1
|
Zadow ME, MacRaild CA, Creek DJ, Wilson DW. Alba protein-mediated gene and protein regulation in protozoan parasites. Int J Parasitol 2025:S0020-7519(25)00076-1. [PMID: 40246164 DOI: 10.1016/j.ijpara.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/21/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The success of protozoan parasites relies heavily on regulation of gene and protein expression to facilitate their persistence in harsh and often changing environments. These parasites display biology that is highly divergent from model eukaryotes, unfortunately leaving our understanding of these parasites' critical regulatory mechanisms incomplete. Alba proteins, a highly diverse group of DNA/RNA-binding proteins, are found across all domains of life and it has become increasingly apparent that these proteins play key regulatory roles in many protozoan parasite species including Plasmodium, Leishmania, Toxoplasma, and Trypanosoma. This review focusses on a subset of clinically relevant protozoan parasites and highlights the key biological processes known to have Alba protein involvement in these organisms including parasite development, survival, and virulence. In order to gain greater insight into these proteins, we also undertook a bioinformatic exploration of their protein sequences, leading us to identify previously unreported C-terminal Alba domain motifs and propose annotations for several currently unannotated protozoan Alba-like proteins. This collation of information allows us to observe common themes in Alba protein function across this group of parasites while also identifying areas of opportunity for further study.
Collapse
Affiliation(s)
- Meghan E Zadow
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide 5005 SA, Australia.
| | - Christopher A MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide 5005 SA, Australia; Burnet Institute, Melbourne 3004 Victoria, Australia.
| |
Collapse
|
2
|
Sagar S, Ramamoorthy P, Ramalingam S, Muthurajan R, Natarajan S, Doraiswamy U, Subramanian S. Drought's physiological footprint: implications for crop improvement in rice. Mol Biol Rep 2025; 52:298. [PMID: 40063283 DOI: 10.1007/s11033-025-10405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/04/2025] [Indexed: 05/13/2025]
Abstract
Rice, a staple food for significant percent of the world's population, is increasingly vulnerable to drought stress, threatening global food security. This review synthesizes current knowledge on drought's physiological impact on rice, highlighting key mechanisms, responses, and adaptations. Drought stress alters rice physiology at various stages, from seed germination to grain filling, affecting yield, quality, and nutrient content. Drought tolerance in rice is influenced by physiological traits such as root architecture and depth, stomatal regulation and water use efficiency, Osmo-protectants and antioxidant defences, hormone signalling and stress response pathways. Genetic diversity and molecular breeding have enhanced drought resilience in rice, with key genes and quantitative trait loci (QTLs) controlling drought tolerance identified, enabling marker-assisted selection and genetic engineering. Despite progress, challenges persist, including limited understanding of drought's impact on rice physiology under field conditions, inefficient screening methods for drought tolerance, and insufficient attention to drought's effects on rice quality and nutritional content. To address these gaps, integrating physiology, genetics, and agronomy for holistic drought mitigation strategies is crucial. Developing high-throughput phenotyping tools for drought tolerance screening and investigating drought's impact on rice grain quality and nutritional content are essential. This review provides a comprehensive framework for understanding drought's physiological footprint in rice and guiding future research toward improving drought tolerance and resilience.
Collapse
Affiliation(s)
- Sreevathsa Sagar
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Pushpam Ramamoorthy
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India.
| | - Suresh Ramalingam
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Sritharan Natarajan
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Uma Doraiswamy
- Department of Biochemistry, Tamil Nadu Agricultural University, Coimbatore, India
| | - Santhiya Subramanian
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
3
|
Mishra D, Shekhar S, Subba P, Prasad TSK, Chakraborty S, Chakraborty N. Wheat TaNACα18 functions as a positive regulator of high-temperature adaptive responses and improves cell defense machinery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2217-2235. [PMID: 38961633 DOI: 10.1111/tpj.16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Global wheat production amounted to >780 MMT during 2022-2023 whose market size are valued at >$128 billion. Wheat is highly susceptible to high-temperature stress (HTS) throughout the life cycle and its yield declines 5-7% with the rise in each degree of temperature. Previously, we reported an array of HTS-response markers from a resilient wheat cv. Unnat Halna and described their putative role in heat acclimation. To complement our previous results and identify the key determinants of thermotolerance, here we examined the cytoplasmic proteome of a sensitive cv. PBW343. The HTS-triggered metabolite reprograming highlighted how proteostasis defects influence the formation of an integrated stress-adaptive response. The proteomic analysis identified several promising HTS-responsive proteins, including a NACα18 protein, designated TaNACα18, whose role in thermotolerance remains unknown. Dual localization of TaNACα18 suggests its crucial functions in the cytoplasm and nucleus. The homodimerization of TaNACα18 anticipated its function as a transcriptional coactivator. The complementation of TaNACα18 in yeast and overexpression in wheat demonstrated its role in thermotolerance across the kingdom. Altogether, our results suggest that TaNACα18 imparts tolerance through tight regulation of gene expression, cell wall remodeling and activation of cell defense responses.
Collapse
Affiliation(s)
- Divya Mishra
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shubhendu Shekhar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya, Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya, Mangalore, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
4
|
Kumar S, Chakraborty S, Chakraborty N. Dehydration-responsive cytoskeleton proteome of rice reveals reprograming of key molecular pathways to mediate metabolic adaptation and cell survival. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108359. [PMID: 38237420 DOI: 10.1016/j.plaphy.2024.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 03/16/2024]
Abstract
The plant cytoskeletal proteins play a key role that control cytoskeleton dynamics, contributing to crucial biological processes such as cell wall morphogenesis, stomatal conductance and abscisic acid accumulation in repercussion to water-deficit stress or dehydration. Yet, it is still completely unknown which specific biochemical processes and regulatory mechanisms the cytoskeleton uses to drive dehydration tolerance. To better understand the role of cytoskeleton, we developed the dehydration-responsive cytoskeletal proteome map of a resilient rice cultivar. Initially, four-week-old rice plants were exposed to progressive dehydration, and the magnitude of dehydration-induced compensatory physiological responses was monitored in terms of physicochemical indices. The organelle fractionation in conjunction with label-free quantitative proteome analysis led to the identification of 955 dehydration-responsive cytoskeletal proteins (DRCPs). To our knowledge, this is the first report of a stress-responsive plant cytoskeletal proteome, representing the largest inventory of cytoskeleton and cytoskeleton-associated proteins. The DRCPs were apparently involved in a wide array of intra-cellular molecules transportation, organelles positioning, cytoskeleton organization followed by different metabolic processes including amino acid metabolism. These findings presented open a unique view on global regulation of plant cytoskeletal proteome is intimately linked to cellular metabolic rewiring of adaptive responses, and potentially confer dehydration tolerance, especially in rice, and other crop species, in general.
Collapse
Affiliation(s)
- Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Hassan MA, Dahu N, Hongning T, Qian Z, Yueming Y, Yiru L, Shimei W. Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1215371. [PMID: 37534289 PMCID: PMC10391551 DOI: 10.3389/fpls.2023.1215371] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023]
Abstract
Rice (Oryza Sativa L.) is an essential constituent of the global food chain. Drought stress significantly diminished its productivity and threatened global food security. This review concisely discussed how drought stress negatively influenced the rice's optimal growth cycle and altered its morpho-physiological, biochemical, and molecular responses. To withstand adverse drought conditions, plants activate their inherent drought resistance mechanism (escape, avoidance, tolerance, and recovery). Drought acclimation response is characterized by many notable responses, including redox homeostasis, osmotic modifications, balanced water relations, and restored metabolic activity. Drought tolerance is a complicated phenomenon, and conventional breeding strategies have only shown limited success. The application of molecular markers is a pragmatic technique to accelerate the ongoing breeding process, known as marker-assisted breeding. This review study compiled information about quantitative trait loci (QTLs) and genes associated with agronomic yield-related traits (grain size, grain yield, harvest index, etc.) under drought stress. It emphasized the significance of modern breeding techniques and marker-assisted selection (MAS) tools for introgressing the known QTLs/genes into elite rice lines to develop drought-tolerant rice varieties. Hence, this study will provide a solid foundation for understanding the complex phenomenon of drought stress and its utilization in future crop development programs. Though modern genetic markers are expensive, future crop development programs combined with conventional and MAS tools will help the breeders produce high-yielding and drought-tolerant rice varieties.
Collapse
Affiliation(s)
- Muhammad A. Hassan
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ni Dahu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Tong Hongning
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhu Qian
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yi Yueming
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Li Yiru
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wang Shimei
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
6
|
El-Okkiah SAF, El-Afry MM, Shehab Eldeen SA, El-Tahan AM, Ibrahim OM, Negm MM, Alnafissa M, El-Saadony MT, Almazrouei HMRS, AbuQamar SF, El-Tarabily KA, Selim DA. Foliar spray of silica improved water stress tolerance in rice ( Oryza sativa L.) cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:935090. [PMID: 36466243 PMCID: PMC9709440 DOI: 10.3389/fpls.2022.935090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/20/2022] [Indexed: 06/17/2023]
Abstract
Rice (Oryza sativa L.) is a major cereal crop and a staple food across the world, mainly in developing countries. Drought is one of the most important limiting factors for rice production, which negatively affects food security worldwide. Silica enhances antioxidant activity and reduces oxidative damage in plants. The current study evaluated the efficiency of foliar spray of silica in alleviating water stress of three rice cultivars (Giza178, Sakha102, and Sakha107). The seedlings of the three cultivars were foliar sprayed with 200 or 400 mg l-1 silica under well-watered [80% water holding capacity (WHC)] and drought-stressed (40% WHC)] conditions for two summer seasons of 2019 and 2020. The obtained results demonstrated that drought stress caused significant decreases in growth, yield, and physiological parameters but increases in biochemical parameters (except proline) of leaves in all rice cultivars compared to well-irrigated plants (control). The roots of drought-stressed seedlings exhibited smaller diameters, fewer numbers, and narrower areas of xylem vessels compared to those well-watered. Regardless of its concentration, the application of silica was found to increase the contents of photosynthetic pigments and proline. Water relation also increased in seedlings of the three tested rice cultivars that were treated with silica in comparison to their corresponding control cultivars when no silica was sprayed. Foliar application of 400 mg l-1 silica improved the physiological and biochemical parameters and plant growth. Overall, foliar application of silica proved to be beneficial for mitigating drought stress in the tested rice cultivars, among which Giza178 was the most drought-tolerant cultivar. The integration of silica in breeding programs is recommended to improve the quality of yield and to provide drought-tolerant rice cultivars under drought-stress conditions.
Collapse
Affiliation(s)
- Samira A. F. El-Okkiah
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mohamed M. El-Afry
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Safaa A. Shehab Eldeen
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Alexandria, Egypt
| | - Omar M. Ibrahim
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Alexandria, Egypt
| | - Mostafa M. Negm
- Department of Agricultural Economics, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mohamad Alnafissa
- Department of Agricultural Economics, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Hessa M. R. S. Almazrouei
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Dalia A. Selim
- Department of Agricultural Botany, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| |
Collapse
|
7
|
Yuan J, Cheng L, Li H, An C, Wang Y, Zhang F. Physiological and protein profiling analysis provides insight into the underlying molecular mechanism of potato tuber development regulated by jasmonic acid in vitro. BMC PLANT BIOLOGY 2022; 22:481. [PMID: 36210448 PMCID: PMC9549635 DOI: 10.1186/s12870-022-03852-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/19/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Jasmonates (JAs) are one of important phytohormones regulating potato tuber development. It is a complex process and the underlying molecular mechanism regulating tuber development by JAs is still limited. This study attempted to illuminate it through the potential proteomic dynamics information about tuber development in vitro regulated by exogenous JA. RESULTS A combined analysis of physiological and iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic approach was performed in tuber development in vitro under exogenous JA treatments (0, 0.5, 5 and 50 μΜ). Physiological results indicated that low JA concentration (especially 5 μM) promoted tuber development, whereas higher JA concentration (50 μM) showed inhibition effect. A total of 257 differentially expressed proteins (DEPs) were identified by iTRAQ, which provided a comprehensive overview on the functional protein profile changes of tuber development regulated by JA. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that low JA concentration (especially 5 μM) exhibited the promotion effects on tuber development in various cellular processes. Some cell wall polysaccharide synthesis and cytoskeleton formation-related proteins were up-regulated by JA to promote tuber cell expansion. Some primary carbon metabolism-related enzymes were up-regulated by JA to provide sufficient metabolism intermediates and energy for tuber development. And, a large number of protein biosynthesis, degradation and assembly-related were up-regulated by JA to promote tuber protein biosynthesis and maintain strict protein quality control during tuber development. CONCLUSIONS This study is the first to integrate physiological and proteomic data to provide useful information about the JA-signaling response mechanism of potato tuber development in vitro. The results revealed that the levels of a number of proteins involved in various cellular processes were regulated by JA during tuber development. The proposed hypothetical model would explain the interaction of these DEPs that associated with tuber development in vitro regulated by JA.
Collapse
Affiliation(s)
- Jianlong Yuan
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lixiang Cheng
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huijun Li
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Congcong An
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Feng Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
8
|
Amnan MAM, Aizat WM, Khaidizar FD, Tan BC. Drought Stress Induces Morpho-Physiological and Proteome Changes of Pandanus amaryllifolius. PLANTS (BASEL, SWITZERLAND) 2022; 11:221. [PMID: 35050109 PMCID: PMC8778612 DOI: 10.3390/plants11020221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 05/20/2023]
Abstract
Drought is one of the significant threats to the agricultural sector. However, there is limited knowledge on plant response to drought stress and post-drought recovery. Pandanus amaryllifolius, a moderate drought-tolerant plant, is well-known for its ability to survive in low-level soil moisture conditions. Understanding the molecular regulation of drought stress signaling in this plant could help guide the rational design of crop plants to counter this environmental challenge. This study aimed to determine the morpho-physiological, biochemical, and protein changes of P. amaryllifolius in response to drought stress and during recovery. Drought significantly reduced the leaf relative water content and chlorophyll content of P. amaryllifolius. In contrast, relative electrolyte leakage, proline and malondialdehyde contents, and the activities of antioxidant enzymes in the drought-treated and recovered samples were relatively higher than the well-watered sample. The protein changes between drought-stressed, well-watered, and recovered plants were evaluated using tandem mass tags (TMT)-based quantitative proteomics. Of the 1415 differentially abundant proteins, 74 were significantly altered. The majority of proteins differing between them were related to carbon metabolism, photosynthesis, stress response, and antioxidant activity. This is the first study that reports the protein changes in response to drought stress in Pandanus. The data generated provide an insight into the drought-responsive mechanisms in P. amaryllifolius.
Collapse
Affiliation(s)
- Muhammad Asyraf Mohd Amnan
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.M.A.); (F.D.K.)
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Fiqri Dizar Khaidizar
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.M.A.); (F.D.K.)
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.M.A.); (F.D.K.)
| |
Collapse
|
9
|
Kumar S, Lande NV, Barua P, Pareek A, Chakraborty S, Chakraborty N. Proteomic dissection of rice cytoskeleton reveals the dominance of microtubule and microfilament proteins, and novel components in the cytoskeleton-bound polysome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:75-86. [PMID: 34861586 DOI: 10.1016/j.plaphy.2021.11.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The plant cytoskeleton persistently undergoes remodeling to achieve its roles in supporting cell division, differentiation, cell expansion and organelle transport. However, the links between cell metabolism and cytoskeletal networks, particularly how the proteinaceous components execute such processes remain poorly understood. We investigated the cytoskeletal proteome landscape of rice to gain better understanding of such events. Proteins were extracted from highly enriched cytoskeletal fraction of four-week-old rice seedlings, and the purity of the fraction was stringently monitored. A total of 2577 non-redundant proteins were identified using both gel-based and gel-free approaches, which constitutes the most comprehensive dataset, thus far, for plant cytoskeleton. The data set includes both microtubule and microfilament-associated proteins and their binding proteins comprising hypothetical as well as novel cytoskeletal proteins. Further, various in-silico analyses were performed, and the proteins were functionally classified on the basis of their gene ontology. The catalogued proteins were validated through their sequence analysis. Extensive comparative analysis of our dataset with the non-redundant set of cytoskeletal proteins across plant species affirms unique as well as overlapping candidates. Together, these findings unveil new insights of how cytoskeletons undergo dynamic remodeling in rice to drive seedling development processes in rapidly changing in planta environment.
Collapse
Affiliation(s)
- Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Akanksha Pareek
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
10
|
Al‐Dossary O, Alsubaie B, Kharabian‐Masouleh A, Al‐Mssallem I, Furtado A, Henry RJ. The jojoba genome reveals wide divergence of the sex chromosomes in a dioecious plant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1283-1294. [PMID: 34570389 PMCID: PMC9293028 DOI: 10.1111/tpj.15509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Most flowering plants are hermaphrodites, but around 6% of species are dioecious, having separate male and female plants. Sex chromosomes and some sex-specific genes have been reported in plants, but the genome sequences have not been compared. We now report the genome sequence of male and female jojoba (Simmondsia chinensis) plants, revealing a very large difference in the sex chromosomes. The male genome assembly was 832 Mb and the female 822 Mb. This was explained by the large size differences in the Y chromosome (37.6 Mb) compared with the X chromosome (26.9 Mb). Relative to the X chromosome, the Y chromosome had two large insertions each of more than 5 Mb containing more than 400 genes. Many of the genes in the chromosome-specific regions were novel. These male-specific regions included many flowering-related and stress response genes. Smaller insertions found only in the X chromosome totalled 877 kb. The wide divergence of the sex chromosomes suggests a long period of adaptation to diverging sex-specific roles. Male and female plants may have evolved to accommodate factors such as differing reproductive resource allocation requirements under the stress of the desert environment in which the plants are found. The sex-determining regions accumulate genes beneficial to each sex. This has required the evolution of many more novel sex-specific genes than has been reported for other organisms. This suggest that dioecious plants provide a novel source of genes for manipulation of reproductive performance and environmental adaptation in crops.
Collapse
Affiliation(s)
- Othman Al‐Dossary
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbane4072Australia
- College of Agriculture and Food SciencesKing Faisal UniversityAl Hofuf36362Saudi Arabia
| | - Bader Alsubaie
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbane4072Australia
- College of Agriculture and Food SciencesKing Faisal UniversityAl Hofuf36362Saudi Arabia
| | | | - Ibrahim Al‐Mssallem
- College of Agriculture and Food SciencesKing Faisal UniversityAl Hofuf36362Saudi Arabia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbane4072Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbane4072Australia
- ARC Centre of Excellence for Plant Success in Nature and AgricultureUniversity of QueenslandBrisbane4072Australia
| |
Collapse
|
11
|
Li T, Zhu D, Han Z, Zhang J, Zhang M, Yan Y. Label-Free Quantitative Proteome Analysis Reveals the Underlying Mechanisms of Grain Nuclear Proteins Involved in Wheat Water-Deficit Response. FRONTIERS IN PLANT SCIENCE 2021; 12:748487. [PMID: 34759942 PMCID: PMC8572964 DOI: 10.3389/fpls.2021.748487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this study, we performed the first nuclear proteome analysis of wheat developing grains under water deficit by using a label-free based quantitative proteomic approach. In total, we identified 625 unique proteins as differentially accumulated proteins (DAPs), of which 398 DAPs were predicted to be localized in nucleus. Under water deficit, 146 DAPs were up-regulated and mainly involved in the stress response and oxidation-reduction process, while 252 were down-regulated and mainly participated in translation, the cellular amino metabolic process, and the oxidation-reduction process. The cis-acting elements analysis of the key nuclear DAPs encoding genes demonstrated that most of these genes contained the same cis-acting elements in the promoter region, mainly including ABRE involved in abscisic acid response, antioxidant response element, MYB responsive to drought regulation and MYC responsive to early drought. The cis-acting elements related to environmental stress and hormones response were relatively abundant. The transcription expression profiling of the nuclear up-regulated DAPs encoding genes under different organs, developmental stages and abiotic stresses was further detected by RNA-seq and Real-time quantitative polymerase chain reaction, and more than 50% of these genes showed consistency between transcription and translation expression. Finally, we proposed a putative synergistic responsive network of wheat nuclear proteome to water deficit, revealing the underlying mechanisms of wheat grain nuclear proteome in response to water deficit.
Collapse
Affiliation(s)
- Tingting Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Dong Zhu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhisheng Han
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Junwei Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Ming Zhang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
12
|
Iqbal Z, Iqbal MS, Khan MIR, Ansari MI. Toward Integrated Multi-Omics Intervention: Rice Trait Improvement and Stress Management. FRONTIERS IN PLANT SCIENCE 2021; 12:741419. [PMID: 34721467 PMCID: PMC8554098 DOI: 10.3389/fpls.2021.741419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 05/04/2023]
Abstract
Rice (Oryza sativa) is an imperative staple crop for nearly half of the world's population. Challenging environmental conditions encompassing abiotic and biotic stresses negatively impact the quality and yield of rice. To assure food supply for the unprecedented ever-growing world population, the improvement of rice as a crop is of utmost importance. In this era, "omics" techniques have been comprehensively utilized to decipher the regulatory mechanisms and cellular intricacies in rice. Advancements in omics technologies have provided a strong platform for the reliable exploration of genetic resources involved in rice trait development. Omics disciplines like genomics, transcriptomics, proteomics, and metabolomics have significantly contributed toward the achievement of desired improvements in rice under optimal and stressful environments. The present review recapitulates the basic and applied multi-omics technologies in providing new orchestration toward the improvement of rice desirable traits. The article also provides a catalog of current scenario of omics applications in comprehending this imperative crop in relation to yield enhancement and various environmental stresses. Further, the appropriate databases in the field of data science to analyze big data, and retrieve relevant information vis-à-vis rice trait improvement and stress management are described.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
13
|
Khan MIR, Palakolanu SR, Chopra P, Rajurkar AB, Gupta R, Iqbal N, Maheshwari C. Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches. PHYSIOLOGIA PLANTARUM 2021; 172:645-668. [PMID: 33006143 DOI: 10.1111/ppl.13223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Drought has been highly prevalent around the world especially in Sub-Saharan Africa and South-East Asian countries. Consistent climatic instabilities and unpredictable rainfall patterns are further worsening the situation. Rice is a C3 staple cereal and an important food crop for the majority of the world's population and drought stress is one of the major growth retarding threats for rice that slashes down grain quality and yield. Drought deteriorates rice productivity and induces various acclimation responses that aids in stress mitigation. However, the complexity of traits associated with drought tolerance has made the understanding of drought stress-induced responses in rice a challenging process. An integrative understanding based on physiological adaptations, omics, transgenic and molecular breeding approaches successively backed up to developing drought stress-tolerant rice. The review represents a step forward to develop drought-resilient rice plants by exploiting the knowledge that collaborates with omics-based developments with integrative efforts to ensure the compilation of all the possible strategies undertaken to develop drought stress-tolerant rice.
Collapse
Affiliation(s)
| | - Sudhakar R Palakolanu
- Cell, Molecular Biology and Genetic Engineering Group, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Ashish B Rajurkar
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Ravi Gupta
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
14
|
Razi K, Muneer S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit Rev Biotechnol 2021; 41:669-691. [PMID: 33525946 DOI: 10.1080/07388551.2021.1874280] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Drought stress is one of the most adverse abiotic stresses that hinder plants' growth and productivity, threatening sustainable crop production. It impairs normal growth, disturbs water relations and reduces water-use efficiency in plants. However, plants have evolved many physiological and biochemical responses at the cellular and organism levels, in order to cope with drought stress. Photosynthesis, which is considered one of the most crucial biological processes for survival of plants, is greatly affected by drought stress. A gradual decrease in CO2 assimilation rates, reduced leaf size, stem extension and root proliferation under drought stress, disturbs plant water relations, reducing water-use efficiency, disrupts photosynthetic pigments and reduces the gas exchange affecting the plants adversely. In such conditions, the chloroplast, organelle responsible for photosynthesis, is found to counteract the ill effects of drought stress by its critical involvement as a sensor of changes occurring in the environment, as the first process that drought stress affects is photosynthesis. Beside photosynthesis, chloroplasts carry out primary metabolic functions such as the biosynthesis of starch, amino acids, lipids, and tetrapyroles, and play a central role in the assimilation of nitrogen and sulfur. Because the chloroplasts are central organelles where the photosynthetic reactions take place, modifications in their physiology and protein pools are expected in response to the drought stress-induced variations in leaf gas exchanges and the accumulation of ROS. Higher expression levels of various transcription factors and other proteins including heat shock-related protein, LEA proteins seem to be regulating the heat tolerance mechanisms. However, several aspects of plastid alterations, following a water deficit environment are still poorly characterized. Since plants adapt to various stress tolerance mechanisms to respond to drought stress, understanding mechanisms of drought stress tolerance in plants will lead toward the development of drought tolerance in crop plants. This review throws light on major droughts stress-induced molecular/physiological mechanisms in response to severe and prolonged drought stress and addresses the molecular response of chloroplasts in common vegetable crops. It further highlights research gaps, identifying unexplored domains and suggesting recommendations for future investigations.
Collapse
Affiliation(s)
- Kaukab Razi
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
15
|
Deveshwar P, Sharma S, Prusty A, Sinha N, Zargar SM, Karwal D, Parashar V, Singh S, Tyagi AK. Analysis of rice nuclear-localized seed-expressed proteins and their database (RSNP-DB). Sci Rep 2020; 10:15116. [PMID: 32934280 PMCID: PMC7492263 DOI: 10.1038/s41598-020-70713-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 01/16/2023] Open
Abstract
Nuclear proteins are primarily regulatory factors governing gene expression. Multiple factors determine the localization of a protein in the nucleus. An upright identification of nuclear proteins is way far from accuracy. We have attempted to combine information from subcellular prediction tools, experimental evidence, and nuclear proteome data to identify a reliable list of seed-expressed nuclear proteins in rice. Depending upon the number of prediction tools calling a protein nuclear, we could sort 19,441 seed expressed proteins into five categories. Of which, half of the seed-expressed proteins were called nuclear by at least one out of four prediction tools. Further, gene ontology (GO) enrichment and transcription factor composition analysis showed that 6116 seed-expressed proteins could be called nuclear with a greater assertion. Localization evidence from experimental data was available for 1360 proteins. Their analysis showed that a 92.04% accuracy of a nuclear call is valid for proteins predicted nuclear by at least three tools. Distribution of nuclear localization signals and nuclear export signals showed that the majority of category four members were nuclear resident proteins, whereas other categories have a low fraction of nuclear resident proteins and significantly higher constitution of shuttling proteins. We compiled all the above information for the seed-expressed genes in the form of a searchable database named Rice Seed Nuclear Protein DataBase (RSNP-DB) https://pmb.du.ac.in/rsnpdb. This information will be useful for comprehending the role of seed nuclear proteome in rice.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Neha Sinha
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Sajad Majeed Zargar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India.,Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Divya Karwal
- Institute of Informatics and Communications, University of Delhi, South Campus, New Delhi, India
| | - Vishal Parashar
- Institute of Informatics and Communications, University of Delhi, South Campus, New Delhi, India
| | - Sanjeev Singh
- Institute of Informatics and Communications, University of Delhi, South Campus, New Delhi, India
| | - Akhilesh Kumar Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India.
| |
Collapse
|
16
|
Vanani FR, Shabani L, Sabzalian MR, Dehghanian F, Winner L. Comparative physiological and proteomic analysis indicates lower shock response to drought stress conditions in a self-pollinating perennial ryegrass. PLoS One 2020; 15:e0234317. [PMID: 32555744 PMCID: PMC7302502 DOI: 10.1371/journal.pone.0234317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/22/2020] [Indexed: 12/05/2022] Open
Abstract
We investigated the physiological and proteomic changes in the leaves of three Lolium perenne genotypes, one Iranian putative self-pollinating genotype named S10 and two commercial genotypes of Vigor and Speedy, subjected to drought stress conditions. The results of this study indeed showed higher RWC (relative water content), SDW (shoot dry weight), proline, ABA (abscisic acid), nitrogen and amino acid contents, and antioxidant enzymes activities of S10 under drought stress in comparison with the two other genotypes. A total of 915 proteins were identified using liquid chromatography-mass spectrometry (LC/MS) analysis, and the number of differentially abundant proteins between normal and stress conditions was 467, 456, and 99 in Vigor, Speedy, and S10, respectively. Proteins involved in carbon and energy metabolism, photosynthesis, TCA cycle, redox, and transport categories were up-regulated in the two commercial genotypes. We also found that some protein inductions, including those involved in amino acid and ABA metabolisms, aquaporin, HSPs, photorespiration, and increases in the abundance of antioxidant enzymes, are essential responses of the two commercial genotypes to drought stress. In contrast, we observed only slight changes in the protein profile of the S10 genotype under drought stress. Higher homozygosity due to self-pollination in the genetic background of the S10 genotype may have led to a lower variation in response to drought stress conditions.
Collapse
Affiliation(s)
- Fatemeh Raeisi Vanani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Leila Shabani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Mohammad R. Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Lisa Winner
- Core Facility Proteomics, Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Quantitative Phosphoproteomic Analysis of Legume Using TiO 2-Based Enrichment Coupled with Isobaric Labeling. Methods Mol Biol 2020; 2107:395-406. [PMID: 31893461 DOI: 10.1007/978-1-0716-0235-5_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphorylation of proteins is the most dynamic protein modification, and its analysis aids in determining the functional and regulatory principles of important cellular pathways. The legumes constitute the third largest family of higher plants, Fabaceae, comprising about 20,000 species and are second to cereals in agricultural importance on the basis of global production. Therefore, an understanding of the developmental and adaptive processes of legumes demands identification of their regulatory components. The most crucial signature of the legume family is the symbiotic nitrogen fixation, which makes this fascinating and interesting to investigate phosphorylation events. The research on protein phosphorylation in legumes has been focused primarily on two model species, Medicago truncatula and Lotus japonicus. The development of reciprocal research in other species, particularly the crops, is lagging behind which has limited its beneficial uses in agricultural productivity. In this chapter, we outline the titanium dioxide-based enrichment of phosphopeptides for nuclear proteome analysis of a grain legume, chickpea.
Collapse
|
18
|
Mustafin ZS, Zamyatin VI, Konstantinov DK, Doroshkov AV, Lashin SA, Afonnikov DA. Phylostratigraphic Analysis Shows the Earliest Origination of the Abiotic Stress Associated Genes in A. thaliana. Genes (Basel) 2019; 10:genes10120963. [PMID: 31766757 PMCID: PMC6947294 DOI: 10.3390/genes10120963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022] Open
Abstract
Plants constantly fight with stressful factors as high or low temperature, drought, soil salinity and flooding. Plants have evolved a set of stress response mechanisms, which involve physiological and biochemical changes that result in adaptive or morphological changes. At a molecular level, stress response in plants is performed by genetic networks, which also undergo changes in the process of evolution. The study of the network structure and evolution may highlight mechanisms of plants adaptation to adverse conditions, as well as their response to stresses and help in discovery and functional characterization of the stress-related genes. We performed an analysis of Arabidopsis thaliana genes associated with several types of abiotic stresses (heat, cold, water-related, light, osmotic, salt, and oxidative) at the network level using a phylostratigraphic approach. Our results show that a substantial fraction of genes associated with various types of abiotic stress is of ancient origin and evolves under strong purifying selection. The interaction networks of genes associated with stress response have a modular structure with a regulatory component being one of the largest for five of seven stress types. We demonstrated a positive relationship between the number of interactions of gene in the stress gene network and its age. Moreover, genes of the same age tend to be connected in stress gene networks. We also demonstrated that old stress-related genes usually participate in the response for various types of stress and are involved in numerous biological processes unrelated to stress. Our results demonstrate that the stress response genes represent the ancient and one of the fundamental molecular systems in plants.
Collapse
Affiliation(s)
- Zakhar S. Mustafin
- The Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (IC & G SB RAS), 630090 Novosibirsk, Russia; (Z.S.M.); (V.I.Z.); (D.K.K.); (A.V.D.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| | - Vladimir I. Zamyatin
- The Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (IC & G SB RAS), 630090 Novosibirsk, Russia; (Z.S.M.); (V.I.Z.); (D.K.K.); (A.V.D.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University (NSU), 630090 Novosibirsk, Russia
| | - Dmitrii K. Konstantinov
- The Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (IC & G SB RAS), 630090 Novosibirsk, Russia; (Z.S.M.); (V.I.Z.); (D.K.K.); (A.V.D.)
- Faculty of Natural Sciences, Novosibirsk State University (NSU), 630090 Novosibirsk, Russia
| | - Aleksej V. Doroshkov
- The Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (IC & G SB RAS), 630090 Novosibirsk, Russia; (Z.S.M.); (V.I.Z.); (D.K.K.); (A.V.D.)
- Faculty of Natural Sciences, Novosibirsk State University (NSU), 630090 Novosibirsk, Russia
| | - Sergey A. Lashin
- The Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (IC & G SB RAS), 630090 Novosibirsk, Russia; (Z.S.M.); (V.I.Z.); (D.K.K.); (A.V.D.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University (NSU), 630090 Novosibirsk, Russia
- Correspondence: (S.A.L.); (D.A.A.); Tel.: +7-383-363-49-63 (D.A.A.)
| | - Dmitry A. Afonnikov
- The Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (IC & G SB RAS), 630090 Novosibirsk, Russia; (Z.S.M.); (V.I.Z.); (D.K.K.); (A.V.D.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University (NSU), 630090 Novosibirsk, Russia
- Correspondence: (S.A.L.); (D.A.A.); Tel.: +7-383-363-49-63 (D.A.A.)
| |
Collapse
|
19
|
ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, Zhang HX, Wei AM, Gong ZH. Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int J Mol Sci 2019; 20:E5321. [PMID: 31731530 PMCID: PMC6862505 DOI: 10.3390/ijms20215321] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the present scenario of climate change, plants have to evolve strategies to survive and perform under a plethora of biotic and abiotic stresses, which restrict plant productivity. Maintenance of plant protein functional conformation and preventing non-native proteins from aggregation, which leads to metabolic disruption, are of prime importance. Plant heat shock proteins (HSPs), as chaperones, play a pivotal role in conferring biotic and abiotic stress tolerance. Moreover, HSP also enhances membrane stability and detoxifies the reactive oxygen species (ROS) by positively regulating the antioxidant enzymes system. Additionally, it uses ROS as a signal to molecules to induce HSP production. HSP also enhances plant immunity by the accumulation and stability of pathogenesis-related (PR) proteins under various biotic stresses. Thus, to unravel the entire plant defense system, the role of HSPs are discussed with a special focus on plant response to biotic and abiotic stresses, which will be helpful in the development of stress tolerance in plant crops.
Collapse
Affiliation(s)
- Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25130, Pakistan;
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Abdul Mateen Khattak
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25130, Pakistan;
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin 300192, China;
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
20
|
Magwanga RO, Kirungu JN, Lu P, Cai X, Xu Y, Wang X, Zhou Z, Hou Y, Agong SG, Wang K, Liu F. Knockdown of ghAlba_4 and ghAlba_5 Proteins in Cotton Inhibits Root Growth and Increases Sensitivity to Drought and Salt Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:1292. [PMID: 31681384 PMCID: PMC6804553 DOI: 10.3389/fpls.2019.01292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/17/2019] [Indexed: 05/29/2023]
Abstract
We found 33, 17, and 20 Alba genes in Gossypium hirsutum, Gossypium arboretum, and Gossypium raimondii, respectively. The Alba protein lengths ranged from 62 to 312 aa, the molecular weight (MW) from 7.003 to 34.55 kDa, grand average hydropathy values of -1.012 to 0.609 and isoelectric (pI) values of -3 to 11. Moreover, miRNAs such as gra-miR8770 targeted four genes, gra-miR8752 and gra-miR8666 targeted three genes, and each and gra-miR8657 a, b, c, d, e targeted 10 genes each, while the rests targeted 1 to 2 genes each. Similarly, various cis-regulatory elements were detected with significant roles in enhancing abiotic stress tolerance, such as CBFHV (RYCGAC) with a role in cold stress acclimation among others. Two genes, Gh_D01G0884 and Gh_D01G0922, were found to be highly induced under water deficit and salt stress conditions. Through virus-induced gene silencing (VIGS), the VIGS cotton plants were found to be highly susceptible to both water deficit and salt stresses; the VIGS plants exhibited a significant reduction in root growth, low cell membrane stability (CMS), saturated leaf weight (SLW), chlorophyll content levels, and higher excised leaf water loss (ELWL). Furthermore, the stress-responsive genes and ROS scavenging enzymes were significantly reduced in the VIGS plants compared to either the wild type (WT) and or the positively controlled plants. The VIGS plants registered higher concentration levels of hydrogen peroxide and malondialdehyde, with significantly lower levels of the various antioxidants evaluated an indication that the VIGS plants were highly affected by salt and drought stresses. This result provides a key foundation for future exploration of the Alba proteins in relation to abiotic stress.
Collapse
Affiliation(s)
- Richard Odongo Magwanga
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
- School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo, Kenya
| | - Joy Nyangasi Kirungu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Pu Lu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Xiaoyan Cai
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Yanchao Xu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Xingxing Wang
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Zhongli Zhou
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Yuqing Hou
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Stephen Gaya Agong
- School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo, Kenya
| | - Kunbo Wang
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Fang Liu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| |
Collapse
|
21
|
Cheng L, Zhang S, Yang L, Wang Y, Yu B, Zhang F. Comparative proteomics illustrates the complexity of Fe, Mn and Zn deficiency-responsive mechanisms of potato (Solanum tuberosum L.) plants in vitro. PLANTA 2019; 250:199-217. [PMID: 30976909 DOI: 10.1007/s00425-019-03163-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/05/2019] [Indexed: 05/05/2023]
Abstract
The present study is the first to integrate physiological and proteomic data providing information on Fe, Mn and Zn deficiency-responsive mechanisms of potato plants in vitro. Micronutrient deficiency is an important limiting factor for potato production that causes substantial tuber yield and quality losses. To under the underlying molecular mechanisms of potato in response to Fe, Mn and Zn deficiency, a comparative proteomic approach was applied. Leaf proteome change of in vitro-propagated potato plantlets subjected to a range of Fe-deficiency treatments (20, 10 and 0 μM Na-Fe-EDTA), Mn-deficiency treatments (1 and 0 μM MnCl2·4H2O) and Zn-deficiency treatment (0 μM ZnCl2) using two-dimensional gel electrophoresis was analyzed. Quantitative image analysis showed a total of 146, 55 and 42 protein spots under Fe, Mn and Zn deficiency with their abundance significantly altered (P < 0.05) more than twofold, respectively. By MALDI-TOF/TOF MS analyses, the differentially abundant proteins were found mainly involved in bioenergy and metabolism, photosynthesis, defence, redox homeostasis and protein biosynthesis/degradation under the metal deficiencies. Signaling, transport, cellular structure and transcription-related proteins were also identified. The hierarchical clustering results revealed that these proteins were involved in a dynamic network in response to Fe, Mn and Zn deficiency. All these metal deficiencies caused cellular metabolic remodeling to improve metal acquisition and distribution in potato plants. The reduced photosynthetic efficiency occurred under each metal deficiency, yet Fe-deficient plants showed a more severe damage of photosynthesis. More defence mechanisms were induced by Fe deficiency than Mn and Zn deficiency, and the antioxidant systems showed different responses to each metal deficiency. Reprogramming of protein biosynthesis/degradation and assembly was more strongly required for acclimation to Fe deficiency. The signaling cascades involving auxin and NDPKs might also play roles in micronutrient stress signaling and pinpoint interesting candidates for future studies. Our results first provide an insight into the complex functional and regulatory networks in potato plants under Fe, Mn and Zn deficiency.
Collapse
Affiliation(s)
- Lixiang Cheng
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shaomei Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lili Yang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Bin Yu
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
| | - Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
22
|
Narula K, Choudhary P, Ghosh S, Elagamey E, Chakraborty N, Chakraborty S. Comparative Nuclear Proteomics Analysis Provides Insight into the Mechanism of Signaling and Immune Response to Blast Disease Caused byMagnaportheoryzaein Rice. Proteomics 2019; 19:e1800188. [DOI: 10.1002/pmic.201800188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/23/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Kanika Narula
- National Institute of Plant Genome Research New Delhi 110067 India
| | - Pooja Choudhary
- National Institute of Plant Genome Research New Delhi 110067 India
| | - Sudip Ghosh
- National Institute of Plant Genome Research New Delhi 110067 India
| | - Eman Elagamey
- National Institute of Plant Genome Research New Delhi 110067 India
| | | | | |
Collapse
|
23
|
Kholghi M, Toorchi M, Bandehagh A, Ostendorp A, Ostendorp S, Hanhart P, Kehr J. Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:227-236. [PMID: 30611781 DOI: 10.1016/j.bbapap.2018.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/14/2018] [Accepted: 12/30/2018] [Indexed: 02/08/2023]
Abstract
Salinity stress is a major abiotic stress that affects plant growth and limits crop production. Roots are the primary site of salinity perception, and salt sensitivity in roots limits the productivity of the entire plant. To better understand salt stress responses in canola, we performed a comparative proteomic analysis of roots from the salt-tolerant genotype Safi-7 and the salt-sensitive genotype Zafar. Plants were exposed to 0, 150, and 300 mM NaCl. Our physiological and morphological observations confirmed that Safi-7 was more salt-tolerant than Zafar. The root proteins were separated by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry was applied to identify proteins regulated in response to salt stress. We identified 36 and 25 protein spots whose abundance was significantly affected by salt stress in roots of plants from the tolerant and susceptible genotype, respectively. Functional classification analysis revealed that the differentially expressed proteins from the tolerant genotype could be assigned to 14 functional categories, while those from the susceptible genotype could be classified into 9 functional categories. The most significant differences concerned proteins involved in glycolysis (Glyceraldehyde-3-phosphate dehydrogenase, Fructose-bisphosphate aldolase, Phosphoglycerate kinase 3), stress (heat shock proteins), Redox regulation (Glutathione S-transferase DHAR1, L-ascorbate peroxidase), energy metabolism (ATP synthase subunit B), and transport (V-type proton ATPase subunit B1) which were increased only in the tolerant line under salt stress. Our results provide the basis for further elucidating the molecular mechanisms of salt-tolerance and will be helpful for breeding salt-tolerant canola cultivars.
Collapse
Affiliation(s)
- Maryam Kholghi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mahmoud Toorchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ali Bandehagh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Anna Ostendorp
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Steffen Ostendorp
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Patrizia Hanhart
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Julia Kehr
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany.
| |
Collapse
|
24
|
Barua P, Lande NV, Subba P, Gayen D, Pinto S, Keshava Prasad TS, Chakraborty S, Chakraborty N. Dehydration-responsive nuclear proteome landscape of chickpea (Cicer arietinum L.) reveals phosphorylation-mediated regulation of stress response. PLANT, CELL & ENVIRONMENT 2019; 42:230-244. [PMID: 29749054 DOI: 10.1111/pce.13334] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Nonavailability of water or dehydration remains recurring climatic disorder affecting yield of major food crops, legumes in particular. Nuclear proteins (NPs) and phosphoproteins (NPPs) execute crucial cellular functions that form the regulatory hub for coordinated stress response. Phosphoproteins hold enormous influence over cellular signalling. Four-week-old seedlings of a grain legume, chickpea, were subjected to gradual dehydration, and NPs were extracted from unstressed control and from 72- and 144-hr stressed tissues. We identified 4,832 NPs and 478 phosphosites, corresponding to 299 unique NPPs involved in multivariate cellular processes including protein modification and gene expression regulation, among others. The identified proteins included several novel kinases, phosphatases, and transcription factors, besides 660 uncharacterized proteins. Spliceosome complex and splicing related proteins were dominant among differentially regulated NPPs, indicating their dehydration modulated regulation. Phospho-motif analysis revealed stress-induced enrichment of proline-directed serine phosphorylation. Association mapping of NPPs revealed predominance of differential phosphorylation of spliceosome and splicing associated proteins. Also, regulatory proteins of key processes viz., protein degradation, regulation of flowering time, and circadian clock were observed to undergo dehydration-induced dephosphorylation. The characterization of novel regulatory proteins would provide new insights into stress adaptation and enable directed genetic manipulations for developing climate-resilient crops.
Collapse
Affiliation(s)
- Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, 110067, India
| | - Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, 110067, India
| | - Pratigya Subba
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575 018, India
| | - Dipak Gayen
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, 110067, India
| | - Sneha Pinto
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575 018, India
| | - T S Keshava Prasad
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575 018, India
- International Technology Park, Institute of Bioinformatics, Bengaluru, 560066, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna, Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
25
|
Bhatta M, Morgounov A, Belamkar V, Baenziger PS. Genome-Wide Association Study Reveals Novel Genomic Regions for Grain Yield and Yield-Related Traits in Drought-Stressed Synthetic Hexaploid Wheat. Int J Mol Sci 2018; 19:E3011. [PMID: 30279375 PMCID: PMC6212811 DOI: 10.3390/ijms19103011] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 01/09/2023] Open
Abstract
Synthetic hexaploid wheat (SHW; 2n = 6x = 42, AABBDD, Triticum aestivum L.) is produced from an interspecific cross between durum wheat (2n = 4x = 28, AABB, T. turgidum L.) and goat grass (2n = 2x = 14, DD, Aegilops tauschii Coss.) and is reported to have significant novel alleles-controlling biotic and abiotic stresses resistance. A genome-wide association study (GWAS) was conducted to unravel these loci [marker⁻trait associations (MTAs)] using 35,648 genotyping-by-sequencing-derived single nucleotide polymorphisms in 123 SHWs. We identified 90 novel MTAs (45, 11, and 34 on the A, B, and D genomes, respectively) and haplotype blocks associated with grain yield and yield-related traits including root traits under drought stress. The phenotypic variance explained by the MTAs ranged from 1.1% to 32.3%. Most of the MTAs (120 out of 194) identified were found in genes, and of these 45 MTAs were in genes annotated as having a potential role in drought stress. This result provides further evidence for the reliability of MTAs identified. The large number of MTAs (53) identified especially on the D-genome demonstrate the potential of SHWs for elucidating the genetic architecture of complex traits and provide an opportunity for further improvement of wheat under rapidly changing climatic conditions.
Collapse
Affiliation(s)
- Madhav Bhatta
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Alexey Morgounov
- International Maize and Wheat Improvement Center (CIMMYT), 06511 Emek, Ankara, Turkey.
| | - Vikas Belamkar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - P Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
26
|
Reynoso MA, Pauluzzi GC, Kajala K, Cabanlit S, Velasco J, Bazin J, Deal R, Sinha NR, Brady SM, Bailey-Serres J. Nuclear Transcriptomes at High Resolution Using Retooled INTACT. PLANT PHYSIOLOGY 2018; 176:270-281. [PMID: 28956755 PMCID: PMC5761756 DOI: 10.1104/pp.17.00688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/26/2017] [Indexed: 05/03/2023]
Abstract
Isolated nuclei provide access to early steps in gene regulation involving chromatin as well as transcript production and processing. Here, we describe transfer of the isolation of nuclei from tagged specific cell types (INTACT) to the monocot rice (Oryza sativa L.). The purification of biotinylated nuclei was redesigned by replacing the outer nuclear-envelope-targeting domain of the nuclear tagging fusion (NTF) protein with an outer nuclear-envelope-anchored domain. This modified NTF was combined with codon-optimized Escherichia coli BirA in a single T-DNA construct. We also developed inexpensive methods for INTACT, T-DNA insertion mapping, and profiling of the complete nuclear transcriptome, including a ribosomal RNA degradation procedure that minimizes pre-ribosomal RNA (pre-rRNA) transcripts. A high-resolution comparison of nuclear and steady-state poly(A)+ transcript populations of seedling root tips confirmed the capture of pre-messenger RNA (pre-mRNA) and exposed distinctions in diversity and abundance of the nuclear and total transcriptomes. This retooled INTACT can enable high-resolution monitoring of the nuclear transcriptome and chromatin in specific cell types of rice and other species.
Collapse
Affiliation(s)
- Mauricio A Reynoso
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Germain C Pauluzzi
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Kaisa Kajala
- Department of Plant Biology, University of California, Davis, California 95616
- Genome Center, University of California, Davis, California 95616
| | - Sean Cabanlit
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Joel Velasco
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Jérémie Bazin
- IPS2, Institute of Plant Science-Paris Saclay (CNRS-INRA), University of Paris-Saclay, F-911405, Orsay, France
| | - Roger Deal
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, California 95616
| | - Siobhan M Brady
- Department of Plant Biology, University of California, Davis, California 95616
- Genome Center, University of California, Davis, California 95616
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| |
Collapse
|
27
|
Mishra D, Shekhar S, Singh D, Chakraborty S, Chakraborty N. Heat Shock Proteins and Abiotic Stress Tolerance in Plants. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Abstract
The integrity of a subcellular proteomics is largely dependent on purity of the isolated compartment away from other contaminants. If high-purity nuclei is isolated, nuclear proteomics is a useful approach for investigating the mechanisms underlying plant physiological function. Although the isolation of high-purity nuclei from tissue or organ in plant is a difficult task, successful purification has been achieved through fractionation processes. For purification, there are five protocols such as (1) differential centrifugation, (2) discontinuous Percoll gradients, (3) continuous sucrose gradients, (4) combined continuous Percoll/sucrose gradients, and (5) continuous Percoll gradients. Furthermore, because purity assessment of purified nuclei is an important step, it is also described in this chapter.
Collapse
|
29
|
Pandey A, Chakraborty S, Chakraborty N. Nuclear Proteome: Isolation of Intact Nuclei, Extraction of Nuclear Proteins, and 2-DE Analysis. Methods Mol Biol 2018; 1696:41-55. [PMID: 29086395 DOI: 10.1007/978-1-4939-7411-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proteome profiling aims to unravel the mystery of biological complexity encoded by the genome. The successful proteome profiling largely depends upon analytical approaches because single-step proteome characterization of eukaryotic cells is difficult due to the large number of proteins expressed and their complex physiochemical properties. Organellar proteomics helps in identifying a refined set of proteins by pinpointing certain activities to specific organelles, thereby increasing our knowledge of cellular processes. The reliability of a plant organelle proteome is intimately dependent on the purity of the organelle preparation. Methodological improvements in sample handling, organelle fractionation, and protein extraction are therefore crucial to plant subcellular proteomics. The nuclear proteins are organized into complex regulatory networks and perform varied cellular functions. Therefore, characterization of the nuclear proteome is an important step toward accumulating knowledge about regulation of gene expression and function. In this chapter, we present methods for the isolation of nuclei, purification of nuclear proteins, and proteome profiling that have been adapted for proteomic characterization of economically important crop species, such as chickpea.
Collapse
Affiliation(s)
- Aarti Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
30
|
Integrating cell biology and proteomic approaches in plants. J Proteomics 2017; 169:165-175. [DOI: 10.1016/j.jprot.2017.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 11/22/2022]
|
31
|
Zadražnik T, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J. Proteomic analysis of common bean stem under drought stress using in-gel stable isotope labeling. JOURNAL OF PLANT PHYSIOLOGY 2017; 209:42-50. [PMID: 28013170 DOI: 10.1016/j.jplph.2016.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 05/10/2023]
Abstract
Drought is an abiotic stress that strongly influences plant growth, development and productivity. Proteome changes in the stem of the drought-tolerant common bean (Phaseolus vulgaris L.) cultivar Tiber have were when the plants were exposed to drought. Five-week-old plants were subjected to water deficit by withholding irrigation for 7, 12 and 17days, whereas control plants were regularly irrigated. Relative water content (RWC) of leaves, as an indicator of the degree of cell and tissue hydration, showed the highest statistically significant differences between control and drought-stressed plants after 17days of treatment, where RWC remained at 90% for control and declined to 45% for stressed plants. Plants exposed to drought for 17days and control plants at the same developmental stage were included in quantitative proteomic analysis using in-gel stable isotope labeling of proteins in combination with mass spectrometry. The quantified proteins were grouped into several functional groups, mainly into energy metabolism, photosynthesis, proteolysis, protein synthesis and proteins related to defense and stress. 70kDa heat shock protein showed the greatest increase in abundance under drought of all the proteins, suggesting its role in protecting plants against stress by re-establishing normal protein conformations and thus cellular homeostasis. The abundance of proteins involved in protein synthesis also increased under drought stress, important for recovery of damaged proteins involved in the plant cell's metabolic activities. Other important proteins in this study were related to proteolysis and folding, which are necessary for maintaining proper cellular protein homeostasis. Taken together, these results reveal the complexity of pathways involved in the drought stress response in common bean stems and enable comparison with the results of proteomic analysis of leaves, thus providing important information to further understand the biochemical and molecular mechanisms of drought response in this important legume.
Collapse
Affiliation(s)
- Tanja Zadražnik
- Agricultural Institute of Slovenia, 1000, Ljubljana, Slovenia.
| | | | - Vladimir Meglič
- Agricultural Institute of Slovenia, 1000, Ljubljana, Slovenia
| | | |
Collapse
|
32
|
Thagela P, Yadav RK, Mishra V, Dahuja A, Ahmad A, Singh PK, Tiwari BS, Abraham G. Salinity-induced inhibition of growth in the aquatic pteridophyte Azolla microphylla primarily involves inhibition of photosynthetic components and signaling molecules as revealed by proteome analysis. PROTOPLASMA 2017; 254:303-313. [PMID: 26837223 DOI: 10.1007/s00709-016-0946-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/18/2016] [Indexed: 05/21/2023]
Abstract
Salinity stress causes adverse physiological and biochemical changes in the growth and productivity of a plant. Azolla, a symbiotic pteridophyte and potent candidate for biofertilizer due to its nitrogen fixation ability, shows reduced growth and nitrogen fixation during saline stress. To better understand regulatory components involved in salinity-induced physiological changes, in the present study, Azolla microphylla plants were exposed to NaCl (6.74 and 8.61 ds/m) and growth, photochemical reactions of photosynthesis, ion accumulation, and changes in cellular proteome were studied. Maximum dry weight was accumulated in control and untreated plant while a substantial decrease in dry weight was observed in the plants exposed to salinity. Exposure of the organism to different concentrations of salt in hydroponic conditions resulted in differential level of Na+ and K+ ion accumulation. Comparative analysis of salinity-induced proteome changes in A. microphylla revealed 58 salt responsive proteins which were differentially expressed during the salt exposure. Moreover, 42 % spots among differentially expressed proteins were involved in different signaling events. The identified proteins are involved in photosynthesis, energy metabolism, amino acid biosynthesis, protein synthesis, and defense. Downregulation of these key metabolic proteins appears to inhibit the growth of A. microphylla in response to salinity. Altogether, the study revealed that in Azolla, increased salinity primarily affected signaling and photosynthesis that in turn leads to reduced biomass.
Collapse
Affiliation(s)
- Preeti Thagela
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ravindra Kumar Yadav
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vagish Mishra
- NRCPB, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, U.P., India
| | - Pawan Kumar Singh
- Department of Botany, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Budhi Sagar Tiwari
- School of Biological Sciences and Biotechnology, University and Institute of Advanced Research, Gandhinagar, 382007, Gujrat, India
| | - Gerard Abraham
- Centre for Conservation and Utilization of BGA, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Centre for Conservation and Utilization of BGA, CCUBGA, NEAR AUDITORIUM, New Delhi, 110012, India.
| |
Collapse
|
33
|
Wang L, Jin X, Li Q, Wang X, Li Z, Wu X. Comparative Proteomics Reveals that Phosphorylation of β Carbonic Anhydrase 1 Might be Important for Adaptation to Drought Stress in Brassica napus. Sci Rep 2016; 6:39024. [PMID: 27966654 PMCID: PMC5155245 DOI: 10.1038/srep39024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
Little is known about the mechanism of drought tolerance in rapeseed (Brassica napus L.). In this study, different morphological and physiological responses to drought stress were studied in three rapeseed cultivars. For the cultivar 2AF009 with high drought tolerance, comparative proteomic analyses were conducted to determine the molecular mechanism behind. Approximately 138 differentially abundant proteins (DAPs) and 1232 phosphoproteins containing 4469 phosphopeptides were identified. Furthermore, 337 phosphoproteins containing 547 phosphorylation sites demonstrated significant changes. These drought-responsive DAPs and phosphoproteins were mainly involved in signal transduction, photosynthesis, and glutathione-ascorbate metabolism. Notably, 9 DAPs were also identified as drought-responsive phosphoproteins, especially beta carbonic anhydrase 1 (βCA1), which was represented by eight distinct protein spots with different abundant levels during drought stress. Tyr207 phosphorylated site of βCA1 was down-regulated at the phosphorylation level during drought stress, which was also located in the substrate-binding active region of three-dimensional (3D) structure. Moreover, drought stress inhibited CA activity. We concluded that Tyr207 was the most likely phosphorylation target affecting the enzyme activity, and phosphorylation of βCA1 might be important for the response to drought stress in rapeseed. The study provided a new clue for the drought tolerance mechanism in B.napus.
Collapse
Affiliation(s)
- Limin Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.,National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Jin
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qingbin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoming Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
34
|
|
35
|
Blavet N, Uřinovská J, Jeřábková H, Chamrád I, Vrána J, Lenobel R, Beinhauer J, Šebela M, Doležel J, Petrovská B. UNcleProt (Universal Nuclear Protein database of barley): The first nuclear protein database that distinguishes proteins from different phases of the cell cycle. Nucleus 2016; 8:70-80. [PMID: 27813701 PMCID: PMC5287097 DOI: 10.1080/19491034.2016.1255391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteins are the most abundant component of the cell nucleus, where they perform a plethora of functions, including the assembly of long DNA molecules into condensed chromatin, DNA replication and repair, regulation of gene expression, synthesis of RNA molecules and their modification. Proteins are important components of nuclear bodies and are involved in the maintenance of the nuclear architecture, transport across the nuclear envelope and cell division. Given their importance, the current poor knowledge of plant nuclear proteins and their dynamics during the cell's life and division is striking. Several factors hamper the analysis of the plant nuclear proteome, but the most critical seems to be the contamination of nuclei by cytosolic material during their isolation. With the availability of an efficient protocol for the purification of plant nuclei, based on flow cytometric sorting, contamination by cytoplasmic remnants can be minimized. Moreover, flow cytometry allows the separation of nuclei in different stages of the cell cycle (G1, S, and G2). This strategy has led to the identification of large number of nuclear proteins from barley (Hordeum vulgare), thus triggering the creation of a dedicated database called UNcleProt, http://barley.gambrinus.ueb.cas.cz/.
Collapse
Affiliation(s)
- Nicolas Blavet
- a Institute of Experimental Botany , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Jana Uřinovská
- b Department of Protein Biochemistry and Proteomics , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Hana Jeřábková
- a Institute of Experimental Botany , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Ivo Chamrád
- b Department of Protein Biochemistry and Proteomics , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Jan Vrána
- a Institute of Experimental Botany , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - René Lenobel
- b Department of Protein Biochemistry and Proteomics , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Jana Beinhauer
- b Department of Protein Biochemistry and Proteomics , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Marek Šebela
- b Department of Protein Biochemistry and Proteomics , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Jaroslav Doležel
- a Institute of Experimental Botany , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| | - Beáta Petrovská
- a Institute of Experimental Botany , Centre of the Region Haná for Biotechnological and Agricultural Research , Olomouc , Czech Republic
| |
Collapse
|
36
|
Yin X, Komatsu S. Plant nuclear proteomics for unraveling physiological function. N Biotechnol 2016; 33:644-654. [PMID: 27004615 DOI: 10.1016/j.nbt.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
The nucleus is the subcellular organelle that functions as the regulatory hub of the cell and is responsible for regulating several critical cellular functions, including cell proliferation, gene expression, and cell survival. Nuclear proteomics is a useful approach for investigating the mechanisms underlying plant responses to abiotic stresses, including protein-protein interactions, enzyme activities, and post-translational modifications. Among abiotic stresses, flooding is a major limiting factor for plant growth and yields, particularly for soybean. In this review, plant nuclei purification methods, modifications of plant nuclear proteins, and recent contributions to the field of plant nuclear proteomics are summarized. In addition, to reveal the upstream regulating mechanisms controlling soybean responses to flooding stress, the functions of flooding-responsive nuclear proteins are reviewed based on the results of nuclear proteomic analysis of soybean in the early stages of flooding stress.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
37
|
Cheng L, Wang Y, He Q, Li H, Zhang X, Zhang F. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. BMC PLANT BIOLOGY 2016; 16:188. [PMID: 27576435 PMCID: PMC5006382 DOI: 10.1186/s12870-016-0871-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/10/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Drought stress is one of the most adverse environmental constraints to plant growth and productivity. Comparative proteomics of drought-tolerant and sensitive wheat genotypes is a strategy to understand the complexity of molecular mechanism of wheat in response to drought. This study attempted to extend findings regarding the potential proteomic dynamics in wheat under drought stress and to enrich the research content of drought tolerance mechanism. RESULTS A comparative proteomics approach was applied to analyze proteome change of Xihan No. 2 (a drought-tolerant cultivar) and Longchun 23 (a drought-sensitive cultivar) subjected to a range of dehydration treatments (18 h, 24 h and 48 h) and rehydration treatment (R24 h) using 2-DE, respectively. Quantitative image analysis showed a total of 172 protein spots in Xihan No. 2 and 215 spots from Longchun 23 with their abundance significantly altered (p < 0.05) more than 2.5-fold. Out of these spots, a total of 84 and 64 differentially abundant proteins were identified by MALDI-TOF/TOF MS in Xihan No. 2 and Longchun 23, respectively. Most of these identified proteins were involved in metabolism, photosynthesis, defence and protein translation/processing/degradation in both two cultivars. In addition, the proteins involved in redox homeostasis, energy, transcription, cellular structure, signalling and transport were also identified. Furthermore, the comparative analysis of drought-responsive proteome allowed for the general elucidation of the major mechanisms associated with differential responses to drought of both two cultivars. These cellular processes work more cooperatively to re-establish homeostasis in Xihan No. 2 than Longchun 23. The resistance mechanisms of Xihan No. 2 mainly included changes in the metabolism of carbohydrates and amino acids as well as in the activation of more antioxidation and defense systems and in the levels of proteins involved in ATP synthesis and protein degradation/refolding. CONCLUSIONS This study revealed that the levels of a number of proteins involved in various cellular processes were affected by drought stress in two wheat cultivars with different drought tolerance. The results showed that there exist specific responses to drought in Xihan No. 2 and Longchun 23. The proposed hypothetical model would explain the interaction of these identified proteins that are associated with drought-responses in two cultivars, and help in developing strategies to improve drought tolerance in wheat.
Collapse
Affiliation(s)
- Lixiang Cheng
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Yuping Wang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Qiang He
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Huijun Li
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Wuwei Agricultural and Animal Husbandry Bureau, Wuwei, China
| | - Xiaojing Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Gansu Dingxi Academy of Agricultural Science, Dingxi, China
| | - Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
38
|
Yin X, Komatsu S. Nuclear Proteomics Reveals the Role of Protein Synthesis and Chromatin Structure in Root Tip of Soybean during the Initial Stage of Flooding Stress. J Proteome Res 2016; 15:2283-98. [PMID: 27291164 DOI: 10.1021/acs.jproteome.6b00330] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To identify the upstream events controlling the regulation of flooding-responsive proteins in soybean, proteomic analysis of nuclear proteins in root tip was performed. By using nuclear fractions, which were highly enriched, a total of 365 nuclear proteins were changed in soybean root tip at initial stage of flooding stress. Four exon-junction complex-related proteins and NOP1/NOP56, which function in upstream of 60S preribosome biogenesis, were decreased in flooded soybean. Furthermore, proteomic analysis of crude protein extract revealed that the protein translation was suppressed by continuous flooding stress. Seventeen chromatin structure-related nuclear proteins were decreased in response to flooding stress. Out of them, histone H3 was clearly decreased with protein abundance and mRNA expression levels at the initial flooding stress. Additionally, a number of protein synthesis-, RNA-, and DNA-related nuclear proteins were decreased in a time-dependent manner. mRNA expressions of genes encoding the significantly changed flooding-responsive nuclear proteins were inhibited by the transcriptional inhibitor, actinomycin D. These results suggest that protein translation is suppressed through inhibition of preribosome biogenesis- and mRNA processing-related proteins in nuclei of soybean root tip at initial flooding stress. In addition, flooding stress may regulate histone variants with gene expression in root tip.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
39
|
Mishra P, Mishra V, Takabe T, Rai V, Singh NK. Elucidation of salt-tolerance metabolic pathways in contrasting rice genotypes and their segregating progenies. PLANT CELL REPORTS 2016; 35:1273-86. [PMID: 26993328 DOI: 10.1007/s00299-016-1959-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 02/16/2016] [Indexed: 05/28/2023]
Abstract
Differentially expressed antioxidant enzymes, amino acids and proteins in contrasting rice genotypes, and co-location of their genes in the QTLs mapped using bi-parental population, indicated their role in salt tolerance. Soil salinity is a major environmental constraint limiting rice productivity. Salt-tolerant 'CSR27', salt-sensitive 'MI48'and their extreme tolerant and sensitive recombinant inbred line (RIL) progenies were used for the elucidation of salt stress tolerance metabolic pathways. Salt stress-mediated biochemical and molecular changes were analyzed in the two parents along with bulked-tolerant (BT) and bulked-sensitive (BS) extreme RILs. The tolerant parent and BT RILs suffered much lower reduction in the chlorophyll as compared to their sensitive counterparts. Activities of antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) and non-enzymatic antioxidant ascorbic acid were much higher in salt-stressed CSR27 and BT RILs than MI48 and BS RILs. Further, the tolerant lines showed significant enhancement in the levels of amino acids methionine and proline in response to salt stress in comparison to the sensitive lines. Similarly, the tolerant genotypes showed minimal reduction in cysteine content whereas sensitive genotypes showed a sharp reduction. Real time PCR analysis confirmed the induction of methionine biosynthetic pathway (MBP) enzymes cystathionine-β synthase (CbS), S-adenosyl methionine synthase (SAMS), S-adenosyl methionine decarboxylase (SAMDC) and serine hydroxymethyl transferase (SHMT) genes in tolerant lines, suggesting potential role of the MBP in conferring salt tolerance in rice variety CSR27. Proteome profiling also confirmed higher expression of SOD, POD and plastidic CbS and other proteins in the tolerant lines, whose genes were co-located in the QTL intervals for salt tolerance mapped in the RIL population. The study signifies integrated biochemical-molecular approach for identifying salt tolerance genes for genetic improvement for stress tolerant rice varieties.
Collapse
Affiliation(s)
- Pragya Mishra
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
- Banasthali University, Tonk, Rajasthan, India
| | - Vagish Mishra
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Teruhiro Takabe
- Plant Biotechnology Research Center, Meijo University, Nagoya, Japan
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | |
Collapse
|
40
|
Gupta DB, Rai Y, Gayali S, Chakraborty S, Chakraborty N. Plant Organellar Proteomics in Response to Dehydration: Turning Protein Repertoire into Insights. FRONTIERS IN PLANT SCIENCE 2016; 7:460. [PMID: 27148291 PMCID: PMC4829595 DOI: 10.3389/fpls.2016.00460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/24/2016] [Indexed: 05/29/2023]
Abstract
Stress adaptation or tolerance in plants is a complex phenomenon involving changes in physiological and metabolic processes. Plants must develop elaborate networks of defense mechanisms, and adapt to and survive for sustainable agriculture. Water-deficit or dehydration is the most critical environmental factor that plants are exposed to during their life cycle, which influences geographical distribution and productivity of many crop species. The cellular responses to dehydration are orchestrated by a series of multidirectional relays of biochemical events at organelle level. The new challenge is to dissect the underlying mechanisms controlling the perception of stress signals and their transmission to cellular machinery for activation of adaptive responses. The completeness of current descriptions of spatial distribution of proteins, the relevance of subcellular locations in diverse functional processes, and the changes of protein abundance in response to dehydration hold the key to understanding how plants cope with such stress conditions. During past decades, organellar proteomics has proved to be useful not only for deciphering reprograming of plant responses to dehydration, but also to dissect stress-responsive pathways. This review summarizes a range of organellar proteomics investigations under dehydration to gain a holistic view of plant responses to water-deficit conditions, which may facilitate future efforts to develop genetically engineered crops for better adaptation.
Collapse
Affiliation(s)
- Deepti B. Gupta
- Department of Biotechnology, TERI UniversityNew Delhi, India
| | - Yogita Rai
- Department of Biotechnology, TERI UniversityNew Delhi, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Jawaharlal Nehru University CampusNew Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University CampusNew Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University CampusNew Delhi, India
| |
Collapse
|
41
|
The variations in the nuclear proteome reveal new transcription factors and mechanisms involved in UV stress response in Pinus radiata. J Proteomics 2016; 143:390-400. [PMID: 26961940 DOI: 10.1016/j.jprot.2016.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED The importance of UV stress and its side-effects over the loss of plant productivity in forest species demands a deeper understanding of how pine trees respond to UV irradiation. Although the response to UV stress has been characterized at system and cellular levels, the dynamics within the nuclear proteome triggered by UV is still unknown despite that they are essential for gene expression and regulation of plant physiology. To fill this gap this work aims to characterize the variations in the nuclear proteome as a response to UV irradiation by using state-of-the-art mass spectrometry-based methods combined with novel bioinformatics workflows. The combination of SEQUEST, de novo sequencing, and novel annotation pipelines allowed cover sensing and transduction pathways, endoplasmic reticulum-related mechanisms and the regulation of chromatin dynamism and gene expression by histones, histone-like NF-Ys, and other transcription factors previously unrelated to this stress source, as well as the role of alternative splicing and other mechanisms involved in RNA translation and protein synthesis. The determination of 33 transcription factors, including NF-YB13, Pp005698_3 (NF-YB) and Pr009668_2 (WD-40), which are correlated to stress responsive mechanisms like an increased accumulation of photoprotective pigments and reduced photosynthesis, pointing them as strong candidate biomarkers for breeding programs aimed to improve UV resistance of pine trees. SIGNIFICANCE The description of the nuclear proteome of Pinus radiata combining a classic approach based on the use of SEQUEST and the use of a mass accuracy precursor alignment (MAPA) allowed an unprecedented protein coverage. This workflow provided the methodological basis for characterizing the changes in the nuclear proteome triggered by UV irradiation, allowing the depiction of the nuclear events involved in stress response and adaption. The relevance of some of the discovered proteins will suppose a major advance in stress biology field, also providing a set of transcription factors that can be considered as strong biomarker candidates to select trees more tolerant to UV radiation in forest upgrade programs.
Collapse
|
42
|
Johnová P, Skalák J, Saiz-Fernández I, Brzobohatý B. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:916-31. [PMID: 26861773 DOI: 10.1016/j.bbapap.2016.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/26/2015] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Every year, environmental stresses such as limited water and nutrient availability, salinity, and temperature fluctuations inflict significant losses on crop yields across the globe. Recently, developments in analytical techniques, e.g. mass spectrometry, have led to great advances towards understanding how plants respond to environmental stresses. These processes are mediated by many molecular pathways and, at least partially, via proteome-environment interactions. SCOPE OF REVIEW This review focuses on the current state of knowledge about interactions between the plant proteome and the environment, with a special focus on drought and temperature responses of plant proteome dynamics, and subcellular and organ-specific compartmentalization, in Arabidopsis thaliana and crop species. MAJOR CONCLUSIONS Correct plant development under non-optimal conditions requires complex self-protection mechanisms, many of them common to different abiotic stresses. Proteome analyses of plant responses to temperature and drought stresses have revealed an intriguing interplay of modifications, mainly affecting the photosynthetic machinery, carbohydrate metabolism, and ROS activation and scavenging. Imbalances between transcript-level and protein-level regulation observed during adaptation to abiotic stresses suggest that many of the regulatory processes are controlled at translational and post-translational levels; proteomics is thus essential in revealing important regulatory networks. GENERAL SIGNIFICANCE Because information from proteomic data extends far beyond what can be deduced from transcriptome analysis, the results of proteome studies have substantially deepened our understanding of stress adaptation in plants; this is clearly a prerequisite for designing strategies to improve the yield and quality of crops grown under unfavorable conditions brought about by ongoing climatic change. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Patricie Johnová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Jan Skalák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Iñigo Saiz-Fernández
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
43
|
Bonnot T, Bancel E, Chambon C, Boudet J, Branlard G, Martre P. Changes in the nuclear proteome of developing wheat (Triticum aestivum L.) grain. FRONTIERS IN PLANT SCIENCE 2015; 6:905. [PMID: 26579155 PMCID: PMC4623401 DOI: 10.3389/fpls.2015.00905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/10/2015] [Indexed: 05/24/2023]
Abstract
Wheat grain end-use value is determined by complex molecular interactions that occur during grain development, including those in the cell nucleus. However, our knowledge of how the nuclear proteome changes during grain development is limited. Here, we analyzed nuclear proteins of developing wheat grains collected during the cellularization, effective grain-filling, and maturation phases of development, respectively. Nuclear proteins were extracted and separated by two-dimensional gel electrophoresis. Image analysis revealed 371 and 299 reproducible spots in gels with first dimension separation along pH 4-7 and pH 6-11 isoelectric gradients, respectively. The relative abundance of 464 (67%) protein spots changed during grain development. Abundance profiles of these proteins clustered in six groups associated with the major phases and phase transitions of grain development. Using nano liquid chromatography-tandem mass spectrometry to analyse 387 variant and non-variant protein spots, 114 different proteins were identified that were classified into 16 functional classes. We noted that some proteins involved in the regulation of transcription, like HMG1/2-like protein and histone deacetylase HDAC2, were most abundant before the phase transition from cellularization to grain-filling, suggesting that major transcriptional changes occur during this key developmental phase. The maturation period was characterized by high relative abundance of proteins involved in ribosome biogenesis. Data are available via ProteomeXchange with identifier PXD002999.
Collapse
Affiliation(s)
- Titouan Bonnot
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche AgronomiqueClermont-Ferrand, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal UniversityAubière, France
| | - Emmanuelle Bancel
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche AgronomiqueClermont-Ferrand, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal UniversityAubière, France
| | - Christophe Chambon
- Metabolism Exploration Platform Proteomic Component, Institut National de la Recherche AgronomiqueSaint-Genès Champanelle, France
| | - Julie Boudet
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche AgronomiqueClermont-Ferrand, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal UniversityAubière, France
| | - Gérard Branlard
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche AgronomiqueClermont-Ferrand, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal UniversityAubière, France
| | - Pierre Martre
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche AgronomiqueClermont-Ferrand, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal UniversityAubière, France
| |
Collapse
|
44
|
Abstract
Climate change is considered a major threat to world agriculture and food security. To improve the agricultural productivity and sustainability, the development of high-yielding stress-tolerant, and climate-resilient crops is essential. Of the abiotic stresses, flooding stress is a very serious hazard because it markedly reduces plant growth and grain yield. Proteomic analyses indicate that the effects of flooding stress are not limited to oxygen deprivation but include many other factors. Although many flooding response mechanisms have been reported, flooding tolerance mechanisms have not been fully clarified for soybean. There were limitations in soybean materials, such as mutants and varieties, while they were abundant in rice and Arabidopsis. In this review, plant proteomic technologies are introduced and flooding tolerance mechanisms of soybeans are summarized to assist in the improvement of flooding tolerance in soybeans. This work will expedite transgenic or marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Makoto Tougou
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Yohei Nanjo
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| |
Collapse
|
45
|
Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development. PLoS One 2015; 10:e0137243. [PMID: 26334886 PMCID: PMC4559404 DOI: 10.1371/journal.pone.0137243] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/14/2015] [Indexed: 12/15/2022] Open
Abstract
Alba-domain proteins are RNA-binding proteins found in archaea and eukaryotes and recently studied in protozoan parasites where they play a role in the regulation of virulence factors and stage-specific proteins. This work describes in silico structural characterization, cellular localization and biochemical analyses of Alba-domain proteins in Leishmania infantum. We show that in contrast to other protozoa, Leishmania have two Alba-domain proteins, LiAlba1 and LiAlba3, representative of the Rpp20- and the Rpp25-like eukaryotic subfamilies, respectively, which share several sequence and structural similarities but also important differences with orthologs in other protozoa, especially in sequences targeted for post-translational modifications. LiAlba1 and LiAlba3 proteins form a complex interacting with other RNA-binding proteins, ribosomal subunits, and translation factors as supported by co-immunoprecipitation and sucrose gradient sedimentation analysis. A higher co-sedimentation of Alba proteins with ribosomal subunits was seen upon conditions of decreased translation, suggesting a role of these proteins in translational repression. The Leishmania Alba-domain proteins display differential cellular localization throughout the parasite development. In the insect promastigote stage, Alba proteins co-localize predominantly to the cytoplasm but they translocate to the nucleolus and the flagellum upon amastigote differentiation in the mammalian host and are found back to the cytoplasm once amastigote differentiation is completed. Heat-shock, a major signal of amastigote differentiation, triggers Alba translocation to the nucleolus and the flagellum. Purification of the Leishmania flagellum confirmed LiAlba3 enrichment in this organelle during amastigote differentiation. Moreover, partial characterization of the Leishmania flagellum proteome of promastigotes and differentiating amastigotes revealed the presence of other RNA-binding proteins, as well as differences in the flagellum composition between these two parasite lifestages. Shuttling of Alba-domain proteins between the cytoplasm and the nucleolus or the flagellum throughout the parasite life cycle suggests that these RNA-binding proteins participate in several distinct regulatory pathways controlling developmental gene expression in Leishmania.
Collapse
|
46
|
Narula K, Pandey A, Gayali S, Chakraborty N, Chakraborty S. Birth of plant proteomics in India: a new horizon. J Proteomics 2015; 127:34-43. [PMID: 25920368 DOI: 10.1016/j.jprot.2015.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 01/02/2023]
Abstract
UNLABELLED In the post-genomic era, proteomics is acknowledged as the next frontier for biological research. Although India has a long and distinguished tradition in protein research, the initiation of proteomics studies was a new horizon. Protein research witnessed enormous progress in protein separation, high-resolution refinements, biochemical identification of the proteins, protein-protein interaction, and structure-function analysis. Plant proteomics research, in India, began its journey on investigation of the proteome profiling, complexity analysis, protein trafficking, and biochemical modeling. The research article by Bhushan et al. in 2006 marked the birth of the plant proteomics research in India. Since then plant proteomics studies expanded progressively and are now being carried out in various institutions spread across the country. The compilation presented here seeks to trace the history of development in the area during the past decade based on publications till date. In this review, we emphasize on outcomes of the field providing prospects on proteomic pathway analyses. Finally, we discuss the connotation of strategies and the potential that would provide the framework of plant proteome research. BIOLOGICAL SIGNIFICANCE The past decades have seen rapidly growing number of sequenced plant genomes and associated genomic resources. To keep pace with this increasing body of data, India is in the provisional phase of proteomics research to develop a comparative hub for plant proteomes and protein families, but it requires a strong impetus from intellectuals, entrepreneurs, and government agencies. Here, we aim to provide an overview of past, present and future of Indian plant proteomics, which would serve as an evaluation platform for those seeking to incorporate proteomics into their research programs. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Kanika Narula
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aarti Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
47
|
Petrovská B, Šebela M, Doležel J. Inside a plant nucleus: discovering the proteins. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1627-40. [PMID: 25697798 DOI: 10.1093/jxb/erv041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nuclear proteins are a vital component of eukaryotic cell nuclei and have a profound effect on the way in which genetic information is stored, expressed, replicated, repaired, and transmitted to daughter cells and progeny. Because of the plethora of functions, nuclear proteins represent the most abundant components of cell nuclei in all eukaryotes. However, while the plant genome is well understood at the DNA level, information on plant nuclear proteins remains scarce, perhaps with the exception of histones and a few other proteins. This lack of knowledge hampers efforts to understand how the plant genome is organized in the nucleus and how it functions. This review focuses on the current state of the art of the analysis of the plant nuclear proteome. Previous proteome studies have generally been designed to search for proteins involved in plant response to various forms of stress or to identify rather a modest number of proteins. Thus, there is a need for more comprehensive and systematic studies of proteins in the nuclei obtained at individual phases of the cell cycle, or isolated from various tissue types and stages of cell and tissue differentiation. All this in combination with protein structure, predicted function, and physical localization in 3D nuclear space could provide much needed progress in our understanding of the plant nuclear proteome and its role in plant genome organization and function.
Collapse
Affiliation(s)
- Beáta Petrovská
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 783 71 Olomouc, Czech Republic Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 783 71 Olomouc, Czech Republic
| |
Collapse
|
48
|
Jaiswal DK, Ray D, Choudhary MK, Subba P, Kumar A, Verma J, Kumar R, Datta A, Chakraborty S, Chakraborty N. Comparative proteomics of dehydration response in the rice nucleus: new insights into the molecular basis of genotype-specific adaptation. Proteomics 2014; 13:3478-97. [PMID: 24133045 DOI: 10.1002/pmic.201300284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 01/04/2023]
Abstract
Dehydration is the most crucial environmental factor that considerably reduces the crop harvest index, and thus has become a concern for global agriculture. To better understand the role of nuclear proteins in water-deficit condition, a nuclear proteome was developed from a dehydration-sensitive rice cultivar IR-64 followed by its comparison with that of a dehydration-tolerant c.v. Rasi. The 2DE protein profiling of c.v. IR-64 coupled with MS/MS analysis led to the identification of 93 dehydration-responsive proteins (DRPs). Among those identified proteins, 78 were predicted to be destined to the nucleus, accounting for more than 80% of the dataset. While the detected number of protein spots in c.v. IR-64 was higher when compared with that of Rasi, the number of DRPs was found to be less. Fifty-seven percent of the DRPs were found to be common to both sensitive and tolerant cultivars, indicating significant differences between the two nuclear proteomes. Further, we constructed a functional association network of the DRPs of c.v. IR-64, which suggests that a significant number of the proteins are capable of interacting with each other. The combination of nuclear proteome and interactome analyses would elucidate stress-responsive signaling and the molecular basis of dehydration tolerance in plants.
Collapse
|
49
|
Petrovská B, Jeřábková H, Chamrád I, Vrána J, Lenobel R, Uřinovská J, Šebela M, Doležel J. Proteomic Analysis of Barley Cell Nuclei Purified by Flow Sorting. Cytogenet Genome Res 2014; 143:78-86. [DOI: 10.1159/000365311] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Liu CW, Chang TS, Hsu YK, Wang AZ, Yen HC, Wu YP, Wang CS, Lai CC. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics 2014; 14:1759-75. [PMID: 24841874 DOI: 10.1002/pmic.201300276] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 04/01/2014] [Accepted: 05/15/2014] [Indexed: 11/11/2022]
Abstract
Growth and productivity of rice (Oryza sativa L.) are severely affected by salinity. Understanding the mechanisms that protect rice and other important cereal crops from salt stress will help in the development of salt-stress-tolerant strains. In this study, rice seedlings of the same genetic species with various salt tolerances were studied. We first used 2DE to resolve the expressed proteome in rice roots and leaves and then used nanospray liquid chromatography/tandem mass spectrometry to identify the differentially expressed proteins in rice seedlings after salt treatment. The 2DE assays revealed that there were 104 differentially expressed protein spots in rice roots and 59 in leaves. Then, we identified 83 proteins in rice roots and 61 proteins in rice leaves by MS analysis. Functional classification analysis revealed that the differentially expressed proteins from roots could be classified into 18 functional categories while those from leaves could be classified into 11 functional categories. The proteins from rice seedlings that most significantly contributed to a protective effect against increased salinity were cysteine synthase, adenosine triphosphate synthase, quercetin 3-O-methyltransferase 1, and lipoxygenase 2. Further analysis demonstrated that the primary mechanisms underlying the ability of rice seedlings to tolerate salt stress were glycolysis, purine metabolism, and photosynthesis. Thus, we suggest that differentially expressed proteins may serve as marker group for the salt tolerance of rice.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|