1
|
Zhao X, Zhao X, Di W, Wang C. Inhibitors of Cyclophilin A: Current and Anticipated Pharmaceutical Agents for Inflammatory Diseases and Cancers. Molecules 2024; 29:1235. [PMID: 38542872 PMCID: PMC10974348 DOI: 10.3390/molecules29061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Cyclophilin A, a widely prevalent cellular protein, exhibits peptidyl-prolyl cis-trans isomerase activity. This protein is predominantly located in the cytosol; additionally, it can be secreted by the cells in response to inflammatory stimuli. Cyclophilin A has been identified to be a key player in many of the biological events and is therefore involved in several diseases, including vascular and inflammatory diseases, immune disorders, aging, and cancers. It represents an attractive target for therapeutic intervention with small molecule inhibitors such as cyclosporin A. Recently, a number of novel inhibitors of cyclophilin A have emerged. However, it remains elusive whether and how many cyclophilin A inhibitors function in the inflammatory diseases and cancers. In this review, we discuss current available data about cyclophilin A inhibitors, including cyclosporin A and its derivatives, quinoxaline derivatives, and peptide analogues, and outline the most recent advances in clinical trials of these agents. Inhibitors of cyclophilin A are poised to enhance our comprehension of the molecular mechanisms that underpin inflammatory diseases and cancers associated with cyclophilin A. This advancement will aid in the development of innovative pharmaceutical treatments in the future.
Collapse
Affiliation(s)
- Xuemei Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Xin Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Weihua Di
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China
| |
Collapse
|
2
|
Kovaleva OV, Podlesnaya PA, Mochalnikova VV, Kushlinskii NE, Khromykh LM, Kalinina AA, Kazansky DB, Gratchev AN. Prognostic Significance of Tumor-Associated Inflammation in Renal Cell Carcinoma. Bull Exp Biol Med 2024; 176:382-385. [PMID: 38340200 DOI: 10.1007/s10517-024-06028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 02/12/2024]
Abstract
This study analyzed tumor-associated inflammation by assessing the expression of cyclophilin A (CypA) and TNF in samples of kidney tumors of various histological types. It was shown that different histological types of renal cell carcinoma differed by the expression of these proteins. Thus, the highest expression of CypA and TNF was observed in papillary and chromophobe kidney cancer, although no correlation with overall bacterial load was found for these tumors. In the case of clear cell renal cell carcinoma, the expression of proinflammatory factors was observed in only half of the cases and directly correlated with the presence of resident bacteria, serving as a favorable prognostic factor for the disease.
Collapse
Affiliation(s)
- O V Kovaleva
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - P A Podlesnaya
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V V Mochalnikova
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N E Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L M Khromykh
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Kalinina
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - D B Kazansky
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A N Gratchev
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
3
|
Kalinina A, Tilova L, Kirsanov K, Lesovaya E, Zhidkova E, Fetisov T, Ilyinskaya G, Yakubovskaya M, Kazansky D, Khromykh L. Secreted cyclophilin A is non-genotoxic but acts as a tumor promoter. Toxicology 2023; 500:153675. [PMID: 37993081 DOI: 10.1016/j.tox.2023.153675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Chronic inflammation is associated with malignant transformation and creates the microenvironment for tumor progression. Cyclophilin A (CypA) is one of the major pro-inflammatory mediators that accumulates and persists in the site of inflammation in high doses over time. According to multiomics analyses of transformed cells, CypA is widely recognized as a pro-oncogenic factor. Vast experimental data define the functions of intracellular CypA in carcinogenesis, but findings on the role of its secreted form in tumor formation and progression are scarce. In the studies here, we exploit short-term in vitro and in vivo tests to directly evaluate the mutagenic, recombinogenic, and blastomogenic effects, as well as the promoter activity of recombinant human CypA (rhCypA), an analogue of secreted CypA. Our findings showed that rhCypA had no genotoxicity and, thus, was neither involved in nor influenced the initiation stage of carcinogenesis. At high doses, rhCypA could disrupt gap junctions in rat liver epithelial IAR-2 cells in vitro by decreasing the expression of connexins 26 and 43 in these cells and inhibit A549 cell adhesion. These data suggested that rhCypA could contribute to epithelial-mesenchymal transition in malignant cells. The research presented here elucidated the role of secreted CypA in carcinogenesis, revealing that it is not a tumor initiator but can act as a tumor promoter at high concentrations.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia
| | - Leila Tilova
- Kabardino-Balkarian State University named after H.M. Berbekov, 173, Chernyshevsky st., 360004 Nalchik, Russia
| | - Kirill Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia; Institute of Medicine, RUDN University, 6, Miklukho-Maklaya st., 117198 Moscow, Russia
| | - Ekaterina Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia; Department of Oncology, I.P. Pavlov Ryazan State Medical University, 9, Vysokovoltnaya st., 390026 Ryazan, Russia
| | - Ekaterina Zhidkova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia
| | - Timur Fetisov
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia
| | - Galina Ilyinskaya
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia
| | - Marianna Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia
| | - Dmitry Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia
| | - Ludmila Khromykh
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia.
| |
Collapse
|
4
|
Gorry RL, Brennan K, Lavin PTM, Mazurski T, Mary C, Matallanas D, Guichou JF, Mc Gee MM. Cyclophilin A Isomerisation of Septin 2 Mediates Abscission during Cytokinesis. Int J Mol Sci 2023; 24:11084. [PMID: 37446263 PMCID: PMC10341793 DOI: 10.3390/ijms241311084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The isomerase activity of Cyclophilin A is important for midbody abscission during cell division, however, to date, midbody substrates remain unknown. In this study, we report that the GTP-binding protein Septin 2 interacts with Cyclophilin A. We highlight a dynamic series of Septin 2 phenotypes at the midbody, previously undescribed in human cells. Furthermore, Cyclophilin A depletion or loss of isomerase activity is sufficient to induce phenotypic Septin 2 defects at the midbody. Structural and molecular analysis reveals that Septin 2 proline 259 is important for interaction with Cyclophilin A. Moreover, an isomerisation-deficient EGFP-Septin 2 proline 259 mutant displays defective midbody localisation and undergoes impaired abscission, which is consistent with data from cells with loss of Cyclophilin A expression or activity. Collectively, these data reveal Septin 2 as a novel interacting partner and isomerase substrate of Cyclophilin A at the midbody that is required for abscission during cytokinesis in cancer cells.
Collapse
Affiliation(s)
- Rebecca L. Gorry
- School of Biomolecular and Biomedical Science (SBBS), Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland (K.B.)
| | - Kieran Brennan
- School of Biomolecular and Biomedical Science (SBBS), Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland (K.B.)
| | - Paul T. M. Lavin
- School of Biomolecular and Biomedical Science (SBBS), Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland (K.B.)
| | - Tayler Mazurski
- School of Biomolecular and Biomedical Science (SBBS), Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland (K.B.)
| | - Charline Mary
- Centre de Biologie Structurale, CNRS, INSERM, University Montpellier, 34090 Montpellier, France
| | - David Matallanas
- Systems Biology Ireland (SBI), School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Jean-François Guichou
- Centre de Biologie Structurale, CNRS, INSERM, University Montpellier, 34090 Montpellier, France
| | - Margaret M. Mc Gee
- School of Biomolecular and Biomedical Science (SBBS), Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland (K.B.)
| |
Collapse
|
5
|
Schiene‐Fischer C, Fischer G, Braun M. Non-Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202201597. [PMID: 35290695 PMCID: PMC9804594 DOI: 10.1002/anie.202201597] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Cyclophilins, enzymes with peptidyl-prolyl cis/trans isomerase activity, are relevant to a large variety of biological processes. The most abundant member of this enzyme family, cyclophilin A, is the cellular receptor of the immunosuppressive drug cyclosporine A (CsA). As a consequence of the pathophysiological role of cyclophilins, particularly in viral infections, there is a broad interest in cyclophilin inhibition devoid of immunosuppressive activity. This Review first gives an introduction into the physiological and pathophysiological roles of cyclophilins. The presentation of non-immunosuppressive cyclophilin inhibitors will commence with drugs based on chemical modifications of CsA. The naturally occurring macrocyclic sanglifehrins have become other lead structures for cyclophilin-inhibiting drugs. Finally, de novo designed compounds, whose structures are not derived from or inspired by natural products, will be presented. Relevant synthetic concepts will be discussed, but the focus will also be on biochemical studies, structure-activity relationships, and clinical studies.
Collapse
Affiliation(s)
- Cordelia Schiene‐Fischer
- Institute of Biochemistry and BiotechnologyMartin-Luther-University Halle-Wittenberg06099Halle (Saale)Germany
| | - Gunter Fischer
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Manfred Braun
- Institute of Organic and Macromolecular ChemistryHeinrich-Heine-University Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
6
|
Han JM, Jung HJ. Cyclophilin A/CD147 Interaction: A Promising Target for Anticancer Therapy. Int J Mol Sci 2022; 23:ijms23169341. [PMID: 36012604 PMCID: PMC9408992 DOI: 10.3390/ijms23169341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclophilin A (CypA), which has peptidyl-prolyl cis-trans isomerase (PPIase) activity, regulates multiple functions of cells by binding to its extracellular receptor CD147. The CypA/CD147 interaction plays a crucial role in the progression of several diseases, including inflammatory diseases, coronavirus infection, and cancer, by activating CD147-mediated intracellular downstream signaling pathways. Many studies have identified CypA and CD147 as potential therapeutic targets for cancer. Their overexpression promotes growth, metastasis, therapeutic resistance, and the stem-like properties of cancer cells and is related to the poor prognosis of patients with cancer. This review aims to understand the biology and interaction of CypA and CD147 and to review the roles of the CypA/CD147 interaction in cancer pathology and the therapeutic potential of targeting the CypA/CD147 axis. To validate the clinical significance of the CypA/CD147 interaction, we analyzed the expression levels of PPIA and BSG genes encoding CypA and CD147, respectively, in a wide range of tumor types using The Cancer Genome Atlas (TCGA) database. We observed a significant association between PPIA/BSG overexpression and poor prognosis, such as a low survival rate and high cancer stage, in several tumor types. Furthermore, the expression of PPIA and BSG was positively correlated in many cancers. Therefore, this review supports the hypothesis that targeting the CypA/CD147 interaction may improve treatment outcomes for patients with cancer.
Collapse
Affiliation(s)
- Jang Mi Han
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Korea
- Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
- Correspondence: ; Tel.: +82-41-530-2354; Fax: +82-41-530-2939
| |
Collapse
|
7
|
Braun M, Schiene-Fischer C, Fischer G. Non‐Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Manfred Braun
- Heinrich-Heine-Universität Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Organic CHemistry Universitätsstr. 1 40225 Düsseldorf GERMANY
| | - Cordelia Schiene-Fischer
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg Institute of Biochemistry and Biotechnology, GERMANY
| | - Gunter Fischer
- Max-Planck-Institut für Biophysikalische Chemie Abteilung Meiosis: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften Abteilung Meiosis Max Planck Institute for Biophysical Chemistry GERMANY
| |
Collapse
|
8
|
Peng L, Jiang J, Chen HN, Zhou L, Huang Z, Qin S, Jin P, Luo M, Li B, Shi J, Xie N, Deng LW, Liou YC, Nice EC, Huang C, Wei Y. Redox-sensitive cyclophilin A elicits chemoresistance through realigning cellular oxidative status in colorectal cancer. Cell Rep 2021; 37:110069. [PMID: 34852234 DOI: 10.1016/j.celrep.2021.110069] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer cells utilize rapidly elevated cellular antioxidant programs to accommodate chemotherapy-induced oxidative stress; however, the underlying mechanism remains largely unexplored. Here we screen redox-sensitive effectors as potential therapeutic targets for colorectal cancer (CRC) treatment and find that cyclophilin A (CypA) is a compelling candidate. Our results show that CypA forms an intramolecular disulfide bond between Cys115 and Cys161 upon oxidative stress and the oxidized cysteines in CypA are recycled to a reduced state by peroxiredoxin-2 (PRDX2). Furthermore, CypA reduces cellular reactive oxygen species levels and increases CRC cell survival under insults of H2O2 and chemotherapeutics through a CypA-PRDX2-mediated antioxidant apparatus. Notably, CypA is upregulated in chemoresistant CRC samples, which predicts poor prognosis. Moreover, targeting CypA by cyclosporine A exhibits promising efficacy against chemoresistant CRC when combined with chemotherapeutics. Collectively, our findings highlight CypA as a component of cellular noncanonical antioxidant defense and as a potential druggable therapeutic target to ameliorate CRC chemoresistance.
Collapse
Affiliation(s)
- Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Jiayan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117573, Singapore
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China; West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P.R. China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| |
Collapse
|
9
|
Liu J, Zuo Y, Qu GM, Song X, Liu ZH, Zhang TG, Zheng ZH, Wang HK. CypB promotes cell proliferation and metastasis in endometrial carcinoma. BMC Cancer 2021; 21:747. [PMID: 34187415 PMCID: PMC8240271 DOI: 10.1186/s12885-021-08374-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background The molecular pathogenesis of endometrial cancer is not completely understood. CypB upregulated in many cancers, however, its role in endometrial carcinoma has not been studied. Here, we determine the effect of CypB on the growth of endometrial cancer. Methods In this study, we examined the expression of CypB in endometrial cancer tissues using immunohistochemistry. CypB silenced in HEC-1-B cell line by shRNA. CCK-8, colony formation assays, wound healing assays, and transwell analysis were performed to assess its effect on tumor cell proliferation and metastasis. Furthermore, microarray analysis was carried out to compare the global mRNA expression profile between the HEC-1-B and CypB-silenced HEC-1-B cells. Gene ontology and KEGG pathway enrichment analysis were performed to determine the potential function of differentially expressed genes related to CypB. Results We found that CypB was upregulated in endometrial cancer, inhibit CypB expression could significantly suppress cell proliferation, metastasis, and migration. We identified 1536 differentially expressed genes related to CypB (onefold change, p < 0.05), among which 652 genes were upregulated and 884 genes were downregulated. The genes with significant difference in top were mainly enriched in the cell cycle, glycosphingolipid biosynthesis, adherens junctions, and metabolism pathways. Conclusion The results of our study suggest that CypB may serve as a novel regulator of endometrial cell proliferation and metastasis, thus representing a novel target for gene-targeted endometrial therapy. Trial registration YLYLLS [2018] 008. Registered 27 November 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08374-7.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Medical College of Qingdao University, Yantai, China
| | - Ying Zuo
- Department of Gynecology, Affiliated Yantai Yuhuangding Hospital, Medical College of Qingdao University, Yantai, China
| | - Gui-Mei Qu
- Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Medical College of Qingdao University, Yantai, China
| | - Xiao Song
- Department of Pathology, People's Hospital of Rong cheng, Weihai, China
| | - Zhong-Hui Liu
- Department of Pathology, Yantai Muping District Traditional Chinese Medicine Hospital, Yantai, China
| | - Ting-Guo Zhang
- Department of Pathology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhu-Hua Zheng
- Department of Pediatrics, Traditional Chinese Medicine Hospital of Rushan, Weihai, China
| | - Hong-Kun Wang
- Department of Gynaecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Alam MN, Yu JQ, Beale P, Huq F. Dose and Sequence Dependent Synergism from the Combination of Oxaliplatin with Emetine and Patulin Against Colorectal Cancer. Anticancer Agents Med Chem 2021; 20:264-273. [PMID: 31736447 DOI: 10.2174/1871520619666191021112042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Colorectal cancer is the third most commonly diagnosed cancer in the world, causing many deaths every year. Combined chemotherapy has opened a new horizon in treating colorectal cancer. The objective of the present study is to investigate the activity of oxaliplatin in combination with emetine and patulin against colorectal cancer models. METHODS IC50 values of oxaliplatin, emetine and patulin were determined against human colorectal cancer cell lines (HT-29 and Caco-2) using MTT reduction assay. Synergistic, antagonistic and additive effects from the selected binary combinations were determined as a factor of sequence of administration and added concentrations. Proteomics was carried out to identify the proteins which were accountable for combined drug action applying to the selected drug combination. RESULTS Oxaliplatin in combination with patulin produced synergism against human colorectal cancer models depending on dose and sequence of drug administration. Bolus administration of oxaliplatin with patulin proved to be the best in terms of synergistic outcome. Altered expressions of nine proteins (ACTG, PROF1, PPIA, PDIA3, COF1, GSTP1, ALDOA, TBA1C and TBB5) were considered for combined drug actions of oxaliplatin with patulin. CONCLUSION Bolus administration of oxaliplatin with patulin has the potential to be used in the treatment of colorectal cancer, and would warrant further evaluation using suitable animal model.
Collapse
Affiliation(s)
- Md Nur Alam
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| | - Jun Q Yu
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| | - Philip Beale
- Sydney Cancer Centre, Concord Hospital, Sydney, NSW 2139, Australia
| | - Fazlul Huq
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Sun S, Guo W, Wang Z, Wang X, Zhang G, Zhang H, Li R, Gao Y, Qiu B, Tan F, Gao Y, Xue Q, Gao S, He J. Development and validation of an immune-related prognostic signature in lung adenocarcinoma. Cancer Med 2020; 9:5960-5975. [PMID: 32592319 PMCID: PMC7433810 DOI: 10.1002/cam4.3240] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/29/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lung adenocarcinomas (LUAD) is the most common histological subtype of lung cancers. Tumor immune microenvironment (TIME) is involved in tumorigeneses, progressions, and metastases. This study is aimed to develop a robust immune-related signature of LUAD. METHODS A total of 1774 LUAD cases sourced from public databases were included in this study. Immune scores were calculated through ESTIMATE algorithm and weighted gene co-expression network analysis (WGCNA) was applied to identify immune-related genes. Stability selections and Lasso COX regressions were implemented to construct prognostic signatures. Validations and comparisons with other immune-related signatures were conducted in independent Gene Expression Omnibus (GEO) cohorts. Abundant infiltrated immune cells and pathway enrichment analyses were carried out, respectively, through ImmuCellAI and gene set enrichment analysis (GSEA). RESULTS In Cancer Genome Atlas (TCGA) LUAD cohorts, immune scores of higher levels were significantly associated with better prognoses (P < .05). Yellow (n = 270) and Blue (n = 764) colored genes were selected as immune-related genes, and after univariate Cox regression analysis (P < .005), a total of 133 genes were screened out for subsequent model constructions. A four-gene signature (ARNTL2, ECT2, PPIA, and TUBA4A) named IPSLUAD was developed through stability selection and Lasso COX regression. It was suggested by multivariate and subgroup analyses that IPSLUAD was an independent prognostic factor. It was suggested by Kaplan-Meier survival analysis that eight out of nine patients in high-risk groups had significantly worse prognoses in validation data sets (P < .05). IPSLUAD outperformed other signatures in two independent cohorts. CONCLUSIONS A robust immune-related prognostic signature with great performances in multiple LUAD cohorts was developed in this study.
Collapse
Affiliation(s)
- Sijin Sun
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Wei Guo
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Zhen Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Xin Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Guochao Zhang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Hao Zhang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Renda Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Yibo Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Bin Qiu
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Fengwei Tan
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Yushun Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Qi Xue
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Shugeng Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| | - Jie He
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeChaoyang DistrictBeijingChina
| |
Collapse
|
12
|
Cyclophilin A/EMMPRIN Axis Is Involved in Pro-Fibrotic Processes Associated with Thoracic Aortic Aneurysm of Marfan Syndrome Patients. Cells 2020; 9:cells9010154. [PMID: 31936351 PMCID: PMC7016677 DOI: 10.3390/cells9010154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Marfan syndrome (MFS) is a genetic disease, characterized by thoracic aortic aneurysm (TAA), which treatment is to date purely surgical. Understanding of novel molecular targets is mandatory to unveil effective pharmacological approaches. Cyclophilin A (CyPA) and its receptor EMMPRIN are associated with several cardiovascular diseases, including abdominal aortic aneurysm. Here, we envisioned the contribution of CyPA/EMMPRIN axis in MFS-related TAA. Methods: We obtained thoracic aortic samples from healthy controls (HC) and MFS patients’ aortas and then isolated vascular smooth muscle cells (VSMC) from the aortic wall. Results: our findings revealed that MFS aortic tissue samples isolated from the dilated zone of aorta showed higher expression levels of EMMPRIN vs. MFS non-dilated aorta and HC. Interestingly, angiotensin II significantly stimulated CyPA secretion in MFS-derived VSMC (MFS-VSMC). CyPA treatment on MFS-VSMC led to increased levels of EMMPRIN and other MFS-associated pro-fibrotic mediators, such as TGF-β1 and collagen I. These molecules were downregulated by in vitro treatment with CyPA inhibitor MM284. Our results suggest that CyPA/EMMPRIN axis is involved in MFS-related TAA development, since EMMPRIN is upregulated in the dilated zone of MFS patients’ TAA and the inhibition of its ligand, CyPA, downregulated EMMPRIN and MFS-related markers in MFS-VSMC. Conclusions: these insights suggest both a novel detrimental role for CyPA/EMMPRIN axis and its inhibition as a potential therapeutic strategy for MFS-related TAA treatment.
Collapse
|
13
|
Ceylan Y, Akpınar G, Doger E, Kasap M, Guzel N, Karaosmanoglu K, Kopuk SY, Yucesoy I. Proteomic analysis in endometrial cancer and endometrial hyperplasia tissues by 2D-DIGE technique. J Gynecol Obstet Hum Reprod 2019; 49:101652. [PMID: 31783195 DOI: 10.1016/j.jogoh.2019.101652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To compare the protein expression of complex atypical endometrial hyperplasia, endometrial carcinoma and healthy endometrial tissues, and by this way, to identify proteins that can be used for diagnosis, prognosis and therapeutic targets. METHODS Histopathological examination of the D&C material had reported "benign endometrial changes", "complex atypical endometrial hyperplasia" and "endometrioid adenocarcinoma" and 30 patients ,who underwent surgery with these diagnosis, were studied. Protein profiles of the study groups were detected using 2D-DIGE technique and compared to the control group. Protein spots which showing different expression, were defined by MALDI TOF/TOF-MS method. RESULTS In the present study, significant elevations were observed in the levels of K2C8, UAP56, ENOA, ACTB, GRP78, GSTP1, PSME1, CALR, PPIA, PDIA3 and IDHc proteins when comparisons were made among the cancer cases and the healthy and complex atypical hyperplasia cases. We determined that the induction of CALR activity may be a factor that progresses apoptosis, thus, may be a hope for postoperative new chemotherapy treatment methods. Moreover, when the expressions of the CAH1 and PPIB proteins are compared to complex atypical hyperplasia and endometrial adenocarcinoma stages, we determined that the CAH1 and PPIB levels increased in more advanced stages. Among these indicators, the proteins that had the closest relation to advanced stage cancer were determined as K2C8, UAP56 and GRP78. CONCLUSION We think that it would be useful to determine the diagnosis, prediction of prognosis and identifying therapeutic targets of the highlighted proteins of our study that are K2C8, UAP56, GRP78 and CALR in endometrial cancer.
Collapse
Affiliation(s)
- Yasin Ceylan
- Kızıltepe State Hospital, Department of Obstetrics and Gynecology, Mardin, Turkey.
| | - Gurler Akpınar
- Kocaeli University School of Medicine, Department of Medical Biology, Kocaeli, Turkey
| | - Emek Doger
- Kocaeli University School of Medicine, Department of Obstetrics and Gynecology, Kocaeli, Turkey
| | - Murat Kasap
- Kocaeli University School of Medicine, Department of Medical Biology, Kocaeli, Turkey
| | - Nil Guzel
- Kocaeli University School of Medicine, Department of Medical Biology, Kocaeli, Turkey
| | - Kubra Karaosmanoglu
- Kocaeli University School of Medicine, Department of Medical Biology, Kocaeli, Turkey
| | - Sule Yıldırım Kopuk
- Sağlık Bilimleri University Umraniye Health and Education Hospital, Department of Obstetrics and Gynecology, Istanbul, Turkey
| | - Izzet Yucesoy
- Kocaeli University School of Medicine, Department of Obstetrics and Gynecology, Kocaeli, Turkey
| |
Collapse
|
14
|
Njoku K, Chiasserini D, Whetton AD, Crosbie EJ. Proteomic Biomarkers for the Detection of Endometrial Cancer. Cancers (Basel) 2019; 11:cancers11101572. [PMID: 31623106 PMCID: PMC6826703 DOI: 10.3390/cancers11101572] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023] Open
Abstract
Endometrial cancer is the leading gynaecological malignancy in the western world and its incidence is rising in tandem with the global epidemic of obesity. Early diagnosis is key to improving survival, which at 5 years is less than 20% in advanced disease and over 90% in early-stage disease. As yet, there are no validated biological markers for its early detection. Advances in high-throughput technologies and machine learning techniques now offer unique and promising perspectives for biomarker discovery, especially through the integration of genomic, transcriptomic, proteomic, metabolomic and imaging data. Because the proteome closely mirrors the dynamic state of cells, tissues and organisms, proteomics has great potential to deliver clinically relevant biomarkers for cancer diagnosis. In this review, we present the current progress in endometrial cancer diagnostic biomarker discovery using proteomics. We describe the various mass spectrometry-based approaches and highlight the challenges inherent in biomarker discovery studies. We suggest novel strategies for endometrial cancer detection exploiting biologically important protein biomarkers and set the scene for future directions in endometrial cancer biomarker research.
Collapse
Affiliation(s)
- Kelechi Njoku
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 5th Floor Research, St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK.
- Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK.
- Stoller Biomarker Discovery Centre, Institute of Cancer Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Davide Chiasserini
- Stoller Biomarker Discovery Centre, Institute of Cancer Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Anthony D Whetton
- Stoller Biomarker Discovery Centre, Institute of Cancer Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Emma J Crosbie
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 5th Floor Research, St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK.
- Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK.
| |
Collapse
|
15
|
Zhang Y, He Y, Lu LL, Zhou ZY, Wan NB, Li GP, He X, Deng HW. miRNA-192-5p impacts the sensitivity of breast cancer cells to doxorubicin via targeting peptidylprolyl isomerase A. Kaohsiung J Med Sci 2019; 35:17-23. [PMID: 30844143 DOI: 10.1002/kjm2.12004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/22/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yi Zhang
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Ying He
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Ling-Li Lu
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Zheng-Yu Zhou
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Neng-Bin Wan
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Guo-Peng Li
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Xiao He
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Hong-Wu Deng
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| |
Collapse
|
16
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 433] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
17
|
Hou X, Liu R, Huang C, Jiang L, Zhou Y, Chen Q. Cyclophilin A was revealed as a candidate marker for human oral submucous fibrosis by proteomic analysis. Cancer Biomark 2018; 20:345-356. [PMID: 28826174 DOI: 10.3233/cbm-170142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral submucous fibrosis (OSF) is a chronic insidious disease which predisposes to oral cancer. Understanding the molecular markers for OSF is critical for diagnosis and treatment of oral cancer. In this study, the proteins expression profile of OSF tissues was compared to normal mucous tissues by 2 dimensional electrophoresis (2-DE). The 2-DE images were analyzed through cut, spot detection and match analysis using mass spectrometry (MS). Differentially expressed genes were identified as candidates. RT-PCR, Western Blot and immunohistochemistry were performed to validate the difference in expression of the candidates between OSF and normal mucous tissues. The shRNA targeted to the candidates were then transfected by Lipofectamine2000 to the 3T3 cells to study gene function. Cell proliferation and apoptosis were measured by MTT, clonogenic formation, PI and TUNEL staining. From the proteomic analysis, 94 of the 182 selected spots with differential expression were identified by MS analysis and Cyclophilin A (CYPA) was determined to be the OSF-associated protein candidate. The significant differences in expression between OSF and normal tissues were verified and confirmed by RT-PCR, Western blot and Immunohistochemical analysis. Inhibition of CYPA expression by RNA interference suggested its potential activities involved in cell proliferation and apoptosis process. In conclusion, these results indicated a novel molecular mechanism of OSF pathogenesis and demonstrated CYPA as a potential biomarker and gene intervention targets of OSF. These data may help the development for therapeutics of oral cancer.
Collapse
Affiliation(s)
- Xiaohui Hou
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai 200072, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Canhua Huang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
18
|
Rodriguez-Bussey I, Yao XQ, Shouaib AD, Lopez J, Hamelberg D. Decoding Allosteric Communication Pathways in Cyclophilin A with a Comparative Analysis of Perturbed Conformational Ensembles. J Phys Chem B 2018; 122:6528-6535. [DOI: 10.1021/acs.jpcb.8b03824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Isela Rodriguez-Bussey
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Abdullah Danish Shouaib
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Jonathan Lopez
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
19
|
Deng X, Dai P, Yu M, Chen L, Zhu C, You X, Li L, Zeng Y. Cyclophilin A is the potential receptor of the Mycoplasma genitalium adhesion protein. Int J Med Microbiol 2018; 308:405-412. [DOI: 10.1016/j.ijmm.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/16/2018] [Accepted: 03/05/2018] [Indexed: 11/29/2022] Open
|
20
|
Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J 2018; 9:77-102. [PMID: 29515689 PMCID: PMC5833337 DOI: 10.1007/s13167-018-0128-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Cancer with heavily economic and social burden is the hot point in the field of medical research. Some remarkable achievements have been made; however, the exact mechanisms of tumor initiation and development remain unclear. Cancer is a complex, whole-body disease that involves multiple abnormalities in the levels of DNA, RNA, protein, metabolite and medical imaging. Biological omics including genomics, transcriptomics, proteomics, metabolomics and radiomics aims to systematically understand carcinogenesis in different biological levels, which is driving the shift of cancer research paradigm from single parameter model to multi-parameter systematical model. The rapid development of various omics technologies is driving one to conveniently get multi-omics data, which accelerates predictive, preventive and personalized medicine (PPPM) practice allowing prediction of response with substantially increased accuracy, stratification of particular patients and eventual personalization of medicine. This review article describes the methodology, advances, and clinically relevant outcomes of different "omics" technologies in cancer research, and especially emphasizes the importance and scientific merit of integrating multi-omics in cancer research and clinically relevant outcomes.
Collapse
Affiliation(s)
- Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- The State Key Laboratory of Medical Genetics, Central South University, 88 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| |
Collapse
|
21
|
Xie X, Jiang Y, Yuan Y, Wang P, Li X, Chen F, Sun C, Zhao H, Zeng X, Jiang L, Zhou Y, Dan H, Feng M, Liu R, Chen Q. MALDI imaging reveals NCOA7 as a potential biomarker in oral squamous cell carcinoma arising from oral submucous fibrosis. Oncotarget 2018; 7:59987-60004. [PMID: 27509054 PMCID: PMC5312364 DOI: 10.18632/oncotarget.11046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/09/2016] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) ranks among the most common cancer worldwide, and is associated with severe morbidity and high mortality. Oral submucous fibrosis (OSF), characterized by fibrosis of the mucosa of the upper digestive tract, is a pre-malignant lesion, but the molecular mechanisms underlying this malignant transformation remains to be elucidated. In this study, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS)-based proteomic strategy was employed to profile the differentially expressed peptides/proteins between OSCC tissues and the corresponding adjacent non-cancerous OSF tissues. Sixty-five unique peptide peaks and nine proteins were identified with altered expression levels. Of them, expression of NCOA7 was found to be up-regulated in OSCC tissues by immunohistochemistry staining and western blotting, and correlated with a pan of clinicopathologic parameters, including lesion site, tumor differentiation status and lymph node metastasis. Further, we show that overexpression of NCOA7 promotes OSCC cell proliferation in either in vitro or in vivo models. Mechanistic study demonstrates that NCOA7 induces OSCC cell proliferation probably by activating aryl hydrocarbon receptor (AHR). The present study suggests that NCOA7 is a potential biomarker for early diagnosis of OSF malignant transformation, and leads to a better understanding of the molecular mechanisms responsible for OSCC development.
Collapse
Affiliation(s)
- Xiaoyan Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fangman Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chongkui Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingye Feng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Li T, Yan B, Ma Y, Weng J, Yang S, Zhao N, Wang X, Sun X. Ubiquitin-specific protease 4 promotes hepatocellular carcinoma progression via cyclophilin A stabilization and deubiquitination. Cell Death Dis 2018; 9:148. [PMID: 29396555 PMCID: PMC5833721 DOI: 10.1038/s41419-017-0182-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022]
Abstract
Ubiquitin-specific protease 4 (USP4) is a member of the deubiquitinating enzyme family, which plays an important role in human tumor diseases. However, the mechanisms by which USP4 facilitates tumor development, especially in hepatocellular carcinoma (HCC), remain unclear. Clinically, we found that USP4 is overexpressed in human HCC tissues compared with adjacent non-tumoral tissues and is significantly correlated with malignant phenotype characteristics, including tumor size, tumor number, differentiation, serum alpha-fetoprotein level, and vascular invasion. Moreover, Kaplan-Meier survival analysis showed a poor overall survival rate in patients with USP4-overexpressing tumors. Analyses of univariate and multivariate Cox proportional hazard models indicated that USP4 is a prognostic biomarker for poor outcome. Using in vitro and in vivo assays, we demonstrated that USP4 overexpression enhanced HCC cell growth, migration, and invasion. Mechanistically, cyclophilin A (CypA) was identified as an important molecule for USP4-mediated oncogenic activity in HCC. We observed that USP4 interacted with CypA and inhibited CypA degradation via deubiquitination in HCC cells. Subsequently, the USP4/CypA complex activated the MAPK signaling pathway and prevented CrkII phosphorylation. These data suggest that USP4 acts as a novel prognostic marker, offering potential therapeutic opportunities for HCC.
Collapse
Affiliation(s)
- Tianyi Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bin Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yang Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Junyong Weng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shouwen Yang
- Department of Gynaecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Nan Zhao
- Department of General Surgery, Shanghai General Hospital, Nanjing Medical University, Shanghai, China
| | - Xiaoliang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Martinez-Garcia E, Lesur A, Devis L, Campos A, Cabrera S, van Oostrum J, Matias-Guiu X, Gil-Moreno A, Reventos J, Colas E, Domon B. Development of a sequential workflow based on LC-PRM for the verification of endometrial cancer protein biomarkers in uterine aspirate samples. Oncotarget 2018; 7:53102-53115. [PMID: 27447978 PMCID: PMC5288171 DOI: 10.18632/oncotarget.10632] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/07/2016] [Indexed: 11/25/2022] Open
Abstract
About 30% of endometrial cancer (EC) patients are diagnosed at an advanced stage of the disease, which is associated with a drastic decrease in the 5-year survival rate. The identification of biomarkers in uterine aspirate samples, which are collected by a minimally invasive procedure, would improve early diagnosis of EC. We present a sequential workflow to select from a list of potential EC biomarkers, those which are the most promising to enter a validation study. After the elimination of confounding contributions by residual blood proteins, 52 potential biomarkers were analyzed in uterine aspirates from 20 EC patients and 18 non-EC controls by a high-resolution accurate mass spectrometer operated in parallel reaction monitoring mode. The differential abundance of 26 biomarkers was observed, and among them ten proteins showed a high sensitivity and specificity (AUC > 0.9). The study demonstrates that uterine aspirates are valuable samples for EC protein biomarkers screening. It also illustrates the importance of a biomarker verification phase to fill the gap between discovery and validation studies and highlights the benefits of high resolution mass spectrometry for this purpose. The proteins verified in this study have an increased likelihood to become a clinical assay after a subsequent validation phase.
Collapse
Affiliation(s)
- Elena Martinez-Garcia
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoine Lesur
- Luxembourg Clinical Proteomics Center (LCP), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Laura Devis
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alexandre Campos
- Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Silvia Cabrera
- Gynecological Oncology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Jan van Oostrum
- Luxembourg Clinical Proteomics Center (LCP), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Xavier Matias-Guiu
- Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Gynecological Oncology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Jaume Reventos
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Basic Sciences Department, International University of Catalonia, Barcelona, Spain
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| | - Bruno Domon
- Luxembourg Clinical Proteomics Center (LCP), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| |
Collapse
|
24
|
Ura B, Monasta L, Arrigoni G, Franchin C, Radillo O, Peterlunger I, Ricci G, Scrimin F. A proteomic approach for the identification of biomarkers in endometrial cancer uterine aspirate. Oncotarget 2017; 8:109536-109545. [PMID: 29312627 PMCID: PMC5752540 DOI: 10.18632/oncotarget.22725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Endometrial cancer arises from the endometrium. It has a slow progression and a reported survival rate of 75%. The identification of soluble biomarkers in the uterine aspirate may be very useful for its early diagnosis. Uterine aspirates from 10 patients with endometrial cancer and 6 non-endometrial cancer controls were analyzed by two-dimensional gel electrophoresis coupled with mass spectrometry and western blotting for data verification. A total of 25 proteins with fold change in %V ≥2 or ≤0.5 in intensity were observed to change significantly (P<0.05). From the discovery phase, four proteins (costars family protein ABRACL, phosphoglycerate mutase 2, fibrinogen beta chain, annexin A3) were found to be present in the uterine aspirate of endometrial cancers and not in healthy aspirates. Western blotting verification data demonstrated that costars family protein ABRACL, phosphoglycerate mutase 2 were present only in endometrial cancer uterine aspirate while fibrinogen beta chain, annexin A3 were also present in healthy aspirates. To our knowledge, phosphoglycerate mutase 2 has not been previously associated with endometrial cancer. In this study we demonstrate that uterine aspirates are a promising biological fluid in which to identify endometrial cancer biomarkers. In our opinion proteins like costars family protein ABRACL and phosphoglycerate mutase 2 have a great potential to reach the clinical phase after a validation phase.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Padova, Italy
| | - Oriano Radillo
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Isabel Peterlunger
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy.,Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Federica Scrimin
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
25
|
Perrucci GL, Rurali E, Gowran A, Pini A, Antona C, Chiesa R, Pompilio G, Nigro P. Vascular smooth muscle cells in Marfan syndrome aneurysm: the broken bricks in the aortic wall. Cell Mol Life Sci 2017; 74:267-277. [PMID: 27535662 PMCID: PMC11107581 DOI: 10.1007/s00018-016-2324-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 01/22/2023]
Abstract
Marfan syndrome (MFS) is a connective tissue disorder with multiple organ manifestations. The genetic cause of this syndrome is the mutation of the FBN1 gene, encoding the extracellular matrix (ECM) protein fibrillin-1. This genetic alteration leads to the degeneration of microfibril structures and ECM integrity in the tunica media of the aorta. Indeed, thoracic aortic aneurysm and dissection represent the leading cause of death in MFS patients. To date, the most effective treatment option for this pathology is the surgical substitution of the damaged aorta. To highlight novel therapeutic targets, we review the molecular mechanisms related to MFS etiology in vascular smooth muscle cells, the foremost cellular type involved in MFS pathogenesis.
Collapse
Affiliation(s)
- Gianluca L Perrucci
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Erica Rurali
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Alessandro Pini
- Department of Cardiology, Marfan Clinic®, "Luigi Sacco" University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
| | - Carlo Antona
- Cardiovascular Surgery Department, "Luigi Sacco" University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
- FoRCardioLab, "Luigi Sacco" University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
| | - Roberto Chiesa
- Department of Vascular Surgery, San Raffaele Scientific Institute Hospital, Vita-Salute University, Milan, Italy
| | - Giulio Pompilio
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy.
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy.
| | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy.
| |
Collapse
|
26
|
Cheng S, Luo M, Ding C, Peng C, Lv Z, Tong R, Xiao H, Xie H, Zhou L, Wu J, Zheng S. Downregulation of Peptidylprolyl isomerase A promotes cell death and enhances doxorubicin-induced apoptosis in hepatocellular carcinoma. Gene 2016; 591:236-244. [PMID: 27397650 DOI: 10.1016/j.gene.2016.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 02/05/2023]
Abstract
Peptidylprolyl isomerase A (PPIA) is a peptidyl-prolyl cis-trans isomerase that is known to play a critical role in the development of many human cancers. However, the precise biological function of PPIA in hepatocellular carcinoma (HCC) remains largely unclear. In this study, lentiviral overexpression vectors and small interfering RNA knockdown methods were employed to investigate the biological effects of PPIA in HCC. PPIA levels in HCC tissues and peritumoral tissues were detected by real-time Polymerase Chain Reaction (RT-PCR), Western blotting, and immunohistochemistry. Our results indicate that PPIA levels were significantly higher in the HCC tissues compared to the matched peritumoral tissues. Moreover, PPIA expression was significantly associated with tumor size in these tissues. Interestingly, serum PPIA (sPPIA) levels were significantly higher in healthy controls compared to the HCC patients. Knockdown or overexpression of PPIA was shown to downregulate and upregulate cell growth, respectively. Moreover, PPIA siRNA knockdown appears to promote doxorubicin-induced apoptosis in HCC cells, altering the expression of downstream apoptotic factors. In summary, our results indicate that PPIA may play a pivotal role in HCC by regulating cell growth and could serve as a novel marker and therapeutic molecular target for HCC patients.
Collapse
Affiliation(s)
- Shaobing Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Mengchao Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chaofeng Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chuanhui Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhen Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Rongliang Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Heng Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haiyang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
27
|
Brichkina A, Nguyen NT, Baskar R, Wee S, Gunaratne J, Robinson RC, Bulavin DV. Proline isomerisation as a novel regulatory mechanism for p38MAPK activation and functions. Cell Death Differ 2016; 23:1592-601. [PMID: 27233083 DOI: 10.1038/cdd.2016.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/05/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022] Open
Abstract
The stress-induced p38 mitogen-activated protein kinase (MAPK) pathway plays an essential role in multiple physiological processes, including cancer. In turn, p38MAPK phosphorylation at Thr180 and Tyr182 is a key regulatory mechanism for its activation and functions. Here we show that this mechanism is actively regulated through isomerisation of Pro224. Different cyclophilins can isomerise this proline residue and modulate the ability of upstream kinases to phosphorylate Thr180 and Tyr182. In vivo mutation of Pro224 to Ile in endogenous p38MAPK significantly reduced its phosphorylation and activity. This resulted in attenuation of p38MAPK signalling, which in turn caused an enhanced apoptosis and sensitivity to a DNA-damaging drug, cisplatin. We further found a reduction in size and number of lesions in homozygous mice carrying the p38MAPK P224I substitution in a K-ras model of lung tumorigenesis. We propose that cyclophilin-dependent isomerisation of p38MAPK is an important novel mechanism in regulating p38MAPK phosphorylation and functions. Thus, inhibition of this process, including with drugs that are in clinical trials, may improve the efficacy of current anti-cancer therapeutic regimes.
Collapse
Affiliation(s)
- A Brichkina
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - N Tm Nguyen
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - R Baskar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - S Wee
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - J Gunaratne
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore
| | - R C Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - D V Bulavin
- Institute for Research on Cancer and Aging of Nice (IRCAN), INSERM, U1081-UMR CNRS 7284, University of Nice - Sophia Antipolis, Centre Antoine Lacassagne, Nice, France
| |
Collapse
|
28
|
Jeon YM, Lee MY. Airborne nanoparticles (PM0.1 ) induce autophagic cell death of human neuronal cells. J Appl Toxicol 2016; 36:1332-42. [PMID: 27080386 DOI: 10.1002/jat.3324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Airborne nanoparticles PM0.1 (<100 nm in diameter) were collected and their chemical composition was determined. Al was by far the most abundant metal in the PM0.1 followed by Zn, Cr, Mn, Cu, Pb and Ni. Exposure to PM0.1 resulted in a cell viability decrease in human neuronal cells SH-SY5Y in a concentration-dependent manner. Upon treatment with N-acetylcysteine, however, cell viability was significantly recovered, suggesting the involvement of reactive oxygen species (ROS). Cellular DNA damage by PM0.1 was also detected by the Comet assay. PM0.1 -induced autophagic cell death was explained by an increase in the expression of microtubule-associated protein light chain 3A-ІІ (LC3A-ІІ) and autophagy-related protein Atg 3 and Atg 7. Analysis of 2-DE gels revealed that six proteins were upregulated, whereas eight proteins were downregulated by PM0.1 exposure. Neuroinflammation-related lithostathine and cyclophilin A complexed with dipeptide Gly-Pro, autophagy-related heat shock protein gp96 and neurodegeneration-related triosephosphate isomerase were significantly changed upon exposure to PM0.1 . These results, taken together, suggest that PM0.1 -induced oxidative stress via ROS generation plays a key role in autophagic cell death and differential protein expressions in SH-SY5Y cells. This might provide a plausible explanation for the underlying mechanisms of PM0.1 toxicity in neuronal cells and even the pathogenesis of diseases associated with its exposure. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yu-Mi Jeon
- Department of Medical Science, Graduate School of Soonchunhyang University, Asan, Chungnam, 336-745, Republic of Korea.,Korea Brain Research Institute, Research Division, Daegu, 700-010, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Science, Graduate School of Soonchunhyang University, Asan, Chungnam, 336-745, Republic of Korea.,Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, 336-745, Republic of Korea
| |
Collapse
|
29
|
Chen C, Zhang LG, Liu J, Han H, Chen N, Yao AL, Kang SS, Gao WX, Shen H, Zhang LJ, Li YP, Cao FH, Li ZG. Bioinformatics analysis of differentially expressed proteins in prostate cancer based on proteomics data. Onco Targets Ther 2016; 9:1545-57. [PMID: 27051295 PMCID: PMC4803245 DOI: 10.2147/ott.s98807] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We mined the literature for proteomics data to examine the occurrence and metastasis of prostate cancer (PCa) through a bioinformatics analysis. We divided the differentially expressed proteins (DEPs) into two groups: the group consisting of PCa and benign tissues (P&b) and the group presenting both high and low PCa metastatic tendencies (H&L). In the P&b group, we found 320 DEPs, 20 of which were reported more than three times, and DES was the most commonly reported. Among these DEPs, the expression levels of FGG, GSN, SERPINC1, TPM1, and TUBB4B have not yet been correlated with PCa. In the H&L group, we identified 353 DEPs, 13 of which were reported more than three times. Among these DEPs, MDH2 and MYH9 have not yet been correlated with PCa metastasis. We further confirmed that DES was differentially expressed between 30 cancer and 30 benign tissues. In addition, DEPs associated with protein transport, regulation of actin cytoskeleton, and the extracellular matrix (ECM)–receptor interaction pathway were prevalent in the H&L group and have not yet been studied in detail in this context. Proteins related to homeostasis, the wound-healing response, focal adhesions, and the complement and coagulation pathways were overrepresented in both groups. Our findings suggest that the repeatedly reported DEPs in the two groups may function as potential biomarkers for detecting PCa and predicting its aggressiveness. Furthermore, the implicated biological processes and signaling pathways may help elucidate the molecular mechanisms of PCa carcinogenesis and metastasis and provide new targets for clinical treatment.
Collapse
Affiliation(s)
- Chen Chen
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Li-Guo Zhang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Jian Liu
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Hui Han
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Ning Chen
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - An-Liang Yao
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Shao-San Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Wei-Xing Gao
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Hong Shen
- Department of Modern Technology and Education Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Long-Jun Zhang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Ya-Peng Li
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Feng-Hong Cao
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, People's Republic of China
| | - Zhi-Guo Li
- Department of Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, People's Republic of China
| |
Collapse
|
30
|
Lin ZL, Wu HJ, Chen JA, Lin KC, Hsu JH. Cyclophilin A as a downstream effector of PI3K/Akt signalling pathway in multiple myeloma cells. Cell Biochem Funct 2016; 33:566-74. [PMID: 26833980 DOI: 10.1002/cbf.3156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022]
Abstract
Cyclophilin A (Cyp A), a member of the peptidyl-prolyl isomerase (PPI) family, may function as a molecular signalling switch. Comparative proteomic studies have identified Cyp A as a potential downstream target of protein kinase B (Akt). This study confirmed that Cyp A is a downstream effector of the phosphatidylinositide 3-kinase (PI3K)/Akt signalling pathway. Cyp A was highly phosphorylated in response to interleukin-6 treatment, which was consistent with the accumulation of phosphorylated Akt, suggesting that Cyp A is a phosphorylation target of Akt and downstream effector of the PI3K/Akt pathway. Cyclosporine A (CsA), a PPI inhibitor, inhibited the growth of multiple myeloma (MM) U266 cells. Moreover, CsA treatment inhibited the activation of the signal transducer and activator of transcription 3 (STAT3) in MM U266 cells. Several Cyp A mutants were generated. Mutants with mutated AKT phosphorylation sites increased the G1 phase arrest in MM U266 cells. The other mutants that mimicked the phosphorylated state of Cyp A decreased the percentage of G1 phase. These results demonstrated that the states of phosphorylation of Cyp A by Akt can influence the progress of the cell cycle in MM U266 cells and that this effect is probably mediated through the Janus-activated kinase 2/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Zuo-Lin Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Hsin-Jou Wu
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Jin-An Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Kuo-Chih Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Jung-Hsin Hsu
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
31
|
Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway. Nat Chem Biol 2015; 12:117-23. [PMID: 26656091 PMCID: PMC4718742 DOI: 10.1038/nchembio.1981] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/03/2015] [Indexed: 12/13/2022]
Abstract
Cyclophilin A (CypA) is overexpressed in a number of human cancer types, but the mechanisms by which the protein promotes oncogenic properties of cells are not understood. Here we demonstrate that CypA binds the CrkII adaptor protein and prevents it from switching to the inhibited state. CrkII influences cell motility and invasion by mediating signaling through its SH2 and SH3 domains. CrkII Tyr221 phosphorylation by the Abl or EGFR kinases induces an inhibited state of CrkII by means of an intramolecular SH2-pTyr221 interaction, causing signaling interruption. We show that the CrkII phosphorylation site constitutes a binding site for CypA. Recruitment of CypA sterically restricts the accessibility of Tyr221 to kinases, thereby suppressing CrkII phosphorylation and promoting the active state. Structural, biophysical and in vivo data show that CypA augments CrkII-mediated signaling. A strong stimulation of cell migration is observed in cancer cells wherein both CypA and CrkII are greatly upregulated.
Collapse
|
32
|
Chen Z, Liu J, Lin L, Xie H, Zhang W, Zhang H, Wang G. [Analysis of differentially expressed proteome in urine
from non-small cell lung cancer patients]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:138-45. [PMID: 25800569 PMCID: PMC6000009 DOI: 10.3779/j.issn.1009-3419.2015.03.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
背景与目的 筛查非小细胞肺癌(non-small cell lung cancer, NSCLC)患者尿液中差异表达蛋白,确定可用于NSCLC早期诊断、监测预后和治疗评估的生物标记物。 方法 分别收集40例已病理证实初诊NSCLC患者、8例肺部良性疾病患者和22例健康志愿者的尿液样本。利用0.9%一维十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dode-cyl sulfate polyacrylamide gel electrophoresis, 1D SDS-PAGE)技术和MS-Thermo-Orbitrap-Velos质谱分析仪对NSCLC组和非肿瘤组尿液中蛋白质进行分离、提取及识别,鉴定出NSCLC患者尿液中的差异表达蛋白。应用SPSS 20.0软件中受试者工作特征曲线(receiver operating characteristic curve, ROC)分别对其敏感性、特异性进行分析,并进行实验验证,从而确定出与NSCLC相关的生物标记物。 结果 NSCLC患者组和非肿瘤组尿液差异性表达蛋白质集中表现在90 kDa、60 kDa和20 kDa-30 kDa凝胶条带中。在NSCLC患者尿液蛋白分析中发现了4种与NSCLC相关的差异表达蛋白,包括上调蛋白LRG1、CA1和下调蛋白VPS4B、YWHAZ。这4种差异表达蛋白作为独立的NSCLC生物标记物其敏感性较低:LRG1蛋白敏感性83.0%(25/30)、特异性90.0%(18/20);CA1蛋白敏感性60.0%(18/30)、特异性90.0%(18/20);VPS4B蛋白敏感性73.3%(22/30)、特异性90.0%(18/20);YWHAZ蛋白敏感性60.0%(18/30)、特异性95.0%(19/20)。而采用蛋白质组合模式对NSCLC进行筛查、诊断,则其敏感性和特异性分别可高达96.7%(29/30)和85%(17/20)。 结论 LRG1、CA1蛋白在NSCLC患者尿液中高表达,而VPS4B、YWHAZ蛋白呈低表达,差异表达蛋白均提示有可能成为用于NSCLC早期筛查、监测预后和治疗评估的生物标记物。LRG1、CA1、VPS4B和YWHAZ尿液蛋白作为单一生物标记物应用于NSCLC筛查和诊断的敏感性较低,而采用蛋白质组合模式明显优于独立模式对NSCLC的筛查和诊断,故蛋白质组合模式在临床诊疗中将更具有良好应用价值和前景。
Collapse
Affiliation(s)
- Zhengang Chen
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Jinbo Liu
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Ling Lin
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Hui Xie
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Wencheng Zhang
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Hongbo Zhang
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| | - Guangshun Wang
- Department of Oncology Srugery, Baodi Clinical Hospital, Tianjin Medical University, Tianjin 301800, China
| |
Collapse
|
33
|
Zhang L, Li Z, Zhang B, He H, Bai Y. PPIA is a novel adipogenic factor implicated in obesity. Obesity (Silver Spring) 2015; 23:2093-100. [PMID: 26347493 DOI: 10.1002/oby.21208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/26/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To assess the role of peptidyl-prolyl cis/trans isomerase a (PPIA) in adipogenesis and obesity. METHODS Fat mass and adipocyte sizes of PPIA-/- and wild-type mice were compared. The role of PPIA in adipocyte differentiation of 3T3L1 and MEFs cells was analyzed by gene silencing and overexpression. The roles of PPIA in obesity were observed on a high-fat diet obesity model and a gestational diabetes obesity model. RESULTS PPIA-/- mice had significantly less fat than PPIA+/+ mice. The adipocyte size of PPIA-/- mice was significantly smaller than wild type. Silencing PPIA in 3T3L1 cells significantly impaired its adipocyte differentiation ability. Similarly, MEFs from PPIA-/- mice differentiated less than wild type, while their differentiation ability was restored by PPIA overexpression. PPIA-silenced 3T3L1 cells had significantly lower expression of PPARG, C/EBPA, and C/EBPB at late stage of adipocyte differentiation, which was the same in PPIA-/- MEFs. When fed a high-fat diet, PPIA-/- mice gained significantly less weight than wild type, accompanied by reduced PPARG, C/EBPA, and C/EBPB expression. PPIA expression was significantly higher in adipose tissue of gestational diabetes rat offspring, which had higher inguinal fat/body weight ratios than normal rat offspring. CONCLUSIONS PPIA was a novel adipogenic factor important in obesity.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Medical Genetics, Third Military Medical University, Chongqing, People's Republic of China
- Department of Gynecology and Obstetrics, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhen Li
- Department of Gynecology and Obstetrics, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Bo Zhang
- Department of Medical Genetics, Third Military Medical University, Chongqing, People's Republic of China
| | - Haiyang He
- Institute of Immunology, Third Military Medical University, Chongqing, People's Republic of China
| | - Yun Bai
- Department of Medical Genetics, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
34
|
Gou J, Jia J, Zhao X, Yi T, Li Z. Identification of stathmin 1 during peri-implantation period in mouse endometrium by a proteomics-based analysis. Biochem Biophys Res Commun 2015; 461:211-6. [PMID: 25866183 DOI: 10.1016/j.bbrc.2015.02.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/26/2015] [Indexed: 12/23/2022]
Abstract
In this work we aimed to identify the differentially expressed proteins and their potential roles during peri-implantation period through proteomics-based approach. Adult healthy female mice were mated naturally with fertile males to produce pregnancy. The models of pseudopregnancy, delayed implantation, and artificial decidualization were established. The protein profile between pre-implantation (D1) and implantation (D5) period was compared by two-dimensional electrophoresis (2-DE) and identified by mass spectrometry (MS). 2-DE yielded comparative images presenting over 500 protein spots in D1 and D5 mouse endometrium. 15 proteins were identified, of which stathmin 1, Apo-A1, hnRNP H3, transgelin 2 and arginase 1 were validated by western blotting. Stathmin 1 expression did not change in pseudopregnancy, but activation of implantation, or induction of decidualization increased it dramatically. Under non-pregnant status, progesterone alone or in combination with17β-estradiol increased it dramatically. Our results clarified the protein profile in mouse endometrium during implantation. The specific expression profile of stathmin 1 suggested that it should be involved in implantation and serve as a potential regulator of this process. These findings may contribute to the better understanding of the molecules events during embryo implantation, and subsequently improve the ability to treat infertility.
Collapse
Affiliation(s)
- Jinhai Gou
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jia Jia
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China; Sichuan Key Laboratory of Gynecologic Oncology, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Tao Yi
- Sichuan Key Laboratory of Gynecologic Oncology, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China; Sichuan Key Laboratory of Gynecologic Oncology, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
35
|
|
36
|
Identification of candidate biomarkers for the early detection of nasopharyngeal carcinoma by quantitative proteomic analysis. J Proteomics 2014; 109:162-75. [PMID: 24998431 DOI: 10.1016/j.jprot.2014.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/13/2014] [Accepted: 06/21/2014] [Indexed: 01/25/2023]
Abstract
UNLABELLED Nasopharyngeal carcinoma (NPC) is a major head and neck cancer with high occurrence in Southeast Asia and southern China. To identify novel biomarkers for the early detection of NPC patients, 2D-DIGE combined with MALDI-TOF-MS analysis was performed to identify differentially expressed proteins in the carcinogenesis and progression of NPC using LCM-purified normal nasopharyngeal epithelial tissues and various stages of NPC biopsies. As a result, 26 differentially expressed proteins were identified, of which two proteins with sharp expressional changes in the carcinogenic process, ENO1 and CYPA, were validated by western blot analysis and identified as critical seed proteins in the functional network. Immunohistochemistry assay was further performed to detect the expression of the two proteins with a tissue microarray that included various stages of NPC tissues. The ability of these proteins to detect NPC early was evaluated via a receiver operating characteristic analysis. The results indicated that the combination of the two proteins could perfectly discriminate NNET and AH from stage I of NPC with high sensitivity and specificity, which is more effective than using either of the two proteins individually. In summary, the combination of ENO1 and CYPA can serve as potential molecular markers for the early detection of NPC. BIOLOGICAL SIGNIFICANCE NPC is a lethal malignancy that is most prevalent in Southeast Asia, and early detection and treatment are essential for the survival and good prognosis of NPC patients. In the present work, we identified 26 differentially expressed proteins in NNET, AH and different stages of NPC tissues by using 2D-DIGE combined with MALDI-TOF/TOF analysis. Of these proteins, the down-regulation of ENO1 and over-expression of CYPA were confirmed with a high-throughput tissue microarray that included various stages of NPC tissues via an IHC assay, and the results indicated that the combination of ENO1 and CYPA can serve as a potential molecular marker for the early detection of NPC.
Collapse
|
37
|
Liu R, Li J, Zhang T, Zou L, Chen Y, Wang K, Lei Y, Yuan K, Li Y, Lan J, Cheng L, Xie N, Xiang R, Nice EC, Huang C, Wei Y. Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking. Autophagy 2014; 10:1241-55. [PMID: 24905460 DOI: 10.4161/auto.28912] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma is one of the most aggressive human cancers with poor prognosis, and therefore a critical need exists for novel therapeutic strategies for management of glioblastoma patients. Itraconazole, a traditional antifungal drug, has been identified as a novel potential anticancer agent due to its inhibitory effects on cell proliferation and tumor angiogenesis; however, the molecular mechanisms involved are still unclear. Here, we show that itraconazole inhibits the proliferation of glioblastoma cells both in vitro and in vivo. Notably, we demonstrate that treatment with itraconazole induces autophagic progression in glioblastoma cells, while blockage of autophagy markedly reverses the antiproliferative activities of itraconazole, suggesting an antitumor effect of autophagy in response to itraconazole treatment. Functional studies revealed that itraconazole retarded the trafficking of cholesterol from late endosomes and lysosomes to the plasma membrane by reducing the levels of SCP2, resulting in repression of AKT1-MTOR signaling, induction of autophagy, and finally inhibition of cell proliferation. Together, our studies provide new insights into the molecular mechanisms regarding the antitumor activities of itraconazole, and may further assist both the pharmacological investigation and rational use of itraconazole in potential clinical applications.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu, China; State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu, China
| | - Jingyi Li
- School of Biomedical Sciences; Chengdu Medical College; Chengdu, China
| | - Tao Zhang
- School of Biomedical Sciences; Chengdu Medical College; Chengdu, China
| | - Linzhi Zou
- College of Life Sciences; Sichuan University; Chengdu, China
| | - Yi Chen
- Department of Gastrointestinal Surgery; State Key Laboratory of Biotherapy; West China Hospital, Sichuan University, Chengdu, China
| | - Kui Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center; Chongqing Medical University; Chongqing, China
| | - Kefei Yuan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu, China
| | - Yi Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu, China
| | - Jiang Lan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu, China
| | - Rong Xiang
- School of Medicine/Collaborative Innovation Center of Biotherapy; Nankai University; Tianjin, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology; Monash University; Clayton, Victoria Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy; West China Hospital; Sichuan University; Chengdu, China
| |
Collapse
|
38
|
Huang HL, Yao HS, Wang Y, Wang WJ, Hu ZQ, Jin KZ. Proteomic identification of tumor biomarkers associated with primary gallbladder cancer. World J Gastroenterol 2014; 20:5511-5518. [PMID: 24833881 PMCID: PMC4017066 DOI: 10.3748/wjg.v20.i18.5511] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/22/2014] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify potential biomarkers of primary gallbladder cancer (PGC).
METHODS: Fresh PGC, cholecystitis and normal gallbladder tissue specimens collected from 10 patients, respectively, were subjected to comparative proteomic analysis. The proteomic patterns of PGC were compared with those of cholecystitis and normal gallbladder tissues using two-dimensional gel electrophoresis (2-DE). The differentially expressed proteins were then identified using a MALDI-TOF mass spectrometer (MS) and database searches. To further validate these proteins, 20 samples of PGC tissues and normal tumor-adjacent tissues were collected for Western blot, quantitative real-time PCR, and immunohistochemical staining assay.
RESULTS: Seven differentially expressed protein spots were detected by 2-ED analysis by comparing the average maps of PGC, cholecystitis and normal gallbladder tissues. Six of the seven differentially expressed proteins were identified using MALDI-TOF MS, with three overexpressed and three underexpressed in PGC tissue. Protein levels of annexin A4 (ANXA4) were significantly elevated, and heat shock protein 90-beta (Hsp90β) and dynein cytoplasmic 1 heavy chain 1 (Dync1h1) were decreased in PGC tissues relative to the normal tumor-adjacent tissues as shown by Western blot analysis. However, levels of actin, aortic smooth muscle and gamma-actin were unchanged. In addition, the mRNA levels of all 5 proteins showed similar changes to those of the protein levels (P < 0.01). Further validation by immunohistochemical analysis showed the upregulated expression of ANXA4 and decreased expression of Hsp90β and Dync1h1 in the cytoplasm of PGC tissues relative to the normal tumor-adjacent tissues.
CONCLUSION: Three proteins are identified as potential biomarkers of PGC using proteomic analysis. The functions of these proteins in the carcinogenesis of PGC remain to be studied.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Blotting, Western
- Case-Control Studies
- Databases, Protein
- Electrophoresis, Gel, Two-Dimensional
- Female
- Gallbladder Neoplasms/chemistry
- Gallbladder Neoplasms/genetics
- Gallbladder Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Male
- Middle Aged
- Neoplasm Proteins/analysis
- Neoplasm Proteins/genetics
- Predictive Value of Tests
- Proteomics/methods
- RNA, Messenger/analysis
- Real-Time Polymerase Chain Reaction
- Reproducibility of Results
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
|
39
|
Liu R, Wang K, Yuan K, Wei Y, Huang C. Integrative oncoproteomics strategies for anticancer drug discovery. Expert Rev Proteomics 2014; 7:411-29. [DOI: 10.1586/epr.10.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Li Y, Guo H, Dong D, Wu H, Li E. Expression and prognostic relevance of cyclophilin A and matrix metalloproteinase 9 in esophageal squamous cell carcinoma. Diagn Pathol 2013; 8:207. [PMID: 24351116 PMCID: PMC3878405 DOI: 10.1186/1746-1596-8-207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/06/2013] [Indexed: 01/07/2023] Open
Abstract
Aims To guide clinicians in selecting treatment options for esophageal squamous cell carcinoma (ESCC) patients, reliable markers predictive of clinical outcome are desirable. This study analyzed the correlation of cyclophilin A (CypA) and matrix metalloproteinase 9 (MMP9) in ESCC and their relationships to clinicopathological features and survival. Methods We immunohistochemically investigated 70 specimens of ESCC tissues using CypA and MMP9 antibodies. Then, the correlations between CypA and MMP9 expression and clinicopathological features and its prognostic relevance were determined. Results Significant correlations were only found in high level of CypA and MMP9 expression with tumor differentiation and lymph node status. Significant positive correlations were found between the expression status of CypA and that of MMP9. Overexpression of CypA and metastasis were significantly associated with shorter progression free survival times in univariate analysis. Multivariate analysis confirmed that CypA expression was an independent prognostic factor. Conclusions CypA might be correlated with the differentiation, and its elevated expression may be an adverse prognostic indicator for the patients of ESCC. CypA/MMP9 signal pathway may be attributed to the malignant transformation of ESCC, and attention should be paid to a possible target for therapy. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1166551968105508.
Collapse
Affiliation(s)
- Yi Li
- Department of Oncology, First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Yanta West Road No, 277, Xi'an 710061, Shaanxi Province, China.
| | | | | | | | | |
Collapse
|
41
|
Grigoryeva ES, Cherdyntseva NV, Karbyshev MS, Volkomorov VV, Stepanov IV, Zavyalova MV, Perelmuter VM, Buldakov MA, Afanasjev SG, Tuzikov SA, Bukurova YA, Lisitsyn NA, Beresten SF. Expression of Cyclophilin A in Gastric Adenocarcinoma Patients and Its Inverse Association with Local Relapses and Distant Metastasis. Pathol Oncol Res 2013; 20:467-73. [DOI: 10.1007/s12253-013-9718-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/29/2013] [Indexed: 12/21/2022]
|
42
|
Cyclophilin A: a key player for human disease. Cell Death Dis 2013; 4:e888. [PMID: 24176846 PMCID: PMC3920964 DOI: 10.1038/cddis.2013.410] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 01/23/2023]
Abstract
Cyclophilin A (CyPA) is a ubiquitously distributed protein belonging to the immunophilin family. CyPA has peptidyl prolyl cis-trans isomerase (PPIase) activity, which regulates protein folding and trafficking. Although CyPA was initially believed to function primarily as an intracellular protein, recent studies have revealed that it can be secreted by cells in response to inflammatory stimuli. Current research in animal models and humans has provided compelling evidences supporting the critical function of CyPA in several human diseases. This review discusses recently available data about CyPA in cardiovascular diseases, viral infections, neurodegeneration, cancer, rheumatoid arthritis, sepsis, asthma, periodontitis and aging. It is believed that further elucidations of the role of CyPA will provide a better understanding of the molecular mechanisms underlying these diseases and will help develop novel pharmacological therapies.
Collapse
|
43
|
Li Z, Min W, Gou J. Knockdown of cyclophilin A reverses paclitaxel resistance in human endometrial cancer cells via suppression of MAPK kinase pathways. Cancer Chemother Pharmacol 2013; 72:1001-11. [PMID: 24036847 DOI: 10.1007/s00280-013-2285-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/30/2013] [Indexed: 12/19/2022]
Abstract
PURPOSE Paclitaxel resistance remains to be a major obstacle to the chemotherapy of endometrial cancer. Using proteomic-based approach, we used to identify cyclophilin A (CypA) as a potential therapeutic target for endometrial cancer. As a natural continuation, this study aimed to reveal the correlation between CypA and paclitaxel resistance and evaluate the possibility of CypA as a therapeutic target for reversal of resistance. METHODS Two paclitaxel-resistant endometrial cancer cell sublines HEC-1-B/TAX and AN3CA/TAX were generated, and expressions of CypA, P-gp, MRP-2 and survivin were demonstrated by Western blotting. CypA was knocked down by RNA interference, and the subsequent effects on the alteration of paclitaxel resistance were examined by MTT, flow cytometry and migratory/invasive transwell assays. MAPK kinases activities were examined by Western blotting. RESULTS CypA knockdown led to significant inhibition of cell proliferation, induction of apoptosis and suppression of migratory/invasive capacity in HEC-1-B/TAX and AN3CA/TAX cells when exposed to paclitaxel. CypA knockdown led to reductions in total and phosphorylated MAPK kinases, including Akt, ERK1/2, p38 MAPK and JNK, in HEC-1-B/TAX cells. Furthermore, pretreatment with MAPK kinase inhibitors exhibited a synergistic effect in combination with CypA knockdown. CONCLUSIONS These results demonstrated that CypA expression was up-regulated in paclitaxel-resistant cancer cells, and knockdown of CypA could reverse the paclitaxel resistance through, at least partly, suppression of MAPK kinase pathways, presenting a possibility of CypA serving as a therapeutic target to overcome paclitaxel resistance.
Collapse
Affiliation(s)
- Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China,
| | | | | |
Collapse
|
44
|
Li Z, Gou J, Xu J. Down-regulation of focal adhesion signaling in response to cyclophilin A knockdown in human endometrial cancer cells, implicated by cDNA microarray analysis. Gynecol Oncol 2013; 131:191-7. [PMID: 23899654 DOI: 10.1016/j.ygyno.2013.07.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/28/2013] [Accepted: 07/19/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE CypA had been identified as a potential therapeutic target to endometrial cancer in our previous research. Herein, we aimed to further elucidate the underlying comprehensive mechanisms of CypA knockdown-associated anticancer effects by cDNA microarray-based approach. METHODS LV-shCypA was constructed and transfected into HEC-1-B cells. The efficiency of CypA knockdown was determined by qRT-PCR and Western blotting. The migratory/invasive capacity was examined by transwell assay. CypA knockdown-induced comprehensive gene expression alterations were analyzed using NimbleGen Human Gene Expression Microarray consisting of 45,033 probes for human genes. Functional analysis of the microarray data was performed using KEGG and Gene Ontology analyses. The selected differentially expressed genes were validated by qRT-PCR. RESULTS Knockdown of CypA by LV-shCypA led to a significant decrease of migratory/invasive cell proportions in HEC-1-B cells. Microarray analysis showed 3533 and 2772 genes to be up-regulated and down-regulated in CypA-knockdown cells, respectively. Functional analysis showed 50 up-regulated pathways and 14 down-regulated pathways in CypA-knockdown cells, and focal adhesion signaling was one of the most enriched down-regulated pathways. The expression patterns of 16 genes in focal adhesion signaling, which encoded MAPK kinases, focal adhesion kinase (FAK), integrin subunits and laminin subunits, were validated by qRT-PCR and the consistency percentage with microarray data reached 100%. CONCLUSIONS Suppression of migratory/invasive capacity by CypA knockdown is likely associated with the down-regulation of focal adhesion signaling, which may contribute to the understanding of the role of CypA as a potential therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China.
| | | | | |
Collapse
|
45
|
Liu R, Huang L, Li J, Zhou X, Zhang H, Zhang T, Lei Y, Wang K, Xie N, Zheng Y, Wang F, Nice EC, Rong L, Huang C, Wei Y. HIV Infection in gastric epithelial cells. J Infect Dis 2013; 208:1221-30. [PMID: 23852124 DOI: 10.1093/infdis/jit314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many chronic human immunodeficiency virus (HIV) patients suffer from gastric complaints, including gastric tuberculosis and coinfection of other pathogens. Recent work has demonstrated that a variety of nonimmune cells can act as viral reservoirs, even at the early stage of HIV infection. In this study, we detect HIV viral particles, proteins, and nucleic acids in gastric epithelial cells using clinical samples. These observations are further supported by a simian immunodeficiency virus-infected macaque model. Further, the number of HIV-infected gastric epithelial cells is positively associated with blood viral load, and is negatively correlated with CD4 lymphocyte cell counts. We also demonstrate that HIV infection is accompanied by severe inflammatory response in gastric mucosa. Additionally, HIV infection activates signal transducer and activator of transcription 3 and RelA, and enhances the production of interleukin 6 and tumor necrosis factor α in gastric epithelial cells. The present data suggest that the gastric epithelial cells are natural targets of HIV infection, and HIV infection in epithelial cells contributes to HIV-induced gastric mucosal inflammation.
Collapse
Affiliation(s)
- Rui Liu
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Galazis N, Pang YL, Galazi M, Haoula Z, Layfield R, Atiomo W. Proteomic biomarkers of endometrial cancer risk in women with polycystic ovary syndrome: a systematic review and biomarker database integration. Gynecol Endocrinol 2013; 29:638-44. [PMID: 23527552 DOI: 10.3109/09513590.2013.777416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is a need for research studies into the molecular mechanisms underpinning the link between polycystic ovary syndrome (PCOS) and endometrial cancer (EC) to facilitate screening and to encourage the development of novel strategies to prevent disease progression. The objective of this review was to identify proteomic biomarkers of EC risk in women with PCOS. All eligible published studies on proteomic biomarkers for EC identified through the literature were evaluated. Proteomic biomarkers for EC were then integrated with an updated previously published database of all proteomic biomarkers identified so far in PCOS women. Nine protein biomarkers were similarly either under or over expressed in women with EC and PCOS in various tissues. These include transgelin, pyruvate kinase M1/M2, gelsolin-like capping protein (macrophage capping protein), glutathione S-transferase P, leucine aminopeptidase (cytosol aminopeptidase), peptidyl-prolyl cis-transisomerase, cyclophilin A, complement component C4A and manganese-superoxide dismutase. If validated, these biomarkers may provide a useful framework on which the knowledge base in this area could be developed and will facilitate future mathematical modelling to enhance screening and prevention of EC in women with PCOS who have been shown to be at increased risk.
Collapse
Affiliation(s)
- Nicolas Galazis
- Nottingham Medical School, University of Nottingham, Queen's Medical Centre Campus Nottingham University Hospital, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Cellular chaperonin CCTγ contributes to rabies virus replication during infection. J Virol 2013; 87:7608-21. [PMID: 23637400 DOI: 10.1128/jvi.03186-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rabies, as the oldest known infectious disease, remains a serious threat to public health worldwide. The eukaryotic cytosolic chaperonin TRiC/CCT complex facilitates the folding of proteins through ATP hydrolysis. Here, we investigated the expression, cellular localization, and function of neuronal CCTγ during neurotropic rabies virus (RABV) infection using mouse N2a cells as a model. Following RABV infection, 24 altered proteins were identified by using two-dimensional electrophoresis and mass spectrometry, including 20 upregulated proteins and 4 downregulated proteins. In mouse N2a cells infected with RABV or cotransfected with RABV genes encoding nucleoprotein (N) and phosphoprotein (P), confocal microscopy demonstrated that upregulated cellular CCTγ was colocalized with viral proteins N and P, which formed a hollow cricoid inclusion within the region around the nucleus. These inclusions, which correspond to Negri bodies (NBs), did not form in mouse N2a cells only expressing the viral protein N or P. Knockdown of CCTγ by lentivirus-mediated RNA interference led to significant inhibition of RABV replication. These results demonstrate that the complex consisting of viral proteins N and P recruits CCTγ to NBs and identify the chaperonin CCTγ as a host factor that facilitates intracellular RABV replication. This work illustrates how viruses can utilize cellular chaperonins and compartmentalization for their own benefit.
Collapse
|
48
|
Vilasi A, Vilasi S, Romano R, Acernese F, Barone F, Balestrieri ML, Maritato R, Irace G, Sirangelo I. Unraveling amyloid toxicity pathway in NIH3T3 cells by a combined proteomic and 1 H-NMR metabonomic approach. J Cell Physiol 2013. [PMID: 23192898 DOI: 10.1002/jcp.24294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A range of debilitating human diseases is known to be associated with the formation of stable highly organized protein aggregates known as amyloid fibrils. The early prefibrillar aggregates behave as cytotoxic agents and their toxicity appears to result from an intrinsic ability to impair fundamental cellular processes by interacting with cellular membranes, causing oxidative stress and increase in free Ca(2+) that lead to apoptotic or necrotic cell death. However, specific signaling pathways that underlie amyloid pathogenicity remain still unclear. This work aimed to clarify cell impairment induced by amyloid aggregated. To this end, we used a combined proteomic and one-dimensional (1) H-NMR approach on NIH-3T3 cells exposed to prefibrillar aggregates from the amyloidogenic apomyoglobin mutant W7FW14F. The results indicated that cell exposure to prefibrillar aggregates induces changes of the expression level of proteins and metabolites involved in stress response. The majority of the proteins and metabolites detected are reported to be related to oxidative stress, perturbation of calcium homeostasis, apoptotic and survival pathways, and membrane damage. In conclusion, the combined proteomic and (1) H-NMR metabonomic approach, described in this study, contributes to unveil novel proteins and metabolites that could take part to the general framework of the toxicity induced by amyloid aggregates. These findings offer new insights in therapeutic and diagnostic opportunities.
Collapse
Affiliation(s)
- Annalisa Vilasi
- Laboratory of Mass Spectrometry and Proteomics, Institute of Protein Biochemistry-CNR, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
He Y, Wang J, Gou L, Shen C, Chen L, Yi C, Wei X, Yang J. Comprehensive analysis of expression profile reveals the ubiquitous distribution of PPPDE peptidase domain 1, a Golgi apparatus component, and its implications in clinical cancer. Biochimie 2013; 95:1466-75. [PMID: 23567336 DOI: 10.1016/j.biochi.2013.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/26/2013] [Indexed: 02/05/2023]
Abstract
PPPDE peptidase domain 1 (PPPDE1) is a recently identified gene; however, its expression regulation and biological function are unclear. Previous studies have indicated that PPPDE1 is involved in embryogenesis, apoptosis induction and cell cycle regulation. In the present study, we first used an anti-PPPDE1 antibody to determine that endogenous PPPDE1 is located in the Golgi apparatus. Immunohistochemistry (IHC) of mouse embryos indicated that PPPDE1 was markedly distributed in liver, skin, intestinal villi, and muscles, whereas Western blot analysis of mouse mature organs revealed its ubiquitous expression, without an appreciable distinction in protein abundance. Surprisingly, another potential isoform of PPPDE1 with a molecular weight of 18 kD (rather than its predicted molecular weight of 21 kD) was detected in the mouse kidney, testis, and intestine. Moreover, microarrays that were derived from twelve tumor types revealed that PPPDE1 expression was significantly lower in pancreas, stomach, and skin tumors compared with normal tissue from these organs. We specifically and extensively analyzed PPPDE1 expression in clinical samples and observed strong associations between PPPDE1 expression and (i) differentiation grade in pancreatic ductal adenocarcinoma and (ii) T stage in skin squamous cell carcinoma. Our data are the first to reveal the expression profile of PPPDE1 protein and its implications in cancer. These results will contribute to the understanding of the expression regulation and biological functions of PPPDE1 in development and carcinogenesis.
Collapse
Affiliation(s)
- Yi He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, No. 1, Keyuan Road 4, Gaopeng Street, Chengdu 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhao L, Zhou S, Zou L, Zhao X. The expression and functionality of stromal caveolin 1 in human adenomyosis. Hum Reprod 2013; 28:1324-38. [PMID: 23442759 DOI: 10.1093/humrep/det042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION What is the expression pattern and functionality of caveolin 1 (CAV1) in the endometrium of patients with adenomyosis? SUMMARY ANSWER The stromal CAV1 expression is down-regulated that leads to the release of a variety of molecules that either enhance the metastatic capacity of endometrial cells or contribute to adenomyosis-associated dysmenorrhea. WHAT IS KNOWN ALREADY Adenomyosis is characterized by invasion of endometrium into the uterine myometrium. CAV1 has been linked to tumor progression and clinical outcome in a variety of human malignancies; however, its role in adenomyosis development and adenomyosis-associated dysmenorrhea is still poorly recognized. STUDY DESIGN, SIZE, DURATION We retrospectively analyzed the expression levels of CAV1 and RANTES protein using immunohistochemistry in 65 patients who were pathologically diagnosed with adenomyosis and 12 control women without related pathology, who were subjected to surgery between 2009 and 2010. Endometrial tissues from six additional normal females without related pathology were collected from 2011 to 2012; these tissues were subjected to subsequent primary cell culture experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS The expression of CAV1 and RANTES was examined by immunohistochemistry in ectopic endometrium and paired eutopic endometrium of 65 adenomyosis patients and 12 control patients. Primary endometrial stromal cells (ESCs) and endometrial epithelial cells (EECs) were isolated from 6 additional control females without related pathology. The expression of CAV1 in ESCs was either (i) inhibited by siRNA transfection and methyl-β-cyclodextrin (MβCD) treatment or (ii) increased by pcDNA3.1/CAV1 transfection. The impact of each treatment on the proliferation, migration and invasion of both ESCs and EECs was evaluated by methylthiazolydiphenyl-tetrazolium assay, colony formation assay, Transwell migration and invasion assay. Furthermore, ESC treatment with MβCD and siCAV1 was assessed for the effect on the expression of a panel of inflammatory cytokines. The levels of two pain mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), were assessed in CAV-1-depleted and control ESCs, whereas immunoblotting was performed to characterize signaling pathways downstream to loss of stromal CAV1 in endometrium. The correlation between dysmenorrhea severity and stromal CAV1 and RANTES expression was further examined using 'Pearson's' correlation analysis. MAIN RESULTS Stromal CAV1 expression in ectopic endometrium of adenomyosis patients was significantly lower than that of paired eutopic endometrium or normal controls as analyzed by immunohistochemistry (P < 0.001). Although no significant difference was observed in the proliferation of CAV1-depleted ESCs when compared with control group, EECs cultured with conditioned media from CAV1-depleted ESCs demonstrated a significantly elevated proliferation rate when compared with those treated with control ESC-conditioned media. Moreover, both CAV1-depleted ESCs and EECs cultured with conditioned media from CAV1-depleted ESCs showed enhanced migration and invasion capacity when compared with control group (P < 0.05). In contrast, incubation with conditioned media of ESCs with enforced CAV1 expression led to decreased proliferation capacity of EECs. Furthermore, the expression of RANTES in ESCs treated with MβCD and siCAV1 was significantly increased. Stromal RANTES expression in the ectopic endometrium of adenomyosis patients was significantly higher than that of paired eutopic endometrium or normal controls as analyzed by immunohistochemistry (P = 0.0026). Stromal CAV1 expression in eutopic endometrium was significantly lower in women with more severe dysmenorrhea (P < 0.05) and was negatively correlated with dysmenorrhea severity in adenomyosis patients (r(2) = 0.1549; P = 0.012, 'Pearson's' χ(2) test), whereas stromal RANTES expression in eutopic endometrium was significantly higher in women with more severe dysmenorrhea (P < 0.05) and was positively correlated with dysmenorrhea severity in adenomyosis patients (r(2) = 0.1646; P = 0.0094, 'Pearson's' χ(2) test). Silencing of CAV1 in ESCs led to increased release of NO and PGE2 when compared with control and was associated with enhanced activity of ERK-FAK signaling pathway. LIMITATIONS, REASONS FOR CAUTION This study assessed the functional role of stromal CAV1 and RANTES in a small number of human adenomyosis samples by immunohistochemistry and in primary human ESCs by functional studies. In future investigations, a larger sample size should be adopted and the functional role of stromal CAV1 should be further characterized in animal models. WIDER IMPLICATIONS OF THE FINDINGS Loss of stromal CAV1 expression may play a critical role in the pathogenesis of adenomyosis and is correlated with adenomyosis-related dysmenorrhea. STUDY FUNDING National Basic Research Program of China and Ph.D. Programs Foundation of Ministry of Education of China. COMPETING INTEREST None.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, 610041 Chengdu, P. R. China
| | | | | | | |
Collapse
|