1
|
Li P, Xu X, Zhang C, Chang Q, Wang J, Wang W, Ren H. Glycosylation on extracellular vesicles and its detection strategy: Paving the way for clinical use. Int J Biol Macromol 2025; 295:139714. [PMID: 39798737 DOI: 10.1016/j.ijbiomac.2025.139714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Extracellular vesicles (EVs) contain various glycans during their life cycle, from biogenesis to cellular recognition and uptake by recipient cells. EV glycosylation has substantial diagnostic significance in multiple health conditions, highlighting the necessity of determining an accurate glycosylation pattern for EVs from diverse biological fluids. Reliable and accessible glycan detection techniques help to elaborate the glycosylation-related functional alterations of specific proteins or lipids. However, multiple obstacles exist, including the inconsistency in glycosylation patterns between an entire batch of EVs and a specific EV protein, and difficulty in distinguishing glycosylation types after tedious separation and purification procedures. This review outlines recent advances in EV glycan detection, either at the glycomic level for a collection of intact EVs or at the molecular level for a specific protein on EVs. Particular emphasis has been placed on the abundance of EVs in body fluids and their unique characteristics for drug delivery of EVs, indicating an opportunity for diagnostic and therapeutic purposes via EV glycans.
Collapse
Affiliation(s)
- Ping Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Xiao Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Cong Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Qi Chang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Weijie Wang
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China.
| | - He Ren
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Ge X, Zhang K, Zhu J, Chen Y, Wang Z, Wang P, Xu P, Yao J. Targeting protein modification: a new direction for immunotherapy of pancreatic cancer. Int J Biol Sci 2025; 21:63-74. [PMID: 39744438 PMCID: PMC11667816 DOI: 10.7150/ijbs.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational modifications (PTMs) alter protein conformation by covalently attaching functional groups to substrates, influencing their biological activity, mechanisms of action, and functional performance. PTMs and their interactions are essential to many critical signal transduction processes, including tumor transformation, cancer progression, and metastasis in pancreatic cancer. Additionally, advancements in tumor immunotherapy indicate that PTMs are essential in immune cell activation, transport, and energy metabolism. This study aimed to investigate the effects of different PTMs on immunotherapy for pancreatic cancer, providing new perspectives and suggesting directions for future research.
Collapse
Affiliation(s)
- Xinyu Ge
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Ke Zhang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Jiangsu 225000, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Zhengwang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu 225000, China
| |
Collapse
|
3
|
Hollander EE, Flock RE, McDevitt JC, Vostrejs WP, Campbell SL, Orlen MI, Kemp SB, Kahn BM, Wellen KE, Kim IK, Stanger BZ. N-glycosylation by Mgat5 imposes a targetable constraint on immune-mediated tumor clearance. JCI Insight 2024; 9:e178804. [PMID: 38912584 PMCID: PMC11383181 DOI: 10.1172/jci.insight.178804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/15/2024] [Indexed: 06/25/2024] Open
Abstract
The regulated glycosylation of the proteome has widespread effects on biological processes that cancer cells can exploit. Expression of N-acetylglucosaminyltransferase V (encoded by Mgat5 or GnT-V), which catalyzes the addition of β1,6-linked N-acetylglucosamine to form complex N-glycans, has been linked to tumor growth and metastasis across tumor types. Using a panel of murine pancreatic ductal adenocarcinoma (PDAC) clonal cell lines that recapitulate the immune heterogeneity of PDAC, we found that Mgat5 is required for tumor growth in vivo but not in vitro. Loss of Mgat5 results in tumor clearance that is dependent on T cells and dendritic cells, with NK cells playing an early role. Analysis of extrinsic cell death pathways revealed Mgat5-deficient cells have increased sensitivity to cell death mediated by the TNF superfamily, a property that was shared with other non-PDAC Mgat5-deficient cell lines. Finally, Mgat5 knockout in an immunotherapy-resistant PDAC line significantly decreased tumor growth and increased survival upon immune checkpoint blockade. These findings demonstrate a role for N-glycosylation in regulating the sensitivity of cancer cells to T cell killing through classical cell death pathways.
Collapse
Affiliation(s)
- Erin E. Hollander
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Jayne C. McDevitt
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William P. Vostrejs
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sydney L. Campbell
- Department of Medicine and
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margo I. Orlen
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samantha B. Kemp
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin M. Kahn
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn E. Wellen
- Department of Medicine and
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Il-Kyu Kim
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ben Z. Stanger
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Silva MLS. Capitalizing glycomic changes for improved biomarker-based cancer diagnostics. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:366-395. [PMID: 37455827 PMCID: PMC10344901 DOI: 10.37349/etat.2023.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/24/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer serum biomarkers are valuable or even indispensable for cancer diagnostics and/or monitoring and, currently, many cancer serum markers are routinely used in the clinic. Most of those markers are glycoproteins, carrying cancer-specific glycan structures that can provide extra-information for cancer monitoring. Nonetheless, in the majority of cases, this differential feature is not exploited and the corresponding analytical assays detect only the protein amount, disregarding the analysis of the aberrant glycoform. Two exceptions to this trend are the biomarkers α-fetoprotein (AFP) and cancer antigen 19-9 (CA19-9), which are clinically monitored for their cancer-related glycan changes, and only the AFP assay includes quantification of both the protein amount and the altered glycoform. This narrative review demonstrates, through several examples, the advantages of the combined quantification of protein cancer biomarkers and the respective glycoform analysis, which enable to yield the maximum information and overcome the weaknesses of each individual analysis. This strategy allows to achieve higher sensitivity and specificity in the detection of cancer, enhancing the diagnostic power of biomarker-based cancer detection tests.
Collapse
Affiliation(s)
- Maria Luísa S. Silva
- Unidade de Aprendizagem ao Longo da Vida, Universidade Aberta, 1269-001 Lisboa, Portugal
| |
Collapse
|
5
|
Bueno-Sánchez JC, Gómez-Gutiérrez AM, Maldonado-Estrada JG, Quintana-Castillo JC. Expression of placental glycans and its role in regulating peripheral blood NK cells during preeclampsia: a perspective. Front Endocrinol (Lausanne) 2023; 14:1087845. [PMID: 37206444 PMCID: PMC10190602 DOI: 10.3389/fendo.2023.1087845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/03/2023] [Indexed: 05/21/2023] Open
Abstract
Preeclampsia is a pregnancy-related multisystem disorder characterized by altered trophoblast invasion, oxidative stress, exacerbation of systemic inflammatory response, and endothelial damage. The pathogenesis includes hypertension and mild-to-severe microangiopathy in the kidney, liver, placenta, and brain. The main mechanisms involved in its pathogenesis have been proposed to limit trophoblast invasion and increase the release of extracellular vesicles from the syncytiotrophoblast into the maternal circulation, exacerbating the systemic inflammatory response. The placenta expresses glycans as part of its development and maternal immune tolerance during gestation. The expression profile of glycans at the maternal-fetal interface may play a fundamental role in physiological pregnancy changes and disorders such as preeclampsia. It is unclear whether glycans and their lectin-like receptors are involved in the mechanisms of maternal-fetal recognition by immune cells during pregnancy homeostasis. The expression profile of glycans appears to be altered in hypertensive disorders of pregnancy, which could lead to alterations in the placental microenvironment and vascular endothelium in pregnancy conditions such as preeclampsia. Glycans with immunomodulatory properties at the maternal-fetal interface are altered in early-onset severe preeclampsia, implying that innate immune system components, such as NK cells, exacerbate the systemic inflammatory response observed in preeclampsia. In this article, we discuss the evidence for the role of glycans in gestational physiology and the perspective of glycobiology on the pathophysiology of hypertensive disorders in gestation.
Collapse
Affiliation(s)
- Julio C. Bueno-Sánchez
- Reproduction Group, Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Medellín, Colombia
- Department of Obstetrics and Gynecology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
- Red Iberoamericana de Alteraciones Vasculares en Trastornos del Embarazo (RIVATREM), Chillan, Chile
| | - Alejandra M. Gómez-Gutiérrez
- Reproduction Group, Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Juan G. Maldonado-Estrada
- One Health and Veterinary Innovative Research & Development (OHVRI) Research Group, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
6
|
Xu Y, Wang Y, Höti N, Clark DJ, Chen SY, Zhang H. The next "sweet" spot for pancreatic ductal adenocarcinoma: Glycoprotein for early detection. MASS SPECTROMETRY REVIEWS 2023; 42:822-843. [PMID: 34766650 PMCID: PMC9095761 DOI: 10.1002/mas.21748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/07/2021] [Accepted: 10/24/2021] [Indexed: 05/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common neoplastic disease of the pancreas, accounting for more than 90% of all pancreatic malignancies. As a highly lethal malignancy, PDAC is the fourth leading cause of cancer-related deaths worldwide with a 5-year overall survival of less than 8%. The efficacy and outcome of PDAC treatment largely depend on the stage of disease at the time of diagnosis. Surgical resection followed by adjuvant chemotherapy remains the only possibly curative therapy, yet 80%-90% of PDAC patients present with nonresectable PDAC stages at the time of clinical presentation. Despite our advancing knowledge of PDAC, the prognosis remains strikingly poor, which is primarily due to the difficulty of diagnosing PDAC at the early stages. Recent advances in glycoproteomics and glycomics based on mass spectrometry have shown that aberrations in protein glycosylation plays a critical role in carcinogenesis, tumor progression, metastasis, chemoresistance, and immuno-response of PDAC and other types of cancers. A growing interest has thus been placed upon protein glycosylation as a potential early detection biomarker for PDAC. We herein take stock of the advancements in the early detection of PDAC that were carried out with mass spectrometry, with special focus on protein glycosylation.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuefan Wang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Naseruddin Höti
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David J Clark
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shao-Yung Chen
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Benson KK, Sheel A, Rahman S, Esnakula A, Manne A. Understanding the Clinical Significance of MUC5AC in Biliary Tract Cancers. Cancers (Basel) 2023; 15:cancers15020433. [PMID: 36672382 PMCID: PMC9856870 DOI: 10.3390/cancers15020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Biliary tract cancers (BTC) arise from biliary epithelium and include cholangiocarcinomas or CCA (including intrahepatic (ICC) and extrahepatic (ECC)) and gallbladder cancers (GBC). They often have poor outcomes owing to limited treatment options, advanced presentations, frequent recurrence, and poor response to available systemic therapy. Mucin 5AC (MUC5AC) is rarely expressed in normal biliary epithelium, but can be upregulated in tissues of benign biliary disease, premalignant conditions (e.g., biliary intraepithelial neoplasia), and BTCs. This mucin's numerous glycoforms can be divided into less-glycosylated immature and heavily-glycosylated mature forms. Reported MUC5AC tissue expression in BTC varies widely, with some associations based on cancer location (e.g., perihilar vs. peripheral ICC). Study methods were variable regarding cancer subtypes, expression positivity thresholds, and MUC5AC glycoforms. MUC5AC can be detected in serum of BTC patients at high concentrations. The hesitancy in developing MUC5AC into a clinically useful biomarker in BTC management is due to variable evidence on the diagnostic and prognostic value. Concrete conclusions on tissue MUC5AC are difficult, but serum detection might be relevant for diagnosis and is associated with poor prognosis. Future studies are needed to further the understanding of the potential clinical value of MUC5AC in BTC, especially regarding predictive and therapeutic value.
Collapse
Affiliation(s)
- Katherine K. Benson
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ankur Sheel
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shafia Rahman
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ashwini Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-366-2982
| |
Collapse
|
8
|
Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Adv Cancer Res 2022; 157:123-155. [PMID: 36725107 PMCID: PMC11342334 DOI: 10.1016/bs.acr.2022.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is currently the third leading cause of cancer death. The aggressiveness of PDAC stems from late diagnosis, early metastasis, and poor efficacy of current chemotherapies. Thus, there is an urgent need for effective biomarkers for early detection of PDAC and development of new therapeutic strategies. It has long been known that cellular glycosylation is dysregulated in pancreatic cancer cells, however, tumor-associated glycans and their cognate glycosylating enzymes have received insufficient attention as potential clinical targets. Aberrant glycosylation affects a broad range of pathways that underpin tumor initiation, metastatic progression, and resistance to cancer treatment. One of the prevalent alterations in the cancer glycome is an enrichment in a select group of sialylated glycans including sialylated, branched N-glycans, sialyl Lewis antigens, and sialylated forms of truncated O-glycans such as the sialyl Tn antigen. These modifications affect the activity of numerous cell surface receptors, which collectively impart malignant characteristics typified by enhanced cell proliferation, migration, invasion and apoptosis-resistance. Additionally, sialic acids on tumor cells engage inhibitory Siglec receptors on immune cells to dampen anti-tumor immunity, further promoting cancer progression. The goal of this review is to summarize the predominant changes in sialylation occurring in pancreatic cancer, the biological functions of sialylated glycoproteins in cancer pathogenesis, and the emerging strategies for targeting sialoglycans and Siglec receptors in cancer therapeutics.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barnita Haldar
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
9
|
Xu M, Jin H, Wu Z, Han Y, Chen J, Mao C, Hao P, Zhang X, Liu CF, Yang S. Mass Spectrometry-Based Analysis of Serum N-Glycosylation Changes in Patients with Parkinson's Disease. ACS Chem Neurosci 2022; 13:1719-1726. [PMID: 35640092 DOI: 10.1021/acschemneuro.2c00264] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is urgently needed to find reliable biofluid biomarkers for early diagnosis of Parkinson's disease in order to achieve better treatment. Promising biomarkers can be found in Parkinson's disease-related glycoproteins as aberrant protein glycosylation plays an important role in disease progression. However, current information on serum N-glycoproteomic changes in Parkinson's disease is still limited. Here, we used glycoproteomics methods, which combine the solid-phase chemoenzymatic method, lectin affinity chromatography, and hydrophilic interaction chromatography with high-resolution mass spectrometry, to analyze the glycans, glycosites, and intact glycopeptides of serum. Increased abundance of glycans containing core fucose, sialic acid, and bisecting N-acetyl glucosamine was detected at the overall glycan level and also at specific glycosites of glycopeptides. Five Parkinson's disease-associated proteins with this type of N-glycosylation changes were also identified. We propose that the revealed site-specific N-glycosylation changes in serum can be potential biomarkers for Parkinson's disease.
Collapse
Affiliation(s)
- Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hong Jin
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Han
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Chen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chengjie Mao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Zhang J, Zhang Z, Holst S, Blöchl C, Madunic K, Wuhrer M, Ten Dijke P, Zhang T. Transforming growth factor-β challenge alters the N-, O-, and glycosphingolipid glycomes in PaTu-S pancreatic adenocarcinoma cells. J Biol Chem 2022; 298:101717. [PMID: 35151689 PMCID: PMC8914387 DOI: 10.1016/j.jbc.2022.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis and high mortality. Transforming growth factor-β (TGF-β) plays a key role in PDAC tumor progression, which is often associated with aberrant glycosylation. However, how PDAC cells respond to TGF-β and the role of glycosylation therein is not well known. Here, we investigated the TGF-β-mediated response and glycosylation changes in the PaTu-8955S (PaTu-S) cell line deficient in SMA-related and MAD-related protein 4 (SMAD4), a signal transducer of the TGF-β signaling. PaTu-S cells responded to TGF-β by upregulating SMAD2 phosphorylation and target gene expression. We found that TGF-β induced expression of the mesenchymal marker N-cadherin but did not significantly affect epithelial marker E-cadherin expression. We also examined differences in N-glycans, O-glycans, and glycosphingolipid-linked glycans in PaTu-S cells upon TGF-β stimulation. TGF-β treatment primarily induced N-glycome aberrations involving elevated levels of branching, core fucosylation, and sialylation in PaTu-S cells, in agreement with TGF-β-induced changes in the expression of glycosylation-associated genes. In addition, we observed differences in O glycosylation and glycosphingolipid glycosylation profiles after TGF-β treatment, including lower levels of sialylated Tn antigen and neoexpression of globosides. Furthermore, the expression of transcription factor sex-determining region Y-related high-mobility group box 4 was upregulated upon TGF-β stimulation, and its depletion blocked TGF-β-induced N-glycomic changes. Thus, TGF-β-induced N-glycosylation changes can occur in a sex-determining region Y-related high-mobility group box 4–dependent and SMAD4-independent manner in the pancreatic PaTu-S cancer cell line. Our results open up avenues to study the relevance of glycosylation in TGF-β signaling in SMAD4-inactivated PDAC.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zejian Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Constantin Blöchl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Katarina Madunic
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
11
|
Cao Z, Zhang Z, Liu R, Wu M, Li Z, Xu X, Liu Z. Serum Linkage-Specific Sialylation Changes Are Potential Biomarkers for Monitoring and Predicting the Recurrence of Papillary Thyroid Cancer Following Thyroidectomy. Front Endocrinol (Lausanne) 2022; 13:858325. [PMID: 35574008 PMCID: PMC9098836 DOI: 10.3389/fendo.2022.858325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Although papillary thyroid cancer (PTC) could remain indolent, the recurrence rates after thyroidectomy are approximately 20%. There are currently no accurate serum biomarkers that can monitor and predict recurrence of PTC after thyroidectomy. This study aimed to explore novel serum biomarkers that are relevant to the monitoring and prediction of recurrence in PTC using N-glycomics. METHODS A high-throughput quantitative strategy based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to obtain serum protein N-glycomes of well-differentiated PTC, postoperative surveillance (PS), postoperative recurrence (PR), and matched healthy controls (HC) including linkage-specific sialylation information. RESULTS Serum N-glycan traits were found to differ among PTC, PS, PR, and HC. The differentially expressed N-glycan traits consisting of sixteen directly detected glycan traits and seven derived glycan traits indicated the response to surgical resection therapy and the potential for monitoring the PTC. Two glycan traits representing the levels of linkage-specific sialylation (H4N3F1L1 and H4N6F1E1) which were down-regulated in PS and up-regulated in PR showed high potential as biomarkers for predicting the recurrence after thyroidectomy. CONCLUSIONS To the best of our knowledge, this study provides comprehensive evaluations of the serum N-glycomic changes in patients with PS or PR for the first time. Several candidate serum N-glycan biomarkers including the linkage-specific sialylation have been determined, some of which have potential in the prediction of recurrence in PTC, and others of which can help to explore and monitor the response to initial surgical resection therapy. The findings enhanced the comprehension of PTC.
Collapse
Affiliation(s)
- Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zejian Zhang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zepeng Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiequn Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiequn Xu, ; Ziwen Liu,
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiequn Xu, ; Ziwen Liu,
| |
Collapse
|
12
|
Sun N, Trajkovic-Arsic M, Li F, Wu Y, Münch C, Kunzke T, Feuchtinger A, Steiger K, Schlitter AM, Weichert W, Esposito I, Siveke JT, Walch A. Native glycan fragments detected by MALDI mass spectrometry imaging are independent prognostic factors in pancreatic ductal adenocarcinoma. EJNMMI Res 2021; 11:120. [PMID: 34851463 PMCID: PMC8636555 DOI: 10.1186/s13550-021-00862-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest malignancies to date. The impressively developed stroma that surrounds and modulates the behavior of cancer cells is one of the main factors regulating the PDAC growth, metastasis and therapy resistance. Here, we postulate that stromal and cancer cell compartments differentiate in protein/lipid glycosylation patterns and analyze differences in glycan fragments in those compartments with clinicopathologic correlates.
Results We analyzed native glycan fragments in 109 human FFPE PDAC samples using high mass resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometric imaging (MALDI-FT-ICR-MSI). Our method allows detection of native glycan fragments without previous digestion with PNGase or any other biochemical reaction. With this method, 8 and 18 native glycans were identified as uniquely expressed in only stromal or only cancer cell compartment, respectively. Kaplan–Meier survival model identified glycan fragments that are expressed in cancer cell or stromal compartment and significantly associated with patient outcome. Among cancer cell region-specific glycans, 10 predicted better and 6 worse patient survival. In the stroma, 1 glycan predicted good and 4 poor patient survival. Using factor analysis as a dimension reduction method, we were able to group the identified glycans in 2 factors. Multivariate analysis revealed that these factors can be used as independent survival prognostic elements with regard to the established Union for International Cancer Control (UICC) classification both in tumor and stroma regions.
Conclusion Our method allows in situ detection of naturally occurring glycans in FFPE samples of human PDAC tissue and highlights the differences among glycans found in stromal and cancer cell compartment offering a basis for further exploration on the role of specific glycans in cancer–stroma communication.
Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00862-y.
Collapse
Affiliation(s)
- Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764, Neuherberg, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, 45147, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Fengxia Li
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764, Neuherberg, Germany
| | - Yin Wu
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764, Neuherberg, Germany
| | - Corinna Münch
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, 45147, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764, Neuherberg, Germany
| | - Katja Steiger
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany.,Member of the German Cancer Consortium (DKTK), Partner Site, Munich, Germany
| | - Anna Melissa Schlitter
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany.,Member of the German Cancer Consortium (DKTK), Partner Site, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany.,Member of the German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Irene Esposito
- Institute for Pathology, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, 45147, Essen, Germany. .,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764, Neuherberg, Germany.
| |
Collapse
|
13
|
Shi X, Gao GY, Shen J. Identification of microRNA Signature and Key Genes Between Adenoma and Adenocarcinomas Using Bioinformatics Analysis. Onco Targets Ther 2021; 14:4707-4720. [PMID: 34511938 PMCID: PMC8427077 DOI: 10.2147/ott.s320469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/08/2021] [Indexed: 12/03/2022] Open
Abstract
Background In worldwide, colorectal cancer (CRC) is very common and the mechanisms remain unclear. This study aims to identify between adenomas with epithelial dislocation (false invasion) and adenomas with early adenocarcinoma (true invasion). Methods GSE41655 and GSE57965 datasets were obtained in the Gene Expression Omnibus (GEO) database. microRNA expression profiles and clinicopathological data from the TCGA (The Cancer Genome Atlas) database were downloaded to further validate the results in GEO. GEO software and the GEO2R calculation method were used to analyze two gene profiles. The co-expression of differentially expressed microRNAs (DEMs) and genes (DEGs) were identified and searched in the FunRich databases for pathway and ontology analysis. Cytoscape was utilized to construct the mRNA-microRNA network. Validation of gene expression levels was conducted by online databases and qRT-PCR and IHC experiments. Results In total, 6 DEMs and 34 DEGs are selected after calculating. KEGG results indicated that genes are enriched in certain tumor associated pathways. Four out of 6 microRNAs had a significant relationship with the overall survival (P < 0.05) and showed a good performance in predicting the survival risk of patients with colorectal carcinoma. Furthermore, expression levels of hsa-miR-455 and hsa-miR-125a were then verified by qRT-PCR which all target BCL2L12. IHC results showed that the expression level of BCL2L12 was higher in adenocarcinoma than in adenoma. Based on the selected gene, the top 10 small molecules were screened out as potential drugs. Conclusion By using microarray and bioinformatics analyses, DEMs and DEGs were selected and a complete gene network was constructed. To our knowledge, BCL2L12 and related molecules including hsa-miR-455 and hsa-miR-125a were firstly identified as potential biomarkers in the progression from adenoma to adenocarcinoma.
Collapse
Affiliation(s)
- Xinya Shi
- Department of Oncology, Changshu Second People's Hospital, Suzhou, 215004, People's Republic of China
| | - Guang Yu Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Jiaofeng Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| |
Collapse
|
14
|
Lv B, Gao G, Guo Y, Zhang Z, Liu R, Dai Z, Ju C, Liang Y, Tang X, Tang M, Lv XB. Serglycin promotes proliferation, migration, and invasion via the JAK/STAT signaling pathway in osteosarcoma. Aging (Albany NY) 2021; 13:21142-21154. [PMID: 34493692 PMCID: PMC8457593 DOI: 10.18632/aging.203392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/21/2021] [Indexed: 04/22/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is a common disease in the world, and its pathogenesis is still unclear. This study aims to identify the key genes that promote the proliferation, invasion, and metastasis of osteosarcoma cells. METHOD GSE124768 and GSE126209 were downloaded from the Gene Expression Omnibus (GEO) database. The gene ontology and enrichment pathway were analyzed by FunRich software. qPCR and Western blot were used to detect the gene expression. After gene knockdown, Transwell and wound healing assays were conducted on osteosarcoma cells to detect whether the genes were defined before enhancing the invasion of osteosarcoma. RESULTS Totally, 341 mRNAs were found to be regulated differentially in osteosarcoma cells compared to osteoblasts. In addition, the expression level of Serglycin (SRGN) in osteosarcoma cells was higher than that in human osteoblasts. The invasion and proliferation ability of osteosarcoma cells with upregulated Serglycin was significantly increased, and on the contrary, decreased after Serglycin knockdown. Moreover, we preliminarily found that Serglycin may associate with the JAK/STAT signaling pathway. CONCLUSIONS By using microarray and bioinformatics analyses, differently expressed mRNAs were identified and a complete gene network was constructed. To our knowledge, we describe for the first time Serglycin as a potential biomarker.
Collapse
Affiliation(s)
- Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
- Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Guangyu Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Yuhong Guo
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
- Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
- Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfeng Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
- Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhengzai Dai
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
- Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Cheng Ju
- Beijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Yiping Liang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaofeng Tang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Tang
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu Province, China
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Understanding the Clinical Impact of MUC5AC Expression on Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13123059. [PMID: 34205412 PMCID: PMC8235261 DOI: 10.3390/cancers13123059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Management of pancreatic cancer is challenging as there are limited treatment options, and most cases are diagnosed at advanced stages. In addition, there are no dependable tests available to predict bad outcomes or treatment responses in current clinical practice. Here, we shed light on the available evidence on mucin, MUC5AC in predicting the outcome of pancreatic cancers. We also discuss variants of MUC5AC believed to have a role in the malignant transformation of pancreatic tissues. Abstract Mucin-5AC (MUC5AC) is a heavily glycosylated gel-forming secreted mucin with a reliable prognostic value when detected in multiple malignancies. It is highly prevalent (70%) in PDA and is nonexistent in normal pancreatic tissues. Retrospective studies on PDA tumor tissue (detected by immunohistochemistry or IHC)) have investigated the prognostic value of MUC5AC expression but were equivocal. Some studies associated it with poor outcomes (survival or pathological features such as lymph node disease, vascular/neural invasion in resected tumors), while others have concluded that it is a good prognostic marker. The examination of expression level threshold (5%, 10%, or 25%) and the detected region (apical vs. cytoplasmic) were variable among the studies. The maturation stage and glycoform of MUC5AC detected also differed with the Monoclonal antibody (Mab) employed for IHC. CLH2 detects less mature/less glycosylated versions while 45M1 or 21-1 detect mature/more glycosylated forms. Interestingly, aberrantly glycosylated variants of MUC5AC were detected using lectin assays (Wheat Germ Agglutinin-MUC5AC), and Mabs such as NPC-1C and PAM4 have are more specific to malignant pancreatic tissues. NPC-1C and PAM4 antibody reactive epitopes on MUC5AC are immunogenic and could represent specific changes on the native MUC5AC glycoprotein linked to carcinogenesis. It was never studied to predict treatment response.
Collapse
|
16
|
Turanli B, Yildirim E, Gulfidan G, Arga KY, Sinha R. Current State of "Omics" Biomarkers in Pancreatic Cancer. J Pers Med 2021; 11:127. [PMID: 33672926 PMCID: PMC7918884 DOI: 10.3390/jpm11020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most fatal malignancies and the seventh leading cause of cancer-related deaths related to late diagnosis, poor survival rates, and high incidence of metastasis. Unfortunately, pancreatic cancer is predicted to become the third leading cause of cancer deaths in the future. Therefore, diagnosis at the early stages of pancreatic cancer for initial diagnosis or postoperative recurrence is a great challenge, as well as predicting prognosis precisely in the context of biomarker discovery. From the personalized medicine perspective, the lack of molecular biomarkers for patient selection confines tailored therapy options, including selecting drugs and their doses or even diet. Currently, there is no standardized pancreatic cancer screening strategy using molecular biomarkers, but CA19-9 is the most well known marker for the detection of pancreatic cancer. In contrast, recent innovations in high-throughput techniques have enabled the discovery of specific biomarkers of cancers using genomics, transcriptomics, proteomics, metabolomics, glycomics, and metagenomics. Panels combining CA19-9 with other novel biomarkers from different "omics" levels might represent an ideal strategy for the early detection of pancreatic cancer. The systems biology approach may shed a light on biomarker identification of pancreatic cancer by integrating multi-omics approaches. In this review, we provide background information on the current state of pancreatic cancer biomarkers from multi-omics stages. Furthermore, we conclude this review on how multi-omics data may reveal new biomarkers to be used for personalized medicine in the future.
Collapse
Affiliation(s)
- Beste Turanli
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Esra Yildirim
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; (B.T.); (E.Y.); (G.G.)
- Turkish Institute of Public Health and Chronic Diseases, 34718 Istanbul, Turkey
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
17
|
Kori M, Aydin B, Gulfidan G, Beklen H, Kelesoglu N, Caliskan Iscan A, Turanli B, Erzik C, Karademir B, Arga KY. The Repertoire of Glycan Alterations and Glycoproteins in Human Cancers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:139-168. [PMID: 33404348 DOI: 10.1089/omi.2020.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer as the leading cause of death worldwide has many issues that still need to be addressed. Since the alterations on the glycan compositions or/and structures (i.e., glycosylation, sialylation, and fucosylation) are common features of tumorigenesis, glycomics becomes an emerging field examining the structure and function of glycans. In the past, cancer studies heavily relied on genomics and transcriptomics with relatively little exploration of the glycan alterations and glycoprotein biomarkers among individuals and populations. Since glycosylation of proteins increases their structural complexity by several orders of magnitude, glycome studies resulted in highly dynamic biomarkers that can be evaluated for cancer diagnosis, prognosis, and therapy. Glycome not only integrates our genetic background with past and present environmental factors but also offers a promise of more efficient patient stratification compared with genetic variations. Therefore, studying glycans holds great potential for better diagnostic markers as well as developing more efficient treatment strategies in human cancers. While recent developments in glycomics and associated technologies now offer new possibilities to achieve a high-throughput profiling of glycan diversity, we aim to give an overview of the current status of glycan research and the potential applications of the glycans in the scope of the personalized medicine strategies for cancer.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Hande Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Nurdan Kelesoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ayşegul Caliskan Iscan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Department of Pharmacy, Istinye University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology and School of Medicine, Marmara University, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
18
|
Mattila N, Hisada Y, Przybyla B, Posma J, Jouppila A, Haglund C, Seppänen H, Mackman N, Lassila R. Levels of the cancer biomarker CA 19-9 are associated with thrombin generation in plasma from treatment-naïve pancreatic cancer patients. Thromb Res 2020; 199:21-31. [PMID: 33385797 DOI: 10.1016/j.thromres.2020.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is associated with a hypercoagulable state and high mortality. Increases in the plasma levels of tumor marker carbohydrate antigen (CA) 19-9 are used in diagnosis and follow-up but have also been reported to precede venous thromboembolism (VTE). AIMS We examined the association between CA 19-9 and thrombin generation (TG) in plasma from PDAC patients, as well as their association with coagulation biomarkers prior to pancreatic surgery. In addition, we determined the effect of commercial sources of CA 19-9 on TG. METHODS We collected plasma from 58 treatment-naïve PDAC patients without any signs of VTE. We measured levels of CA 19-9, FVIII, fibrinogen, D-dimer, antithrombin and extracellular vesicle (EV) tissue factor (TF) activity and TG using a Calibrated Automated Thrombogram (CAT). The effect of different commercial sources of CA 19-9 on TG in Standard Human Plasma (SHP) was also studied. RESULTS Patient plasma samples were divided into 4 preoperative groups based on the level of CA 19-9: none < 2, low = 3-200, high = 201-1000, and very high > 1000 U/mL. CA 19-9 levels were associated with several of the TG parameters, including endogenous thrombin potential, peak, and time to peak. CA 19-9 did not associate with any of the coagulation biomarkers. Spiking of SHP with CA 19-9 increased TG but this was decreased by an anti-TF antibody. CONCLUSIONS CA 19-9 was associated with TG in patients prior to any pancreatic cancer treatments or signs of VTE. Some commercial sources of CA 19-9 enhanced TG in SHP seemingly due to contaminating TF.
Collapse
Affiliation(s)
- N Mattila
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Department of Hematology, Coagulation Disorders Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Y Hisada
- UNC Blood Research Center, Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B Przybyla
- Department of Hematology, Coagulation Disorders Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - J Posma
- Laboratory for Clinical Thrombosis and Hemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands
| | - A Jouppila
- Department of Hematology, Coagulation Disorders Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; Clinical Research Institute HUCH, Helsinki, Finland; Research Programs Unit in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - C Haglund
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - H Seppänen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - N Mackman
- UNC Blood Research Center, Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Lassila
- Department of Hematology, Coagulation Disorders Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; Research Programs Unit in Systems Oncology, University of Helsinki, Helsinki, Finland; HUSLAB Laboratory Services, Clinical Chemistry, Helsinki, Finland.
| |
Collapse
|
19
|
Zhang L, Lv B, Shi X, Gao G. High Expression of N-Acetylgalactosaminyl-transferase 1 (GALNT1) Associated with Invasion, Metastasis, and Proliferation in Osteosarcoma. Med Sci Monit 2020; 26:e927837. [PMID: 33284788 PMCID: PMC7731121 DOI: 10.12659/msm.927837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/17/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is very common worldwide, and the mechanisms underlying its development remain unclear. This study aims to identify key genes promoting the reproduction, invasion, and transfer of osteosarcoma cells. MATERIAL AND METHODS Gene expression profile data (GSE42352 and GSE42572) were downloaded from the Gene Expression Omnibus database. Differentially expressed genes were calculated using R software. Gene ontology and enriched pathway analysis of mRNAs were analyzed by using FunRich. Verification of the genes was conducted by using quantitative real-time polymerase chain reaction and western blot analyses to measure gene expression. Transwell and wound-healing assays were performed on osteosarcoma cells after knockdown to detect whether the genes enhanced the aggressiveness of osteosarcoma. RESULTS In total, 34 genes were selected after filtering. Kyoto Encyclopedia of Genes and Genomes enrichment analysis demonstrated that the genes were enriched in multiple tumor pathways. N-acetylgalactosaminyltransferase 1 (GALNT1) was identified for further study, and its expression was higher in osteosarcoma cells than in human osteoblasts. The invasion ability of cells was significantly decreased after gene knockdown. CONCLUSIONS Through the use of microarray and bioinformatics analysis, differentially expressed genes were selected and a complete gene network was constructed. Our findings provide new biomarkers for the treatment and prognosis of osteosarcoma. These biomarkers may contribute to the discovery of new therapeutic targets for clinical application.
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Oncology, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, P.R. China
| | - Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xinya Shi
- Department of Oncology, Changshu Second People’s Hospital, Suzhou, Jiangsu, P.R. China
| | - Guangyu Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| |
Collapse
|
20
|
O-glycan recognition and function in mice and human cancers. Biochem J 2020; 477:1541-1564. [PMID: 32348475 DOI: 10.1042/bcj20180103] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation represents a nearly ubiquitous post-translational modification, and altered glycosylation can result in clinically significant pathological consequences. Here we focus on O-glycosylation in tumor cells of mice and humans. O-glycans are those linked to serine and threonine (Ser/Thr) residues via N-acetylgalactosamine (GalNAc), which are oligosaccharides that occur widely in glycoproteins, such as those expressed on the surfaces and in secretions of all cell types. The structure and expression of O-glycans are dependent on the cell type and disease state of the cells. There is a great interest in O-glycosylation of tumor cells, as they typically express many altered types of O-glycans compared with untransformed cells. Such altered expression of glycans, quantitatively and/or qualitatively on different glycoproteins, is used as circulating tumor biomarkers, such as CA19-9 and CA-125. Other tumor-associated carbohydrate antigens (TACAs), such as the Tn antigen and sialyl-Tn antigen (STn), are truncated O-glycans commonly expressed by carcinomas on multiple glycoproteins; they contribute to tumor development and serve as potential biomarkers for tumor presence and stage, both in immunohistochemistry and in serum diagnostics. Here we discuss O-glycosylation in murine and human cells with a focus on colorectal, breast, and pancreatic cancers, centering on the structure, function and recognition of O-glycans. There are enormous opportunities to exploit our knowledge of O-glycosylation in tumor cells to develop new diagnostics and therapeutics.
Collapse
|
21
|
Characterization of Oral Microbiome and Exploration of Potential Biomarkers in Patients with Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4712498. [PMID: 33204698 PMCID: PMC7652608 DOI: 10.1155/2020/4712498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer (PC) is highly malignant and lacks an effective therapeutic schedule, hence that early diagnosis is of great importance to achieve a good prognosis. Oral bacteria have been proved to be associated with pancreatic cancer, but the specific mechanism has not been comprehensively illustrated. In our study, thirty-seven saliva samples in total were collected with ten from PC patients, seventeen from benign pancreatic disease (BPD) patients, and ten from healthy controls (HC). The oral bacterial community of HC, PC, and BPD groups was profiled by 16S rDNA high-throughput sequencing and bioinformatic methods. As shown by Simpson, Inverse Simpson, Shannon and Heip, oral microbiome diversity of HC, BPD and PC groups is in increasing order with the BPD and PC groups significantly higher than the HC group. Principal coordinate analysis (PCoA) suggested that grouping by PC, BPD and HC was statistically significant. The linear discriminant analysis effect size (LEfSe) identified high concentrations of Fusobacterium periodonticum and low concentrations of Neisseria mucosa as specific risk factors for PC. Furthermore, predicted functions showed changes such as RNA processing and modification as well as the pathway of NOD-like receptor signaling occurred in both PC and HC groups. Conclusively, our findings have confirmed the destruction of oral bacterial community balance among patients with PC and BPD and indicated the potential of Fusobacterium periodonticum and Neisseria mucosa as diagnostic biomarkers of PC.
Collapse
|
22
|
Sancho-Albero M, Sebastián V, Sesé J, Pazo-Cid R, Mendoza G, Arruebo M, Martín-Duque P, Santamaría J. Isolation of exosomes from whole blood by a new microfluidic device: proof of concept application in the diagnosis and monitoring of pancreatic cancer. J Nanobiotechnology 2020; 18:150. [PMID: 33092584 PMCID: PMC7579907 DOI: 10.1186/s12951-020-00701-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Exosomes are endocytic-extracellular vesicles with a diameter around 100 nm that play an essential role on the communication between cells. In fact, they have been proposed as candidates for the diagnosis and the monitoring of different pathologies (such as Parkinson, Alzheimer, diabetes, cardiac damage, infection diseases or cancer). RESULTS In this study, magnetic nanoparticles (Fe3O4NPs) were successfully functionalized with an exosome-binding antibody (anti-CD9) to mediate the magnetic capture in a microdevice. This was carried out under flow in a 1.6 mm (outer diameter) microchannel whose wall was in contact with a set of NdFeB permanent magnets, giving a high magnetic field across the channel diameter that allowed exosome separation with a high yield. To show the usefulness of the method, the direct capture of exosomes from whole blood of patients with pancreatic cancer (PC) was performed, as a proof of concept. The captured exosomes were then subjected to analysis of CA19-9, a protein often used to monitor PC patients. CONCLUSIONS Here, we describe a new microfluidic device and the procedure for the isolation of exosomes from whole blood, without any need of previous isolation steps, thereby facilitating translation to the clinic. The results show that, for the cases analyzed, the evaluation of CA19-9 in exosomes was highly sensitive, compared to serum samples.
Collapse
Affiliation(s)
- María Sancho-Albero
- Department of Chemical Engineering, University of Zaragoza, 50018, Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - Víctor Sebastián
- Department of Chemical Engineering, University of Zaragoza, 50018, Zaragoza, Spain.
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain.
| | - Javier Sesé
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Department of Condensed Matter Physics, University of Zaragoza, 50009, Zaragoza, Spain
| | - Roberto Pazo-Cid
- Medical Oncology Service, Miguel Servet Hospital, 50009, Zaragoza, Spain
| | - Gracia Mendoza
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009, Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, University of Zaragoza, 50018, Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - Pilar Martín-Duque
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain.
- Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009, Zaragoza, Spain.
- Health Sciences Institute of Aragón (IACS), 50009, Zaragoza, Spain.
- Fundación Araid, 50018, Zaragoza, Spain.
- Universidad San Jorge, 50830, Zaragoza, Spain.
| | - Jesús Santamaría
- Department of Chemical Engineering, University of Zaragoza, 50018, Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| |
Collapse
|
23
|
Rebello OD, Gardner RA, Urbanowicz PA, Bolam DN, Crouch LI, Falck D, Spencer DIR. A novel glycosidase plate-based assay for the quantification of galactosylation and sialylation on human IgG. Glycoconj J 2020; 37:691-702. [PMID: 33064245 PMCID: PMC7679266 DOI: 10.1007/s10719-020-09953-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Changes in human IgG galactosylation and sialylation have been associated with several inflammatory diseases which are a major burden on the health care system. A large body of work on well-established glycomic and glycopeptidomic assays has repeatedly demonstrated inflammation-induced changes in IgG glycosylation. However, these assays are usually based on specialized analytical instrumentation which could be considered a technical barrier for uptake by some laboratories. Hence there is a growing demand for simple biochemical assays for analyzing these glycosylation changes. We have addressed this need by introducing a novel glycosidase plate-based assay for the absolute quantification of galactosylation and sialylation on IgG. IgG glycoproteins are treated with specific exoglycosidases to release the galactose and/or sialic acid residues. The released galactose monosaccharides are subsequently used in an enzymatic redox reaction that produces a fluorescence signal that is quantitative for the amount of galactosylation and, in-turn, sialylation on IgG. The glycosidase plate-based assay has the potential to be a simple, initial screening assay or an alternative assay to the usage of high-end analytical platforms such as HILIC-FLD-MSn when considering the analysis of galactosylation and sialylation on IgG. We have demonstrated this by comparing our assay to an industrial established HILIC-FLD-MSn glycomic analysis of 15 patient samples and obtained a Pearson’s r correlation coefficient of 0.8208 between the two methods.
Collapse
Affiliation(s)
- Osmond D Rebello
- Ludger Ltd, Culham Science Centre, Abingdon, UK. .,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands.
| | | | | | - David N Bolam
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lucy I Crouch
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
24
|
Nanoparticle-aided glycovariant assays to bridge biomarker performance and ctDNA results. Mol Aspects Med 2020; 72:100831. [DOI: 10.1016/j.mam.2019.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 01/12/2023]
|
25
|
Dang K, Zhang W, Jiang S, Lin X, Qian A. Application of Lectin Microarrays for Biomarker Discovery. ChemistryOpen 2020; 9:285-300. [PMID: 32154049 PMCID: PMC7050261 DOI: 10.1002/open.201900326] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Kai Dang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Wenjuan Zhang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Shanfeng Jiang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| |
Collapse
|
26
|
Pan S, Brentnall TA, Chen R. Proteome alterations in pancreatic ductal adenocarcinoma. Cancer Lett 2020; 469:429-436. [PMID: 31734355 PMCID: PMC9017243 DOI: 10.1016/j.canlet.2019.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Proteins are the essential functional biomolecules profoundly implicated in all aspects of pancreatic tumorigenesis and its progression. While common genomic factors, such as KRAS, TP53, SMAD4, and CDKN2A have been well recognized in association of pancreatic ductal adenocarcinoma (PDAC), our understanding of functional changes at the proteome level merits further investigation. Malignance associated proteome alterations can be attributed to the convoluted outcomes from genetic, epigenetic and environmental factors in initiating and progressing PDAC, and may reflect on changes in protein expressional level, structure, localization, as well as post-translational modifications (PTMs) status. The study of localized or systemic proteome alterations in PDAC, as well as its precursor lesions, such as pancreatic intraepithelial neoplasia (PanIN) and mucinous pancreatic cystic neoplasm, would provide unique perspectives in elucidating functional molecular events underlying PDAC. While efforts have been made, challenges still exist to comprehensively integrate much of the proteomic discovery to the perspectives gained from genomic studies in the context of biomarker discovery. Novel approaches and data from well-defined longitudinal clinical studies and experimental models are needed to facilitate the study of PDAC and precursor lesions for early detection and intervention.
Collapse
|
27
|
Zhou L, Wang Y, Xing R, Chen J, Liu J, Li W, Liu Z. Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: A double characteristic recognition strategy for specific detection of glycoproteins. Biosens Bioelectron 2019; 145:111729. [PMID: 31581071 DOI: 10.1016/j.bios.2019.111729] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022]
Abstract
Sensitive and specific detection methods are critical to the detection of glycoproteins. Immunoassay has been a powerful tool for this purpose, in which antibodies or their mimics particularly molecularly imprinted polymers (MIPs) are used for specific recognition. Epitope and glycan are two structure features of a glycoprotein. However, immunoassays based on simultaneous recognition towards the two characteristics have been scarcely explored so far. Herein we present a new strategy called orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay (odMIP-PISA). It relies on double recognition towards a target glycoprotein by two different types of MIPs, using epitope-imprinted gold nanoparticles (AuNPs)-coated slide as capturing substrate to recognize the peptide epitope and glycans-imprinted Raman-active silver nanoparticles as labeling nanotags to recognize the glycans. Carcinoembryonic antigen (CEA), a routinely used marker for colon cancer, was used as a test glycoprotein. The orthogonal double recognition apparently improved the specificity, reducing the maximum cross-reactivity from 14.4% for epitope recognition and 15.2% for glycan recognition to 8.2% for double recognition. Meanwhile, the plasmonic nanostructure-based Raman detection provided ultrahigh sensitivity, yielding a limit of detection of 5.56 × 10-14 M (S/N = 10). Through measuring the CEA level in human serum, this method permitted differentiation of colon cancer patient from healthy individual. Compared with the traditional immunoassay, odMIP-PISA exhibited multiple advantages, including simplified procedure (6 steps), speed (30 min), reduced cost, and so on. Therefore, this new approach holds great promise in many applications particularly clinical diagnosis.
Collapse
Affiliation(s)
- Lingli Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yijia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing, 210009, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
28
|
Abstract
Cancer has high incidence and it will continue to increase over the next decades. Detection and quantification of cancer-associated biomarkers is frequently carried out for diagnosis, prognosis and treatment monitoring at various disease stages. It is well-known that glycosylation profiles change significantly during oncogenesis. Aberrant glycans produced during tumorigenesis are, therefore, valuable molecules for detection and characterization of cancer, and for therapeutic design and monitoring. Although glycoproteomics has benefited from the development of analytical tools such as high performance liquid chromatography, two-dimensional gel and capillary electrophoresis and mass spectrometry, these approaches are not well suited for rapid point-of-care (POC) testing easily performed by medical staff. Lectins are biomolecules found in nature with specific affinities toward particular glycan structures and bind them thus forming a relatively strong complex. Because of this characteristic, lectins have been used in analytical techniques for the selective capture or separation of certain glycans in complex samples, namely, in lectin affinity chromatography, or to characterize glycosylation profiles in diverse clinical situations, using lectin microarrays. Lectin-based biosensors have been developed for the detection of specific aberrant and cancer-associated glycostructures to aid diagnosis, prognosis and treatment assessment of these patients. The attractive features of biosensors, such as portability and simple use make them highly suitable for POC testing. Recent developments in lectin biosensors, as well as their potential and pitfalls in cancer glycan biomarker detection, are presented in this chapter.
Collapse
Affiliation(s)
- M Luísa S Silva
- Centre of Chemical Research, Autonomous University of Hidalgo State, Pachuca, Hidalgo, México.
| |
Collapse
|
29
|
Wang Y, Sun Y, Feng J, Li Z, Yu H, Ding X, Yang F, Linghu E. Glycopatterns and Glycoproteins Changes in MCN and SCN: A Prospective Cohort Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2871289. [PMID: 31467879 PMCID: PMC6699316 DOI: 10.1155/2019/2871289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
Background. Advances in imaging improve the detection of malignant pancreatic cystic including mucinous cystic neoplasm (MCN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic adenocarcinoma (MCA), but the distinction between benign and malignant lesions remains a problem. In an effort to establish glycopatterns as potential biomarkers for differential diagnosis between MCN and SCN, we systematically investigated the alterations of glycopatterns in cystic fluids for both SCN and MCN. Methods. Among the 75 patients enrolled, 37 were diagnosed as MCN and 38 as SCN based on histology. Lectin microarray analysis was performed on each sample, and the fluorescence intensity was used to obtain the fold-change. Then, mixed cyst fluids of MCN group and SCN group were cross bonded with magnetic particles coupled by Lectin STL and WGA, respectively. Hydrophilic interaction liquid chromatography (HILIC) enrichment was performed, liquid chromatography (LC)/mass spectrometry (MS) analysis and bioinformatical analysis was conducted to find the differential glycoproteins between MCNs and SCNs. Results. Through analysis of lectin microarray between MCNs and SCNs, stronger lectin signal patterns were assigned to Lectin WFA, DBA, STL, WGA, and BPL; and weaker signal patterns were assigned to Lectin PTL-I, Con A, ACA, and MAL-I. The glycoproteins were enriched by STL or WGA-coupled magnetic particles. Furthermore, the 10 identified correspondding genes were found to be significantly elevated in the mucinous cystadenoma: CLU, A2M, FGA, FGB, FGG, PLG, SERPINA1, SERPING1, C5, C8A, and C9. Bioinformatics analysis revealed that the above genes may activate the KEGG pathway: immune complement system. Conclusion. This study shows changes in glycopatterns and glycoproteins are associated with MCNs and SCNs.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gastroenterology, The Affiliated Fu Xing Hospital of Capital Medical University, Beijing 100038, China
| | - Yufa Sun
- Department of Health Care, Central Guard Bureau, Beijing 100034, China
| | - Jia Feng
- Department of Gastroenterology, Bethune International Peace Hospital, Shi Jia Zhuang 050082, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiang Ding
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Enqiang Linghu
- Department of Gastroenterology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
30
|
Black AP, Liang H, West CA, Wang M, Herrera HP, Haab BB, Angel PM, Drake RR, Mehta AS. A Novel Mass Spectrometry Platform for Multiplexed N-Glycoprotein Biomarker Discovery from Patient Biofluids by Antibody Panel Based N-Glycan Imaging. Anal Chem 2019; 91:8429-8435. [PMID: 31177770 DOI: 10.1021/acs.analchem.9b01445] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new platform for N-glycoprotein analysis from serum that combines matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) workflows with antibody slide arrays is described. Antibody panel based (APB) N-glycan imaging allows for the specific capture of N-glycoproteins by antibodies on glass slides and N-glycan analysis in a protein-specific and multiplexed manner. Development of this technique has focused on characterizing two abundant and well-studied human serum glycoproteins, alpha-1-antitrypsin and immunoglobulin G. Using purified standard solutions and 1 μL samples of human serum, both glycoproteins can be immunocaptured and followed by enzymatic release of N-glycans. N-Glycans are detected with a MALDI FT-ICR mass spectrometer in a concentration-dependent manner while maintaining specificity of capture. Importantly, the N-glycans detected via slide-based antibody capture were identical to that of direct analysis of the spotted standards. As a proof of concept, this workflow was applied to patient serum samples from individuals with liver cirrhosis to accurately detect a characteristic increase in an IgG N-glycan. This novel approach to protein-specific N-glycan analysis from an antibody panel can be further expanded to include any glycoprotein for which a validated antibody exists. Additionally, this platform can be adapted for analysis of any biofluid or biological sample that can be analyzed by antibody arrays.
Collapse
Affiliation(s)
- Alyson P Black
- Department of Cell and Molecular Pharmacology , Medical University of South Carolina , 173 Ashley Avenue, BSB 310 , Charleston , South Carolina 29425 , United States
| | - Hongyan Liang
- Department of Cell and Molecular Pharmacology , Medical University of South Carolina , 173 Ashley Avenue, BSB 310 , Charleston , South Carolina 29425 , United States
| | - Connor A West
- Department of Cell and Molecular Pharmacology , Medical University of South Carolina , 173 Ashley Avenue, BSB 310 , Charleston , South Carolina 29425 , United States
| | - Mengjun Wang
- Department of Cell and Molecular Pharmacology , Medical University of South Carolina , 173 Ashley Avenue, BSB 310 , Charleston , South Carolina 29425 , United States
| | - Harmin P Herrera
- Department of Microbiology and Immunology , Drexel University College of Medicine , 2900 Queen Lane , Philadephia , Pennsylvania 19129 , United States
| | - Brian B Haab
- Van Andel Research Institute , 333 Bostwick Ave. , Grand Rapids , Michigan 49503 , United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology , Medical University of South Carolina , 173 Ashley Avenue, BSB 310 , Charleston , South Carolina 29425 , United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology , Medical University of South Carolina , 173 Ashley Avenue, BSB 310 , Charleston , South Carolina 29425 , United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology , Medical University of South Carolina , 173 Ashley Avenue, BSB 310 , Charleston , South Carolina 29425 , United States
| |
Collapse
|
31
|
Munkley J. The glycosylation landscape of pancreatic cancer. Oncol Lett 2019; 17:2569-2575. [PMID: 30854032 PMCID: PMC6388511 DOI: 10.3892/ol.2019.9885] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic adenocarcinoma is a lethal disease with a 5-year survival rate of <5%, the lowest of all types of cancer. The diagnosis of pancreatic cancer relies on imaging and tissue biopsy, and the only curative therapy is complete surgical resection. Pancreatic cancer has the propensity to metastasise at an early stage and the majority of patients are diagnosed when surgery is no longer an option. Hence, there is an urgent need to identify biomarkers to enable early diagnosis, and to develop new therapeutic strategies. One approach for this involves targeting cancer-associated glycans. The most widely used serological marker in pancreatic cancer is the carbohydrate antigen CA 19-9 which contains a glycan known as sialyl Lewis A (sLeA). The CA 19-9 assay is used routinely to monitor response to treatment, but concerns have been raised about its sensitivity and specificity as a diagnostic biomarker. In addition to sLeA, a wide range of alterations to other important glycans have been observed in pancreatic cancer. These include increases in the sialyl Lewis X antigen (sLex), an increase in truncated O-glycans (Tn and sTn), increased branched and fucosylated N-glycans, upregulation of specific proteoglycans and galectins, and increased O-GlcNAcylation. Growing evidence supports crucial roles for glycans in all stages of cancer progression, and it is well established that glycans regulate tumour proliferation, invasion and metastasis. The present review describes the biological significance of glycans in pancreatic cancer, and discusses the clinical value of exploiting aberrant glycosylation to improve the diagnosis and treatment of this deadly disease.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
32
|
Oswald DM, Sim ES, Baker C, Farhan O, Debanne SM, Morris NJ, Rodriguez BG, Jones MB, Cobb BA. Plasma glycomics predict cardiovascular disease in patients with ART-controlled HIV infections. FASEB J 2019; 33:1852-1859. [PMID: 30183373 PMCID: PMC6338643 DOI: 10.1096/fj.201800923r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/06/2018] [Indexed: 12/30/2022]
Abstract
Despite effective control of HIV infection with antiretroviral drugs, individuals with HIV have high incidences of secondary diseases. These sequelae, such as cardiovascular disease (CVD), are poorly understood and represent a major health burden. To date, predictive biomarkers of HIV-associated secondary disease have been elusive, making preventative clinical management essentially impossible. Here, we applied a newly developed and easy to deploy, multitarget, and high-throughput glycomic analysis to banked HIV+ human plasma samples to determine whether the glycome may include biomarkers that predict future HIV-associated cardiovascular events or CVD diagnoses. Using 324 patient samples, we identified a glycomic fingerprint that was predictive of future CVD events but independent of CD4 counts, diabetes, age, and birth sex, suggesting that the plasma glycome may serve as a biomarker for specific HIV-associated sequelae. Our findings constitute the discovery of novel glycan biomarkers that could classify patients with HIV with elevated risk for CVD and reveal the untapped prognostic potential of the plasma glycome in human disease.-Oswald, D. M., Sim, E. S., Baker, C., Farhan, O., Debanne, S. M., Morris, N. J., Rodriguez, B. G., Jones, M. B., Cobb, B. A. Plasma glycomics predict cardiovascular disease in patients with ART-controlled HIV infections.
Collapse
Affiliation(s)
- Douglas M. Oswald
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Edward S. Sim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Courtney Baker
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Obada Farhan
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sara M. Debanne
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Nathan J. Morris
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benigno G. Rodriguez
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Mark B. Jones
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Brian A. Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
33
|
Krishn SR, Ganguly K, Kaur S, Batra SK. Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis 2019; 39:633-651. [PMID: 29415129 DOI: 10.1093/carcin/bgy019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Heavily glycosylated secreted mucin MUC5AC, by the virtue of its cysteine-rich repeats, can form inter- and intramolecular disulfide linkages resulting in complex polymers, which in turn craft the framework of the polymeric mucus gel on epithelial cell surfaces. MUC5AC is a molecule with versatile functional implications including barrier functions to epithelial cells, host-pathogen interaction, immune cell attraction to sites of premalignant or malignant lesions and tumor progression in a context-dependent manner. Differential expression, glycosylation and localization of MUC5AC have been associated with a plethora of benign and malignant pathologies. In this era of robust technologies, overexpression strategies and genetically engineered mouse models, MUC5AC is emerging as a potential diagnostic, prognostic and therapeutic target for various malignancies. Considering the clinical relevance of MUC5AC, this review holistically encompasses its genomic organization, domain structure, glycosylation patterns, regulation, functional and molecular connotation from benign to malignant pathologies. Furthermore, we have here explored the incipient and significant experimental tools that are being developed to study this structurally complex and evolutionary conserved gel-forming mucin.
Collapse
Affiliation(s)
- Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
34
|
Staal B, Liu Y, Barnett D, Hsueh P, He Z, Gao C, Partyka K, Hurd MW, Singhi AD, Drake RR, Huang Y, Maitra A, Brand RE, Haab BB. The sTRA Plasma Biomarker: Blinded Validation of Improved Accuracy Over CA19-9 in Pancreatic Cancer Diagnosis. Clin Cancer Res 2019; 25:2745-2754. [PMID: 30617132 DOI: 10.1158/1078-0432.ccr-18-3310] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/21/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE The CA19-9 biomarker is elevated in a substantial group of patients with pancreatic ductal adenocarcinoma (PDAC), but not enough to be reliable for the detection or diagnosis of the disease. We hypothesized that a glycan called sTRA (sialylated tumor-related antigen) is a biomarker for PDAC that improves upon CA19-9. EXPERIMENTAL DESIGN We examined sTRA and CA19-9 expression and secretion in panels of cell lines, patient-derived xenografts, and primary tumors. We developed candidate biomarkers from sTRA and CA19-9 in a training set of 147 plasma samples and used the panels to make case-control calls, based on predetermined thresholds, in a 50-sample validation set and a blinded, 147-sample test set. RESULTS The sTRA glycan was produced and secreted by pancreatic tumors and models that did not produce and secrete CA19-9. Two biomarker panels improved upon CA19-9 in the training set, one optimized for specificity, which included CA19-9 and 2 versions of the sTRA assay, and another optimized for sensitivity, which included 2 sTRA assays. Both panels achieved statistical improvement (P < 0.001) over CA19-9 in the validation set, and the specificity-optimized panel achieved statistical improvement (P < 0.001) in the blinded set: 95% specificity and 54% sensitivity (75% accuracy), compared with 97%/30% (65% accuracy). Unblinding produced further improvements and revealed independent, complementary contributions from each marker. CONCLUSIONS sTRA is a validated serological biomarker of PDAC that yields improved performance over CA19-9. The new panels may enable surveillance for PDAC among people with elevated risk, or improved differential diagnosis among patients with suspected pancreatic cancer.
Collapse
Affiliation(s)
- Ben Staal
- The Van Andel Research Institute, Grand Rapids, Michigan
| | - Ying Liu
- The Van Andel Research Institute, Grand Rapids, Michigan
| | - Daniel Barnett
- The Van Andel Research Institute, Grand Rapids, Michigan.,Michigan State University, East Lansing, Michigan
| | - Peter Hsueh
- The Van Andel Research Institute, Grand Rapids, Michigan.,Michigan State University, East Lansing, Michigan
| | - Zonglin He
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - ChongFeng Gao
- The Van Andel Research Institute, Grand Rapids, Michigan
| | - Katie Partyka
- The Van Andel Research Institute, Grand Rapids, Michigan
| | | | - Aatur D Singhi
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Richard R Drake
- Medical University of South Carolina, Charleston, South Carolina
| | - Ying Huang
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Randall E Brand
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Brian B Haab
- The Van Andel Research Institute, Grand Rapids, Michigan.
| |
Collapse
|
35
|
Llop E, Guerrero PE, Duran A, Barrabés S, Massaguer A, Ferri MJ, Albiol-Quer M, de Llorens R, Peracaula R. Glycoprotein biomarkers for the detection of pancreatic ductal adenocarcinoma. World J Gastroenterol 2018; 24:2537-2554. [PMID: 29962812 PMCID: PMC6021768 DOI: 10.3748/wjg.v24.i24.2537] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/04/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaC) shows a clear tendency to increase in the next years and therefore represents an important health and social challenge. Currently, there is an important need to find biomarkers for PaC early detection because the existing ones are not useful for that purpose. Recent studies have indicated that there is a large window of time for PaC early detection, which opens the possibility to find early biomarkers that could greatly improve the dismal prognosis of this tumor. The present manuscript reviews the state of the art of the existing PaC biomarkers. It focuses on the anomalous glycosylation process and its role in PaC. Glycan structures of glycoconjugates such as glycoproteins are modified in tumors and these modifications can be detected in biological fluids of the cancer patients. Several studies have found serum glycoproteins with altered glycan chains in PaC patients, but they have not shown enough specificity for PaC. To find more specific cancer glycoproteins we propose to analyze the glycan moieties of a battery of glycoproteins that have been reported to increase in PaC tissues and that can also be found in serum. The combination of these new candidate glycoproteins with their aberrant glycosylation together with the existing biomarkers could result in a panel, which would expect to give better results as a new tool for early diagnosis of PaC and to monitor the disease.
Collapse
Affiliation(s)
- Esther Llop
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Pedro E Guerrero
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Adrià Duran
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Sílvia Barrabés
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Anna Massaguer
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - María José Ferri
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
- Clinic Laboratory, University Hospital Dr Josep Trueta, Girona 17007, Spain
| | - Maite Albiol-Quer
- Department of Surgery, Hepato-biliary and Pancreatic Surgery Unit, University Hospital Dr Josep Trueta, Girona 17007, Spain
| | - Rafael de Llorens
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| | - Rosa Peracaula
- Department of Biology, Biochemistry and Molecular Biology Unit, University of Girona, Girona 17003, Spain
- Biomedical Research Institute of Girona (IdIBGi). Parc Hospitalari Martí i Julià-Edifici M2, Salt 17190, Spain
| |
Collapse
|
36
|
Goh SK, Gold G, Christophi C, Muralidharan V. Serum carbohydrate antigen 19-9 in pancreatic adenocarcinoma: a mini review for surgeons. ANZ J Surg 2017; 87:987-992. [PMID: 28803454 DOI: 10.1111/ans.14131] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/12/2022]
Abstract
The optimal management of oncological conditions is reflected by the careful interpretation of investigations for screening, diagnosis, staging, prognostication and surveillance. Serum tumour markers are examples of commonly requested tests in conjunction with other imaging and endoscopic tests that are used to help clinicians to stratify therapeutic decisions. Serum carbohydrate antigen 19-9 (CA19-9) is a key biomarker for pancreatic cancers. Although this biomarker is considered clinically useful and informative, clinicians are often challenged by the accurate interpretation of elevated serum CA19-9 levels. Recognizing the pitfalls of normal and abnormal serum CA19-9 concentrations will facilitate its appropriate use. In this review, we appraised the biomarker, serum CA19-9, and highlighted the clinical utility and limitations of serum CA19-9 in the investigation and management of pancreatic cancers.
Collapse
Affiliation(s)
- Su Kah Goh
- Hepato-Pancreato-Biliary and Transplant Unit, Austin Hospital, Melbourne, Victoria, Australia
- Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Grace Gold
- Hepato-Pancreato-Biliary and Transplant Unit, Austin Hospital, Melbourne, Victoria, Australia
- Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Christophi
- Hepato-Pancreato-Biliary and Transplant Unit, Austin Hospital, Melbourne, Victoria, Australia
- Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vijayaragavan Muralidharan
- Hepato-Pancreato-Biliary and Transplant Unit, Austin Hospital, Melbourne, Victoria, Australia
- Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Matsuda A, Higashi M, Nakagawa T, Yokoyama S, Kuno A, Yonezawa S, Narimatsu H. Assessment of tumor characteristics based on glycoform analysis of membrane-tethered MUC1. J Transl Med 2017; 97:1103-1113. [PMID: 28581490 DOI: 10.1038/labinvest.2017.53] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/12/2022] Open
Abstract
Clinical tissue specimens are useful for pathological diagnosis, which is, in some cases, supported by visualization of biomolecule localization. In general, diagnostic specificity in molecular pathology is increased by the acquisition of a probe to distinguish the modification of isomers. Although glycosylation is one of the candidate modifications in a protein, comparative glycan analysis of disease-associated proteins derived from a single tissue section is still challenging because of the lack of analytical sensitivity. Here we demonstrate a possible method for differential glycoform analysis of an endogenous tumor-associated glycoprotein MUC1 by an antibody-overlay lectin microarray. Tissue sections (5 μm thick) of patients with cholangiocarcinoma (CCA; n=21) and pancreatic ductal adenocarcinoma (PDAC; n=50) were stained with an anti-MUC1 antibody MY.1E12 that was established as a monoclonal antibody recognizing an MUC1 glycosylation isoform with a sialyl-core 1 structure (NeuAcα2-3galactosyl β1-3-N-acetylgalactosamine). MY.1E12-positive tissue areas (2.5 mm2) were selectively dissected with a laser capture microdissection procedure. The membrane MUC1 was enriched by immunoprecipitation with MY.1E12 and subjected to lectin microarray analysis. Even though the reactivities of MY.1E12 between CCA and PDAC were similar, the lectin-binding patterns varied. We found Maackia amurensis leukoagglutinin and pokeweed lectin distinguished MY.1E12-reactive MUC1 of CCA from that of PDAC. Moreover, MUC1 with M. amurensis hemagglutinin (MAH) reactivity potentially reflected the degree of malignancy. These results were confirmed with MAH-MY.1E12 double fluorescent immunostaining. These glycan changes on MUC1 were detected with high sensitivity owing to the cluster effect of immobilized lectins on a tandem repeat peptide antigen covered with highly dense glycosylation such as mucin. Our approach provides the information to investigate novel glycodynamics in biology, for example, glycoalteration, as well as diseases related to not only MUC1 but also other membrane proteins.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Michiyo Higashi
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Tomomi Nakagawa
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Seiya Yokoyama
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Atsushi Kuno
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Suguru Yonezawa
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Hisashi Narimatsu
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
38
|
Nigjeh EN, Chen R, Allen-Tamura Y, Brand RE, Brentnall TA, Pan S. Spectral library-based glycopeptide analysis-detection of circulating galectin-3 binding protein in pancreatic cancer. Proteomics Clin Appl 2017. [PMID: 28627758 DOI: 10.1002/prca.201700064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease characterized by its late diagnosis, poor prognosis and rapid development of drug resistance. Using the data-independent acquisition (DIA) technique, the authors applied a spectral library-based proteomic approach to analyze N-glycosylated peptides in human plasma, in the context of pancreatic cancer study. EXPERIMENTAL DESIGN The authors extended the application of DIA to the quantification of N-glycosylated peptides enriched from plasma specimens from a clinically well-defined cohort that consists of patients with early stage PDAC, chronic pancreatitis and healthy subjects. RESULTS The analytical platform was evaluated in light of its robustness for quantitative analysis of large-scale clinical specimens. The authors analysis indicated that the level of N-glycosylated peptides derived from galectin-3 binding proteins (LGALS3BP) were frequently elevated in plasma from PDAC patients, concurrent with the altered N-glycosylation of LGALS3BP observed in the tumor tissue. CONCLUSION AND CLINICAL RELEVANCE The glycosylation form of LGALS3BP influences its function in the galectin network, which profoundly involves in cancer progression, immune response and drug resistance. As one of the major binding ligands of galectin network, discovery of site specific N-glycosylation changes of LGALS3BP in association of PDAC may provide useful clues to facilitate cancer detection or phenotype stratification.
Collapse
Affiliation(s)
- Eslam N Nigjeh
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ru Chen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Randall E Brand
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Suh H, Pillai K, Morris DL. Mucins in pancreatic cancer: biological role, implications in carcinogenesis and applications in diagnosis and therapy. Am J Cancer Res 2017; 7:1372-1383. [PMID: 28670497 PMCID: PMC5489784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023] Open
Abstract
Pancreatic cancer is the fourth highest cause of cancer mortality in the world. It has very low survival rates owing to late diagnosis resulting from the absence of accurate diagnostic tools and effective therapies. Hence, there is a pressing need to develop new diagnostic and therapeutic tools. In the recent years, there has been new evidence implicating the importance of mucins in pancreatic carcinogenesis. Mucins belong to a group of heavily glycosylated proteins, and are often aberrantly expressed in a number of cancers such as pancreatic cancer. Therefore, this literature review will summarise the role of mucins and mucin expression in pancreatic neoplasms. Subsequently the paper will also discuss the most recent advances in the biological properties of mucins and their role in carcinogenesis and resistance to chemotherapy. Then it will conclude on the newest developments in diagnosis and therapy based on mucins for pancreatic cancer.
Collapse
Affiliation(s)
- Hyerim Suh
- University of New South Wales, School of MedicineSydney NSW, Australia
| | - Krishna Pillai
- Department of Surgery, St George Hospital, The University of New South WalesKogarah, Sydney NSW 2217, Australia
| | - David Lawson Morris
- Department of Surgery, St George Hospital, The University of New South WalesKogarah, Sydney NSW 2217, Australia
| |
Collapse
|
40
|
Qin Y, Chen Y, Yang J, Wu F, Zhao L, Yang F, Xue P, Shi Z, Song T, Huang C. Serum glycopattern and Maackia amurensis lectin-II binding glycoproteins in autism spectrum disorder. Sci Rep 2017; 7:46041. [PMID: 28485374 PMCID: PMC5423032 DOI: 10.1038/srep46041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Glycosylation modified as many as 70% of all human proteins can sensitively reflect various pathological changes. However, little is known about the alterations of glycosylation and glycoproteins in ASD. In this study, serum glycopattern and the maackia amurensis lectin-II binding glycoproteins (MBGs) in 65 children with ASD and 65 age-matched typically developing (TD) children were compared by using lectin microarrays and lectin-magnetic particle conjugate-assisted LC-MS/MS analyses. Expression of Siaα2-3 Gal/GalNAc was significantly increased in pooled (fold change = 3.33, p < 0.001) and individual (p = 0.009) serum samples from ASD versus TD children. A total of 194 and 217 MGBs were identified from TD and ASD sera respectively, of which 74 proteins were specially identified or up-regulated in ASD. Bioinformatic analysis revealed abnormal complement cascade and aberrant regulation of response-to-stimulus that might be novel makers or markers for ASD. Moreover, increase of APOD α2-3 sialoglycosylation could sensitively and specifically distinguish ASD samples from TD samples (AUC is 0.88). In conclusion, alteration of MBGs expression and their sialoglycosylation may serve as potential biomarkers for diagnosis of ASD, and provide useful information for investigations into the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yannan Qin
- Department of Cell Biology and Genetics, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China
| | - Yanni Chen
- Xi'an Child's Hospital of Medical College of Xi'an Jiaotong University, Xi'an Child's Hospital, Xi'an 710002, P. R. China
| | - Juan Yang
- Department of Cell Biology and Genetics, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China
| | - Fei Wu
- Department of Cell Biology and Genetics, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China
| | - Fuquan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Peng Xue
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Zhuoyue Shi
- The Department of Biology, College of Liberal Arts and Science, The University of Iowa, Iowa 430015, USA
| | - Tusheng Song
- Department of Cell Biology and Genetics, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China
| | - Chen Huang
- Department of Cell Biology and Genetics, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China
| |
Collapse
|
41
|
Selectin Ligands Sialyl-Lewis a and Sialyl-Lewis x in Gastrointestinal Cancers. BIOLOGY 2017; 6:biology6010016. [PMID: 28241499 PMCID: PMC5372009 DOI: 10.3390/biology6010016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/20/2022]
Abstract
The tetrasaccharide structures Siaα2,3Galβ1,3(Fucα1,4)GlcNAc and Siaα2,3Galβ1,4(Fucα1,3)GlcNAc constitute the epitopes of the carbohydrate antigens sialyl-Lewis a (sLea) and sialyl-Lewis x (sLex), respectively, and are the minimal requirement for selectin binding to their counter-receptors. Interaction of sLex expressed on the cell surface of leucocytes with E-selectin on endothelial cells allows their arrest and promotes their extravasation. Similarly, the rolling of cancer cells ectopically expressing the selectin ligands on endothelial cells is potentially a crucial step favoring the metastatic process. In this review, we focus on the biosynthetic steps giving rise to selectin ligand expression in cell lines and native tissues of gastrointestinal origin, trying to understand whether and how they are deregulated in cancer. We also discuss the use of such molecules in the diagnosis of gastrointestinal cancers, particularly in light of recent data questioning the ability of colon cancers to express sLea and the possible use of circulating sLex in the early detection of pancreatic cancer. Finally, we reviewed the data dealing with the mechanisms that link selectin ligand expression in gastrointestinal cells to cancer malignancy. This promising research field seems to require additional data on native patient tissues to reach more definitive conclusions.
Collapse
|
42
|
Coleman O, Henry M, McVey G, Clynes M, Moriarty M, Meleady P. Proteomic strategies in the search for novel pancreatic cancer biomarkers and drug targets: recent advances and clinical impact. Expert Rev Proteomics 2016; 13:383-94. [PMID: 26985644 DOI: 10.1586/14789450.2016.1167601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers; despite a low incidence rate it is the fourth leading cause of cancer-related death in the world. Improvement of the diagnosis, prognosis and treatment remains the main focus of pancreatic cancer research. Rapid developments in proteomic technologies has improved our understanding of the pancreatic cancer proteome. Here, the authors summarise the recent proteomic strategies undertaken in the search for: novel biomarkers for early diagnosis, pancreatic cancer-specific proteins which may be used for novel targeted therapies and proteins which may be useful for monitoring disease progression post-therapy. Recent advances and findings discussed here provide great promise of having a significant clinical impact and improving the outcome of patients with this malignancy.
Collapse
Affiliation(s)
- Orla Coleman
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland
| | - Michael Henry
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland
| | - Gerard McVey
- b St. Lukes Hospital , Rathgar , Dublin 6 , Ireland
| | - Martin Clynes
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland
| | - Michael Moriarty
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland.,b St. Lukes Hospital , Rathgar , Dublin 6 , Ireland
| | - Paula Meleady
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland
| |
Collapse
|
43
|
Reatini BS, Ensink E, Liau B, Sinha JY, Powers TW, Partyka K, Bern M, Brand RE, Rudd PM, Kletter D, Drake R, Haab BB. Characterizing Protein Glycosylation through On-Chip Glycan Modification and Probing. Anal Chem 2016; 88:11584-11592. [PMID: 27809484 PMCID: PMC5290727 DOI: 10.1021/acs.analchem.6b02998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycans are critical to protein biology and are useful as disease biomarkers. Many studies of glycans rely on clinical specimens, but the low amount of sample available for some specimens limits the experimental options. Here we present a method to obtain information about protein glycosylation using a minimal amount of protein. We treat proteins that were captured or directly spotted in small microarrays (2.2 mm × 2.2 mm) with exoglycosidases to successively expose underlying features, and then we probe the native or exposed features using a panel of lectins or glycan-binding reagents. We developed an algorithm to interpret the data and provide predictions about the glycan motifs that are present in the sample. We demonstrated the efficacy of the method to characterize differences between glycoproteins in their sialic acid linkages and N-linked glycan branching, and we validated the assignments by comparing results from mass spectrometry and chromatography. The amount of protein used on-chip was about 11 ng. The method also proved effective for analyzing the glycosylation of a cancer biomarker in human plasma, MUC5AC, using only 20 μL of the plasma. A glycan on MUC5AC that is associated with cancer had mostly 2,3-linked sialic acid, whereas other glycans on MUC5AC had a 2,6 linkage of sialic acid. The on-chip glycan modification and probing (on-chip GMAP) method provides a platform for analyzing protein glycosylation in clinical specimens and could complement the existing toolkit for studying glycosylation in disease.
Collapse
Affiliation(s)
| | - Elliot Ensink
- Van Andel Research Institute, Grand Rapids, Michigan
| | - Brian Liau
- Bioprocessing Technology Institute, Singapore
| | | | - Thomas W. Powers
- Medical University of South Carolina, Charleston, South Carolina
| | - Katie Partyka
- Van Andel Research Institute, Grand Rapids, Michigan
| | | | - Randall E. Brand
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Pauline M. Rudd
- Bioprocessing Technology Institute, Singapore
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | | | | | - Brian B. Haab
- Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
44
|
Pan S, Brentnall TA, Chen R. Glycoproteins and glycoproteomics in pancreatic cancer. World J Gastroenterol 2016; 22:9288-9299. [PMID: 27895417 PMCID: PMC5107693 DOI: 10.3748/wjg.v22.i42.9288] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
Aberrations in protein glycosylation and polysaccharides play a pivotal role in pancreatic tumorigenesis, influencing cancer progression, metastasis, immuno-response and chemoresistance. Abnormal expression in sugar moieties can impact the function of various glycoproteins, including mucins, surface receptors, adhesive proteins, proteoglycans, as well as their effectors and binding ligands, resulting in an increase in pancreatic cancer invasiveness and a cancer-favored microenvironment. Recent advance in glycoproteomics, glycomics and other chemical biology techniques have been employed to better understand the complex mechanism of glycosylation events and how they orchestrate molecular activities in genomics, proteomics and metabolomics implicated in pancreatic adenocarcinoma. A variety of strategies have been demonstrated targeting protein glycosylation and polysaccharides for diagnostic and therapeutic development.
Collapse
|
45
|
Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH. N-glycan MALDI Imaging Mass Spectrometry on Formalin-Fixed Paraffin-Embedded Tissue Enables the Delineation of Ovarian Cancer Tissues. Mol Cell Proteomics 2016; 15:3003-16. [PMID: 27412689 DOI: 10.1074/mcp.m116.059816] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is a fatal gynaecological malignancy in adult women with a five-year overall survival rate of only 30%. Glycomic and glycoproteomic profiling studies have reported extensive protein glycosylation pattern alterations in ovarian cancer. Therefore, spatio-temporal investigation of these glycosylation changes may unearth tissue-specific changes that occur in the development and progression of ovarian cancer. A novel method for investigating tissue-specific N-linked glycans is using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) on formalin-fixed paraffin-embedded (FFPE) tissue sections that can spatially profile N-glycan compositions released from proteins in tissue-specific regions. In this study, tissue regions of interest (e.g. tumor, stroma, adipose tissue and necrotic areas) were isolated from FFPE tissue sections of advanced serous ovarian cancers (n = 3). PGC-LC-ESI-MS/MS and MALDI-MSI were used as complementary techniques to firstly generate structural information on the tissue-specific glycans in order to then obtain high resolution images of the glycan structure distribution in ovarian cancer tissue. The N-linked glycan repertoires carried by the proteins in these tissue regions were structurally characterized for the first time in FFPE ovarian cancer tissue regions, using enzymatic peptide-N-glycosidase F (PNGase F) release of N-glycans. The released glycans were analyzed by porous graphitized carbon liquid chromatography (PGC-LC) and collision induced electrospray negative mode MS fragmentation analysis. The N-glycan profiles identified by this analysis were then used to determine the location and distribution of each N-glycan on FFPE ovarian cancer sections that were treated with PNGase F using high resolution MALDI-MSI. A tissue-specific distribution of N-glycan structures identified particular regions of the ovarian cancer sections. For example, high mannose glycans were predominantly expressed in the tumor tissue region whereas complex/hybrid N-glycans were significantly abundant in the intervening stroma. Therefore, tumor and non-tumor tissue regions were clearly demarcated solely on their N-glycan structure distributions.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- ‡‡Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5005, Australia
| | - Matthew T Briggs
- From the ‡Faculty of Science, Biomolecular Frontiers Research Centre, Macquarie University, Sydney, NSW, 2109, Australia; ¶Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia; ‖Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Gurjeet Kaur
- **Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Martin K Oehler
- ‡‡Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5005, Australia; §§Discipline of Obstetrics and Gynaecology, Robinson Institute, University of Adelaide, Adelaide, South Australia
| | - Peter Hoffmann
- ¶Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia; ‖Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5005, Australia; ¶¶Centre for Molecular Pathology, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Nicolle H Packer
- From the ‡Faculty of Science, Biomolecular Frontiers Research Centre, Macquarie University, Sydney, NSW, 2109, Australia; §ARC Centre for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia;
| |
Collapse
|
46
|
Syed P, Gidwani K, Kekki H, Leivo J, Pettersson K, Lamminmäki U. Role of lectin microarrays in cancer diagnosis. Proteomics 2016; 16:1257-65. [PMID: 26841254 DOI: 10.1002/pmic.201500404] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Abstract
The majority of cell differentiation associated tumor markers reported to date are either glycoproteins or glycolipids. Despite there being a large number of glycoproteins reported as candidate markers for various cancers, only a handful are approved by the US Food and Drug Administration. Lectins, which bind to the glycan part of the glycoproteins, can be exploited to identify aberrant glycosylation patterns, which in turn would help in enhancing the specificity of cancer diagnosis. Although conventional techniques such as HPLC and MS have been instrumental in performing the glycomic analyses, these techniques lack multiplexity. Lectin microarrays have proved to be useful in studying multiple lectin-glycan interactions in a single experiment and, with the advances made in the field, hold a promise of enabling glycomic profiling of cancers in a fast and efficient manner.
Collapse
Affiliation(s)
- Parvez Syed
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Kamlesh Gidwani
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Henna Kekki
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Janne Leivo
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Kim Pettersson
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| |
Collapse
|
47
|
Ricardo S, Marcos-Silva L, Valente C, Coelho R, Gomes R, David L. Mucins MUC16 and MUC1 are major carriers of SLe(a) and SLe(x) in borderline and malignant serous ovarian tumors. Virchows Arch 2016; 468:715-22. [PMID: 27003157 DOI: 10.1007/s00428-016-1929-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/22/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
Mucins are heavily glycosylated proteins overexpressed and associated with truncated or sialylated glycans upon malignant transformation. We previously identified a panel of four glyco-mucin profiles (MUC16/Tn, MUC16/STn, MUC1/Tn, and MUC1/STn) with 100 % specificity and 100 % positive predictive value for detection of borderline/malignant serous tumors of the ovary, using proximity ligation assay (PLA). In the present work, using the same method, we studied other mucin glycosylation profiles that might add relevant information for diagnostic purposes. We used PLA probes to MUC16, MUC1, sialyl Lewis(a) (SLe(a)), and sialyl Lewis(x) (SLe(x)) to study a series of 39 ovarian serous tumors (14 adenocarcinomas, 10 borderline ovarian tumors (BOTs), and 15 cystadenomas). Our results demonstrated that, in adenocarcinomas and BOTs, the major carriers of SLe(a) and SLe(x) are MUC16 and/or MUC1 (100 and 92 % for SLe(a) and 64 and 70 % for SLe(x), respectively). In cystadenomas, SLe(a) and SLe(x) are mainly carried by unidentified proteins (85 and 78 %, respectively). Our study identified, for the first time, the major protein carriers of SLe(a) and SLe(x) in ovarian adenocarcinomas and BOTs, MUC1 and MUC16, and also that distinct unidentified carriers are involved in cystadenomas. These results emphasize the relevance of multiple biomarker recognition provided by multiplex assays, such as PLA, to enhance sensitivity and specificity of serum and tissue assays.
Collapse
Affiliation(s)
- Sara Ricardo
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal. .,Faculty of Medicine of the University of Porto, Porto, Portugal.
| | - Lara Marcos-Silva
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal
| | | | - Ricardo Coelho
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rosa Gomes
- Oncology Department of Centro Hospitalar S. João, Porto, Portugal
| | - Leonor David
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
48
|
|
49
|
Tang H, Partyka K, Hsueh P, Sinha JY, Kletter D, Zeh H, Huang Y, Brand RE, Haab BB. Glycans related to the CA19-9 antigen are elevated in distinct subsets of pancreatic cancers and improve diagnostic accuracy over CA19-9. Cell Mol Gastroenterol Hepatol 2015; 2:201-221.e15. [PMID: 26998508 PMCID: PMC4792034 DOI: 10.1016/j.jcmgh.2015.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS The CA19-9 antigen is the current best biomarker for pancreatic cancer, but it is not elevated in about 25% of pancreatic cancer patients at a cutoff that gives a 25% false-positive rate. We hypothesized that antigens related to the CA19-9 antigen, which is a glycan called sialyl-Lewis A (sLeA), are elevated in distinct subsets of pancreatic cancers. METHODS We profiled the levels of multiple glycans and mucin glycoforms in plasma from 200 subjects with either pancreatic cancer or benign pancreatic disease, and we validated selected findings in additional cohorts of 116 and 100 subjects, the latter run blinded and including cancers that exclusively were early-stage. RESULTS We found significant elevations in two glycans: an isomer of sLeA called sialyl-Lewis X, present both in sulfated and non-sulfated forms; and the sialylated form of a marker for pluripotent stem cells, type 1 N-acetyl-lactosamine. The glycans performed as well as sLeA as individual markers and were elevated in distinct groups of patients, resulting in a 3-marker panel that significantly improved upon any individual biomarker. The panel gave 85% sensitivity and 90% specificity in the combined discovery and validation cohorts, relative to 54% sensitivity and 86% specificity for sLeA; and it gave 80% sensitivity and 84% specificity in the independent test cohort, as opposed to 66% sensitivity and 72% specificity for sLeA. CONCLUSIONS Glycans related to sLeA are elevated in distinct subsets of pancreatic cancers and yield improved diagnostic accuracy over CA19-9.
Collapse
Affiliation(s)
- Huiyuan Tang
- Van Andel Research Institute, Center for Cancer and Cell Biology, Grand Rapids, Michigan
| | - Katie Partyka
- Van Andel Research Institute, Center for Cancer and Cell Biology, Grand Rapids, Michigan
| | - Peter Hsueh
- Van Andel Research Institute, Center for Cancer and Cell Biology, Grand Rapids, Michigan
| | - Jessica Y. Sinha
- Van Andel Research Institute, Center for Cancer and Cell Biology, Grand Rapids, Michigan
| | | | - Herbert Zeh
- University of Pittsburgh School of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh, Pennsylvania
| | - Ying Huang
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington
| | - Randall E. Brand
- University of Pittsburgh School of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh, Pennsylvania
| | - Brian B. Haab
- Van Andel Research Institute, Center for Cancer and Cell Biology, Grand Rapids, Michigan,Correspondence Address correspondence to: Brian B. Haab, PhD, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, Michigan 49503. fax: (616) 234–5269.Van Andel Research Institute333 Bostwick NEGrand RapidsMichigan 49503
| |
Collapse
|
50
|
CA-125, but not galectin-3, complements CA 19-9 for discriminating ductal adenocarcinoma versus non-malignant pancreatic diseases. Pancreatology 2015; 16:115-20. [PMID: 26613889 DOI: 10.1016/j.pan.2015.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES CA 19-9 is the gold standard biomarker of pancreatic adenocarcinoma despite several weaknesses in particular a high rate of false positives or negatives. CA-125 corresponding to MUC16 and galectin-3, a lectin able to interact with mucin-associated carbohydrates, are tumor-associated proteins. We investigated whether combined measurement of CA 19-9, galectin-3 and CA-125 may help to better discriminate pancreatic adenocarcinoma versus non-malignant pancreatic diseases. METHODS We evaluated by immunohistochemistry the expression of MUC4, MUC16 (CA-125) and galectin-3 in 31 pancreatic adenocarcinomas. We measured CA 19-9, CA-125 and Gal-3 in the serum from patients with pancreatic benign diseases (n = 58) or adenocarcinoma (n = 44). Clinical performance of the 3 biomarkers for cancer diagnosis and prognosis was analyzed. RESULTS By immunohistochemistry, MUC16 and Gal-3 were expressed in 74% and 84% of adenocarcinomas versus 0% and 3.2% in peri-tumoral regions, respectively. At the serum level, CA 19-9 and CA125 were significantly higher in patients with pancreatic adenocarcinoma whereas Gal-3 levels did not differ. The performance of CA 19-9 for cancer detection was higher than those of CA-125 or Gal-3 by ROC analysis. However, CA-125 offers the highest specificity for malignancy (81%) because of an absence of false positives among type 2 diabetic patients. Cancer deaths assessed 6 or 12 months after diagnosis varied according to the initial CA-125 level (p < 0.006). CONCLUSION Gal-3 is not an interesting biomarker for pancreatic adenocarcinoma detection. CA 19-9 alone exhibits the best performance but measuring CA-125 provides complementary information in terms of diagnosis and prognosis.
Collapse
|