, γ-actin, β-actin-like 2 and vimentin. Confocal microscopy and biochemical analyses validated β-actin as a new nuclear AKT-interacting partner. Cofilin and active RNA Polymerase II, two proteins that have been described to interact and work in concert with nuclear actin in transcription regulation, were also found associated with nuclear AKT. Overall, the present study uncovered a yet unrecognized nuclear coupling of AKT and provides insights into the involvement of AKT in the interaction network of nuclear actin.
Collapse
|
13
|
Wang Q, Qin Q, Song R, Zhao C, Liu H, Yang Y, Gu S, Zhou D, He J. NHERF1 inhibits beta-catenin-mediated proliferation of cervical cancer cells through suppression of alpha-actinin-4 expression. Cell Death Dis 2018; 9:668. [PMID: 29867145 PMCID: PMC5986762 DOI: 10.1038/s41419-018-0711-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/15/2023]
Abstract
Cervical cancer is one of the most lethal types of cancer in female. Aberrant activation of Wnt/β-catenin signaling pathway has been found to be involved in cervical cancer development and progression, whereas the underlying molecular mechanisms remain poorly understood. The present study showed that NHERF1 was a novel gene associated with both cell proliferation and Wnt signaling pathway in cervical cancer by analysis of differential gene expression and gene cluster for the cervical cancer specimens from GEO data sets. It was further demonstrated in cellular study that NHERF1 inhibition of cervical cancer cell proliferation through Wnt/β-catenin signaling was dependent on α-actinin-4 (ACTN4) expression. A negative association between NHERF1 expression and levels of ACTN4 and β-catenin was found in mouse xenograft model and cervical cancer specimens. Low levels of NHERF1 in cervical cancer specimens were found to associate with activation of cell proliferation and Wnt/β-catenin signaling by gene set enrichment analysis, and also were an independent predictive factor for worse prognosis of cervical cancer patients by Cox regression analysis. These findings demonstrate that NHERF1 inhibits Wnt signaling-mediated proliferation of cervical cancer via suppression of ACTN4, and NHERF1 downregulation may contribute to the progression of cervical cancer. These findings may also shed some lights for understanding the underlying mechanisms of cisplatin resistance and worse prognosis of HPV-inactive cervical cancer patients.
Collapse
Affiliation(s)
- Qiqi Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Qiong Qin
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Ran Song
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Chunjuan Zhao
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Hua Liu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China
| | - Ying Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China.,Core Facilities Center, Capital Medical University, Beijing, China
| | - Siyu Gu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Deshan Zhou
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China.,Department of Histology and Embryology, Capital Medical University, Beijing, China
| | - Junqi He
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China. .,Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing, China.
| |
Collapse
|
14
|
Duggal S, Jailkhani N, Midha MK, Agrawal N, Rao KVS, Kumar A. Defining the Akt1 interactome and its role in regulating the cell cycle. Sci Rep 2018; 8:1303. [PMID: 29358593 PMCID: PMC5778034 DOI: 10.1038/s41598-018-19689-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/08/2018] [Indexed: 01/29/2023] Open
Abstract
Cell growth and proliferation are two diverse processes yet always linked. Akt1, a serine/threonine kinase, is a multi-functional protein implicated in regulation of cell growth, survival and proliferation. Though it has a role in G1/S progression, the manner by which Akt1 controls cell cycle and blends cell growth with proliferation is not well explored. In this study, we characterize the Akt1 interactome as the cell cycle progresses from G0 to G1/S and G2 phase. For this, Akt1-overexpressing HEK293 cells were subjected to AP-MS. To distinguish between individual cell cycle stages, cells were cultured in the light, medium and heavy labelled SILAC media. We obtained 213 interacting partners of Akt1 from these studies. GO classification revealed that a significant number of proteins fall into functional classes related to cell growth or cell cycle processes. Of these, 32 proteins showed varying association with Akt1 in different cell cycle stages. Further analyses uncovered a subset of proteins showing counteracting effects so as to tune stage-specific progression through the cycle. Thus, our study provides some novel perspectives on Akt1-mediated regulation of the cell cycle and offers the framework for a detailed resolution of the downstream cellular mechanisms that are mediated by this kinase.
Collapse
Affiliation(s)
- Shweta Duggal
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, 121001, India
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Noor Jailkhani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Mukul Kumar Midha
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Kanury V S Rao
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Ajay Kumar
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
15
|
Desai S, Barai A, Bukhari AB, De A, Sen S. α-Actinin-4 confers radioresistance coupled invasiveness in breast cancer cells through AKT pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:196-208. [PMID: 29055790 DOI: 10.1016/j.bbamcr.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022]
Abstract
Acquired radioresistance accompanied with increased metastatic potential is a major hurdle in effective radiotherapy of breast cancers. However, the nature of their inter-dependence and the underlying mechanism remains largely intangible. By employing radioresistant (RR) cell lines, we herein demonstrate that MCF-7 RR cells display phenotypic and molecular alterations evocative of epithelial to mesenchymal transition (EMT) with increased traction forces and membrane ruffling culminating in boosted invasiveness. We then show that these changes can be attributed to overexpression of alpha-actinin-4 (ACTN4), with ACTN4 knockdown near-completely abrogating both radioresistance and EMT-associated changes. We further found that in MCF-7 RR cells, ACTN4 mediates the observed effects by activating AKT, and downstream AKT/GSK3β signalling. Though ACTN4 plays a similar role in mediating radioresistance and invasiveness in MDA-MB-231 RR cells, co-immunoprecipitation studies reveal that these changes are effected through increased association with AKT and not by overexpression of AKT. Taken together, our study identifies ACTN4/AKT/GSK3β as a novel pathway regulating radioresistance coupled invasion which can be further explored to improve the radiotherapeutic gain.
Collapse
Affiliation(s)
- Sejal Desai
- Biosciences and Bioengineering Department, IIT Bombay, Mumbai, India
| | - Amlan Barai
- Biosciences and Bioengineering Department, IIT Bombay, Mumbai, India
| | | | - Abhijit De
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, India.
| | - Shamik Sen
- Biosciences and Bioengineering Department, IIT Bombay, Mumbai, India.
| |
Collapse
|
16
|
14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia. mSphere 2017; 2:mSphere00248-17. [PMID: 28932813 PMCID: PMC5597967 DOI: 10.1128/msphere.00248-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/21/2017] [Indexed: 01/30/2023] Open
Abstract
The phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin; this function has been previously attributed to sequestration of phosphorylated cofilin. 14-3-3 was identified as an actin-associated protein in the deep-branching eukaryote Giardia lamblia; however, Giardia lacks cofilin and all other canonical actin-binding proteins (ABPs). Thus, the role of G. lamblia 14-3-3 (Gl-14-3-3) in actin regulation was unknown. Gl-14-3-3 depletion resulted in an overall disruption of actin organization characterized by ectopically distributed short actin filaments. Using phosphatase and kinase inhibitors, we demonstrated that actin phosphorylation correlated with destabilization of the actin network and increased complex formation with 14-3-3, while blocking actin phosphorylation stabilized actin filaments and attenuated complex formation. Giardia's sole Rho family GTPase, Gl-Rac, modulates Gl-14-3-3's association with actin, providing the first connection between Gl-Rac and the actin cytoskeleton in Giardia. Giardia actin (Gl-actin) contains two putative 14-3-3 binding motifs, one of which (S330) is conserved in mammalian actin. Mutation of these sites reduced, but did not completely disrupt, the association with 14-3-3. Native gels and overlay assays indicate that intermediate proteins are required to support complex formation between 14-3-3 and actin. Overall, our results support a role for 14-3-3 as a regulator of actin; however, the presence of multiple 14-3-3-actin complexes suggests a more complex regulatory relationship than might be expected for a minimalistic parasite. IMPORTANCEGiardia lacks canonical actin-binding proteins. Gl-14-3-3 was identified as an actin interactor, but the significance of this interaction was unknown. Loss of Gl-14-3-3 results in ectopic short actin filaments, indicating that Gl-14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that Gl-14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia's sole Rho family GTPase, Gl-Rac. This result provides the first mechanistic connection between Gl-Rac and Gl-actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between Gl-14-3-3 and Gl-actin, suggesting that Gl-14-3-3 is regulating multiple Gl-actin complexes.
Collapse
|
17
|
Ding L, Zhang L, Kim M, Byzova T, Podrez E. Akt3 kinase suppresses pinocytosis of low-density lipoprotein by macrophages via a novel WNK/SGK1/Cdc42 protein pathway. J Biol Chem 2017; 292:9283-9293. [PMID: 28389565 DOI: 10.1074/jbc.m116.773739] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/24/2017] [Indexed: 01/10/2023] Open
Abstract
Fluid-phase pinocytosis of LDL by macrophages is regarded as a novel promising target to reduce macrophage cholesterol accumulation in atherosclerotic lesions. The mechanisms of regulation of fluid-phase pinocytosis in macrophages and, specifically, the role of Akt kinases are poorly understood. We have found previously that increased lipoprotein uptake via the receptor-independent process in Akt3 kinase-deficient macrophages contributes to increased atherosclerosis in Akt3-/- mice. The mechanism by which Akt3 deficiency promotes lipoprotein uptake in macrophages is unknown. We now report that Akt3 constitutively suppresses macropinocytosis in macrophages through a novel WNK1/SGK1/Cdc42 pathway. Mechanistic studies have demonstrated that the lack of Akt3 expression in murine and human macrophages results in increased expression of with-no-lysine kinase 1 (WNK1), which, in turn, leads to increased activity of serum and glucocorticoid-inducible kinase 1 (SGK1). SGK1 promotes expression of the Rho family GTPase Cdc42, a positive regulator of actin assembly, cell polarization, and pinocytosis. Individual suppression of WNK1 expression, SGK1, or Cdc42 activity in Akt3-deficient macrophages rescued the phenotype. These results demonstrate that Akt3 is a specific negative regulator of macropinocytosis in macrophages.
Collapse
Affiliation(s)
- Liang Ding
- From the Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Lifang Zhang
- From the Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Michael Kim
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Tatiana Byzova
- From the Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Eugene Podrez
- From the Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| |
Collapse
|
18
|
Riggio M, Perrone MC, Polo ML, Rodriguez MJ, May M, Abba M, Lanari C, Novaro V. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins. Sci Rep 2017; 7:44244. [PMID: 28287129 PMCID: PMC5347151 DOI: 10.1038/srep44244] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to elucidate the mechanisms associated with the specific effects of AKT1 and AKT2 isoforms in breast cancer progression. We modulated the abundance of specific AKT isoforms in IBH-6 and T47D human breast cancer cell lines and showed that AKT1 promoted cell proliferation, through S6 and cyclin D1 upregulation, but it inhibited cell migration and invasion through β1-integrin and focal adhesion kinase (FAK) downregulation. In contrast, AKT2 promoted cell migration and invasion through F-actin and vimentin induction. Thus, while overexpression of AKT1 promoted local tumor growth, downregulation of AKT1 or overexpression of AKT2 promoted peritumoral invasion and lung metastasis. Furthermore, we evaluated The Cancer Genome Atlas (TCGA) dataset for invasive breast carcinomas and found that increased AKT2 but not AKT1 mRNA levels correlated with a worse clinical outcome. We conclude that AKT isoforms play specific roles in different steps of breast cancer progression, with AKT1 involved in the local tumor growth and AKT2 involved in the distant tumor dissemination, having AKT2 a poorer prognostic value and consequently being a worthwhile target for therapy.
Collapse
Affiliation(s)
- Marina Riggio
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María C Perrone
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María L Polo
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María J Rodriguez
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María May
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - Martín Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas. Fac. Ciencias Médicas - Universidad Nacional La Plata (1900), Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - Virginia Novaro
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| |
Collapse
|
19
|
Weber L, Al-Refae K, Ebbert J, Jägers P, Altmüller J, Becker C, Hahn S, Gisselmann G, Hatt H. Activation of odorant receptor in colorectal cancer cells leads to inhibition of cell proliferation and apoptosis. PLoS One 2017; 12:e0172491. [PMID: 28273117 PMCID: PMC5342199 DOI: 10.1371/journal.pone.0172491] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022] Open
Abstract
The analysis and functional characterization of ectopically expressed human olfactory receptors (ORs) is becoming increasingly important, as many ORs have been identified in several healthy and cancerous tissues. OR activation has been demonstrated to have influence on cancer cell growth and progression. Here, ORs were identified using RNA-Seq analyses and RT-PCR. We demonstrated the OR protein localization in HCT116 cells using immunocytochemistry (IHC). In order to analyze the physiological role of OR51B4, we deorphanized the receptor by the use of CRE-Luciferase assays, conducted calcium imaging experiments as well as scratch- and proliferation assays. Furthermore, western blot analyses revealed the involvement of different protein kinases in the ligand-dependent signaling pathway. Receptor knockdown via shRNA was used to analyze the involvement of OR51B4. We identified OR51B4, which is highly expressed in the colon cancer cell line HCT116 and in native human colon cancer tissues. We deorphanized the receptor and identified Troenan as an effective ligand. Troenan stimulation of HCT116 cells has anti-proliferative, anti-migratory and pro-apoptotic effects, mediated by changes in the intracellular calcium level upon PLC activation. These effects cause changes in the phosphorylation levels of p38, mTor and Akt kinases. Knockdown of the receptor via shRNA confirmed the involvement of OR51B4. This study emphasizes the importance of ectopically expressed ORs in the therapy for several diseases. The findings provide the basis for alternative treatments of colorectal cancer.
Collapse
Affiliation(s)
- Lea Weber
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| | - Klaudia Al-Refae
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Juliane Ebbert
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Peter Jägers
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Christian Becker
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Stephan Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
20
|
Tisdale EJ, Talati NK, Artalejo CR, Shisheva A. GAPDH binds Akt to facilitate cargo transport in the early secretory pathway. Exp Cell Res 2016; 349:310-319. [PMID: 27818247 DOI: 10.1016/j.yexcr.2016.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/12/2016] [Accepted: 10/31/2016] [Indexed: 01/12/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) undergoes numerous post-translational modifications, which impart new function and influence intracellular location. For example, atypical PKC ι/λ phosphorylates GAPDH that locates to vesicular tubular clusters and is required for retrograde membrane trafficking in the early secretory pathway. GAPDH is also required in the endocytic pathway; substitution of Pro234 to Ser (Pro234Ser) rendered CHO cells defective in endocytosis. To determine if GAPDH (Pro234Ser) could inhibit endoplasmic reticulum to Golgi trafficking, we introduced the recombinant mutant enzyme into several biochemical and morphological transport assays. The mutant protein efficiently blocked vesicular stomatitis virus-G protein transport. Because GAPDH binds to microtubules (MTs), we evaluated MT binding and MT intracellular distribution in the presence of the mutant. Although these properties were not changed relative to wild-type, GAPDH (Pro234Ser) altered Golgi complex morphology. We determined that the GAPDH point mutation disrupted association between the enzyme and the serine/threonine kinase Akt. Interestingly Rab1, which functions in anterograde-directed trafficking, stimulates GAPDH-Akt association with membranes in a quantitative binding assay. In contrast, Rab2 does not stimulate GAPDH-Akt membrane binding but instead recruits GAPDH-aPKC. We propose a mechanism whereby the association of GAPDH with Akt or with aPKC serves as a switch to discriminate between anterograde directed cargo and recycling cargo retrieved back to the ER, respectively.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., 6374 Scott Hall, Detroit, MI 48201, USA.
| | - Nikunj K Talati
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., 6374 Scott Hall, Detroit, MI 48201, USA
| | - Cristina R Artalejo
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., 6374 Scott Hall, Detroit, MI 48201, USA
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield Ave., 6374 Scott Hall, Detroit, MI 48201, USA
| |
Collapse
|
21
|
Na Y, Kaul SC, Ryu J, Lee JS, Ahn HM, Kaul Z, Kalra RS, Li L, Widodo N, Yun CO, Wadhwa R. Stress Chaperone Mortalin Contributes to Epithelial-to-Mesenchymal Transition and Cancer Metastasis. Cancer Res 2016; 76:2754-2765. [DOI: 10.1158/0008-5472.can-15-2704] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Wu CC, Wu HJ, Wang CH, Lin CH, Hsu SC, Chen YR, Hsiao M, Schuyler SC, Lu FL, Ma N, Lu J. Akt suppresses DLK for maintaining self-renewal of mouse embryonic stem cells. Cell Cycle 2016; 14:1207-17. [PMID: 25802931 DOI: 10.1080/15384101.2015.1014144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mouse embryonic stem cells (ES cells) can proliferate indefinitely. To identify potential signals involved in suppression of self-renewal, we previously screened a kinase/phosphatase expression library in ES cells, and observed that inhibition of Dual Leucine zipper-bearing Kinase (DLK) increased relative cell numbers. DLK protein was detected in both the pluripotent and differentiated states of mouse ES cells while DLK kinase activity increased upon differentiation. Overexpression of DLK in mouse ES cells displayed reductions in relative cell/colony numbers and Nanog expression, suggesting a suppressive role of DLK in self-renewal. By examining protein sequences of DLK, we identified 2 putative Akt phosphorylation sites at S584 and T659. Blocking PI3K/Akt signaling with LY-294002 enhanced DLK kinase activity dramatically. We found that Akt interacts with and phosphorylates DLK. Mutations of DLK amino acid residues at putative Akt phosphorylation sites (S584A, T659A, or S584A and T659A) diminished the level of DLK phosphorylation. While the mutated DLKs (S584A, T659A, or S584A and T659A) were expressed, a further reduction in cell/colony numbers and Nanog expression appeared in mouse ES cells. In addition, these mutant DLKs (S584A, T659A, or S584A and T659A) exhibited more robust kinase activity and cell death compared to wild type DLK or green fluorescence (GFP) controls. In summary, our results show that DLK functions to suppress self-renewal of mouse ES cells and is restrained by Akt phosphorylation.
Collapse
Affiliation(s)
- Cheng-Chung Wu
- a Graduate Institute of Life Sciences; National Defense Medical Center ; Taipei , Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fortier AM, Asselin E, Cadrin M. Functional specificity of Akt isoforms in cancer progression. Biomol Concepts 2015; 2:1-11. [PMID: 25962016 DOI: 10.1515/bmc.2011.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Akt/PKB kinases are central mediators of cell homeostasis. There are three highly homologous Akt isoforms, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ. Hyperactivation of Akt signaling is a key node in the progression of a variety of human cancer, by modulating tumor growth, chemoresistance and cancer cell migration, invasion and metastasis. It is now clear that, to understand the mechanisms on how Akt affects specific cancer cells, it is necessary to consider the relative importance of each of the three Akt isoforms in the altered cells. Akt1 is involved in tumor growth, cancer cell invasion and chemoresistance and is the predominant altered isoform found in various carcinomas. Akt2 is related to cancer cell invasion, metastasis and survival more than tumor induction. Most of the Akt2 alterations are observed in breast, ovarian, pancreatic and colorectal carcinomas. As Akt3 expression is limited to some tissues, its implication in tumor growth and resistance to drugs mostly occurs in melanomas, gliomas and some breast carcinomas. To explain how Akt isoforms can play different or even opposed roles, three mechanisms have been proposed: tissue-specificity expression/activation of Akt isoforms, distinct effect on same substrate as well as specific localization through the cyto-skeleton network. It is becoming clear that to develop an effective anticancer Akt inhibitor drug, it is necessary to target the specific Akt isoform which promotes the progression of the specific tumor.
Collapse
|
24
|
Threonine 34 phosphorylation by phosphoinositide-dependent protein kinase 1 facilitates dissociation of Akt from the plasma membrane. Int J Biochem Cell Biol 2015; 64:195-201. [PMID: 25912234 DOI: 10.1016/j.biocel.2015.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/26/2015] [Accepted: 04/13/2015] [Indexed: 01/13/2023]
Abstract
Akt is a key mediator of cell proliferation, survival and metabolism. After translocation to the membrane and phosphorylation at T308 and S473, the activated Akt dissociates from the plasma membrane to cytoplasm, which is an important step to phosphorylate its downstream targets. In addition to its central role in regulating the kinase activity, phosphorylation of T308 in the kinase loop has been reported to be necessary for this dissociation process. However, it is not clear whether the membrane detachment requires further mechanisms. In the present report, we demonstrate that membrane dissociation of Akt requires phosphoinositide-dependent protein kinase 1 (PDK1) which directly phosphorylates not only T308 but also T34 in the pleckstrin homology (PH) domain. Like T308, T34 was phosphorylated in a phosphatidylinositol 3,4,5-trisphosphate- and phosphatidylserine-dependent manner. Phosphorylation of T34 also occurred in cells following growth factor stimulation, concurrently with T308 phosphorylation. Moreover, when T34 was mutated to aspartic acid (T34D) to mimic its phosphorylation, Akt-membrane association assessed by surface plasmon resonance spectroscopy was significantly reduced. In cells, this mutation impaired the IGF-induced Akt membrane translocation and subsequent phosphorylation at T308 and S473. Taken together, our results demonstrate that T34 phosphorylation by PDK1 promotes the membrane dissociation of activated Akt for its downstream action through attenuating membrane binding affinity. This membrane dissociation mechanism offers a new insight for Akt activation process and provides a potential new target for controlling the Akt-dependent cellular processes.
Collapse
|
25
|
Jung HD, Jang TS, Wang L, Kim HE, Koh YH, Song J. Novel strategy for mechanically tunable and bioactive metal implants. Biomaterials 2015; 37:49-61. [DOI: 10.1016/j.biomaterials.2014.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/02/2014] [Indexed: 01/15/2023]
|
26
|
Sen B, Xie Z, Case N, Thompson WR, Uzer G, Styner M, Rubin J. mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow-derived mesenchymal stem cells. J Bone Miner Res 2014; 29:78-89. [PMID: 23821483 PMCID: PMC3870029 DOI: 10.1002/jbmr.2031] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 01/29/2023]
Abstract
The cell cytoskeleton interprets and responds to physical cues from the microenvironment. Applying mechanical force to mesenchymal stem cells induces formation of a stiffer cytoskeleton, which biases against adipogenic differentiation and toward osteoblastogenesis. mTORC2, the mTOR complex defined by its binding partner rictor, is implicated in resting cytoskeletal architecture and is activated by mechanical force. We asked if mTORC2 played a role in mechanical adaptation of the cytoskeleton. We found that during bi-axial strain-induced cytoskeletal restructuring, mTORC2 and Akt colocalize with newly assembled focal adhesions (FA). Disrupting the function of mTORC2, or that of its downstream substrate Akt, prevented mechanically induced F-actin stress fiber development. mTORC2 becomes associated with vinculin during strain, and knockdown of vinculin prevents mTORC2 activation. In contrast, mTORC2 is not recruited to the FA complex during its activation by insulin, nor does insulin alter cytoskeletal structure. Further, when rictor was knocked down, the ability of mesenchymal stem cells (MSC) to enter the osteoblastic lineage was reduced, and when cultured in adipogenic medium, rictor-deficient MSC showed accelerated adipogenesis. This indicated that cytoskeletal remodeling promotes osteogenesis over adipogenesis. In sum, our data show that mTORC2 is involved in stem cell responses to biophysical stimuli, regulating both signaling and cytoskeletal reorganization. As such, mechanical activation of mTORC2 signaling participates in mesenchymal stem cell lineage selection, preventing adipogenesis by preserving β-catenin and stimulating osteogenesis by generating a stiffer cytoskeleton.
Collapse
Affiliation(s)
- Buer Sen
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Li R, Wei J, Jiang C, Liu D, Deng L, Zhang K, Wang P. Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer Res 2013; 73:5742-53. [PMID: 23884910 DOI: 10.1158/0008-5472.can-13-0538] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proto-oncogene Akt plays essential roles in cell proliferation and tumorigenesis. Full activation of Akt is regulated by phosphorylation, ubiquitination, and acetylation. Here we report that SUMOylation of Akt is a novel mechanism for its activation. Systematically analyzing the role of lysine residues in Akt activation revealed that K276, which is located in a SUMOylation consensus motif, is essential for Akt activation. Ectopic or endogenous Akt1 could be modified by SUMOylation. RNA interference-mediated silencing of UBC9 reduced Akt SUMOylation, which was promoted by SUMO E3 ligase PIAS1 and reversed by the SUMO-specific protease SENP1. Although multiple sites on Akt could be SUMOylated, K276 was identified as a major SUMO acceptor site. K276R or E278A mutation reduced SUMOylation of Akt but had little effect on its ubiquitination. Strikingly, these mutations also completely abolished Akt kinase activity. In support of these results, we found that expression of PIAS1 and SUMO1 increased Akt activity, whereas expression of SENP1 reduced Akt1 activity. Interestingly, the cancer-derived mutant E17K in Akt1 that occurs in various cancers was more efficiently SUMOylated than wild-type Akt. Moreover, SUMOylation loss dramatically reduced Akt1 E17K-mediated cell proliferation, cell migration, and tumorigenesis. Collectively, our findings establish that Akt SUMOylation provides a novel regulatory mechanism for activating Akt function.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Apoptosis
- Blotting, Western
- Cell Proliferation
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Fluorescent Antibody Technique
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Phosphorylation
- Protein Inhibitors of Activated STAT/antagonists & inhibitors
- Protein Inhibitors of Activated STAT/genetics
- Protein Inhibitors of Activated STAT/metabolism
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Sumoylation
- Ubiquitin-Conjugating Enzymes/antagonists & inhibitors
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
- Ubiquitination
- Wound Healing
Collapse
Affiliation(s)
- Rong Li
- Authors' Affiliation: Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges.
Collapse
Affiliation(s)
- Young-Mi Go
- From the Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | | |
Collapse
|
29
|
Korwar AM, Bhonsle HS, Ghole VS, Gawai KR, Koppikar CB, Kulkarni MJ. Proteomic profiling and interactome analysis of ER-positive/HER2/neu negative invasive ductal carcinoma of the breast: towards proteomics biomarkers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:27-40. [PMID: 23301641 DOI: 10.1089/omi.2012.0054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Breast cancer, especially ER positive/HER2/neu negative IDC, is the predominant subtype of invasive ductal carcinoma. Although proteomic approaches have been used towards biomarker discovery in clinical breast cancer, ER positive/HER2/neu negative IDC is the least studied subtype. To discover biomarkers, as well as to understand the molecular events associated with disease progression of estrogen receptor positive/HER2/neu negative subtype of invasive ductal carcinoma, differential protein expression profiling was performed by using LC-MS(E) (MS at elevated energy). A total of 118 proteins were identified, of which 26 were differentially expressed. These identified proteins were functionally classified and their interactions and coexpression were analyzed by using bioinformatic tools PANTHER (Protein Analysis THrough Evolutionary Relationships) and STRING (Search Tool for the Retrieval of Interacting Genes). These proteins were found to be upregulated and were involved in cytoskeletal organization, calcium binding, and stress response. Interactions of annexin A5, actin, S100 A10, glyceraldehyde 3 phosphate dehydrogenase, superoxide dismutase 1, apolipoprotein, fibrinogen, and heat shock proteins were prominent. Differential expression of these proteins was validated by two-dimensional gel electrophoresis and Western blot analysis. The cluster of these proteins may serve as a signature profile for estrogen receptor positive/ HER2/neu negative subtype.
Collapse
Affiliation(s)
- Arvind M Korwar
- Department of Chemistry, University of Pune, Ganeshkhind, Pune, India
| | | | | | | | | | | |
Collapse
|
30
|
Effective identification of Akt interacting proteins by two-step chemical crosslinking, co-immunoprecipitation and mass spectrometry. PLoS One 2013; 8:e61430. [PMID: 23613850 PMCID: PMC3629208 DOI: 10.1371/journal.pone.0061430] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
Akt is a critical protein for cell survival and known to interact with various proteins. However, Akt binding partners that modulate or regulate Akt activation have not been fully elucidated. Identification of Akt-interacting proteins has been customarily achieved by co-immunoprecipitation combined with western blot and/or MS analysis. An intrinsic problem of the method is loss of interacting proteins during procedures to remove non-specific proteins. Moreover, antibody contamination often interferes with the detection of less abundant proteins. Here, we developed a novel two-step chemical crosslinking strategy to overcome these problems which resulted in a dramatic improvement in identifying Akt interacting partners. Akt antibody was first immobilized on protein A/G beads using disuccinimidyl suberate and allowed to bind to cellular Akt along with its interacting proteins. Subsequently, dithiobis[succinimidylpropionate], a cleavable crosslinker, was introduced to produce stable complexes between Akt and binding partners prior to the SDS-PAGE and nanoLC-MS/MS analysis. This approach enabled identification of ten Akt partners from cell lysates containing as low as 1.5 mg proteins, including two new potential Akt interacting partners. None of these but one protein was detectable without crosslinking procedures. The present method provides a sensitive and effective tool to probe Akt-interacting proteins. This strategy should also prove useful for other protein interactions, particularly those involving less abundant or weakly associating partners.
Collapse
|
31
|
Yu CC, Yang JC, Chang YC, Chuang JG, Lin CW, Wu MS, Chow LP. VCP phosphorylation-dependent interaction partners prevent apoptosis in Helicobacter pylori-infected gastric epithelial cells. PLoS One 2013; 8:e55724. [PMID: 23383273 PMCID: PMC3561343 DOI: 10.1371/journal.pone.0055724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/29/2012] [Indexed: 12/26/2022] Open
Abstract
Previous studies have demonstrated that valosin-containing protein (VCP) is associated with H. pylori-induced gastric carcinogenesis. By identifying the interactome of VCP overexpressed in AGS cells using a subtractive proteomics approach, we aimed to characterize the cellular responses mediated by VCP and its functional roles in H. pylori-associated gastric cancer. VCP immunoprecipitations followed by proteomic analysis identified 288 putative interacting proteins, 18 VCP-binding proteins belonged to the PI3K/Akt signaling pathway. H. pylori infection increased the interaction between Akt and VCP, Akt-dependent phosphorylation of VCP, levels of ubiquitinated proteins, and aggresome formation in AGS cells. Furthermore, phosphorylated VCP co-localized with the aggresome, bound ubiquitinated proteins, and increased the degradation of cellular regulators to protect H. pylori-infected AGS cells from apoptosis. Our study demonstrates that VCP phosphorylation following H. pylori infection promotes both gastric epithelial cell survival, mediated by the PI3K/Akt pathway, and the degradation of cellular regulators. These findings provide novel insights into the mechanisms of H. pylori infection induced gastric carcinogenesis.
Collapse
Affiliation(s)
- Cheng-Chou Yu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jyh-Chin Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ching Chang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiing-Guang Chuang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Wu Lin
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
32
|
|
33
|
Actin isoforms in neuronal development and function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:157-213. [PMID: 23317819 DOI: 10.1016/b978-0-12-407704-1.00004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton contributes directly or indirectly to nearly every aspect of neuronal development and function. This diversity of functions is often attributed to actin regulatory proteins, although how the composition of the actin cytoskeleton itself may influence its function is often overlooked. In neurons, the actin cytoskeleton is composed of two distinct isoforms, β- and γ-actin. Functions for β-actin have been investigated in axon guidance, synaptogenesis, and disease. Insight from loss-of-function in vivo studies has also revealed novel roles for β-actin in select brain structures and behaviors. Conversely, very little is known regarding functions of γ-actin in neurons. The dysregulation or mutation of both β- and γ-actin has been implicated in multiple human neurological disorders, however, demonstrating the critical importance of these still poorly understood proteins. This chapter highlights what is currently known regarding potential distinct functions for β- and γ-actin in neurons as well as the significant areas that remain unexplored.
Collapse
|
34
|
Abstract
Alpha-actinins (ACTNs) were originally identified as cytoskeletal proteins which cross-link filamentous actin to establish cytoskeletal architect that protects cells from mechanical stress and controls cell movement. Notably, unlike other ACTNs, alpha-actinin 4 (ACTN4) displays unique characteristics in signaling transduction, nuclear translocation, and gene expression regulation. Initial reports indicated that ACTN4 is part of the breast cancer cell motile apparatus and is highly expressed in the nucleus. These results imply that ACTN4 plays a role in breast cancer tumorigenesis. While several observations in breast cancer and other cancers support this hypothesis, little direct evidence links the tumorigenic phenotype with ACTN4-mediated pathological mechanisms. Recently, several studies have demonstrated that in addition to its role in coordinating cytoskeleton, ACTN4 interacts with signaling mediators, chromatin remodeling factors, and transcription factors including nuclear receptors. Thus, ACTN4 functions as a versatile promoter for breast cancer tumorigenesis and appears to be an ideal drug target for future therapeutic development.
Collapse
Affiliation(s)
- Kuo-Sheng Hsu
- Department of Biochemistry, School of Medicine, Case Western Reserve University-CWRU, The Comprehensive Cancer Center of CWRU, Cleveland, Ohio, USA
| | | |
Collapse
|
35
|
Metodiev M, Alldridge L. Phosphoproteomics: A possible route to novel biomarkers of breast cancer. Proteomics Clin Appl 2012; 2:181-94. [PMID: 21136824 DOI: 10.1002/prca.200780011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proteomics is rapidly transforming the way that cancer and other pathologies are investigated. The ability to identify hundreds of proteins and to compare their abundance in different clinical samples presents a unique opportunity for direct identification of novel disease markers. Furthermore, recent advances allow us to analyse and compare PTMs. This gives an additional dimension for defining a new class of protein biomarker based not only on abundance and expression but also on the occurrence of covalent modifications specific to a disease state or therapy response. Such modifications are often a consequence of the activation/inactivation of a particular disease related pathway. In this review we evaluate the available information on breast cancer related protein-phosphorylation events, illustrating the rationale for investigating this PTM as a target for breast cancer research with eventual clinical relevance. We present a critical survey of the published experimental strategies to study protein phosphorylation on a system wide scale and highlight recent specific advances in breast cancer phosphoproteomics. Finally we discuss the feasibility of establishing novel biomarkers for breast cancer based on the detection of patterns of specific protein phosphorylation events.
Collapse
Affiliation(s)
- Metodi Metodiev
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | | |
Collapse
|
36
|
Brouillard F, Fritsch J, Edelman A, Ollero M. Contribution of proteomics to the study of the role of cytokeratins in disease and physiopathology. Proteomics Clin Appl 2012; 2:264-85. [PMID: 21136830 DOI: 10.1002/prca.200780018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytokeratins (CKs), the most abundant group of cytoskeletal intermediate filaments, and proteomics are strongly connected. On the one hand, proteomics has been extremely useful to uncover new features and functions of CKs, on the other, the highly abundant CKs serve as an exceptional tool to test new technological developments in proteomics. As a result, proteomics has contributed to finding valuable associations of CKs with diseases as diverse as cancer, cystic fibrosis, steatohepatitis, viral and bacterial infection, keratoconus, vitreoretinopathy, preeclampsia or the chronic fatigue syndrome, as well as to characterizing their participation in a number of physiopathological processes, including drug resistance, response to toxicants, inflammation, stem cell differentiation, embryo development, and tissue repair. In some cases, like in cystic fibrosis, CKs have been described as potential therapeutic targets. The development of a specific field of proteomics where CKs become the main subject of research aims and hypotheses is suggested.
Collapse
Affiliation(s)
- Franck Brouillard
- INSERM, Unité 845, Paris, France; Faculté de Médecine René Descartes, Université Paris-Descartes, Plateau Protéomes IFR94, Paris, France
| | | | | | | |
Collapse
|
37
|
Kim BJ, Lee YS, Lee SY, Park SY, Dieplinger H, Ryu SH, Yea K, Choi S, Lee SH, Koh JM, Kim GS. Afamin secreted from nonresorbing osteoclasts acts as a chemokine for preosteoblasts via the Akt-signaling pathway. Bone 2012; 51:431-40. [PMID: 22749887 DOI: 10.1016/j.bone.2012.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/29/2012] [Accepted: 06/02/2012] [Indexed: 12/19/2022]
Abstract
Although it is well known that osteoclastic bone resorption is followed by osteoblastic bone formation, questions remain as to when coupling factors are produced during bone resorption and which stages of bone formation are affected by these factors. To clarify these mechanisms, we established an in vitro system to investigate the coupling phenomenon. We obtained conditioned media (CM) from osteoclasts in the early and late stages of differentiation and from bone resorption stages. The collected CM was used to treat primary mouse calvarial osteoblasts and preosteoblastic MC3T3-E1 cells and to evaluate its influence on the migration, viability, proliferation, and differentiation of osteoblasts. We found that CM from osteoclasts in the early stage of differentiation predominantly stimulated the migration of osteoblastic lineages. By further performing fractional analyses of the CM with liquid chromatography-tandem mass spectrometry, we identified afamin, which has binding activity with vitamin E, as a possible coupling factor. The CM collected from afamin siRNA-transfected osteoclasts significantly suppressed preosteoblast migration. Afamin activated Akt in preosteoblasts, and pretreatment with Akt inhibitor significantly blocked afamin-stimulated preosteoblast migration. In conclusion, these results indicate that osteoclasts themselves play a central role in the coupling of bone resorption and formation by stimulating preosteoblast migration. In addition, we identified afamin as one of osteoclast-derived chemokines that affect preosteoblasts through the activation of the Akt-signaling pathway.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vergara D, Bellomo C, Zhang X, Vergaro V, Tinelli A, Lorusso V, Rinaldi R, Lvov YM, Leporatti S, Maffia M. Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:891-9. [DOI: 10.1016/j.nano.2011.10.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/18/2011] [Accepted: 10/30/2011] [Indexed: 12/17/2022]
|
39
|
Zou W, Chu X, Cai C, Zou M, Meng X, Chen H, Zou F. AKT-mediated regulation of polarization in differentiated human neutrophil-like HL-60 cells. Inflamm Res 2012; 61:853-62. [PMID: 22588279 DOI: 10.1007/s00011-012-0478-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/07/2012] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Neutrophil polarization is critical for the inflammatory response. AKT is a serine/threonine protein kinase and has been implicated in cell migration. However, it is not completely clear whether AKT affects neutrophil polarization. In this study, we tested the hypothesis that AKT regulates the polarization of neutrophil-like differentiated HL-60 cells (dHL-60) in response to fMLP. METHODS HL-60 cells were differentiated into dHL-60 by incubation in medium containing 1.3 % DMSO for up to 6 days. Polarization of dHL-60 cells and primary human neutrophils were measured by Zigmond chamber. Phospho-Akt was analyzed by immunofluorescence and Western blot analysis. F-actin polymerization was detected by Rhodamine-Phalloidine staining. Rac2 activation was evaluated using GST Pull-down assay. RESULTS We found that changes in the rate of cell polarization were consistent with the changes in AKT phosphorylation levels during HL-60 cell differentiation in response to fMLP. Moreover, cell polarization and AKT phosphorylation were reduced in fMLP-stimulated dHL-60 cells pretreated with the PI3 kinase inhibitors or the AKT inhibitors, which was confirmed in the primary human neutrophils. The AKT inhibitors altered fMLP-induced F-actin polymerization. Rac2 GTPases was also decreased by the AKT inhibitors in fMLP-stimulated dHL-60 cells. CONCLUSION This study demonstrates that AKT activation plays a crucial role in dHL-60 cell polarization.
Collapse
Affiliation(s)
- Wenying Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Migration of Th1 lymphocytes is regulated by CD152 (CTLA-4)-mediated signaling via PI3 kinase-dependent Akt activation. PLoS One 2012; 7:e31391. [PMID: 22412835 PMCID: PMC3295805 DOI: 10.1371/journal.pone.0031391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 01/06/2012] [Indexed: 11/20/2022] Open
Abstract
Efficient adaptive immune responses require the localization of T lymphocytes in secondary lymphoid organs and inflamed tissues. To achieve correct localization of T lymphocytes, the migration of these cells is initiated and directed by adhesion molecules and chemokines. It has recently been shown that the inhibitory surface molecule CD152 (CTLA-4) initiates Th cell migration, but the molecular mechanism underlying this effect remains to be elucidated. Using CD4 T lymphocytes derived from OVA-specific TCR transgenic CD152-deficient and CD152-competent mice, we demonstrate that chemokine-triggered signal transduction is differentially regulated by CD152 via phosphoinositide 3-kinase (PI3K)-dependent activation of protein kinase B (PKB/Akt). In the presence of CD152 signaling, the chemoattractant CCL4 selectively induces the full activation of Akt via phosphorylation at threonine 308 and serine 473 in pro-inflammatory Th lymphocytes expressing the cognate chemokine receptor CCR5. Akt signals lead to cytoskeleton rearrangements, which are indispensable for migration. Therefore, this novel Akt-modulating function of CD152 signals affecting T cell migration demonstrates that boosting CD152 or its down-stream signal transduction could aid therapies aimed at sensitizing T lymphocytes for optimal migration, thus contributing to a precise and effective immune response.
Collapse
|
41
|
Abstract
Phosphatidylinositol lipids generated through the action of phosphinositide 3-kinase (PI3K) are key mediators of a wide array of biological responses. In particular, their role in the regulation of cell migration has been extensively studied and extends to amoeboid as well as mesenchymal migration. Through the emergence of fluorescent probes that target PI3K products as well as the use of specific inhibitors and knockout technologies, the spatio-temporal distribution of PI3K products in chemotaxing cells has been shown to represent a key anterior polarity signal that targets downstream effectors to actin polymerization. In addition, through intricate cross-talk networks PI3K products have been shown to regulate signals that control posterior effectors. Yet, in more complex environments or in conditions where chemoattractant gradients are steep, a variety of cell types can still chemotax in the absence of PI3K signals. Indeed, parallel signal transduction pathways have been shown to coordinately regulate cell polarity and directed movement. In this chapter, we will review the current role PI3K products play in the regulation of directed cell migration in various cell types, highlight the importance of mathematical modeling in the study of chemotaxis, and end with a brief overview of other signaling cascades known to also regulate chemotaxis.
Collapse
Affiliation(s)
- Michael C Weiger
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bldg.37/Rm2066, 20892-4256, Bethesda, MD, USA
| | | |
Collapse
|
42
|
Riggio M, Polo ML, Blaustein M, Colman-Lerner A, Lüthy I, Lanari C, Novaro V. PI3K/AKT pathway regulates phosphorylation of steroid receptors, hormone independence and tumor differentiation in breast cancer. Carcinogenesis 2011; 33:509-18. [PMID: 22180571 DOI: 10.1093/carcin/bgr303] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Using a model of medroxyprogesterone acetate (MPA)-induced mouse mammary tumors that transit through different stages of hormone dependence, we previously reported that the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT (protein kinase B) pathway is critical for the growth of hormone-independent (HI) mammary carcinomas but not for the growth of hormone-dependent (HD) mammary carcinomas. The objective of this work was to explore whether the activation of the PI3K/AKT pathway is responsible for the changes in tumor phenotype and for the transition to autonomous growth. We found that the inhibition of the PI3K/AKT/mTOR (mammalian target of rapamycin) pathway suppresses HI tumor growth. In addition, we were able to induce mammary tumors in mice in the absence of MPA by inoculating HD tumor cells expressing a constitutively active form of AKT1, myristoylated AKT1 (myrAKT1). These tumors were highly differentiated and displayed a ductal phenotype with laminin-1 and cytokeratin 8 expression patterns typical of HI tumors. Furthermore, myrAKT1 increased the tumor growth of IBH-6 and IBH-7 human breast cancer cell lines. In the estrogen-dependent IBH-7 cell line, myrAKT1 induced estrogen-independent growth accompanied by the expression of the adhesion markers focal adhesion kinase and E-cadherin. Finally, we found that cells expressing myrAKT1 exhibited increased phosphorylation of the progesterone receptor at Ser190 and Ser294 and of the estrogen receptor α at Ser118 and Ser167, independently of exogenous MPA or estrogen supply. Our results indicate that the activation of the PI3K/AKT/mTOR pathway promotes tissue architecture remodeling and the activation of steroid receptors.
Collapse
Affiliation(s)
- Marina Riggio
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
43
|
Huang Q, Lan F, Zheng Z, Xie F, Han J, Dong L, Xie Y, Zheng F. Akt2 kinase suppresses glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-mediated apoptosis in ovarian cancer cells via phosphorylating GAPDH at threonine 237 and decreasing its nuclear translocation. J Biol Chem 2011; 286:42211-42220. [PMID: 21979951 DOI: 10.1074/jbc.m111.296905] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein kinase B (Akt) plays important roles in regulation of cell growth and survival, but while many aspects of its mechanism of action are known, there are potentially additional regulatory events that remain to be discovered. Here we detected a 36-kDa protein that was co-immunoprecipitated with protein kinase Bβ (Akt2) in OVCAR-3 ovarian cancer cells. The protein was identified to be glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by MALDI-TOF/TOF MS, and the interaction of Akt2 and GAPDH was verified by reverse immunoprecipitation. Our further study showed that Akt2 may suppress GAPDH-mediated apoptosis in ovarian cancer cells. Overexpression of GAPDH increased ovarian cancer cell apoptosis induced by H(2)O(2), which was inhibited by Akt2 overexpression and restored by the PI3K/Akt inhibitor wortmannin or Akt2 siRNA. Akt2 phosphorylated Thr-237 of GAPDH and decreased its nuclear translocation, an essential step for GAPDH-mediated apoptosis. The interaction between Akt2 and GAPDH may be important in ovarian cancer as immunohistochemical analysis of 10 normal and 30 cancerous ovarian tissues revealed that decreased nuclear expression of GAPDH correlated with activation (phosphorylation) of Akt2. In conclusion, our study suggests that activated Akt2 may increase ovarian cancer cell survival via inhibition of GAPDH-induced apoptosis. This effect of Akt2 is partly mediated by its phosphorylation of GAPDH at Thr-237, which results in the inhibition of GAPDH nuclear translocation.
Collapse
Affiliation(s)
- Qiaojia Huang
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China.
| | - Fenghua Lan
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Zhiyong Zheng
- Department of Pathology, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Feilai Xie
- Department of Pathology, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Junyong Han
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Lihong Dong
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Yanchuan Xie
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Feng Zheng
- Department of Nephrology, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| |
Collapse
|
44
|
Wani R, Bharathi NS, Field J, Tsang AW, Furdui CM. Oxidation of Akt2 kinase promotes cell migration and regulates G1-S transition in the cell cycle. Cell Cycle 2011; 10:3263-8. [PMID: 21957489 DOI: 10.4161/cc.10.19.17738] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation has long been recognized as the key mediator of protein signaling. New modes of signaling regulation are emerging with the development of specific chemical probes and application of high-throughput mass spectrometry technologies. Using biotin-tagged chemical probes for protein oxidation, mass spectrometry and functional assays, our group has recently reported isoform-specific oxidation of Akt2 in response to PDGF signaling. The studies included here investigate the functional consequence of oxidation on Akt2-mediated cell migration and cell cycle. Akt2-KO MEFs transduced with WT and Cys124Ser Akt2 were used as the model system for these studies. The implications of these findings on disease pathology are discussed.
Collapse
Affiliation(s)
- Revati Wani
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | |
Collapse
|
45
|
Crosstalk between Raf/MEK/ERK and PI3K/AKT in suppression of Bax conformational change by Grp75 under glucose deprivation conditions. J Mol Biol 2011; 414:654-66. [PMID: 21964438 DOI: 10.1016/j.jmb.2011.09.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/15/2011] [Accepted: 09/07/2011] [Indexed: 11/22/2022]
Abstract
During glucose deprivation (GD)-induced cellular stress, the molecular chaperone glucose-regulated protein 75 (Grp75)/Mortalin/PBP74/mtHSP70 (hereafter termed "Grp75") plays an important role in the suppression of apoptosis by inhibiting the Bax conformational change that delays the release of cytochrome c. The molecular pathways by which it carries out these functions are still unclear. We hypothesize that the anti-apoptotic effect by the overexpression of Grp75 was through the signal of AKT activated by classic phosphoinositide 3-kinase (PI3K) and also involved PI3K-independent pathways. Using the PC12 cell GD model, we demonstrated a novel mechanism of Grp75 activating AKT, which may be PI3K independent and associated with Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK signaling. The PI3K inhibitor LY294002 did not influence the activation of AKT by the Grp75 overexpression under GD; however, the MEK inhibitor U0126 dramatically inhibited AKT phosphorylation in the same assay. In addition to the PI3K/AKT signal pathway, Grp75 overexpression also inhibited the Bax conformational change through the Raf/MEK/ERK signal pathway. In conclusion, Grp75 overexpression in activating AKT can be PI3K independent and associated with Raf/MEK/ERK signaling under GD. At the same time, PI3K may also crosstalk with Raf-1, in which the prosurvival signal of PI3K maintains the expression of Raf-1. The activated AKT and extracellular signal-regulated protein kinases 1 and 2 by Grp75 inhibited the Bax conformational change and subsequent apoptosis.
Collapse
|
46
|
Dobson M, Ramakrishnan G, Ma S, Kaplun L, Balan V, Fridman R, Tzivion G. Bimodal regulation of FoxO3 by AKT and 14-3-3. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1453-64. [PMID: 21621563 PMCID: PMC3237389 DOI: 10.1016/j.bbamcr.2011.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/22/2011] [Accepted: 05/02/2011] [Indexed: 12/19/2022]
Abstract
FoxO3 is a member of FoxO family transcription factors that mediate cellular functions downstream of AKT. FoxO3 phosphorylation by AKT generates binding sites for 14-3-3, which in-turn regulates FoxO3 transcriptional activity and localization. We examine here the functional significance of AKT-FoxO3 interaction and further detail the mechanistic aspects of FoxO3 regulation by AKT and 14-3-3. Our data show that AKT overexpression increases the steady-state levels of FoxO3 protein in a manner dependent on AKT activity and its ability to bind FoxO3. Characterization of the AKT-FoxO3 interaction shows that the three AKT phosphorylation-site-recognition motifs (RxRxxS/T) present on FoxO3, which are required for FoxO3 phosphorylation, are dispensable for AKT binding, suggesting that AKT has a docking point on FoxO3 distinct from the phosphorylation-recognition motifs. Development of a FoxO3 mutant deficient in 14-3-3 binding (P34A), which can be phosphorylated by AKT, established that 14-3-3 binding and not AKT phosphorylation per se controls FoxO3 transcriptional activity. Intriguingly, 14-3-3 binding was found to stabilize FoxO3 by inhibiting its dephosphorylation and degradation rates. Collectively, our data support a model where both AKT and 14-3-3 positively regulate FoxO3 in addition to their established negative roles and that 14-3-3 availability could dictate the fate of phosphorylated FoxO3 toward degradation or recycling.
Collapse
Affiliation(s)
- Melissa Dobson
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, Michigan 48201
| | - Gopalakrishnan Ramakrishnan
- Cancer Institute and Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Stephanie Ma
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, Michigan 48201
| | - Ludmila Kaplun
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, Michigan 48201
| | - Vitaly Balan
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, Michigan 48201
| | - Rafael Fridman
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, Michigan 48201
| | - Guri Tzivion
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, Michigan 48201
- Cancer Institute and Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
47
|
Rahman P, Huysmans RD, Wiradjaja F, Gurung R, Ooms LM, Sheffield DA, Dyson JM, Layton MJ, Sriratana A, Takada H, Tiganis T, Mitchell CA. Silencer of death domains (SODD) inhibits skeletal muscle and kidney enriched inositol 5-phosphatase (SKIP) and regulates phosphoinositide 3-kinase (PI3K)/Akt signaling to the actin cytoskeleton. J Biol Chem 2011; 286:29758-70. [PMID: 21712384 DOI: 10.1074/jbc.m111.263103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) regulates cell polarity and migration by generating phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) at the leading edge of migrating cells. The serine-threonine protein kinase Akt binds to PI(3,4,5)P(3), resulting in its activation. Active Akt promotes spatially regulated actin cytoskeletal remodeling and thereby directed cell migration. The inositol polyphosphate 5-phosphatases (5-ptases) degrade PI(3,4,5)P(3) to form PI(3,4)P(2), which leads to diminished Akt activation. Several 5-ptases, including SKIP and SHIP2, inhibit actin cytoskeletal reorganization by opposing PI3K/Akt signaling. In this current study, we identify a molecular co-chaperone termed silencer of death domains (SODD/BAG4) that forms a complex with several 5-ptase family members, including SKIP, SHIP1, and SHIP2. The interaction between SODD and SKIP exerts an inhibitory effect on SKIP PI(3,4,5)P(3) 5-ptase catalytic activity and consequently enhances the recruitment of PI(3,4,5)P(3)-effectors to the plasma membrane. In contrast, SODD(-/-) mouse embryonic fibroblasts exhibit reduced Akt-Ser(473) and -Thr(308) phosphorylation following EGF stimulation, associated with increased SKIP PI(3,4,5)P(3)-5-ptase activity. SODD(-/-) mouse embryonic fibroblasts exhibit decreased EGF-stimulated F-actin stress fibers, lamellipodia, and focal adhesion complexity, a phenotype that is rescued by the expression of constitutively active Akt1. Furthermore, reduced cell migration was observed in SODD(-/-) macrophages, which express the three 5-ptases shown to interact with SODD (SKIP, SHIP1, and SHIP2). Therefore, this study identifies SODD as a novel regulator of PI3K/Akt signaling to the actin cytoskeleton.
Collapse
Affiliation(s)
- Parvin Rahman
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang S, Basson MD. Akt directly regulates focal adhesion kinase through association and serine phosphorylation: implication for pressure-induced colon cancer metastasis. Am J Physiol Cell Physiol 2011; 300:C657-C670. [PMID: 21209368 PMCID: PMC3063963 DOI: 10.1152/ajpcell.00377.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/02/2011] [Indexed: 01/18/2023]
Abstract
Although focal adhesion kinase (FAK) is typically considered upstream of Akt, extracellular pressure stimulates cancer cell adhesion via Akt-dependent FAK activation. How Akt regulates FAK is unknown. We studied Akt-FAK interaction in colon cancer cells under 15 mmHg increased extracellular pressure. Pressure enhanced Akt-FAK association, blocked by inhibiting FAK or silencing Akt1 but not Akt2, and stimulated FAK serine phosphorylation in Caco-2 and human colon cancer cells from surgical specimens Akt1-dependently. FAK includes three serine (S517/601/695) and one threonine (T600)-containing consensus sequences for Akt phosphorylation. Studying S->A nonphosphorylatable point mutants suggests that these sites coordinately upregulate FAK Y397 tyrosine phosphorylation, which conventionally initiates FAK activation, and mediate pressure-induced cancer cell adhesion. FAK(T600A) mutation did not prevent pressure-induced FAK(Y397) phosphorylation or adhesion. Akt1 appeared to directly bind FAK, and this binding did not depend on the FAK autophosphorylation site (Y397). In addition, our results demonstrated that Akt phosphorylated FAK at three novel serine phosphorylation sites, which were also not required for FAK-Akt binding. This novel interaction suggests that FAK and Akt may be dual kinase targets to prevent cancer cell adhesion and metastasis.
Collapse
Affiliation(s)
- Shouye Wang
- Dept. of Surgery, Michigan State Univ., 1200 East Michigan Ave., Suite No. 655, Lansing, MI 48912, USA
| | | |
Collapse
|
49
|
Shimabukuro Y, Terashima H, Takedachi M, Maeda K, Nakamura T, Sawada K, Kobashi M, Awata T, Oohara H, Kawahara T, Iwayama T, Hashikawa T, Yanagita M, Yamada S, Murakami S. Fibroblast growth factor-2 stimulates directed migration of periodontal ligament cells via PI3K/AKT signaling and CD44/hyaluronan interaction. J Cell Physiol 2010; 226:809-21. [DOI: 10.1002/jcp.22406] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
β-Actin is a downstream effector of the PI3K/AKT signaling pathway in myeloma cells. Mol Cell Biochem 2010; 348:129-39. [DOI: 10.1007/s11010-010-0647-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/28/2010] [Indexed: 12/28/2022]
|