1
|
Ten A, Yudintceva N, Samochernykh K, Combs SE, Jha HC, Gao H, Shevtsov M. Post-Secretion Processes and Modification of Extracellular Vesicles. Cells 2025; 14:408. [PMID: 40136657 PMCID: PMC11940929 DOI: 10.3390/cells14060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Extracellular vesicles (EVs) are an important mediator of intercellular communication and the regulation of processes occurring in cells and tissues. The processes of EVs secretion by cells into the extracellular space (ECS) leads to their interaction with its participants. The ECS is a dynamic structure that also takes direct part in many processes of intercellular communication and regulation. Changes in the ECS can also be associated with pathological processes, such as increased acidity during the development of solid tumors, changes in the composition and nature of the organization of the extracellular matrix (ECM) during fibroblast activation, an increase in the content of soluble molecules during necrosis, and other processes. The interaction of these two systems, the EVs and the ESC, leads to structural and functional alteration in both participants. In the current review, we will focus on these alterations in the EVs which we termed post-secretory modification and processes (PSMPs) of EVs. PSPMs can have a significant effect on the immediate cellular environment and on the spread of the pathological process in the body as a whole. Thus, it can be assumed that PSPMs are one of the important stages in the regulation of intercellular communication, which has significant differences in the norm and in pathology.
Collapse
Affiliation(s)
- Artem Ten
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (A.T.); (N.Y.)
| | - Natalia Yudintceva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (A.T.); (N.Y.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India;
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (A.T.); (N.Y.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| |
Collapse
|
2
|
Rahimian S, Mirkazemi K, Kamalinejad A, Doroudian M. Exosome-based advances in pancreatic cancer: The potential of mesenchymal stem cells. Crit Rev Oncol Hematol 2025; 207:104594. [PMID: 39732301 DOI: 10.1016/j.critrevonc.2024.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024] Open
Abstract
Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), is one of the most challenging clinical conditions due to its late-stage diagnosis and poor survival rates. Mesenchymal stem cells (MSCs), used for targeted therapies, are being explored as a promising treatment because of their tumor-homing properties and potential contributions to the pancreatic cancer microenvironment. Understanding these interactions is crucial for developing effective treatments. In this study, we investigated how MSCs exhibit tropism towards tumors, influence the microenvironment through paracrine effects, and serve as potential drug delivery vehicles. We also examined their role in progression and therapeutic resistance in pancreatic cancer therapy. The cytotoxic effects of certain compounds on tumor cells, the use of genetically modified MSCs as drug carriers, and the potential of exosomal biomarkers like miRNAs and riRNAs for diagnosis and monitoring of pancreatic cancer were analyzed. Overall, MSC-based therapies, coupled with insights into tumor-stromal interactions, offer new avenues for improving outcomes in pancreatic cancer treatment. Additionally, the use of MSC-based therapies in clinical trials is discussed. While MSCs show promising potential for pancreatic cancer monitoring, diagnosis, and treatment, results so far have been limited.
Collapse
Affiliation(s)
- Sana Rahimian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Kimia Mirkazemi
- Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Armita Kamalinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
3
|
Bandu R, Oh JW, Kim KP. Extracellular vesicle proteins as breast cancer biomarkers: Mass spectrometry-based analysis. Proteomics 2024; 24:e2300062. [PMID: 38829178 DOI: 10.1002/pmic.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 06/05/2024]
Abstract
Extracellular vesicles (EVs) are membrane-surrounded vesicles released by various cell types into the extracellular microenvironment. Although EVs vary in size, biological function, and components, their importance in cancer progression and the potential use of EV molecular species to serve as novel cancer biomarkers have become increasingly evident. Cancer cells actively release EVs into surrounding tissues, which play vital roles in cancer progression and metastasis, including invasion and immune modulation. EVs released by cancer cells are usually chosen as a gateway in the search for biomarkers for cancer. In this review, we mainly focused on molecular profiling of EV protein constituents from breast cancer, emphasizing mass spectrometry (MS)-based proteomic approaches. To further investigate the potential use of EVs as a source of breast cancer biomarkers, we have discussed the use of these proteins as predictive marker candidates. Besides, we have also summarized the key characteristics of EVs as potential therapeutic targets in breast cancer and provided significant information on their implications in breast cancer development and progression. Information provided in this review may help understand the recent progress in understanding EV biology and their potential role as new noninvasive biomarkers as well as emerging therapeutic opportunities and associated challenges.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jae Won Oh
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Hur JY, Lee S, Shin WR, Kim YH, Ahn JY. The emerging role of medical foods and therapeutic potential of medical food-derived exosomes. NANOSCALE ADVANCES 2023; 6:32-50. [PMID: 38125597 PMCID: PMC10729880 DOI: 10.1039/d3na00649b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Medical food is consumed for the purpose of improving specific nutritional requirements or disease conditions, such as inflammation, diabetes, and cancer. It involves partial or exclusive feeding for fulfilling unique nutritional requirements of patients and is different from medicine, consisting of basic nutrients, such as polyphenols, vitamins, sugars, proteins, lipids, and other functional ingredients to nourish the patients. Recently, studies on extracellular vesicles (exosomes) with therapeutic and drug carrier potential have been actively conducted. In addition, there have been attempts to utilize exosomes as medical food components. Consequently, the application of exosomes is expanding in different fields with increasing research being conducted on their stability and safety. Herein, we introduced the current trends of medical food and the potential utilization of exosomes in them. Moreover, we proposed Medi-Exo, a exosome-based medical food. Furthermore, we comprehensively elucidate various disease aspects between medical food-derived exosomes (Medi-Exo) and therapeutic natural bionanocomposites. This review highlights the therapeutic challenges regarding Medi-Exo and its potential health benefits.
Collapse
Affiliation(s)
- Jin-Young Hur
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
| | - SeonHyung Lee
- Department of Bioengineering, University of Pennsylvania 210 S 33rd St. Philadelphia PA 19104 USA
| | - Woo-Ri Shin
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
- Department of Bioengineering, University of Pennsylvania 210 S 33rd St. Philadelphia PA 19104 USA
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University 1 Chungdae-Ro, Seowon-Gu Cheongju 28644 South Korea +82-43-264-9600 +82-43-261-2301 +82-43-261-3575
| |
Collapse
|
5
|
Guo RJ, Cao YF, Li EM, Xu LY. Multiple functions and dual characteristics of RAB11A in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188966. [PMID: 37657681 DOI: 10.1016/j.bbcan.2023.188966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Vesicle trafficking is an unceasing and elaborate cellular process that functions in material transport and information delivery. Recent studies have identified the small GTPase, Ras-related protein in brain 11A (RAB11A), as a key regulator in this process. Aberrant RAB11A expression has been reported in several types of cancers, suggesting the important functions and characteristics of RAB11A in cancer. These discoveries are of great significance because therapeutic strategies based on the physiological and pathological status of RAB11A might make cancer treatment more effective, as the molecular mechanisms of cancer development have not been completely revealed. However, these studies on RAB11A have not been reviewed and discussed specifically. Therefore, we summarize and discuss the recent findings of RAB11A involvement in different biological processes, including endocytic recycling regulation, receptors and adhesion molecules recycling, exosome secretion, phagophore formation and cytokinesis, as well as regulatory mechanisms in several tumor types. Moreover, contradictory effects of RAB11A have also been observed in different types of cancers, implying the dual characteristics of RAB11A in cancer, which are either oncogenic or tumor-suppressive. This review on the functions and characteristics of RAB11A highlights the value of RAB11A in inducing multiple important phenotypes based on vesicle trafficking and therefore will offer insights for future studies to reveal the molecular mechanisms, clinical significance, and therapeutic targeting of RAB11A in different cancers.
Collapse
Affiliation(s)
- Rui-Jian Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yu-Fei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
6
|
Czerwaty K, Dżaman K, Miechowski W. Application of Extracellular Vesicles in Allergic Rhinitis: A Systematic Review. Int J Mol Sci 2022; 24:ijms24010367. [PMID: 36613810 PMCID: PMC9820222 DOI: 10.3390/ijms24010367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The pathophysiology of allergic rhinitis (AR), one of the most common diseases in the world, is still not sufficiently understood. Extracellular vesicles (EVs), which are secreted by host and bacteria cells and take part in near and distant intracellular communication, can provide information about AR. Recently, attention has been drawn to the potential use of EVs as biomarkers, vaccines, or transporters for drug delivery. In this review, we present an up-to-date literature overview on EVs in AR to reveal their potential clinical significance in this condition. A comprehensive and systematic literature search was conducted following PRISMA statement guidelines for original, completed articles, available in English concerning EVs and AR. For this purpose, PubMed/MEDLINE, Scopus, Web of Science, and Cochrane, were searched up until 10 Novenmber 2022. From 275 records, 18 articles were included for analysis. The risk of bias was assessed for all studies as low or moderate risk of overall bias using the Office and Health Assessment and Translation Risk of Bias Rating Tool for Human and Animal Studies. We presented the role of exosomes in the pathophysiology of AR and highlighted the possibility of using exosomes as biomarkers and treatment in this disease.
Collapse
Affiliation(s)
- Katarzyna Czerwaty
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Karolina Dżaman
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Wiktor Miechowski
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
7
|
Liu M, Liu X, Su Y, Li S, Chen Y, Liu A, Guo J, Xuan K, Qiu X. Emerging role of mesenchymal stem cell-derived extracellular vesicles in oral and craniomaxillofacial tissue regenerative medicine. Front Bioeng Biotechnol 2022; 10:1054370. [PMID: 36524049 PMCID: PMC9744765 DOI: 10.3389/fbioe.2022.1054370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 06/11/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with differentiation potential and paracrine properties, drawing significant attention in the field of regenerative medicine. Extracellular vesicles (EVs), mainly including exosomes, microvesicles and apoptotic bodies (ABs), are predominantly endosomal in origin and contain bioactive molecules, such as miRNAs, mRNAs, and proteins, which are transferred from their original cells to target cells. Recently it has emerged that MSC-derived EVs (MSC-EVs) combine the advantages of MSCs and EVs, which may be used as a promising MSC-based therapy in tissue repair and regeneration. Oral and craniomaxillofacial diseases are clinically complications containing the soft and hard tissues in craniofacial and dental arches. These diseases are often induced by various factors, such as chemical, microbiological, physical factors, and systemic disorders. For decades, tissue repair and regeneration in oral and craniomaxillofacial regions provide substantial improvements in the prevention and treatment of some severe diseases. In this review we discuss MSC-EVs and their therapeutic potential in oral and craniomaxillofacial tissue regenerative medicine.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xin Liu
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuting Su
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shijie Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuan Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Guo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xinyu Qiu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Xu J, Xu D, Yu Z, Fu Z, Lv Z, Meng L, Zhao X. Exosomal miR-150 partially attenuated acute lung injury by mediating microvascular endothelial cells and MAPK pathway. Biosci Rep 2022; 42:BSR20203363. [PMID: 34750610 PMCID: PMC8703023 DOI: 10.1042/bsr20203363] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 10/12/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a respiratory disease with high morbidity and mortality rates. Currently, there is no effective treatment to complement mechanical ventilation. Exosomes and microRNAs (miRNAs) are promising agents for the management of this disease. METHODS Exosomes were isolated from mouse bone marrow stromal stem cells (BMSCs). The levels of two miRNAs, miR-542-3P and miR-150, in exosomes were determined using RT-PCR, and miR-150 was selected for further study. ALI model was established in mice using lipopolysaccharides, and then, they were treated with saline, exosomes, miRNA agomirs, or miRNA antagomirs. The concentrations of TNF-α, IL-6, and IL-1β and the number of neutrophils and macrophages in the bronchoalveolar lavage fluid were measured. The wet/dry weight ratio of the lung tissue was calculated, and tissue pathology and apoptosis were observed using hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. CD34 and VE-cadherin expression was detected using immunofluorescence. Proteins associated with apoptosis and MAPK signaling were detected using Western blotting, and miR-150 expression in lung tissue was evaluated using RT-PCR. RESULTS We successfully isolated BMSCs and exosomes and showed that the level of miR-150 was significantly higher than that of miR-542-3p. Exosomes and miR-150 reduced inflammation and lung edema while maintaining the integrity of the alveolar structure. They also mitigated microvascular endothelial cell injury by regulating the caspase-3, Bax/Bcl-2, and MAPK signaling. CONCLUSIONS Exosomal miR-150 attenuates lipopolysaccharide-induced ALI through the MAPK pathway.
Collapse
Affiliation(s)
- Jiaxin Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhizhong Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhaohui Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Lv
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Meng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Zhao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
9
|
Izadirad M, Huang Z, Jafari F, Hamidieh AA, Gharehbaghian A, Li YD, Jafari L, Chen ZS. Extracellular Vesicles in Acute Leukemia: A Mesmerizing Journey With a Focus on Transferred microRNAs. Front Cell Dev Biol 2021; 9:766371. [PMID: 34692712 PMCID: PMC8527035 DOI: 10.3389/fcell.2021.766371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Despite their small size, the membrane-bound particles named extracellular vesicles (EVs) seem to play an enormous role in the pathogenesis of acute leukemia. From oncogenic hematopoietic stem cells (HSCs) to become leukemic cells to alter the architecture of bone marrow (BM) microenvironment, EVs are critical components of leukemia development. As a carrier of essential molecules, especially a group of small non-coding RNAs known as miRNA, recently, EVs have attracted tremendous attention as a prognostic factor. Given the importance of miRNAs in the early stages of leukemogenesis and also their critical parts in the development of drug-resistant phenotype, it seems that the importance of EVs in the development of leukemia is more than what is expected. To be familiar with the clinical value of leukemia-derived EVs, this review aimed to briefly shed light on the biology of EVs and to discuss the role of EV-derived miRNAs in the development of acute myeloid leukemia and acute lymphoblastic leukemia. By elaborating the advances and challenges concerning the isolation of EVs, we discuss whether EVs could have a prognostic value in the clinical setting for leukemia.
Collapse
Affiliation(s)
- Mehrdad Izadirad
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Farideh Jafari
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Queens, NY, United States
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Queens, NY, United States
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| |
Collapse
|
10
|
Zhang Q, Yang X, Liu H. Extracellular Vesicles in Cancer Metabolism: Implications for Cancer Diagnosis and Treatment. Technol Cancer Res Treat 2021; 20:15330338211037821. [PMID: 34427131 PMCID: PMC8388228 DOI: 10.1177/15330338211037821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Metabolic reprogramming is one of the most common characteristics of cancer cells. The metabolic alterations of glucose, amino acids and lipids can support the aggressive phenotype of cancer cells. Exosomes, a kind of extracellular vesicles, participate in the intercellular communication through transferring bioactive molecules. Increasing evidence has demonstrated that enzymes, metabolites and non-coding RNAs in exosomes are responsible for the metabolic alteration of cancer cells. In this review, we summarize the past and recent findings of exosomes in altering cancer metabolism and elaborate on the role of the specific enzymes, metabolites and non-coding RNAs transferred by exosomes. Moreover, we give evidence of the role of exosomes in cancer diagnosis and treatment. Finally, we discuss the existing problems in the study and application of exosomes in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Han Z, Peng C, Yi J, Wang Y, Liu Q, Yang Y, Long S, Qiao L, Shen Y. Matrix-assisted laser desorption ionization mass spectrometry profiling of plasma exosomes evaluates osteosarcoma metastasis. iScience 2021; 24:102906. [PMID: 34401680 PMCID: PMC8355924 DOI: 10.1016/j.isci.2021.102906] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/08/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary sarcoma of bone among adolescents, often characterized by early lung metastasis resulting in high mortality. Recently, exosomes have been used in liquid biopsy to monitor tumors. Herein, we used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to profile human plasma exosomes for the evaluation of osteosarcoma lung metastasis. Forty patients with osteosarcoma with (n = 20) or without (n = 20) lung metastasis as well as 12 heathy controls were recruited. Exosomes were isolated from human plasma for MALDI-TOF MS analysis. Multivariate statistical analyses were performed based on the MALDI-TOF mass spectra. The strategy can efficiently differentiate osteosarcomas from healthy controls and further discriminate osteosarcoma lung metastasis from non-lung metastasis. We identified seven exosomal proteins as potential biomarkers of osteosarcoma lung metastasis. The proposed method holds great promise to clinically diagnose osteosarcoma and monitor osteosarcoma lung metastasis.
Collapse
Affiliation(s)
- Zhenzhen Han
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Peng
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Jia Yi
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yiwen Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qi Liu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Yi Yang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Shuping Long
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yuhui Shen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| |
Collapse
|
12
|
Hovhannisyan L, Czechowska E, Gutowska-Owsiak D. The Role of Non-Immune Cell-Derived Extracellular Vesicles in Allergy. Front Immunol 2021; 12:702381. [PMID: 34489951 PMCID: PMC8417238 DOI: 10.3389/fimmu.2021.702381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), and especially exosomes, have been shown to mediate information exchange between distant cells; this process directly affects the biological characteristics and functionality of the recipient cell. As such, EVs significantly contribute to the shaping of immune responses in both physiology and disease states. While vesicles secreted by immune cells are often implicated in the allergic process, growing evidence indicates that EVs from non-immune cells, produced in the stroma or epithelia of the organs directly affected by inflammation may also play a significant role. In this review, we provide an overview of the mechanisms of allergy to which those EVs contribute, with a particular focus on small EVs (sEVs). Finally, we also give a clinical perspective regarding the utilization of the EV-mediated communication route for the benefit of allergic patients.
Collapse
Affiliation(s)
- Lilit Hovhannisyan
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdansk, Poland
| | - Ewa Czechowska
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Danuta Gutowska-Owsiak
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Park SM, An JH, Lee JH, Kim KB, Chae HK, Oh YI, Song WJ, Youn HY. Extracellular vesicles derived from DFO-preconditioned canine AT-MSCs reprogram macrophages into M2 phase. PLoS One 2021; 16:e0254657. [PMID: 34310627 PMCID: PMC8312919 DOI: 10.1371/journal.pone.0254657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) are effective therapeutic agents that ameliorate inflammation through paracrine effect; in this regard, extracellular vesicles (EVs) have been frequently studied. To improve the secretion of anti-inflammatory factors from MSCs, preconditioning with hypoxia or hypoxia-mimetic agents has been attempted and the molecular changes in preconditioned MSC-derived EVs explored. In this study, we aimed to investigate the increase of hypoxia-inducible factor 1-alpha (HIF-1α)/cyclooxygenase-2 (COX-2) in deferoxamine (DFO)-preconditioned canine MSC (MSCDFO) and whether these molecular changes were reflected on EVs. Furthermore, we focused on MSCDFO derived EVs (EVDFO) could affect macrophage polarization via the transfer function of EVs. Results In MSCDFO, accumulation of HIF-1α were increased and production of COX-2 were activated. Also, Inside of EVDFO were enriched with COX-2 protein. To evaluate the transferring effect of EVs to macrophage, the canine macrophage cell line, DH82, was treated with EVs after lipopolysaccharide (LPS) stimulation. Polarization changes of DH82 were evaluated with quantitative real-time PCR and immunofluorescence analyses. When LPS-induced DH82 was treated with EVDFO, phosphorylation of signal transducer and transcription3 (p-STAT3), which is one of key factor of inducing M2 phase, expression was increased in DH82. Furthermore, treated with EVDFO in LPS-induced DH82, the expression of M1 markers were reduced, otherwise, M2 surface markers were enhanced. Comparing with EVDFO and EVnon. Conclusion DFO preconditioning in MSCs activated the HIF-1α/COX-2 signaling pathway; Transferring COX-2 through EVDFO could effectively reprogram macrophage into M2 phase by promoting the phosphorylation of STAT3.
Collapse
Affiliation(s)
- Su-Min Park
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Bo Kim
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Kyu Chae
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ye-In Oh
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jin Song
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- * E-mail: (WJS); (HYY)
| | - Hwa-Young Youn
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail: (WJS); (HYY)
| |
Collapse
|
14
|
Ayaz A, Houle E, Pilsner JR. Extracellular vesicle cargo of the male reproductive tract and the paternal preconception environment. Syst Biol Reprod Med 2021; 67:103-111. [PMID: 33630671 DOI: 10.1080/19396368.2020.1867665] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The molecular composition of extracellular vesicles (EVs) is emerging as a novel biomarker in many areas of research including reproductive health. EVs transport biological molecules such as RNA and protein to facilitate cell-to-cell communication among cells of the male reproductive tract. Human and animal studies have shown that EVs present in seminal plasma or in the male reproductive tract contain important cargo that are important for successful reproductive outcomes. Small non-coding RNAs (sncRNA) have been at the forefront of this research, and as such, they have the potential to serve as novel biomarkers of male infertility diagnosis and reproductive success. This review provides an overview of EV biosynthesis and examines the molecular payloads of seminal plasma EVs on male infertility and reproductive success as well as future research that is warranted to examine how these molecular payloads may be modified by environmental factors.
Collapse
Affiliation(s)
- Ahmet Ayaz
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Emily Houle
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
15
|
Nicolini A, Ferrari P, Biava PM. Exosomes and Cell Communication: From Tumour-Derived Exosomes and Their Role in Tumour Progression to the Use of Exosomal Cargo for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13040822. [PMID: 33669294 PMCID: PMC7920050 DOI: 10.3390/cancers13040822] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recently, within the research community, exosomes, transporters of bioactive molecules involved in many signalling pathways and cell-to-cell communication with the capacity to alter the tumour microenvironment, have been attracting increasing interest among oncologists. These molecules can play multiple roles, e.g., as useful biomarkers in diagnosis, modulators of the immune system, promoters of the formation of the pre-metastatic niches and cancer metastasis and carriers of substances or factors with anticancer properties. This review focuses on the use of exosomes as a novel therapeutic strategy for cancer treatment. Particularly, it highlights the potential of exosomes as carriers of stem cell differentiation stage factors (SCDSFs) for “cell reprogramming” therapy, a promising research field on which we have reported previously. Here, the main characteristics of this treatment and the advantages that can be obtained using mesenchymal stem cell-derived exosomes up-loaded with the SCDSFs as carriers of these factors are also discussed. Abstract Exosomes are nano-vesicle-shaped particles secreted by various cells, including cancer cells. Recently, the interest in exosomes among cancer researchers has grown enormously for their many potential roles, and many studies have focused on the bioactive molecules that they export as exosomal cargo. These molecules can function as biomarkers in diagnosis or play a relevant role in modulating the immune system and in promoting apoptosis, cancer development and progression. Others, considering exosomes potentially helpful for cancer treatment, have started to investigate them in experimental therapeutic trials. In this review, first, the biogenesis of exosomes and their main characteristics was briefly described. Then, the capability of tumour-derived exosomes and oncosomes in tumour microenvironments (TMEs) remodelling and pre-metastatic niche formation, as well as their interference with the immune system during cancer development, was examined. Finally, the potential role of exosomes for cancer therapy was discussed. Particularly, in addition, their use as carriers of natural substances and drugs with anticancer properties or carriers of boron neutron capture therapy (BNCT) and anticancer vaccines for immunotherapy, exosomes as biological reprogrammers of cancer cells have gained increased consensus. The principal aspects and the rationale of this intriguing therapeutic proposal are briefly considered.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Paola Ferrari
- Unit of Oncology 1, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy;
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, 20099 Milan, Italy;
| |
Collapse
|
16
|
Kharazi U, Badalzadeh R. A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine. Reprod Biol 2020; 20:447-459. [DOI: 10.1016/j.repbio.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/18/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
|
17
|
Jin T, Gu J, Xia H, Chen H, Xu X, Li Z, Yue Y, Gui Y. Differential Expression of microRNA Profiles and Wnt Signals in Stem Cell-Derived Exosomes During Dopaminergic Neuron Differentiation. DNA Cell Biol 2020; 39:2143-2153. [PMID: 33064572 DOI: 10.1089/dna.2020.5931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of secreted exosomes during dopaminergic (DA) neuron differentiation is still unknown. To investigate the roles of exosomes in DA neuron fate specification, we profiled exosomal microRNAs (miRNAs) during DA neuron differentiation of epiblast-derived stem cells (EpiSCs). There were 26 miRNAs differentially expressed (relative fold >2, p < 0.05) in EpiSC-derived exosomes at 0, 2, 4, 6, 8, 10, 12, and 14 days of DA epiblast differentiation. Among them, 23 exosomic miRNAs were significantly increased, including miR-124, miR-132, miR-133b, miR-218, miR-9, miR-34b, miR-34c, and miR-135a2, while three exosomic miRNAs (miR-214, miR-7a, and miR-302b) were decreased, when compared with control samples. Bioinformatics analysis by DIANA-mirPath demonstrated that extracellular matrix-receptor interaction, signaling pathways regulating pluripotency of stem cells, FoxO signaling pathway, DA synapse, Wnt signaling pathway, GABAergic synapse, and neurotrophin signaling pathway were significantly enriched in DA differentiation-related miRNA signature (all p-values <0.012). Furthermore, messenger RNAs for nine DA neuronal markers tyrosine hydroxylase (TH), Nr4a2, Pitx3, Drd1a, Lmx1a, Lmx1b, Foxa1, Dmrt5, and Slc18a2 were significantly increased expressed over time in exosomes derived from differentiated EpiSCs. Interestingly, adding with exosomes derived from EpiSC induction experiment resulted in a twofold increase of TH-positive neurons production (35% vs. 17%, p < 0.01) during DA neuronal differentiation from mouse embryonic stem cells (ESCs). In summary, our results suggested exosomal miRNAs are potential regulators of DA neuron differentiation. More importantly, EpiSC-derived exosomes could promote the generation of DA neuron differentiation from ESCs.
Collapse
Affiliation(s)
- Tao Jin
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiachen Gu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongbo Xia
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurology, The First People's Hospital of Fuyang, Hangzhou, China
| | - Huimin Chen
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurology, School of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaomin Xu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zongshan Li
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yumei Yue
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yaxing Gui
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Cressatti M, Galindez JM, Juwara L, Orlovetskie N, Velly AM, Eintracht S, Liberman A, Gornitsky M, Schipper HM. Characterization and heme oxygenase-1 content of extracellular vesicles in human biofluids. J Neurochem 2020; 157:2195-2209. [PMID: 32880973 DOI: 10.1111/jnc.15167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Heme oxygenase-1 (HO-1), a highly inducible stress protein that degrades heme to biliverdin, carbon monoxide, and free ferrous iron, is increased in blood and other biofluids of subjects with various systemic and neurological disorders. HO-1 does not contain an N-terminal signal peptide and the mechanism responsible for its secretion remains unknown. Extracellular vesicles (EVs) are membrane-bound inclusions that transport microRNAs, messenger RNAs, lipids, and proteins among diverse cellular and extracellular compartments. The objective of the current study was to determine whether EVs in human biofluids contain HO-1, and whether the latter may be transported in EVs from brain to periphery. Total, L1 cell adhesion molecule protein (L1CAM)-enriched (neuron-derived), and glutamate aspartate transporter 1 (GLAST)-enriched (astrocyte-derived) EVs were purified from five different human biofluids (saliva [n = 40], plasma [n = 14], serum [n = 10], urine [n = 10], and cerebrospinal fluid [n = 11]) using polymer precipitation and immuno-affinity-based capture methods. L1CAM-enriched, GLAST-enriched, and L1CAM/GLAST-depleted (LGD) EV, along with EV-depleted (EVD), fractions were validated by nanoparticle tracking analysis, enzyme-linked immunosorbent assay (ELISA), and western blot. HO-1 was assayed in all fractions using ELISA and western blot. The majority of HO-1 protein was localized to LGD, L1CAM-enriched, and GLAST-enriched EVs of all human biofluids surveyed after adjusting for age and sex, with little HO-1 protein detected in EVD fractions. HO-1 protein in human biofluids is predominantly localized to EV compartments. A substantial proportion of EV HO-1 in peripheral human biofluids is derived from the central nervous system and may contribute to the systemic manifestations of various neurological conditions.
Collapse
Affiliation(s)
- Marisa Cressatti
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Julia M Galindez
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Lamin Juwara
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Natalie Orlovetskie
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Ana M Velly
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Dentistry, Jewish General Hospital, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Shaun Eintracht
- Department of Diagnostic Medicine, Jewish General Hospital, Montreal, QC, Canada
| | - Adrienne Liberman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Mervyn Gornitsky
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Dentistry, Jewish General Hospital, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Hyman M Schipper
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Plasma-Derived Extracellular Vesicles Convey Protein Signatures that Reflect Pathophysiology in Lung and Pancreatic Adenocarcinomas. Cancers (Basel) 2020; 12:cancers12051147. [PMID: 32370304 PMCID: PMC7281335 DOI: 10.3390/cancers12051147] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022] Open
Abstract
Using a combination of mass-spectrometry and aptamer array-based proteomics, we characterized the protein features of circulating extracellular vesicles (EVs) in the context of lung (LUAD) and pancreatic ductal (PDAC) adenocarcinomas. We profiled EVs isolated from conditioned media of LUAD and PDAC cell lines to identify EV-associated protein cargoes released by these cancer cell types. Analysis of the resulting data identified LUAD and PDAC specific and pan-adenocarcinoma EV protein signatures. Bioinformatic analyses confirmed enrichment of proteins annotated to vesicle-associated processes and intracellular compartments, as well as representation of cancer hallmark functions and processes. Analysis of upstream regulator networks indicated significant enrichment of TP53, MYC, TGFB1 and KRAS-driven network effectors (p = 1.69 × 10-77-2.93 × 10-49) manifest in the adenocarcinoma sEV protein cargoes. We extended these findings by profiling the proteome of EVs isolated from lung (N = 15) and pancreatic ductal (N = 6) adenocarcinoma patient plasmas obtained at time of diagnosis, along with EVs derived from matched healthy controls (N = 21). Exploration of these proteomic data revealed abundant protein features in the plasma EVs with capacity to distinguish LUAD and PDAC cases from controls, including features yielding higher performance in the plasma EV isolates relative to unfractionated plasmas.
Collapse
|
20
|
Chi M, Shi X, Huo X, Wu X, Zhang P, Wang G. Dexmedetomidine promotes breast cancer cell migration through Rab11-mediated secretion of exosomal TMPRSS2. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:531. [PMID: 32411754 PMCID: PMC7214880 DOI: 10.21037/atm.2020.04.28] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, has been reported to increase the malignancy of breast cancer cells in vitro and stimulate tumor growth in mice. Transmembrane protease serine 2 (TMPRSS2) demonstrates proteolytic activity, resulting in degradation of the extracellular matrix (ECM). This study investigated whether and how TMPRSS2 regulates migration of DEX-treated breast cancer cells. Methods Breast cancer cell lines MCF-7 and MDA-MB-231 were treated with DEX and scratch assay was performed. Expressions of TMPRSS2, α2-adrenergic receptor, phospho-STAT3Tyr705, Rab11, and ECM components were assessed using real-time polymerase chain reaction (real-time PCR), Western blotting, and immunofluorescence staining. ELISA and ultracentrifugation were used to quantify secreted exosomal proteins. Knockdown assay was used to inhibit the expression of TMPRSS2 and Rab11. Results DEX significantly increased the migration of MCF-7 and MDA-MB-231, which was accompanied by the upregulation and colocalization of TMPRSS2 and α2-adrenergic receptor. Nuclear phospho-STAT3Tyr705 was increased dramatically following DEX treatment, and TMPRSS2 upregulation was significantly suppressed by the STAT3 inhibitor WP1066. Meanwhile, TMPRSS2 knockdown decreased DEX-induced cellular migration. TMPRSS2 and Rab11 were significantly detected in the media and the isolated exosomes from DEX-treated cells, and their colocalization was also revealed. Rab11 knockdown prevented exosomal TMPRSS2 from increasing in DEX-treated cells. In normal cultured MDA-MB-231, migration was increased by Rab11-positive exosomes isolated from DEX-treated MCF-7. Moreover, transmission electron microscopy showed that Rab11-positive exosomes enriched more components than Rab11-negative exosomes. Additionally, a reduction in ECM components fibronectin, collagen IV, matrix metallopeptidase 16, and Tenascin C was detected after DEX treatment, but was prohibited when TMPRSS2 or Rab11 were knocked down. Conclusions This study provides evidence that DEX upregulates TMPRSS2 expression via the activation of α2-adrenergic receptor/STAT3 signaling and promotes TMPRSS2 secretion in exosomes through Rab11, thus resulting in degradation of the ECM, which is responsible for DEX-induced migration of breast cancer cells.
Collapse
Affiliation(s)
- Meng Chi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xiaoding Shi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xing Huo
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xiaohong Wu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Pinyi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Guonian Wang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China.,Pain Research Institute of Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
21
|
Saber SH, Ali HEA, Gaballa R, Gaballah M, Ali HI, Zerfaoui M, Abd Elmageed ZY. Exosomes are the Driving Force in Preparing the Soil for the Metastatic Seeds: Lessons from the Prostate Cancer. Cells 2020; 9:E564. [PMID: 32121073 PMCID: PMC7140426 DOI: 10.3390/cells9030564] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are nano-membrane vesicles that various cell types secrete during physiological and pathophysiological conditions. By shuttling bioactive molecules such as nucleic acids, proteins, and lipids to target cells, exosomes serve as key regulators for multiple cellular processes, including cancer metastasis. Recently, microvesicles have emerged as a challenge in the treatment of prostate cancer (PCa), encountered either when the number of vesicles increases or when the vesicles move into circulation, potentially with an ability to induce drug resistance, angiogenesis, and metastasis. Notably, the exosomal cargo can induce the desmoplastic response of PCa-associated cells in a tumor microenvironment (TME) to promote PCa metastasis. However, the crosstalk between PCa-derived exosomes and the TME remains only partially understood. In this review, we provide new insights into the metabolic and molecular signatures of PCa-associated exosomes in reprogramming the TME, and the subsequent promotion of aggressive phenotypes of PCa cells. Elucidating the molecular mechanisms of TME reprogramming by exosomes draws more practical and universal conclusions for the development of new therapeutic interventions when considering TME in the treatment of PCa patients.
Collapse
Affiliation(s)
- Saber H. Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Hamdy E. A. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Rofaida Gaballa
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mohamed Gaballah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Hamed I. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mourad Zerfaoui
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| |
Collapse
|
22
|
Rammal G, Fahs A, Kobeissy F, Mechref Y, Zhao J, Zhu R, Diab-Assaf M, Saab R, Ghayad SE. Proteomic Profiling of Rhabdomyosarcoma-Derived Exosomes Yield Insights into Their Functional Role in Paracrine Signaling. J Proteome Res 2019; 18:3567-3579. [PMID: 31448612 DOI: 10.1021/acs.jproteome.9b00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exosomes are important intercellular communication vehicles, secreted into body fluids by multiple cell types, including tumor cells. They have been demonstrated to contribute to the metastatic progression of tumor cells through paracrine signaling. Tumor exosomes contain intact and functional proteins, mRNA and miRNA that may alter the cellular environment to favor tumor growth. We evaluated the protein cargo of exosomes derived from the childhood tumor rhabdomyosarcoma (RMS) and the molecular pathways they are implicated in to decipher their role in the progression of this aggressive disease. We conducted a mass spectrometry analysis of exosome content isolated from five RMS cell lines: three of embryonal RMS (ERMS) and two of alveolar RMS (ARMS) histology and verified results by multiple reaction monitoring and western blot analyses. Results revealed 161 common proteins in ERMS-derived exosomes and 122 common proteins in ARMS-derived exosomes, of which 81 proteins were common to both subtypes. Using both PANTHER gene classification and Pathway Studio software, we assessed the perturbed biological processes and altered pathways in which the exosomal proteins are involved. The 81 commonly expressed proteins included those involved in "cell-signaling," "cell-movement," and "cancer." Pathways engaging the identified proteins revealed 37 common pathways including "integrin signaling pathway," "inflammation mediated by chemokine and cytokine signaling pathway," and "angiogenesis." Finally, a comparison of exosomal proteins of RMS cells with publicly available datasets from other cancer cells revealed that 36 proteins are specific and endogenous to the RMS-exosomes. Taken together, our results reveal that RMS-derived exosomes carry a protein cargo that contributes to conserved cellular signaling networks across multiple cell lines, and we also identify RMS exosome-specific proteins that should be further evaluated as possible novel biomarkers for this tumor.
Collapse
Affiliation(s)
| | | | | | - Yehia Mechref
- Department of Chemistry & Biochemistry , Texas Tech University , Lubbock 79409 , United States
| | - Jingfu Zhao
- Department of Chemistry & Biochemistry , Texas Tech University , Lubbock 79409 , United States
| | - Rui Zhu
- Department of Chemistry & Biochemistry , Texas Tech University , Lubbock 79409 , United States
| | | | | | | |
Collapse
|
23
|
Chen L, Pan X, Zhang YH, Hu X, Feng K, Huang T, Cai YD. Primary Tumor Site Specificity is Preserved in Patient-Derived Tumor Xenograft Models. Front Genet 2019; 10:738. [PMID: 31456818 PMCID: PMC6701289 DOI: 10.3389/fgene.2019.00738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Patient-derived tumor xenograft (PDX) mouse models are widely used for drug screening. The underlying assumption is that PDX tissue is very similar with the original patient tissue, and it has the same response to the drug treatment. To investigate whether the primary tumor site information is well preserved in PDX, we analyzed the gene expression profiles of PDX mouse models originated from different tissues, including breast, kidney, large intestine, lung, ovary, pancreas, skin, and soft tissues. The popular Monte Carlo feature selection method was employed to analyze the expression profile, yielding a feature list. From this list, incremental feature selection and support vector machine (SVM) were adopted to extract distinctively expressed genes in PDXs from different primary tumor sites and build an optimal SVM classifier. In addition, we also set up a group of quantitative rules to identify primary tumor sites. A total of 755 genes were extracted by the feature selection procedures, on which the SVM classifier can provide a high performance with MCC 0.986 on classifying primary tumor sites originated from different tissues. Furthermore, we obtained 16 classification rules, which gave a lower accuracy but clear classification procedures. Such results validated that the primary tumor site specificity was well preserved in PDX as the PDXs from different primary tumor sites were still very different and these PDX differences were similar with the differences observed in patients with tumor. For example, VIM and ABHD17C were highly expressed in the PDX from breast tissue and also highly expressed in breast cancer patients.
Collapse
Affiliation(s)
- Lei Chen
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,College of Information Engineering, Shanghai Maritime University, Shanghai, China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohua Hu
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
24
|
The Contribution of the 20S Proteasome to Proteostasis. Biomolecules 2019; 9:biom9050190. [PMID: 31100951 PMCID: PMC6571867 DOI: 10.3390/biom9050190] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/22/2022] Open
Abstract
The last decade has seen accumulating evidence of various proteins being degraded by the core 20S proteasome, without its regulatory particle(s). Here, we will describe recent advances in our knowledge of the functional aspects of the 20S proteasome, exploring several different systems and processes. These include neuronal communication, post-translational processing, oxidative stress, intrinsically disordered protein regulation, and extracellular proteasomes. Taken together, these findings suggest that the 20S proteasome, like the well-studied 26S proteasome, is involved in multiple biological processes. Clarifying our understanding of its workings calls for a transformation in our perception of 20S proteasome-mediated degradation—no longer as a passive and marginal path, but rather as an independent, coordinated biological process. Nevertheless, in spite of impressive progress made thus far, the field still lags far behind the front lines of 26S proteasome research. Therefore, we also touch on the gaps in our knowledge of the 20S proteasome that remain to be bridged in the future.
Collapse
|
25
|
Yu H, Qu G, Wang Y, Mai W, Bao JJ, Song C, Yao M. The expression of Eps15 homology domain 1 is negatively correlated with disease-free survival and overall survival of osteosarcoma patients. J Orthop Surg Res 2019; 14:103. [PMID: 30975166 PMCID: PMC6460645 DOI: 10.1186/s13018-019-1137-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/27/2019] [Indexed: 12/05/2022] Open
Abstract
Background Osteosarcoma was locally aggressive and frequently metastasizes to the lung. However, the etiology of osteosarcoma was unknown. Thus, exploring the mechanisms behind the occurrence of osteosarcoma was important for its prediction and prevention. To investigate the usefulness of mammalian Eps15 homology domain 1 (EHD1) as a prognostic marker for osteosarcoma, the expression of EHD1 in 57 osteosarcoma patients was measured using immunohistochemistry techniques and correlated with the clinicopathological features of patients. Methods Correlations of EHD1 expression levels with clinicopathological features of patients were assessed using the Pearson χ2 test for categorical variables and the Student t test for continuous variables. Cumulative disease-free survival (DFS) curves and overall survival (OS) curves were plotted using the Kaplan–Meier method, and the relationship between each of the variables and survival was assessed by log-rank tests using univariate analysis. Subsequently, the parameters were tested using the multivariate Cox proportional hazards model, which was used to identify independent variables for predicting survival. EHD1 expression [P = 0.020; HR, 5.582; 95% confidence intervals (CI), 1.314–23.72] was an independent prognostic indicator of DFS in osteosarcoma patients; tumor size and EHD1 expression of osteosarcomas were independent prognostic indicators of OS in osteosarcoma patients. Results EHD1 protein expression was a positive expression in examined tumor tissues. The median OS time of patients with high expression of EHD1 was 46.8 months (95% CI, 29.8–63.8 months), and the median OS time of patients with low expression of EHD1 was 58.8 months (95% CI, 31.6–86.0 months). The prognosis for patients with low expression of EHD1 in osteosarcomas was significantly better than that for patients with high expression of EHD1 (log-rank test, P = 0.019). Conclusion The expression of EHD1 was negatively correlated with DFS and OS of osteosarcoma patients; therefore, the expression of EHD1 is a prognostic marker for prediction and prevention of osteosarcomas.
Collapse
Affiliation(s)
- Hongwei Yu
- Department of Orthopaedics, The Tumor Hospital Affiliated to Harbin Medical University, No.150, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Guofan Qu
- Department of Orthopaedics, The Tumor Hospital Affiliated to Harbin Medical University, No.150, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Yuxue Wang
- Department of Orthopaedics, The Tumor Hospital Affiliated to Harbin Medical University, No.150, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Wei Mai
- Department of Orthopaedics, The Tumor Hospital Affiliated to Harbin Medical University, No.150, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Jun Jie Bao
- Department of Orthopaedics, The Tumor Hospital Affiliated to Harbin Medical University, No.150, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Chunyu Song
- Department of Orthopaedics, The Tumor Hospital Affiliated to Harbin Medical University, No.150, Haping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Meng Yao
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
26
|
Bandu R, Oh JW, Kim KP. Mass spectrometry-based proteome profiling of extracellular vesicles and their roles in cancer biology. Exp Mol Med 2019; 51:1-10. [PMID: 30872566 PMCID: PMC6418213 DOI: 10.1038/s12276-019-0218-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/12/2018] [Indexed: 01/19/2023] Open
Abstract
Over the past three decades, extracellular vesicles (EVs) have arisen as important mediators of intercellular communication that are involved in the transmission of biological signals between cells to regulate various biological processes. EVs are largely responsible for intercellular communication through the delivery of bioactive molecules, such as proteins, messenger RNAs (mRNAs), microRNAs (miRNAs), DNAs, lipids, and metabolites. EVs released from cancer cells play a significant role in signal transduction between cancer cells and the surrounding cells, which contributes to the formation of tumors and metastasis in the tumor microenvironment. In addition, EVs released from cancer cells migrate to blood vessels and flow into various biological fluids, including blood and urine. EVs and EV-loaded functional cargoes, including proteins and miRNAs, found in these biological fluids are important biomarkers for cancer diagnosis. Therefore, EV proteomics greatly contributes to the understanding of carcinogenesis and tumor progression and is critical for the development of biomarkers for the early diagnosis of cancer. To explore the potential use of EVs as a gateway to understanding cancer biology and to develop cancer biomarkers, we discuss the mass spectrometric identification and characterization of EV proteins from different cancers. Information provided in this review may help in understanding recent progress regarding EV biology and the potential roles of EVs as new noninvasive biomarkers and therapeutic targets. Tumor cells release tiny membrane-encapsulated packages known as extracellular vesicles containing proteins which could serve as prognostic disease biomarkers or therapeutic targets. Kwang Pyo Kim and colleagues from Kyung Hee University in Yongin, South Korea, review the use of mass spectrometry to profile the diversity of proteins found in these tumor-derived packages. The proteins found in these vesicles help mediate communication between cancer cells and their surrounding tissues. Different tumor types share many of these proteins in common, but there are differences in the protein profile related to cancer-associated biological processes such as metastasis and cell proliferation. Tests based on the proteins contained in these vesicles could help clinicians better identify, diagnose and treat specific cancers, although large, multicenter studies are needed to validate such strategies.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Jae Won Oh
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea. .,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Chauhan AS, Kumar M, Chaudhary S, Dhiman A, Patidar A, Jakhar P, Jaswal P, Sharma K, Sheokand N, Malhotra H, Raje CI, Raje M. Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways. FASEB J 2019; 33:5626-5640. [PMID: 30640524 DOI: 10.1096/fj.201802102r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During physiologic stresses, like micronutrient starvation, infection, and cancer, the cytosolic moonlighting protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is trafficked to the plasma membrane (PM) and extracellular milieu (ECM). Our work demonstrates that GAPDH mobilized to the PM, and the ECM does not utilize the classic endoplasmic reticulum-Golgi route of secretion; instead, it is first selectively translocated into early and late endosomes from the cytosol via microautophagy. GAPDH recruited to this common entry point is subsequently delivered into multivesicular bodies, leading to its membrane trafficking through secretion via exosomes and secretory lysosomes. We present evidence that both pathways of GAPDH membrane trafficking are up-regulated upon iron starvation, potentially by mobilization of intracellular calcium. These pathways also play a role in clearance of misfolded intracellular polypeptide aggregates. Our findings suggest that cells build in redundancy for vital cellular pathways to maintain micronutrient homeostasis and prevent buildup of toxic intracellular misfolded protein refuse.-Chauhan, A. S., Kumar, M., Chaudhary, S., Dhiman, A., Patidar, A., Jakhar, P., Jaswal, P., Sharma, K., Sheokand, N., Malhotra, H., Raje, C. I., Raje. M. Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways.
Collapse
Affiliation(s)
- Anoop Singh Chauhan
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Manoj Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Surbhi Chaudhary
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Asmita Dhiman
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Anil Patidar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Priyanka Jakhar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Pallavi Jaswal
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Kapil Sharma
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Navdeep Sheokand
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Himanshu Malhotra
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | | | - Manoj Raje
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
28
|
On the Choice of the Extracellular Vesicles for Therapeutic Purposes. Int J Mol Sci 2019; 20:ijms20020236. [PMID: 30634425 PMCID: PMC6359369 DOI: 10.3390/ijms20020236] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid membrane vesicles released by all human cells and are widely recognized to be involved in many cellular processes, both in physiological and pathological conditions. They are mediators of cell-cell communication, at both paracrine and systemic levels, and therefore they are active players in cell differentiation, tissue homeostasis, and organ remodeling. Due to their ability to serve as a cargo for proteins, lipids, and nucleic acids, which often reflects the cellular source, they should be considered the future of the natural nanodelivery of bio-compounds. To date, natural nanovesicles, such as exosomes, have been shown to represent a source of disease biomarkers and have high potential benefits in regenerative medicine. Indeed, they deliver both chemical and bio-molecules in a way that within exosomes drugs are more effective that in their exosome-free form. Thus, to date, we know that exosomes are shuttle disease biomarkers and probably the most effective way to deliver therapeutic molecules within target cells. However, we do not know exactly which exosomes may be used in therapy in avoiding side effects as well. In regenerative medicine, it will be ideal to use autologous exosomes, but it seems not ideal to use plasma-derived exosomes, as they may contain potentially dangerous molecules. Here, we want to present and discuss a contradictory relatively unmet issue that is the lack of a general agreement on the choice for the source of extracellular vesicles for therapeutic use.
Collapse
|
29
|
Huang T, Deng CX. Current Progresses of Exosomes as Cancer Diagnostic and Prognostic Biomarkers. Int J Biol Sci 2019; 15:1-11. [PMID: 30662342 PMCID: PMC6329932 DOI: 10.7150/ijbs.27796] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
Cancer related exosomes are nano-size membrane vesicles that play important roles in tumor microenvironment. Emerging evidence indicates that exosomes can load unique cargoes, including proteins and nucleic acids that reflect the condition of tumor. Therefore, exosomes are being used as diagnostic and prognostic biomarkers for various cancers. In this review, we describe the current progresses of cancer related exosomes, including their biogenesis, molecular contents, biological functions, sources where they are derived from, and methods for their detection. We will also discuss the current exosomal biomarkers and the utilization of them for early diagnosis and prognostics in cancer.
Collapse
Affiliation(s)
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
30
|
Goody D, Pfeifer A. BAT Exosomes: Metabolic Crosstalk with Other Organs and Biomarkers for BAT Activity. Handb Exp Pharmacol 2019; 251:337-346. [PMID: 29633182 DOI: 10.1007/164_2018_114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the last decade, exosomes have gained interest as a new type of intercellular communication between cells and tissues. Exosomes are circulating, cell-derived lipid vesicles smaller than 200 nm that contain proteins and nucleic acids, including microRNAs (miRNAs), and are able to modify cellular targets. Exosomal miRNAs function as signalling molecules that regulate the transcription of their target genes and can cause phenotypic transformation of recipient cells. Recent studies have shown that brown fat secretes exosomes as a form of communication with other metabolic organs such as the liver. Moreover, it has been shown that levels of miRNAs in BAT-derived exosomes change after BAT activation in vitro and in vivo. Thus, BAT-derived exosomes can be used as potential biomarkers of BAT activity. Here, we review the present knowledge about BAT-derived exosomes and their role in metabolism.
Collapse
Affiliation(s)
- Deborah Goody
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
31
|
Sun B, Peng J, Wang S, Liu X, Zhang K, Zhang Z, Wang C, Jing X, Zhou C, Wang Y. Applications of stem cell-derived exosomes in tissue engineering and neurological diseases. Rev Neurosci 2018; 29:531-546. [PMID: 29267178 DOI: 10.1515/revneuro-2017-0059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are extracellular vesicles with diameters of 30-100 nm that are key for intercellular communication. Almost all types of cell, including dendritic cells, T cells, mast cells, epithelial cells, neuronal cells, adipocytes, mesenchymal stem cells, and platelets, can release exosomes. Exosomes are present in human body fluids, such as urine, amniotic fluid, malignant ascites, synovial fluid, breast milk, cerebrospinal fluid, semen, saliva, and blood. Exosomes have biological functions in immune response, antigen presentation, intercellular communication, and RNA and protein transfer. This review provides a brief overview of the origin, morphological characteristics, enrichment and identification methods, biological functions, and applications in tissue engineering and neurological diseases of exosomes.
Collapse
Affiliation(s)
- Baichuan Sun
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopaedics, Beijing 100853, China
| | - Shoufeng Wang
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Xuejian Liu
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Kaihong Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zengzeng Zhang
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Chong Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoguang Jing
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Chengfu Zhou
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopaedics, Beijing 100853, China
| |
Collapse
|
32
|
Vlaeminck-Guillem V. Extracellular Vesicles in Prostate Cancer Carcinogenesis, Diagnosis, and Management. Front Oncol 2018; 8:222. [PMID: 29951375 PMCID: PMC6008571 DOI: 10.3389/fonc.2018.00222] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, are now well recognized as major ways by which cancer cells interact with each other and stromal cells. The meaningful messages transmitted by the EVs are carried by all components of the EVs, i.e., the membrane lipids and the cargo (DNAs, RNAs, microRNAs, long non-coding RNAs, proteins). They are clearly part of the armed arsenal by which cancer cells obtain and share more and more advantages to grow and conquer new spaces. Identification of these messages offers a significant opportunity to better understand how a cancer occurs and then develops both locally and distantly. But it also provides a powerful means by which cancer progression can be detected and monitored. In the last few years, significant research efforts have been made to precisely identify how the EV trafficking is modified in cancer cells as compared to normal cells and how this trafficking is altered during cancer progression. Prostate cancer has not escaped this trend. The aim of this review is to describe the results obtained when assessing the meaningful content of prostate cancer- and stromal-derived EVs in terms of a better comprehension of the cellular and molecular mechanisms underlying prostate cancer occurrence and development. This review also deals with the use of EVs as powerful tools to diagnose non-indolent prostate cancer as early as possible and to accurately define, in a personalized approach, its present and potential aggressiveness, its response to treatment (androgen deprivation, chemotherapy, radiation, surgery), and the overall patients’ prognosis.
Collapse
Affiliation(s)
- Virginie Vlaeminck-Guillem
- Medical Unit of Molecular Oncology and Transfer, Department of Biochemistry and Molecular Biology, Centre Hospitalier Lyon-Sud, Hospices Civils of Lyon, Pierre-Bénite, France.,Cancer Research Centre of Lyon, U1052 INSERM, CNRS 5286, Claude Bernard University Lyon 1, Léon Bérard Centre, Lyon, France
| |
Collapse
|
33
|
Yang AC, du Bois H, Olsson N, Gate D, Lehallier B, Berdnik D, Brewer KD, Bertozzi CR, Elias JE, Wyss-Coray T. Multiple Click-Selective tRNA Synthetases Expand Mammalian Cell-Specific Proteomics. J Am Chem Soc 2018; 140:7046-7051. [PMID: 29775058 DOI: 10.1021/jacs.8b03074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bioorthogonal tools enable cell-type-specific proteomics, a prerequisite to understanding biological processes in multicellular organisms. Here we report two engineered aminoacyl-tRNA synthetases for mammalian bioorthogonal labeling: a tyrosyl ( ScTyrY43G) and a phenylalanyl ( MmPheT413G) tRNA synthetase that incorporate azide-bearing noncanonical amino acids specifically into the nascent proteomes of host cells. Azide-labeled proteins are chemoselectively tagged via azide-alkyne cycloadditions with fluorophores for imaging or affinity resins for mass spectrometric characterization. Both mutant synthetases label human, hamster, and mouse cell line proteins and selectively activate their azido-bearing amino acids over 10-fold above the canonical. ScTyrY43G and MmPheT413G label overlapping but distinct proteomes in human cell lines, with broader proteome coverage upon their coexpression. In mice, ScTyrY43G and MmPheT413G label the melanoma tumor proteome and plasma secretome. This work furnishes new tools for mammalian residue-specific bioorthogonal chemistry, and enables more robust and comprehensive cell-type-specific proteomics in live mammals.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniela Berdnik
- Center for Tissue Regeneration, Repair and Restoration , V.A. Palo Alto Healthcare System , Palo Alto , California 94304 , United States
| | | | | | | | - Tony Wyss-Coray
- Center for Tissue Regeneration, Repair and Restoration , V.A. Palo Alto Healthcare System , Palo Alto , California 94304 , United States
| |
Collapse
|
34
|
Quezada C, Torres Á, Niechi I, Uribe D, Contreras-Duarte S, Toledo F, San Martín R, Gutiérrez J, Sobrevia L. Role of extracellular vesicles in glioma progression. Mol Aspects Med 2018; 60:38-51. [PMID: 29222067 DOI: 10.1016/j.mam.2017.12.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Abstract
The role of extracellular vesicles in cancer biology has emerged as a focus of the study of great importance and has been shown to directly influence tumour development in several cancers including brain tumours, such as gliomas. Gliomas are the most aggressive brain tumours, and in the last time, a considerable effort has been made to understand their biology. Studies focus in the signalling pathways involved in the processes of angiogenesis, viability, drug resistance and immune response evasion, as well as gliomas ability to infiltrate healthy tissue, a phenomenon regulated by the migratory and invasive capacity of the cells within a tumour. In this review, we summarize the different types and classifications of extracellular vesicles, their intravesicular content, and their role in the regulation of tumour progression processes in glioma.
Collapse
Affiliation(s)
- Claudia Quezada
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | - Ángelo Torres
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Niechi
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Uribe
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Susana Contreras-Duarte
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Rody San Martín
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
35
|
Mammalian Eps15 homology domain 1 promotes metastasis in non-small cell lung cancer by inducing epithelial-mesenchymal transition. Oncotarget 2017; 8:22433-22442. [PMID: 27531895 PMCID: PMC5410234 DOI: 10.18632/oncotarget.11220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/14/2016] [Indexed: 01/11/2023] Open
Abstract
The identification of the earliest molecular events responsible for the metastatic dissemination of non-small cell lung cancer (NSCLC) remains critical for early detection, prevention, and treatment interventions. In this study, we hypothesized that Mammalian Eps15 homology domain 1 (EHD1) might be responsible for the metastatic behavior of cells in NSCLC. We demonstrated that upregulation of EHD1 is associated with lymph nodes metastasis and unfavorable survival in patients with NSCLC. EHD1 knockdown inhibited the invasion and migration of human NSCLC cells, and overexpression of EHD1 increased the metastatic potential of lung cancer cells. Using the Affymetrix Human Gene 1.0 ST platform, microarray analysis revealed that an association between EHD1 and epithelial-mesenchymal transition (EMT), supported by downregulation of mesenchymal markers and upregulation of epithelial markers following knockdown of EHD1 in cell lines. Moreover, overexpression of EHD1 induced the EMT and increased the metastatic potential of lung cancer cells in vitro and in vivo. These results provide a model to illustrate the relationship between EHD1 expression and lung cancer metastasis, opening up new avenues for the prognosis and therapy of lung cancer.
Collapse
|
36
|
Lázaro-Ibáñez E, Neuvonen M, Takatalo M, Thanigai Arasu U, Capasso C, Cerullo V, Rhim JS, Rilla K, Yliperttula M, Siljander PRM. Metastatic state of parent cells influences the uptake and functionality of prostate cancer cell-derived extracellular vesicles. J Extracell Vesicles 2017; 6:1354645. [PMID: 28819549 PMCID: PMC5556667 DOI: 10.1080/20013078.2017.1354645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/04/2017] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs), including microvesicles and exosomes, mediate intercellular signalling which has a profound role in cancer progression and in the development of metastasis. Internalisation of EVs can prompt functional changes in the recipient cells, the nature of which depends on the molecular composition and the cargo of the EVs. We hypothesised that the metastatic stage of cancerous parent cells would determine the uptake efficacy and the subsequent functional effects of the respective cancer cell-derived EVs. To address this question, we compared the internalisation of EVs derived from two metastatic site-derived prostate cancer cell lines (PC-3 and LNCaP), human telomerase reverse transcriptase immortalised primary malignant prostate epithelial cells (RC92a/hTERT), and a benign epithelial prostate cell line (PNT2). EVs isolated from the metastatic site-derived PC-3 and LNCaP cells were more efficiently internalised by the PC-3 and PNT2 cells compared to the EVs from the primary malignant RC92a/hTERT cells or the benign PNT2 cells, as determined by high content microscopy, confocal microscopy, and flow cytometry. EV uptake was also influenced by the phase of the cell cycle, so that an increased EV-derived fluorescence signal was observed in the cells at the G2/M phase compared to the G0/G1 or S phases. Finally, differences were also observed in the functions of the recipient cells based on the EV source. Proliferation of PNT2 cells and to a lesser extent also PC-3 cells was enhanced particularly by the EVs from the metastatic-site-derived prostate cancer cells in comparison to the EVs from the benign cells or primary cancer cells, whereas migration of PC-3 cells was enhanced by all cancerous EVs. RESPONSIBLE EDITOR Takahiro Ochiya, National Cancer Center, Japan.
Collapse
Affiliation(s)
- Elisa Lázaro-Ibáñez
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Maarit Neuvonen
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Uma Thanigai Arasu
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Cristian Capasso
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Johng S Rhim
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - Kirsi Rilla
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Xu JF, Wang YP, Zhang SJ, Chen Y, Gu HF, Dou XF, Xia B, Bi Q, Fan SW. Exosomes containing differential expression of microRNA and mRNA in osteosarcoma that can predict response to chemotherapy. Oncotarget 2017; 8:75968-75978. [PMID: 29100284 PMCID: PMC5652678 DOI: 10.18632/oncotarget.18373] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023] Open
Abstract
A major challenge in osteosarcoma (OS) is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent. We developed a profiling strategy for serum exosomal microRNAs and mRNAs in OS patients with differential chemotherapeutic responses. Twelve miRNAs were up regulated and 18 miRNAs were under regulated significantly in OS patient with poor chemotherapeutic response when compared with those in good chemotherapeutic response (p<0.05). In addition, miR-124, miR133a, miR-199a-3p, and miR-385 were validated and significantly reduced in poorly responded patients with an independent OS cohort. While miR-135b, miR-148a, miR-27a, and miR-9 were significantly over expressed in serum exosomes. Bioinformatic analysis by DIANA-mirPath demonstrated that Proteoglycans in cancer, Hippo signaling pathway, Pathways in cancer, Transcriptional misregulation in cancer, PI3K-Akt signaling pathway, Ras signaling pathway, Ubiquitin mediated proteolysis, Choline metabolism in cancer were the most prominent pathways enriched in quantiles with the miRNA patterns related to poor chemotherapeutic response. Messenger RNAs(mRNAs) includingAnnexin2, Smad2, Methylthioadenosine phosphorylase (MTAP), Cdc42-interacting protein 4 (CIP4), Pigment Epithelium-Derived Factor (PEDF), WW domain-containing oxidoreductase (WWOX), Cell division cycle 5-like (Cdc5L), P27 were differentially expressed in exosomes in OS patients with different chemotherapeutic response. These data demonstrated that exosomal RNA molecules are reliable biomarkers in classifying osteosarcoma with different chemotherapy sensitivity.
Collapse
Affiliation(s)
- Ji-Feng Xu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China.,Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Ya-Ping Wang
- Department of Cardiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, P.R. China
| | - Shui-Jun Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yu Chen
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Hai-Feng Gu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Fan Dou
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Bing Xia
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shun-Wu Fan
- Department of Orthopedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
38
|
Extracellular vesicles for liquid biopsy in prostate cancer: where are we and where are we headed? Prostate Cancer Prostatic Dis 2017; 20:251-258. [PMID: 28374743 PMCID: PMC5569339 DOI: 10.1038/pcan.2017.7] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/23/2022]
Abstract
Background: Extracellular vesicles (EVs) are a heterogeneous class of lipid bound particles shed by any cell in the body in physiological and pathological conditions. EVs play critical functions in intercellular communication. EVs can actively travel in intercellular matrices and eventually reach the circulation. They can also be released directly in biological fluids where they appear to be stable. Because the molecular content of EVs reflects the composition of the cell of origin, they have recently emerged as a promising source of biomarkers in a number of diseases. EV analysis is particularly attractive in cancer patients that frequently present with increased numbers of circulating EVs. Methods: We sought to review the current literature on the molecular profile of prostate cancer-derived EVs in model systems and patient biological fluids in an attempt to draw some practical and universal conclusions on the use of EVs as a tool for liquid biopsy in clinical specimens. Results: We discuss advantages and limitations of EV-based liquid biopsy approaches summarizing salient studies on protein, DNA and RNA. Several candidate biomarkers have been identified so far but these results are difficult to apply to the clinic. However, the field is rapidly moving toward the implementation of novel tools to isolate cancer-specific EVs that are free of benign EVs and extra-vesicular contaminants. This can be achieved by identifying markers that are exquisitely present in tumor cell-derived EVs. An important contribution might also derive from a better understanding of EV types that may play specific functions in tumor progression and that may be a source of cancer-specific markers. Conclusions: EV analysis holds strong promises for the development of non-invasive biomarkers in patients with prostate cancer. Implementation of modern methods for EV isolation and characterization will enable to interrogate circulating EVs in vivo.
Collapse
|
39
|
Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2016; 6:37043-53. [PMID: 26497684 PMCID: PMC4741914 DOI: 10.18632/oncotarget.6158] [Citation(s) in RCA: 432] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022] Open
Abstract
The differential diagnosis of Parkinson's diseases (PD) is challenging, especially in the early stages of the disease. We developed a microRNA profiling strategy for exosomal miRNAs isolated from cerebrospinal fluid (CSF) in PD and AD. Sixteen exosomal miRNAs were up regulated and 11 miRNAs were under regulated significantly in PD CSF when compared with those in healthy controls (relative fold > 2, p < 0.05). MiR-1 and miR-19b-3p were validated and significantly reduced in independent samples. While miR-153, miR-409-3p, miR-10a-5p, and let-7g-3p were significantly over expressed in PD CSF exosome. Bioinformatic analysis by DIANA-mirPath demonstrated that Neurotrophin signaling, mTOR signaling, Ubiquitin mediated proteolysis, Dopaminergic synapse, and Glutamatergic synapse were the most prominent pathways enriched in quantiles with PD miRNA patterns. Messenger RNA (mRNA) transcripts [amyloid precursor protein, APP), α-synuclein (α-syn), Tau, neurofilament, light gene (NF-L), DJ-1/PARK7, Fractalkine and Neurosin] and long non-coding RNAs (RP11-462G22.1 and PCA3) were differentially expressed in CSF exosomes in PD and AD patients. These data demonstrated that CSF exosomal RNA molecules are reliable biomarkers with fair robustness in regard to specificity and sensitivity in differentiating PD from healthy and diseased (AD) controls.
Collapse
|
40
|
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC. Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. Oncotarget 2016; 8:52237-52255. [PMID: 28881726 PMCID: PMC5581025 DOI: 10.18632/oncotarget.11111] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 07/16/2016] [Indexed: 02/06/2023] Open
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC–MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression.
Collapse
Affiliation(s)
- Carolina Soekmadji
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - James D Riches
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Pamela J Russell
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Jayde E Ruelcke
- Translational Research Institute, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Stephen McPherson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Chenwei Wang
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Chris M Hovens
- Australian Prostate Cancer Research Centre Epworth, and Department of Surgery, University of Melbourne, Australia
| | - Niall M Corcoran
- Australian Prostate Cancer Research Centre Epworth, and Department of Surgery, University of Melbourne, Australia
| | | | - Michelle M Hill
- Translational Research Institute, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
41
|
Yu H, Wang MJ, Xuan NX, Shang ZC, Wu J. Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides. J Zhejiang Univ Sci B 2016; 16:883-96. [PMID: 26465136 DOI: 10.1631/jzus.b1500106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To provide essential information for peptide inhibitor design, the interactions of Eps15 homology domain of Eps15 homology domain-containing protein 1 (EHD1 EH domain) with three peptides containing NPF (asparagine-proline-phenylalanine), DPF (aspartic acid-proline-phenylalanine), and GPF (glycine-proline-phenylalanine) motifs were deciphered at the atomic level. The binding affinities and the underlying structure basis were investigated. METHODS Molecular dynamics (MD) simulations were performed on EHD1 EH domain/peptide complexes for 60 ns using the GROMACS package. The binding free energies were calculated and decomposed by molecular mechanics/generalized Born surface area (MM/GBSA) method using the AMBER package. The alanine scanning was performed to evaluate the binding hot spot residues using FoldX software. RESULTS The different binding affinities for the three peptides were affected dominantly by van der Waals interactions. Intermolecular hydrogen bonds provide the structural basis of contributions of van der Waals interactions of the flanking residues to the binding. CONCLUSIONS van der Waals interactions should be the main consideration when we design peptide inhibitors of EHD1 EH domain with high affinities. The ability to form intermolecular hydrogen bonds with protein residues can be used as the factor for choosing the flanking residues.
Collapse
Affiliation(s)
- Hua Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Mao-jun Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Nan-xia Xuan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-cai Shang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
42
|
Altered micro-ribonucleic acid expression profiles of extracellular microvesicles in the seminal plasma of patients with oligoasthenozoospermia. Fertil Steril 2016; 106:1061-1069.e3. [PMID: 27424049 DOI: 10.1016/j.fertnstert.2016.06.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine whether microRNA (miRNA) expression profile is different in extracellular microvesicles collected from seminal plasma of men with oligoasthenozoospermia, to gain further insight into molecular mechanisms underlying male infertility. DESIGN Microarray with quantitative real-time polymerase chain reaction validation and Western blot analysis confirmation. SETTING University research and clinical institutes. PATIENT(S) A total of 24 men, including 12 oligoasthenozoospermic subfertile men and 12 normozoospermic men. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Statistically significant altered miRNA expression profiles in oligoasthenozoospermic subfertile men compared with normozoospermic fertile men. RESULT(S) Extracellular microvesicles including exosomes were isolated from seminal plasma by ultracentrifugation. Presence of exosome-specific proteins was confirmed by Western blotting. In the extracellular microvesicles, we analyzed 1,205 miRNAs by microarray and identified 36 miRNAs with altered expression levels in oligoasthenozoospermic compared with normozoospermic fertile men. Seven miRNAs were overexpressed and 29 miRNAs were underexpressed in oligoasthenozoospermic men. Using quantitative real-time polymerase chain reaction as an independent method, we confirmed the significantly higher expression levels of miR-765 and miR-1275 and the significantly lower expression level of miR-15a in oligoasthenozoospermic subfertile men as compared with the normozoospermic men. CONCLUSION(S) We identified altered expression levels of miRNAs in extracellular microvesicles from seminal plasma as part of the molecular events in the male genital tract. These miRNAs may help to understand the molecular mechanisms underlying male infertility.
Collapse
|
43
|
Liu CM, Hsieh CL, Shen CN, Lin CC, Shigemura K, Sung SY. Exosomes from the tumor microenvironment as reciprocal regulators that enhance prostate cancer progression. Int J Urol 2016; 23:734-44. [PMID: 27397852 DOI: 10.1111/iju.13145] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022]
Abstract
Distant organ metastasis of prostate cancer is a puzzle, and various theories have successively arisen to explain the mechanism of lethal cancer progression. While perhaps agreeable to many cancer biologists, the very statement of "seed and soil" proposed by Stephan Paget in 1881 is arguably still the major statement for organ-specific cancer metastasis. Since recent studies showed important correlations of regulation of cancer cells and the microenvironment, exosomes from cancer and stromal cells seem to create another important niche for metastasis. Stromal cells pretreated with exosomes from metastatic cancer cells increase the potential of change stromal cells. The poorly metastatic cancer cells could also enhance malignancy through transfer of proteins, microribonucleic acid and messenger ribonucleic acid to recipient cancer cells. Herein, we reviewed extracellular exosomes as a factor involved in cross-talk between stromal and prostate cancer epithelial cells.
Collapse
Affiliation(s)
- Che-Ming Liu
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chieh Lin
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Katsumi Shigemura
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
44
|
Abstract
All known cells continuously release nanoscale lipid membrane-enclosed packets. These packets, termed extracellular vesicles (EVs), bear the signature of their cells of origin. These vesicles can be detected in just about every type of biofluid tested, including blood, urine, and cerebrospinal fluid. The majority comes from normal cells, but disease cells also release them. There is a great interest in collecting and analyzing EVs in biofluids as diagnostics for a wide spectrum of central nervous system diseases. Here, we will review the state of central nervous system EV research in terms of molecular diagnostics and biomarkers.
Collapse
|
45
|
Mihelich BL, Dambal S, Lin S, Nonn L. miR-182, of the miR-183 cluster family, is packaged in exosomes and is detected in human exosomes from serum, breast cells and prostate cells. Oncol Lett 2016; 12:1197-1203. [PMID: 27446418 PMCID: PMC4950593 DOI: 10.3892/ol.2016.4710] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/25/2016] [Indexed: 12/12/2022] Open
Abstract
Members of the microRNA (miR)-183 family are expressed at high levels in the majority of cancer types, including breast and prostate, and are considered ‘oncomiRs’. The purpose of the present study was to investigate the role of exosomes in cell-to-cell transfer of the miR-183 family, which includes miRs-96, −182 and −183. Despite highly detectable levels of these three miRs within prostate and breast cells in vitro, only miR-182 was detectable in exosomes isolated from cell culture supernatant. Similar to the in vitro results, miR-182 was the only miR detected in exosomes isolated from fresh human serum. The packaging of miR-182 into exosomes was examined in MDA-MB-231 (MDA-182) breast cancer cells with miR-182 overexpression. Levels of mature miR-182 increased in exosomes in a dose-dependent manner compared to intracellular expression. Furthermore, co-culture of MDA-182 cells with naïve MDA-MB-231 cells resulted in an increase in mature miR-182 in the naïve cells, which was blocked by a chemical inhibitor of microvesicle formation. In summary, the present study demonstrates that of the miR-183 family members, miR-182 is preferentially packaged in exosomes, detectable in exosomes from human sera and may be transferred between cells via a microvesicle-dependent mechanism.
Collapse
Affiliation(s)
- Brittany L Mihelich
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shweta Dambal
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shaoxia Lin
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
46
|
Zijlstra C, Stoorvogel W. Prostasomes as a source of diagnostic biomarkers for prostate cancer. J Clin Invest 2016; 126:1144-51. [PMID: 27035806 DOI: 10.1172/jci81128] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
New biomarkers are needed to improve the diagnosis of prostate cancer. Similarly to healthy cells, prostate epithelial cancer cells produce extracellular vesicles (prostasomes) that can be isolated from seminal fluid, urine, and blood. Prostasomes contain ubiquitously expressed and prostate-specific membrane and cytosolic proteins, as well as RNA. Both quantitative and qualitative changes in protein, mRNA, long noncoding RNA, and microRNA composition of extracellular vesicles isolated from prostate cancer patients have been reported. In general, however, the identified extracellular vesicle-associated single-marker molecules or combinations of marker molecules require confirmation in large cohorts of patients to validate their specificity and sensitivity as prostate cancer markers. Complications include variable factors such as prostate manipulation and urine flux, as well as masking by ubiquitously expressed free molecules and extracellular vesicles from tissues other than the prostate. Herein, we propose that the most promising methods include comprehensive combinational screening for (mutant) RNA in prostasomes that are immunoisolated with antibodies targeting prostate-specific epitopes.
Collapse
|
47
|
Rauschenberger L, Staar D, Thom K, Scharf C, Venz S, Homuth G, Schlüter R, Brandenburg LO, Ziegler P, Zimmermann U, Weitschies W, Völker U, Lendeckel U, Walther R, Burchardt M, Stope MB. Exosomal particles secreted by prostate cancer cells are potent mRNA and protein vehicles for the interference of tumor and tumor environment. Prostate 2016; 76:409-24. [PMID: 26643154 DOI: 10.1002/pros.23132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Remodeling of the tumor environment and the modulation of tumor associated non-malignant cells are essential events in tumor progression. Exosomes are small membranous vesicles of 50-150 nm in diameter, which are secreted into the extracellular space and supposedly serve as vehicles for signal and effector molecules to modulate adjacent target cells. We characterized the mRNA and protein composition as well as cellular functions of prostate cancer cell-derived exosomes. METHODS Exosomes were prepared from prostate cancer cell culture supernatant by ultracentrifugation and subsequently characterized by dynamic light scattering and electron microscopy. Exosomal mRNA and protein composition were analyzed by DNA microarrays and gel electrophoresis coupled with mass spectrometry. Physiological effects of exosomes were studied by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase release cell assays. Using a SILAC approach, putative uptake of exosomal human proteins in canine cells and canine de novo synthesis of proteins specified by exosome-transferred human mRNA was analyzed in MDCK cells via mass spectrometry. RESULTS Preparations of exosomes revealed typical cup shaped particles of 150 nm in diameter. Analysis of mRNA and protein composition of exosomes exhibited a wide range of mRNA and protein species. Interestingly, the packaging of at least small proteins into exosomes was apparently unspecific, as shown with the example of two model proteins. In cell culture incubation experiments exosomal preparations of prostate cancer cells caused anti-proliferative effects. MS analysis revealed the uptake of exosomal human proteins into canine cells after 6 hr of incubation. CONCLUSIONS The results reveal a distinct exosomal functionality in the modulation of the prostatic tumor adjacent environment. The multitude of translocated factors implies the induction of numerous effects in tumor-associated target cells, including impact on cellular growth.
Collapse
Affiliation(s)
| | - Doreen Staar
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Kathleen Thom
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Institute of Microbiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | | | - Patrick Ziegler
- Department of Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | - Uwe Zimmermann
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Werner Weitschies
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Lendeckel
- Department of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Reinhard Walther
- Department of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
48
|
|
49
|
Tang PC, Watson GM. Proteomic identification of hair cell repair proteins in the model sea anemone Nematostella vectensis. Hear Res 2015; 327:245-56. [PMID: 26183436 DOI: 10.1016/j.heares.2015.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/15/2015] [Accepted: 07/09/2015] [Indexed: 12/26/2022]
Abstract
Sea anemones have an extraordinary capability to repair damaged hair bundles, even after severe trauma. A group of secreted proteins, named repair proteins (RPs), found in mucus covering sea anemones significantly assists the repair of damaged hair bundle mechanoreceptors both in the sea anemone Haliplanella luciae and the blind cavefish Astyanax hubbsi. The polypeptide constituents of RPs must be identified in order to gain insight into the molecular mechanisms by which repair of hair bundles is accomplished. In this study, several polypeptides of RPs were isolated from mucus using blue native PAGE and then sequenced using LC-MS/MS. Thirty-seven known polypeptides were identified, including Hsp70s, as well as many polypeptide subunits of the 20S proteasome. Other identified polypeptides included those involved in cellular stress responses, protein folding, and protein degradation. Specific inhibitors of Hsp70s and the 20S proteasome were employed in experiments to test their involvement in hair bundle repair. The results of those experiments suggested that repair requires biologically active Hsp70s and 20S proteasomes. A model is proposed that considers the function of extracellular Hsp70s and 20S proteasomes in the repair of damaged hair cells.
Collapse
Affiliation(s)
- Pei-Ciao Tang
- Department of Biology, University of Louisiana Lafayette, USA
| | - Glen M Watson
- Department of Biology, University of Louisiana Lafayette, USA.
| |
Collapse
|
50
|
Extracellular vesicles such as prostate cancer cell fragments as a fluid biopsy for prostate cancer. Prostate Cancer Prostatic Dis 2015; 18:213-20. [DOI: 10.1038/pcan.2015.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/27/2015] [Accepted: 02/28/2015] [Indexed: 12/21/2022]
|