1
|
Engler S, Buchner J. The evolution and diversification of the Hsp90 co-chaperone system. Biol Chem 2025:hsz-2025-0112. [PMID: 40261701 DOI: 10.1515/hsz-2025-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
The molecular chaperone Hsp90 is the central element of a chaperone machinery in the cytosol of eukaryotic cells that is characterized by a large number of structurally and functionally different co-chaperones that influence the core chaperone component in different ways and increase its influence on the proteome. From yeast to humans, the number of Hsp90 co-chaperones has increased from 14 to over 40, and new co-chaperones are still being discovered. While Hsp90 itself has only undergone limited changes in structure and mechanism from yeast to humans, its increased importance and contribution to different processes in humans is based on the evolution and expansion of the cohort of co-chaperones. In this review, we provide an overview of Hsp90 co-chaperones, focusing on their roles in regulating Hsp90 function and their evolution from yeast to humans.
Collapse
Affiliation(s)
- Sonja Engler
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| |
Collapse
|
2
|
Palacios-Abella A, López-Perrote A, Boskovic J, Fonseca S, Úrbez C, Rubio V, Llorca O, Alabadí D. The structure of the R2T complex reveals a different architecture from the related HSP90 cochaperone R2TP. Structure 2025; 33:740-752.e8. [PMID: 40015274 DOI: 10.1016/j.str.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/19/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
The R2TP complex is a specialized HSP90 cochaperone essential for the maturation of macromolecular complexes such as RNAPII and TORC1. R2TP is formed by a hetero-hexameric ring of AAA-ATPases RuvBL1 and RuvBL2, which interact with RPAP3 and PIH1D1. Several R2TP-like complexes have been described, but these are less well characterized. Here, we identified, characterized and determined the cryo-electron microscopy (cryo-EM) structure of R2T from Arabidopsis thaliana, which lacks PIH1D1 and is probably the only form of the complex in seed plants. In contrast to R2TP, R2T is organized as two rings of AtRuvBL1-AtRuvBL2a interacting back-to-back, with one AtRPAP3 anchored per ring. AtRPAP3 has no effect on the ATPase activity of AtRuvBL1-AtRuvBL2a and binds with a different stoichiometry than in human R2TP. We show that the interaction of AtRPAP3 with AtRuvBL2a and AtHSP90 occurs via a conserved mechanism. However, the distinct architectures of R2T and R2TP suggest differences in their functions and mechanisms.
Collapse
Affiliation(s)
- Alberto Palacios-Abella
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Andrés López-Perrote
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Jasminka Boskovic
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sandra Fonseca
- Centro Nacional de Biotecnología (CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Vicente Rubio
- Centro Nacional de Biotecnología (CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Oscar Llorca
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| |
Collapse
|
3
|
Tworig J, Grafton F, Fisher K, Hörer M, Reid CA, Mandegar MA. Transcriptomics-informed pharmacology identifies epigenetic and cell cycle regulators that enhance AAV production. Mol Ther Methods Clin Dev 2024; 32:101384. [PMID: 39687728 PMCID: PMC11647610 DOI: 10.1016/j.omtm.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is a widely used viral vector for gene therapy. However, these vectors have limited availability due to manufacturing challenges with productivity and quality. These challenges can be addressed by better understanding the mechanisms that influence cellular responses during rAAV production. In this study, we aimed to identify targets that may enhance rAAV production using transcriptomic analyses of five cell lines with variable capacities for rAAV production. Using an intersectional approach, we measured the transcriptional responses of these cells during rAAV production and compared transcriptional profiles between high and base producers to identify possible targets for enhancing production. During rAAV production, we found transcriptional differences in cell cycle and nucleosome components contributed to proliferative capacity and DNA replication. We also saw upregulation of several core functions, including transcription, stress response, and Golgi and endoplasmic reticulum organization. Conversely, we saw consistent downregulation of other factors, including inhibitors of DNA-binding proteins and mitochondrial components. With a drug-connectivity analysis, we identified five classes of drugs that were predicted to enhance rAAV production. We also validated the efficacy of histone deacetylase and microtubule inhibitors. Our data uncover novel and previously identified pathways that may enhance rAAV production and quality to expand availability of rAAV for gene therapies.
Collapse
Affiliation(s)
- Joshua Tworig
- Ascend Advanced Therapies CA, Inc, Alameda, CA 94501, USA
| | | | - Kaylin Fisher
- Ascend Advanced Therapies CA, Inc, Alameda, CA 94501, USA
| | - Markus Hörer
- Ascend Advanced Therapies GmbH, 82152 Planegg, Germany
| | | | | |
Collapse
|
4
|
Costacurta M, Sandow JJ, Maher B, Susanto O, Vervoort SJ, Devlin JR, Garama D, Condina MR, Steele JR, Kahrood HV, Gough D, Johnstone RW, Shortt J. Mapping the IMiD-dependent cereblon interactome using BioID-proximity labelling. FEBS J 2024; 291:4892-4912. [PMID: 38975872 DOI: 10.1111/febs.17196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 07/09/2024]
Abstract
Immunomodulatory imide drugs (IMiDs) are central components of therapy for multiple myeloma (MM). IMiDs bind cereblon (CRBN), an adaptor for the CUL4-DDB1-RBX1 E3 ligase to change its substrate specificity and induce degradation of 'neosubstrate' transcription factors that are essential to MM cells. Mechanistic studies to date have largely focussed on mediators of therapeutic activity and insight into clinical IMiD toxicities is less developed. We adopted BioID2-dependent proximity labelling (BioID2-CRBN) to characterise the CRBN interactome in the presence and absence of various IMiDs and the proteasome inhibitor, bortezomib. We aimed to leverage this technology to further map CRBN interactions beyond what has been achieved by conventional proteomic techniques. In support of this approach, analysis of cells expressing BioID2-CRBN following IMiD treatment displayed biotinylation of known CRBN interactors and neosubstrates. We observed that bortezomib alone significantly modifies the CRBN interactome. Proximity labelling also suggested that IMiDs augment the interaction between CRBN and proteins that are not degraded, thus designating 'neointeractors' distinct from previously disclosed 'neosubstrates'. Here we identify Non-Muscle Myosin Heavy Chain IIA (MYH9) as a putative CRBN neointeractor that may contribute to the haematological toxicity of IMiDs. These studies provide proof of concept for proximity labelling technologies in the mechanistic profiling of IMiDs and related E3-ligase-modulating drugs.
Collapse
Affiliation(s)
- Matteo Costacurta
- Monash Haematology, Monash Health, Clayton, Australia
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Jarrod J Sandow
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Belinda Maher
- Monash Haematology, Monash Health, Clayton, Australia
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Olivia Susanto
- Monash Haematology, Monash Health, Clayton, Australia
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Stephin J Vervoort
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Jennifer R Devlin
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Daniel Garama
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Mark R Condina
- Mass Dynamics, Melbourne, Australia
- Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| | - Joel R Steele
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Monash Bioinformatics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Hossein V Kahrood
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Daniel Gough
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Ricky W Johnstone
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Jake Shortt
- Monash Haematology, Monash Health, Clayton, Australia
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
5
|
Sorge M, Savoré G, Gallo A, Acquarone D, Sbroggiò M, Velasco S, Zamporlini F, Femminò S, Moiso E, Morciano G, Balmas E, Raimondi A, Nattenberg G, Stefania R, Tacchetti C, Rizzo AM, Corsetto P, Ghigo A, Turco E, Altruda F, Silengo L, Pinton P, Raffaelli N, Sniadecki NJ, Penna C, Pagliaro P, Hirsch E, Riganti C, Tarone G, Bertero A, Brancaccio M. An intrinsic mechanism of metabolic tuning promotes cardiac resilience to stress. EMBO Mol Med 2024; 16:2450-2484. [PMID: 39271959 PMCID: PMC11473679 DOI: 10.1038/s44321-024-00132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Defining the molecular mechanisms underlying cardiac resilience is crucial to find effective approaches to protect the heart. A physiologic level of ROS is produced in the heart by fatty acid oxidation, but stressful events can boost ROS and cause mitochondrial dysfunction and cardiac functional impairment. Melusin is a muscle specific chaperone required for myocardial compensatory remodeling during stress. Here we report that Melusin localizes in mitochondria where it binds the mitochondrial trifunctional protein, a key enzyme in fatty acid oxidation, and decreases it activity. Studying both mice and human induced pluripotent stem cell-derived cardiomyocytes, we found that Melusin reduces lipid oxidation in the myocardium and limits ROS generation in steady state and during pressure overload and doxorubicin treatment, preventing mitochondrial dysfunction. Accordingly, the treatment with the lipid oxidation inhibitor Trimetazidine concomitantly with stressful stimuli limits ROS accumulation and prevents long-term heart dysfunction. These findings disclose a physiologic mechanism of metabolic regulation in the heart and demonstrate that a timely restriction of lipid metabolism represents a potential therapeutic strategy to improve cardiac resilience to stress.
Collapse
Affiliation(s)
- Matteo Sorge
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy.
| | - Giulia Savoré
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Andrea Gallo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Davide Acquarone
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Mauro Sbroggiò
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Silvia Velasco
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Federica Zamporlini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043, Italy
| | - Enrico Moiso
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, 48033, Italy
| | - Elisa Balmas
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Andrea Raimondi
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Gabrielle Nattenberg
- Departments of Mechanical Engineering, Bioengineering, and Laboratory Medicine and Pathology, Institute for Stem Cell and Regenerative Medicine, and Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
| | - Rachele Stefania
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, 20133, Italy
| | - Paola Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, 20133, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Emilia Turco
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Lorenzo Silengo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, 48033, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Nathan J Sniadecki
- Departments of Mechanical Engineering, Bioengineering, and Laboratory Medicine and Pathology, Institute for Stem Cell and Regenerative Medicine, and Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Torino, 10126, Italy
| | - Guido Tarone
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy.
| |
Collapse
|
6
|
Poggio P, Rocca S, Fusella F, Ferretti R, Ala U, D'Anna F, Giugliano E, Panuzzo C, Fontana D, Palumbo V, Carrà G, Taverna D, Gambacorti-Passerini C, Saglio G, Fava C, Piazza R, Morotti A, Orso F, Brancaccio M. miR-15a targets the HSP90 co-chaperone Morgana in chronic myeloid leukemia. Sci Rep 2024; 14:15089. [PMID: 38956394 PMCID: PMC11220062 DOI: 10.1038/s41598-024-65404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Morgana is a ubiquitous HSP90 co-chaperone protein coded by the CHORDC1 gene. Morgana heterozygous mice develop with age a myeloid malignancy resembling human atypical myeloid leukemia (aCML), now renamed MDS/MPN with neutrophilia. Patients affected by this pathology exhibit low Morgana levels in the bone marrow (BM), suggesting that Morgana downregulation plays a causative role in the human malignancy. A decrease in Morgana expression levels is also evident in the BM of a subgroup of Philadelphia-positive (Ph+) chronic myeloid leukemia (CML) patients showing resistance or an incomplete response to imatinib. Despite the relevance of these data, the mechanism through which Morgana expression is downregulated in patients' bone marrow remains unclear. In this study, we investigated the possibility that Morgana expression is regulated by miRNAs and we demonstrated that Morgana is under the control of four miRNAs (miR-15a/b and miR-26a/b) and that miR-15a may account for Morgana downregulation in CML patients.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Down-Regulation
- Gene Expression Regulation, Leukemic
- HSP90 Heat-Shock Proteins/metabolism
- HSP90 Heat-Shock Proteins/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Chaperones/metabolism
- Molecular Chaperones/genetics
Collapse
Affiliation(s)
- Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Stefania Rocca
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federica Fusella
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Roberta Ferretti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Flora D'Anna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilia Giugliano
- Division of Internal Medicine and Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valeria Palumbo
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Carmen Fava
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy
| | - Francesca Orso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Novara, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
7
|
López-Perrote A, Serna M, Llorca O. Maturation and Assembly of mTOR Complexes by the HSP90-R2TP-TTT Chaperone System: Molecular Insights and Mechanisms. Subcell Biochem 2024; 104:459-483. [PMID: 38963496 DOI: 10.1007/978-3-031-58843-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth and metabolism, integrating environmental signals to regulate anabolic and catabolic processes, regulating lipid synthesis, growth factor-induced cell proliferation, cell survival, and migration. These activities are performed as part of two distinct complexes, mTORC1 and mTORC2, each with specific roles. mTORC1 and mTORC2 are elaborated dimeric structures formed by the interaction of mTOR with specific partners. mTOR functions only as part of these large complexes, but their assembly and activation require a dedicated and sophisticated chaperone system. mTOR folding and assembly are temporarily separated with the TELO2-TTI1-TTI2 (TTT) complex assisting the cotranslational folding of mTOR into a native conformation. Matured mTOR is then transferred to the R2TP complex for assembly of active mTORC1 and mTORC2 complexes. R2TP works in concert with the HSP90 chaperone to promote the incorporation of additional subunits to mTOR and dimerization. This review summarizes our current knowledge on how the HSP90-R2TP-TTT chaperone system facilitates the maturation and assembly of active mTORC1 and mTORC2 complexes, discussing interactions, structures, and mechanisms.
Collapse
Affiliation(s)
- Andrés López-Perrote
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, Madrid, Spain.
| | - Marina Serna
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, Madrid, Spain
| | - Oscar Llorca
- Spanish National Cancer Research Centre (CNIO), Structural Biology Programme, Melchor Fernández Almagro 3, Madrid, Spain.
| |
Collapse
|
8
|
Yin K, Wu R. Investigation of cellular response to the HSP90 inhibition in human cells through thermal proteome profiling. Mol Cell Proteomics 2023; 22:100560. [PMID: 37119972 DOI: 10.1016/j.mcpro.2023.100560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
Heat shock proteins are chaperones and they are responsible for protein folding in cells. HSP90 is one of the most important chaperones in human cells, and its inhibition is promising for cancer therapy. However, despite the development of multiple HSP90 inhibitors, none of them has been approved for disease treatment due to unexpected cellular toxicity and side-effects. Hence, a more comprehensive investigation of cellular response to HSP90 inhibitors can aid in a better understanding of the molecular mechanisms of the cytotoxicity and side effects of these inhibitors. The thermal stability shifts of proteins, which represent protein structure and interaction alterations, can provide valuable information complementary to the results obtained from commonly used abundance-based proteomics analysis. Here, we systematically investigated cell response to different HSP90 inhibitors through global quantification of protein thermal stability changes using thermal proteome profiling, together with measurement of protein abundance changes. Besides the targets and potential off-targets of the drugs, proteins with significant thermal stability changes under the HSP90 inhibition are found to be involved in cell stress responses and the translation process. Moreover, proteins with thermal stability shifts under the inhibition are upstream of those with altered expression. These findings indicate that the HSP90 inhibition perturbs cell transcription and translation processes. The current study provides a different perspective for achieving a better understanding of cellular response to the chaperone inhibition.
Collapse
Affiliation(s)
- Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
9
|
Zogopoulos VL, Malatras A, Kyriakidis K, Charalampous C, Makrygianni EA, Duguez S, Koutsi MA, Pouliou M, Vasileiou C, Duddy WJ, Agelopoulos M, Chrousos GP, Iconomidou VA, Michalopoulos I. HGCA2.0: An RNA-Seq Based Webtool for Gene Coexpression Analysis in Homo sapiens. Cells 2023; 12:cells12030388. [PMID: 36766730 PMCID: PMC9913097 DOI: 10.3390/cells12030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Genes with similar expression patterns in a set of diverse samples may be considered coexpressed. Human Gene Coexpression Analysis 2.0 (HGCA2.0) is a webtool which studies the global coexpression landscape of human genes. The website is based on the hierarchical clustering of 55,431 Homo sapiens genes based on a large-scale coexpression analysis of 3500 GTEx bulk RNA-Seq samples of healthy individuals, which were selected as the best representative samples of each tissue type. HGCA2.0 presents subclades of coexpressed genes to a gene of interest, and performs various built-in gene term enrichment analyses on the coexpressed genes, including gene ontologies, biological pathways, protein families, and diseases, while also being unique in revealing enriched transcription factors driving coexpression. HGCA2.0 has been successful in identifying not only genes with ubiquitous expression patterns, but also tissue-specific genes. Benchmarking showed that HGCA2.0 belongs to the top performing coexpression webtools, as shown by STRING analysis. HGCA2.0 creates working hypotheses for the discovery of gene partners or common biological processes that can be experimentally validated. It offers a simple and intuitive website design and user interface, as well as an API endpoint.
Collapse
Affiliation(s)
- Vasileios L. Zogopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Apostolos Malatras
- Biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, 2029 Nicosia, Cyprus
| | - Konstantinos Kyriakidis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysanthi Charalampous
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Evanthia A. Makrygianni
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Stéphanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry-Londonderry BT47 6SB, UK
| | - Marianna A. Koutsi
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Marialena Pouliou
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Christos Vasileiou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Engineering Design and Computing Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - William J. Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry-Londonderry BT47 6SB, UK
| | - Marios Agelopoulos
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
10
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
11
|
Jamabo M, Bentley SJ, Macucule-Tinga P, Tembo P, Edkins AL, Boshoff A. In silico analysis of the HSP90 chaperone system from the African trypanosome, Trypanosoma brucei. Front Mol Biosci 2022; 9:947078. [PMID: 36213128 PMCID: PMC9538636 DOI: 10.3389/fmolb.2022.947078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomiasis is a neglected tropical disease caused by Trypanosoma brucei (T. brucei) and spread by the tsetse fly in sub-Saharan Africa. The trypanosome relies on heat shock proteins for survival in the insect vector and mammalian host. Heat shock protein 90 (HSP90) plays a crucial role in the stress response at the cellular level. Inhibition of its interactions with chaperones and co-chaperones is being explored as a potential therapeutic target for numerous diseases. This study provides an in silico overview of HSP90 and its co-chaperones in both T. brucei brucei and T. brucei gambiense in relation to human and other trypanosomal species, including non-parasitic Bodo saltans and the insect infecting Crithidia fasciculata. A structural analysis of T. brucei HSP90 revealed differences in the orientation of the linker and C-terminal domain in comparison to human HSP90. Phylogenetic analysis displayed the T. brucei HSP90 proteins clustering into three distinct groups based on subcellular localizations, namely, cytosol, mitochondria, and endoplasmic reticulum. Syntenic analysis of cytosolic HSP90 genes revealed that T. b. brucei encoded for 10 tandem copies, while T. b. gambiense encoded for three tandem copies; Leishmania major (L. major) had the highest gene copy number with 17 tandem copies. The updated information on HSP90 from recently published proteomics on T. brucei was examined for different life cycle stages and subcellular localizations. The results show a difference between T. b. brucei and T. b. gambiense with T. b. brucei encoding a total of twelve putative HSP90 genes, while T. b. gambiense encodes five HSP90 genes. Eighteen putative co-chaperones were identified with one notable absence being cell division cycle 37 (Cdc37). These results provide an updated framework on approaching HSP90 and its interactions as drug targets in the African trypanosome.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | | | | | - Praise Tembo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Adrienne Lesley Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- *Correspondence: Aileen Boshoff,
| |
Collapse
|
12
|
Poggio P, Sorge M, Seclì L, Brancaccio M. Extracellular HSP90 Machineries Build Tumor Microenvironment and Boost Cancer Progression. Front Cell Dev Biol 2021; 9:735529. [PMID: 34722515 PMCID: PMC8551675 DOI: 10.3389/fcell.2021.735529] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
HSP90 is released by cancer cells in the tumor microenvironment where it associates with different co-chaperones generating complexes with specific functions, ranging from folding and activation of extracellular clients to the stimulation of cell surface receptors. Emerging data indicate that these functions are essential for tumor growth and progression. The understanding of the exact composition of extracellular HSP90 complexes and the molecular mechanisms at the basis of their functions in the tumor microenvironment may represent the first step to design innovative diagnostic tools and new effective therapies. Here we review the impact of extracellular HSP90 complexes on cancer cell signaling and behavior.
Collapse
Affiliation(s)
- Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
13
|
Samouha A, Fogel EJ, Goel S, Maitra R. Oncolytic Virus Affects the RAS Pathway in Cancer: RNA Sequence Analysis. JOURNAL OF ONCOLOGY RESEARCH AND THERAPY 2021; 6:10118. [PMID: 34841205 PMCID: PMC8623657 DOI: 10.29011/2574-710x.10118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Approximately 45% of individuals diagnosed with Colorectal Cancer (CRC) also possess KRAS mutations. One developing therapeutic method for this disease is reovirus treatment. It is theorized that reovirus treatment on patients with KRAS mutated CRC cells would be successful due to the virus' innate oncolytic properties [1]. Reovirus, a stable form of nonenveloped double-stranded RNA, causes minor infections in humans under normal circumstances. However, when the virus encounters KRAS mutated cells, it has the potential to lyse them [2]. While this method of treatment to CRC has shown signs of success, we are still some ways from universal administration of reovirus as a treatment. This review seeks to utilize various studies, as well as our original research data, to investigate reovirus as an efficient method of treatment, with a focus on select growth, apoptotic and RAS-related genes, and their effectiveness of mitigating KRAS mutated CRC post reovirus treatment. Furthermore, the review highlights transcriptome analysis as an effective tool to examine these genes and their activity. It has been shown that reovirus treatment induces apoptosis and mitigates growth related gene activity. CONCLUSIONS This review confirms the novelty of our findings on the efficacy of reovirus in CRC treatment. The study that this review article discusses concluded that 10 apoptotic and lymphocyte-related genes were found to be upregulated and 6 angiogenesis and Ras-related genes were found to be downregulated post reovirus treatment. These findings enforce the notion that reovirus could be used as a novel treatment for KRAS mutated CRC.
Collapse
Affiliation(s)
| | - Elisha J Fogel
- Department of Biology, Yeshiva University, New York, USA
| | - Sanjay Goel
- Montefiore Medical Center, Morris Park Ave Bronx, New York, USA
| | - Radhashree Maitra
- Department of Biology, Yeshiva University, New York, USA
- Montefiore Medical Center, Morris Park Ave Bronx, New York, USA
| |
Collapse
|
14
|
Marzullo L, Turco MC, Uversky VN. What's in the BAGs? Intrinsic disorder angle of the multifunctionality of the members of a family of chaperone regulators. J Cell Biochem 2021; 123:22-42. [PMID: 34339540 DOI: 10.1002/jcb.30123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
In humans, the family of Bcl-2 associated athanogene (BAG) proteins includes six members characterized by exceptional multifunctionality and engagement in the pathogenesis of various diseases. All of them are capable of interacting with a multitude of often unrelated binding partners. Such binding promiscuity and related functional and pathological multifacetedness cannot be explained or understood within the frames of the classical "one protein-one structure-one function" model, which also fails to explain the presence of multiple isoforms generated for BAG proteins by alternative splicing or alternative translation initiation and their extensive posttranslational modifications. However, all these mysteries can be solved by taking into account the intrinsic disorder phenomenon. In fact, high binding promiscuity and potential to participate in a broad spectrum of interactions with multiple binding partners, as well as a capability to be multifunctional and multipathogenic, are some of the characteristic features of intrinsically disordered proteins and intrinsically disordered protein regions. Such functional proteins or protein regions lacking unique tertiary structures constitute a cornerstone of the protein structure-function continuum concept. The aim of this paper is to provide an overview of the functional roles of human BAG proteins from the perspective of protein intrinsic disorder which will provide a means for understanding their binding promiscuity, multifunctionality, and relation to the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Liberato Marzullo
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Maria C Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
15
|
Seclì L, Avalle L, Poggio P, Fragale G, Cannata C, Conti L, Iannucci A, Carrà G, Rubinetto C, Miniscalco B, Hirsch E, Poli V, Morotti A, De Andrea M, Turco E, Cavallo F, Fusella F, Brancaccio M. Targeting the extracellular HSP90 co-chaperone Morgana inhibits cancer cell migration and promotes anti-cancer immunity. Cancer Res 2021; 81:4794-4807. [PMID: 34193441 DOI: 10.1158/0008-5472.can-20-3150] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Heat shock protein 90 (HSP90) is secreted by cancer cells into the extracellular milieu, where it exerts pro-tumoral activities by activating extracellular substrate proteins and triggering autocrine signals through cancer cell surface receptors. Emerging evidence indicates that HSP90 co-chaperones are also secreted and may direct HSP90 extracellular activities. In this study, we found that the HSP90 co-chaperone Morgana is released by cancer cells and, in association with HSP90, induces cancer cell migration through TLR2, TLR4, and LRP1. In syngeneic cancer mouse models, a monoclonal antibody targeting Morgana extracellular activity reduced primary tumor growth via macrophage-dependent recruitment of CD8+ T lymphocytes, blocked cancer cell migration, and inhibited metastatic spreading. Overall, this data defines Morgana as a new player in the HSP90 extracellular interactome and suggests that Morgana may regulate HSP90 activity to promote cancer cell migration and suppress anti-tumor immunity.
Collapse
Affiliation(s)
- Laura Seclì
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Lidia Avalle
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Pietro Poggio
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Giuseppe Fragale
- Molecular Biotechnology and Health Sciences, University of Turin
| | | | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences - Molecular Biotechnology Center, University of Turin
| | - Andrea Iannucci
- CAAD-Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin
| | | | | | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Turin
| | | | - Marco De Andrea
- Public Health and Pediatric Sciences, University of Turin, Medical School
| | - Emilia Turco
- Molecular Biotechnology and Health Sciences, University of Torino, Molecular Biotechnology Center
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin
| | - Federica Fusella
- Molecular Biotechnology and Health Sciences, University of Turin
| | - Mara Brancaccio
- Molecular Biotechnology and Health Sciences, University of Turin
| |
Collapse
|
16
|
A functional interaction between GRP78 and Zika virus E protein. Sci Rep 2021; 11:393. [PMID: 33432092 PMCID: PMC7801745 DOI: 10.1038/s41598-020-79803-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted virus that has caused significant public health concerns around the world, partly because of an association with microcephaly in babies born to mothers who were infected with ZIKV during pregnancy. As a recently emerging virus, little is known as to how the virus interacts with the host cell machinery. A yeast-2-hybrid screen for proteins capable of interacting with the ZIKV E protein domain III, the domain responsible for receptor binding, identified 21 proteins, one of which was the predominantly ER resident chaperone protein GRP78. The interaction of GRP78 and ZIKV E was confirmed by co-immunoprecipitation and reciprocal co-immunoprecipitation, and indirect immunofluorescence staining showed intracellular and extracellular co-localization between GRP78 and ZIKV E. Antibodies directed against the N-terminus of GRP78 were able to inhibit ZIKV entry to host cells, resulting in significant reductions in the levels of ZIKV infection and viral production. Consistently, these reductions were also observed after down-regulation of GRP78 by siRNA. These results indicate that GRP78 can play a role mediating ZIKV binding, internalization and replication in cells. GRP78 is a main regulator of the unfolded protein response (UPR), and the study showed that expression of GRP78 was up-regulated, and the UPR was activated. Increases in CHOP expression, and activation of caspases 7 and 9 were also shown in response to ZIKV infection. Overall these results indicate that the interaction between GRP78 and ZIKV E protein plays an important role in ZIKV infection and replication, and may be a potential therapeutic target.
Collapse
|
17
|
Gorza L, Sorge M, Seclì L, Brancaccio M. Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 2021; 10:cells10010061. [PMID: 33401549 PMCID: PMC7823551 DOI: 10.3390/cells10010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of muscle mass and force characterizes muscle atrophy in several different conditions, which share the expression of atrogenes and the activation of their transcriptional regulators. However, attempts to antagonize muscle atrophy development in different experimental contexts by targeting contributors to the atrogene pathway showed partial effects in most cases. Other master regulators might independently contribute to muscle atrophy, as suggested by our recent evidence about the co-requirement of the muscle-specific chaperone protein melusin to inhibit unloading muscle atrophy development. Furthermore, melusin and other muscle mass regulators, such as nNOS, belong to costameres, the macromolecular complexes that connect sarcolemma to myofibrils and to the extracellular matrix, in correspondence with specific sarcomeric sites. Costameres sense a mechanical load and transduce it both as lateral force and biochemical signals. Recent evidence further broadens this classic view, by revealing the crucial participation of costameres in a sarcolemmal “signaling hub” integrating mechanical and humoral stimuli, where mechanical signals are coupled with insulin and/or insulin-like growth factor stimulation to regulate muscle mass. Therefore, this review aims to enucleate available evidence concerning the early involvement of costamere components and additional putative master regulators in the development of major types of muscle atrophy.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- Correspondence:
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| |
Collapse
|
18
|
Antonova A, Hummel B, Khavaran A, Redhaber DM, Aprile-Garcia F, Rawat P, Gundel K, Schneck M, Hansen EC, Mitschke J, Mittler G, Miething C, Sawarkar R. Heat-Shock Protein 90 Controls the Expression of Cell-Cycle Genes by Stabilizing Metazoan-Specific Host-Cell Factor HCFC1. Cell Rep 2020; 29:1645-1659.e9. [PMID: 31693902 DOI: 10.1016/j.celrep.2019.09.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/06/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Molecular chaperones such as heat-shock proteins (HSPs) help in protein folding. Their function in the cytosol has been well studied. Notably, chaperones are also present in the nucleus, a compartment where proteins enter after completing de novo folding in the cytosol, and this raises an important question about chaperone function in the nucleus. We performed a systematic analysis of the nuclear pool of heat-shock protein 90. Three orthogonal and independent analyses led us to the core functional interactome of HSP90. Computational and biochemical analyses identify host cell factor C1 (HCFC1) as a transcriptional regulator that depends on HSP90 for its stability. HSP90 was required to maintain the expression of HCFC1-targeted cell-cycle genes. The regulatory nexus between HSP90 and the HCFC1 module identified in this study sheds light on the relevance of chaperones in the transcription of cell-cycle genes. Our study also suggests a therapeutic avenue of combining chaperone and transcription inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Aneliya Antonova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ashkan Khavaran
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Desiree M Redhaber
- German Consortium for Translational Cancer Research (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Prashant Rawat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Kathrin Gundel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Megan Schneck
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Erik C Hansen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jan Mitschke
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Cornelius Miething
- German Consortium for Translational Cancer Research (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Haag A, Walser M, Henggeler A, Hajnal A. The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. eLife 2020; 9:e50986. [PMID: 32053105 PMCID: PMC7062474 DOI: 10.7554/elife.50986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
The intracellular trafficking of growth factor receptors determines the activity of their downstream signaling pathways. Here, we show that the putative HSP-90 co-chaperone CHP-1 acts as a regulator of EGFR trafficking in C. elegans. Loss of chp-1 causes the retention of the EGFR in the ER and decreases MAPK signaling. CHP-1 is specifically required for EGFR trafficking, as the localization of other transmembrane receptors is unaltered in chp-1(lf) mutants, and the inhibition of hsp-90 or other co-chaperones does not affect EGFR localization. The role of the CHP-1 homolog CHORDC1 during EGFR trafficking is conserved in human cells. Analogous to C. elegans, the response of CHORDC1-deficient A431 cells to EGF stimulation is attenuated, the EGFR accumulates in the ER and ERK2 activity decreases. Although CHP-1 has been proposed to act as a co-chaperone for HSP90, our data indicate that CHP-1 plays an HSP90-independent function in controlling EGFR trafficking through the ER.
Collapse
Affiliation(s)
- Andrea Haag
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
- Molecular Life Science Zürich PhD ProgramZürichSwitzerland
| | - Michael Walser
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| | - Adrian Henggeler
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| |
Collapse
|
20
|
Palumbo V, Tariq A, Borgal L, Metz J, Brancaccio M, Gatti M, Wakefield JG, Bonaccorsi S. Drosophila Morgana is an Hsp90-interacting protein with a direct role in microtubule polymerisation. J Cell Sci 2020; 133:jcs236786. [PMID: 31907206 PMCID: PMC6983718 DOI: 10.1242/jcs.236786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
Morgana (Mora, also known as CHORD in flies) and its mammalian homologue, called CHORDC1 or CHP1, is a highly conserved cysteine and histidine-rich domain (CHORD)-containing protein that has been proposed to function as an Hsp90 co-chaperone. Morgana deregulation promotes carcinogenesis in both mice and humans while, in Drosophila, loss of mora causes lethality and a complex mitotic phenotype that is rescued by a human morgana transgene. Here, we show that Drosophila Mora localises to mitotic spindles and co-purifies with the Hsp90-R2TP-TTT supercomplex and with additional well-known Hsp90 co-chaperones. Acute inhibition of Mora function in the early embryo results in a dramatic reduction in centrosomal microtubule stability, leading to small spindles nucleated from mitotic chromatin. Purified Mora binds to microtubules directly and promotes microtubule polymerisation in vitro, suggesting that Mora directly regulates spindle dynamics independently of its Hsp90 co-chaperone role.
Collapse
Affiliation(s)
- Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, 00185 Rome, Italy
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Ammarah Tariq
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Lori Borgal
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jeremy Metz
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Mara Brancaccio
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, 10126 Torino, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, 00185 Rome, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, 00185 Rome, Italy
| | - James G Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, 00185 Rome, Italy
| |
Collapse
|
21
|
Yan P, Wang T, Guzman ML, Peter RI, Chiosis G. Chaperome Networks - Redundancy and Implications for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:87-99. [PMID: 32297213 PMCID: PMC7279512 DOI: 10.1007/978-3-030-40204-4_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The chaperome is a large family of proteins composed of chaperones, co-chaperones and a multitude of other factors. Elegant studies in yeast and other organisms have paved the road to how we currently understand the complex organization of this large family into protein networks. The goal of this chapter is to provide an overview of chaperome networks in cancer cells, with a focus on two cellular states defined by chaperome network organization. One state characterized by chaperome networks working in isolation and with little overlap, contains global chaperome networks resembling those of normal, non-transformed, cells. We propose that in this state, redundancy in chaperome networks results in a tumor type unamenable for single-agent chaperome therapy. The second state comprises chaperome networks interconnected in response to cellular stress, such as MYC hyperactivation. This is a state where no redundant pathways can be deployed, and is a state of vulnerability, amenable for chaperome therapy. We conclude by proposing a change in how we discover and implement chaperome inhibitor strategies, and suggest an approach to chaperome therapy where the properties of chaperome networks, rather than genetics or client proteins, are used in chaperome inhibitor implementation.
Collapse
Affiliation(s)
- Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica L Guzman
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Radu I Peter
- Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
22
|
Malbec L, Zhang T, Chen YS, Zhang Y, Sun BF, Shi BY, Zhao YL, Yang Y, Yang YG. Dynamic methylome of internal mRNA N 7-methylguanosine and its regulatory role in translation. Cell Res 2019; 29:927-941. [PMID: 31520064 DOI: 10.1038/s41422-019-0230-z] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022] Open
Abstract
Over 150 types of RNA modifications are identified in RNA molecules. Transcriptome profiling is one of the key steps in decoding the epitranscriptomic panorama of these chemical modifications and their potential functions. N7-methylguanosine (m7G) is one of the most abundant modifications present in tRNA, rRNA and mRNA 5'cap, and has critical roles in regulating RNA processing, metabolism and function. Besides its presence at the cap position in mRNAs, m7G is also identified in internal mRNA regions. However, its transcriptome-wide distribution and dynamic regulation within internal mRNA regions remain unknown. Here, we have established m7G individual-nucleotide-resolution cross-linking and immunoprecipitation with sequencing (m7G miCLIP-seq) to specifically detect internal mRNA m7G modification. Using this approach, we revealed that m7G is enriched at the 5'UTR region and AG-rich contexts, a feature that is well-conserved across different human/mouse cell lines and mouse tissues. Strikingly, the internal m7G modification is dynamically regulated under both H2O2 and heat shock treatments, with remarkable accumulations in the CDS and 3'UTR regions, and functions in promoting mRNA translation efficiency. Consistently, a PCNA 3'UTR minigene reporter harboring the native m7G modification site displays both enriched m7G modification and increased mRNA translation upon H2O2 treatment compared to the m7G site-mutated minigene reporter (G to A). Taken together, our findings unravel the dynamic profiles of internal mRNA m7G methylome and highlight m7G as a novel epitranscriptomic marker with regulatory roles in translation.
Collapse
Affiliation(s)
- Lionel Malbec
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Sheng Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bao-Fa Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bo-Yang Shi
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Liang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
23
|
Qi J, Jia Y, Wang W, Lu H, Wang Y, Li Z. The role of Bag2 in neurotoxicity induced by the anesthetic sevoflurane. J Cell Biochem 2019; 120:7551-7559. [PMID: 30548665 DOI: 10.1002/jcb.28029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Sevoflurane is the most commonly used general anesthetic in pediatric patients. But preclinical studies indicate that sevoflurane could have neurotoxicity in newborn and old animals, and this raises concern regarding its safety. In this study, we explored the potential mechanisms of sevoflurane-induced neurotoxicity in human SH-SY5Y neuronal cells. We showed that prolonged exposure to 2% sevoflurane caused a significant increase in the Bag family protein Bag2 in a time- and dose-dependent manner. We investigated the possible role of Bag2 upon exposure to sevoflurane by silencing Bag2 in neuronal cells. Knockdown of Bag2 caused increased overall reactive oxygen species (ROS) and generation of lipid peroxidation products 4-hydroxynonenal (4-HNE). Upon sevoflurane exposure, Bag2-silent cells have reduced glutathione (GSH) and glutathione peroxidase activity. Under the sevoflurane treatment, Bag2-deficient cells have reduced mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) production, while knockdown cells have less viability and higher lactic dehydrogenase (LDH) release as well as a higher percentage of apoptotic cells. The knockdown cells also had higher levels of mitochondrial cytochrome C release, a higher ratio of Bax/Bcl-2 and increased caspase cleavage by sevoflurane. Overall, our data support an important role of Bag2 in sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Jinlian Qi
- Department of anesthesiology, Henan Children's Hospital.,Department of anesthesiology, Zhengzhou Children's Hospital.,Department of Anesthesiology, Childern's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Yingping Jia
- Department of anesthesiology, Henan Children's Hospital.,Department of anesthesiology, Zhengzhou Children's Hospital.,Department of Anesthesiology, Childern's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Wenhua Wang
- Department of anesthesiology, Henan Children's Hospital.,Department of anesthesiology, Zhengzhou Children's Hospital.,Department of Anesthesiology, Childern's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Haibing Lu
- Department of anesthesiology, Henan Children's Hospital.,Department of anesthesiology, Zhengzhou Children's Hospital.,Department of Anesthesiology, Childern's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Yuan Wang
- Department of anesthesiology, Henan Children's Hospital.,Department of anesthesiology, Zhengzhou Children's Hospital.,Department of Anesthesiology, Childern's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Zhengchen Li
- Department of anesthesiology, Henan Children's Hospital.,Department of anesthesiology, Zhengzhou Children's Hospital.,Department of Anesthesiology, Childern's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Manissorn J, Singhto N, Thongboonkerd V. Characterizations of HSP90-Interacting Complex in Renal Cells Using Tandem Affinity Purification and Its Potential Role in Kidney Stone Formation. Proteomics 2018; 18:e1800004. [DOI: 10.1002/pmic.201800004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 10/22/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Juthatip Manissorn
- Medical Proteomics Unit; Office for Research and Development; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| | - Nilubon Singhto
- Medical Proteomics Unit; Office for Research and Development; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit; Office for Research and Development; Faculty of Medicine Siriraj Hospital; Mahidol University; Bangkok Thailand
| |
Collapse
|
25
|
Huizar RL, Lee C, Boulgakov AA, Horani A, Tu F, Marcotte EM, Brody SL, Wallingford JB. A liquid-like organelle at the root of motile ciliopathy. eLife 2018; 7:38497. [PMID: 30561330 PMCID: PMC6349401 DOI: 10.7554/elife.38497] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
Motile ciliopathies are characterized by specific defects in cilia beating that result in chronic airway disease, subfertility, ectopic pregnancy, and hydrocephalus. While many patients harbor mutations in the dynein motors that drive cilia beating, the disease also results from mutations in so-called dynein axonemal assembly factors (DNAAFs) that act in the cytoplasm. The mechanisms of DNAAF action remain poorly defined. Here, we show that DNAAFs concentrate together with axonemal dyneins and chaperones into organelles that form specifically in multiciliated cells, which we term DynAPs, for dynein axonemal particles. These organelles display hallmarks of biomolecular condensates, and remarkably, DynAPs are enriched for the stress granule protein G3bp1, but not for other stress granule proteins or P-body proteins. Finally, we show that both the formation and the liquid-like behaviors of DynAPs are disrupted in a model of motile ciliopathy. These findings provide a unifying cell biological framework for a poorly understood class of human disease genes and add motile ciliopathy to the growing roster of human diseases associated with disrupted biological phase separation.
Collapse
Affiliation(s)
- Ryan L Huizar
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | | | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St Louis, United States
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, United States
| |
Collapse
|
26
|
Abstract
In this Opinion article, we aim to address how cells adapt to stress and the repercussions chronic stress has on cellular function. We consider acute and chronic stress-induced changes at the cellular level, with a focus on a regulator of cellular stress, the chaperome, which is a protein assembly that encompasses molecular chaperones, co-chaperones and other co-factors. We discuss how the chaperome takes on distinct functions under conditions of stress that are executed in ways that differ from the one-on-one cyclic, dynamic functions exhibited by distinct molecular chaperones. We argue that through the formation of multimeric stable chaperome complexes, a state of chaperome hyperconnectivity, or networking, is gained. The role of these chaperome networks is to act as multimolecular scaffolds, a particularly important function in cancer, where they increase the efficacy and functional diversity of several cellular processes. We predict that these concepts will change how we develop and implement drugs targeting the chaperome to treat cancer.
Collapse
Affiliation(s)
- Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thaís L S Araujo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
27
|
Peterson CS, Huang S, Lee SA, Ferguson AV, Fry WM. The transcriptome of the rat subfornical organ is altered in response to early postnatal overnutrition. IBRO Rep 2018; 5:17-23. [PMID: 30135952 PMCID: PMC6095096 DOI: 10.1016/j.ibror.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/12/2018] [Indexed: 01/18/2023] Open
Abstract
Early postnatal overnutrition in humans is associated with long-term negative outcomes including obesity, increased risk of type-II diabetes, and cardiovascular disease. Hypothalamic neurons from rodents exposed to early postnatal overnutrition show altered expression of satiety signals and receptors, and exhibit altered responses to many satiety signals, suggesting a hypothalamic link between early overnutrition and development of these sequelae. Importantly, several hypothalamic nuclei receive information regarding circulating hormones (such as insulin, leptin and ghrelin) from the subfornical organ (SFO), a forebrain sensory circumventricular organ which lacks a blood brain barrier. Previous transcriptomic studies indicate that challenges to energy balance and hydration status stimulate changes in gene expression within the SFO, including genes encoding ion channels and receptors. In order to determine if early postnatal overnutrition also causes changes in SFO gene expression which may be associated with homeostatic dysregulation, we performed whole transcriptome sequencing on SFO tissue from rats raised in small (4 pups), or control (large, 12 pups) litters. Illumina RNA sequencing was performed on SFO tissue from rats raised from small and large litters, and read sequences were aligned to the Rat Rnor_6.0 genome. Control data were further compared to previously published microarray data set for validation. We found statistically significant (p < 0.05) changes in expression of 12 transcripts, three of which have likely roles in neuronal excitability, neurite outgrowth and differentiation, and food intake (Manf, Slc24a4, Cracr2b). Additionally, gene ontology analysis identified a trend among significantly altered transcripts in roles for oxidative stress response. We conclude that the SFO transcriptome is subtly altered by early postnatal overnutrition, and recommend further investigation of the effect of early postnatal overnutrition on SFO physiology and morphology.
Collapse
Affiliation(s)
- Colleen S Peterson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Shuo Huang
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Samantha A Lee
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - A V Ferguson
- Centre for Neuroscience, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - W Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
28
|
Willot Q, Mardulyn P, Defrance M, Gueydan C, Aron S. Molecular chaperoning helps safeguarding mitochondrial integrity and motor functions in the Sahara silver ant Cataglyphis bombycina. Sci Rep 2018; 8:9220. [PMID: 29907755 PMCID: PMC6003908 DOI: 10.1038/s41598-018-27628-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
The Sahara silver ant Cataglyphis bombycina is one of the world's most thermotolerant animals. Workers forage for heat-stricken arthropods during the hottest part of the day, when temperatures exceed 50 °C. However, the physiological adaptations needed to cope with such harsh conditions remain poorly studied in this desert species. Using transcriptomics, we screened for the most heat-responsive transcripts of C. bombycina with aim to better characterize the molecular mechanisms involved with macromolecular stability and cell survival to heat-stress. We identified 67 strongly and consistently expressed transcripts, and we show evidences of both evolutionary selection and specific heat-induction of mitochondrial-related molecular chaperones that have not been documented in Formicidae so far. This indicates clear focus of the silver ant's heat-shock response in preserving mitochondrial integrity and energy production. The joined induction of small heat-shock proteins likely depicts the higher requirement of this insect for proper motor function in response to extreme burst of heat-stresses. We discuss how those physiological adaptations may effectively help workers resist and survive the scorching heat and burning ground of the midday Sahara Desert.
Collapse
Affiliation(s)
- Quentin Willot
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, CP 160/12, Av. F.D. Roosevelt, 50, Brussels, 1050, Belgium.
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, CP 160/12, Av. F.D. Roosevelt, 50, Brussels, 1050, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Cyril Gueydan
- Molecular Biology of the Gene, Université Libre de Bruxelles, Rue des Profs. Jeener et Brachet, 12, Gosselies, 6041, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, CP 160/12, Av. F.D. Roosevelt, 50, Brussels, 1050, Belgium
| |
Collapse
|
29
|
Weidenauer L, Wang T, Joshi S, Chiosis G, Quadroni MR. Proteomic interrogation of HSP90 and insights for medical research. Expert Rev Proteomics 2017; 14:1105-1117. [PMID: 28990809 PMCID: PMC6027630 DOI: 10.1080/14789450.2017.1389649] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Heat shock protein 90 (HSP90) regulates protein homeostasis in eukaryotes. As a 'professional interactor', HSP90 binds to and chaperones many proteins and has both housekeeping and disease-related functions but its regulation remains in part elusive. HSP90 complexes are a target for therapy, notably against cancer, and several inhibitors are currently in clinical trials. Proteomic studies have revealed the vast interaction network of HSP90 and, in doing so, the extent of cellular processes the chaperone takes part in, especially in yeast and human cells. Furthermore, small-molecule inhibitors were used to probe the global impact of its inhibition on the proteome. Areas covered: We review here recent HSP90-related interactomics and total proteome studies and their relevance for research on cancer, neurodegenerative and pathogen diseases. Expert commentary: Proteomics experiments are our best chance to identify the context-dependent global proteome of HSP90 and thus uncover and understand its disease-specific biology. However, understanding the complexity of HSP90 will require multiple complementary, quantitative approaches and novel bioinformatics to translate interactions into ordered functional networks and pathways. Developing therapies will necessitate more knowledge on HSP90 complexes and networks with disease relevance and on total proteome changes induced by their perturbation. Most work has been done in cancer, thus a lot remains to be done in the context of other diseases.
Collapse
Affiliation(s)
- Lorenz Weidenauer
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
30
|
The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat Commun 2017; 8:1636. [PMID: 29158506 PMCID: PMC5696377 DOI: 10.1038/s41467-017-01829-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022] Open
Abstract
NF-κB is a transcription factor involved in the regulation of multiple physiological and pathological cellular processes, including inflammation, cell survival, proliferation, and cancer cell metastasis. NF-κB is frequently hyperactivated in several cancers, including triple-negative breast cancer. Here we show that NF-κB activation in breast cancer cells depends on the presence of the CHORDC1 gene product Morgana, a previously unknown component of the IKK complex and essential for IκBα substrate recognition. Morgana silencing blocks metastasis formation in breast cancer mouse models and this phenotype is reverted by IκBα downregulation. High Morgana expression levels in cancer cells decrease recruitment of natural killer cells in the first phases of tumor growth and induce the expression of cytokines able to attract neutrophils in the primary tumor, as well as in the pre-metastatic lungs, fueling cancer metastasis. In accordance, high Morgana levels positively correlate with NF-κB target gene expression and poor prognosis in human patients. NF-κB regulates inflammation, cell survival, proliferation, and metastasis and is often hyperactivated in triple-negative breast cancer. Here the authors show that Morgana, a protein highly expressed in triple-negative breast cancers, drives NF-kB activation to promote metastasis and neutrophil recruitment.
Collapse
|
31
|
Chavez JD, Schweppe DK, Eng JK, Bruce JE. In Vivo Conformational Dynamics of Hsp90 and Its Interactors. Cell Chem Biol 2017; 23:716-26. [PMID: 27341434 DOI: 10.1016/j.chembiol.2016.05.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/29/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022]
Abstract
Hsp90 belongs to a family of some of the most highly expressed heat shock proteins that function as molecular chaperones to protect the proteome not only from the heat shock but also from other misfolding events. As many client proteins of Hsp90 are involved in oncogenesis, this chaperone has been the focus of intense research efforts. Yet, we lack structural information for how Hsp90 interacts with co-chaperones and client proteins. Here, we developed a mass-spectrometry-based approach that allowed quantitative measurements of in vitro and in vivo effects of small-molecule inhibitors on Hsp90 conformation, and interaction with co-chaperones and client proteins. From this analysis, we were able to derive structural models for how Hsp90 engages its interaction partners in vivo, and how different drugs affect these structures. In addition, the methodology described here offers a new approach to probe the effects of virtually any inhibitor treatment on the proteome level.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jimmy K Eng
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
32
|
Abstract
The NBN component of the MRE11-RAD50-NBN (MRN) complex and the ATM kinase have been identified as clients of the HSP90α chaperone. Inhibition of HSP90 leads to reduced stability of NBN and ATM and an impaired DNA damage response. These results identify new regulatory details of the DNA damage response and further explain the chemosensitizing effects of HSP90 inhibitors.
Collapse
Affiliation(s)
- Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Spain
| |
Collapse
|
33
|
Identifying novel members of the Wntless interactome through genetic and candidate gene approaches. Brain Res Bull 2017; 138:96-105. [PMID: 28734904 DOI: 10.1016/j.brainresbull.2017.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Wnt signaling is an important pathway that regulates several aspects of embryogenesis, stem cell maintenance, and neural connectivity. We have recently determined that opioids decrease Wnt secretion, presumably by inhibiting the recycling of the Wnt trafficking protein Wntless (Wls). This effect appears to be mediated by protein-protein interaction between Wls and the mu-opioid receptor (MOR), the primary cellular target of opioid drugs. The goal of this study was to identify novel protein interactors of Wls that are expressed in the brain and may also play a role in reward or addiction. Using genetic and candidate gene approaches, we show that among a variety of protein, Wls interacts with the dopamine transporter (target of cocaine), cannabinoid receptors (target of THC), Adenosine A2A receptor (target of caffeine), and SGIP1 (endocytic regulator of cannabinoid receptors). Our study shows that aside from opioid receptors, Wntless interacts with additional proteins involved in reward and/or addiction. Future studies will determine whether Wntless and WNT signaling play a more universal role in these processes.
Collapse
|
34
|
Bentley BP, Haas BJ, Tedeschi JN, Berry O. Loggerhead sea turtle embryos (Caretta caretta) regulate expression of stress response and developmental genes when exposed to a biologically realistic heat stress. Mol Ecol 2017; 26:2978-2992. [PMID: 28267875 DOI: 10.1111/mec.14087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/30/2022]
Abstract
Oviparous reptile embryos are expected to breach their critical thermal maxima if temperatures reach those predicted under current climate change models due to the lack of the maternal buffering processes and parental care. Heat-shock proteins (HSPs) are integral in the molecular response to thermal stress, and their expression is heritable, but the roles of other candidate families such as the heat-shock factors (HSFs) have not been determined in reptiles. Here, we subject embryonic sea turtles (Caretta caretta) to a biologically realistic thermal stress and employ de novo transcriptomic profiling of brain tissue to investigate the underlying molecular response. From a reference transcriptome of 302 293 transcripts, 179 were identified as differentially expressed between treatments. As anticipated, genes enriched in the heat-shock treatment were primarily associated with the Hsp families, or were genes whose products play similar protein editing and chaperone functions (e.g. bag3, MYOC and serpinh1). Unexpectedly, genes encoding the HSFs were not significantly upregulated under thermal stress, indicating their presence in unstressed cells in an inactive state. Genes that were downregulated under thermal stress were less well functionally defined but were associated with stress response, development and cellular organization, suggesting that developmental processes may be compromised at realistically high temperatures. These results confirm that genes from the Hsp families play vital roles in the thermal tolerance of developing reptile embryos and, in addition with a number of other genes, should be targets for evaluating the capacity of oviparous reptiles to respond adaptively to the effects of climate change.
Collapse
Affiliation(s)
- Blair P Bentley
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Perth, 6009, Australia.,Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organization (CSIRO), Floreat, 6014, Australia
| | - Brian J Haas
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jamie N Tedeschi
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Perth, 6009, Australia
| | - Oliver Berry
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organization (CSIRO), Floreat, 6014, Australia
| |
Collapse
|
35
|
Brancaccio M, Rocca S, Seclì L, Busso E, Fusella F. The double face of Morgana in tumorigenesis. Oncotarget 2016; 6:42603-12. [PMID: 26460959 PMCID: PMC4767456 DOI: 10.18632/oncotarget.6058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/24/2015] [Indexed: 01/07/2023] Open
Abstract
Morgana is a chaperone protein able to bind to ROCK I and II and to inhibit their kinase activity. Rho kinases are multifunctional proteins involved in different cellular processes, including cytoskeleton organization, centrosome duplication, cell survival and proliferation. In human cancer samples Morgana appears to be either downregulated or overexpressed, and experimental evidence indicate that Morgana behaves both as an oncosuppressor and as a proto-oncogene. Our most recent findings demonstrated that if on the one hand low Morgana expression levels, by inducing ROCK II hyperactivation, cause centrosome overduplication and genomic instability, on the other hand, Morgana overexpression induces tumor cell survival and chemoresistance through the ROCK I-PTEN-AKT axis. Therefore, Morgana belongs to a new class of proteins, displaying both oncogenic and oncosuppressor features, depending on the specific cellular context.
Collapse
Affiliation(s)
- Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Stefania Rocca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Busso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Fusella
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
36
|
Qin L, Guo J, Zheng Q, Zhang H. BAG2 structure, function and involvement in disease. Cell Mol Biol Lett 2016; 21:18. [PMID: 28536620 PMCID: PMC5415834 DOI: 10.1186/s11658-016-0020-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/10/2016] [Indexed: 12/30/2022] Open
Abstract
Bcl2-associated athanogene 2 (BAG2) shares a similar molecular structure and function with other BAG family members. Functioning as a co-chaperone, it interacts with the ATPase domain of the heat shock protein 70 (dHsp70) through its BAG domain. It also interacts with many other molecules and regulates various cellular functions. An increasing number of studies have indicated that BAG2 is involved in the pathogenesis of various diseases, including cancers and neurodegenerative diseases. This paper is a comprehensive review of the structure, functions, and protein interactions of BAG2. We also discuss its roles in diseases, including cancer, Alzheimer's disease, Parkinson's disease and spinocerebellar ataxia type-3. Further research on BAG2 could lead to an understanding of the pathogenesis of these disorders or even to novel therapeutic approaches.
Collapse
Affiliation(s)
- Lixia Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zheng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Sorge M, Brancaccio M. Melusin Promotes a Protective Signal Transduction Cascade in Stressed Hearts. Front Mol Biosci 2016; 3:53. [PMID: 27672636 PMCID: PMC5018970 DOI: 10.3389/fmolb.2016.00053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/29/2016] [Indexed: 01/02/2023] Open
Abstract
Melusin is a chaperone protein selectively expressed in heart and skeletal muscles. Melusin expression levels correlate with cardiac function in pre-clinical models and in human patients with aortic stenosis. Indeed, previous studies in several animal models indicated that Melusin plays a broad cardioprotective role in different pathological conditions. Chaperone proteins, besides playing a role in protein folding, are also able to facilitate supramolecular complex formation and conformational changes due to activation/deactivation of signaling molecules. This role sets chaperone proteins as crucial regulators of intracellular signal transduction pathways. In particular Melusin activates AKT and ERK1/2 signaling, protects cardiomyocytes from apoptosis and induces a compensatory hypertrophic response in several pathological conditions. Therefore, selective delivery of the Melusin gene in heart via cardiotropic adenoviral associated virus serotype 9 (AAV9), may represent a new promising gene-therapy approach for different cardiac pathologies.
Collapse
Affiliation(s)
- Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino Torino, Italy
| |
Collapse
|
38
|
Góral A, Bieganowski P, Prus W, Krzemień-Ojak Ł, Kądziołka B, Fabczak H, Filipek A. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone. PLoS One 2016; 11:e0156507. [PMID: 27249023 PMCID: PMC4889068 DOI: 10.1371/journal.pone.0156507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/16/2016] [Indexed: 11/19/2022] Open
Abstract
The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery.
Collapse
Affiliation(s)
- Agnieszka Góral
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | | | - Wiktor Prus
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | | | - Beata Kądziołka
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Hanna Fabczak
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
- * E-mail:
| |
Collapse
|
39
|
Lipinski KA, Britschgi C, Schrader K, Christinat Y, Frischknecht L, Krek W. Colorectal cancer cells display chaperone dependency for the unconventional prefoldin URI1. Oncotarget 2016; 7:29635-47. [PMID: 27105489 PMCID: PMC5045422 DOI: 10.18632/oncotarget.8816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 03/28/2016] [Indexed: 01/12/2023] Open
Abstract
Chaperone dependency of cancer cells is an emerging trait that relates to the need of transformed cells to cope with the various stresses associated with the malignant state. URI1 (unconventional prefoldin RPB5 interactor 1) encodes a member of the prefoldin (PFD) family of molecular chaperones that acts as part of a heterohexameric PFD complex, the URI1 complex (URI1C), to promote assembly of multiprotein complexes involved in cell signaling and transcription processes. Here, we report that human colorectal cancer (CRCs) cell lines demonstrate differential dependency on URI1 and on the URI1 partner PFD STAP1 for survival, suggesting that this differential vulnerability of CRC cells is directly linked to URI1C chaperone function. Interestingly, in URI1-dependent CRC cells, URI1 deficiency is associated with non-genotoxic p53 activation and p53-dependent apoptosis. URI1-independent CRC cells do not exhibit such effects even in the context of wildtype p53. Lastly, in tumor xenografts, the conditional depletion of URI1 in URI1-dependent CRC cells was, after tumor establishment, associated with severe inhibition of subsequent tumor growth and activation of p53 target genes. Thus, a subset of CRC cells has acquired a dependency on the URI1 chaperone system for survival, providing an example of 'non-oncogene addiction' and vulnerability for therapeutic targeting.
Collapse
Affiliation(s)
| | - Christian Britschgi
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Karen Schrader
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Yann Christinat
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Lukas Frischknecht
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Wilhelm Krek
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
40
|
Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants. PLoS One 2015; 10:e0141786. [PMID: 26517842 PMCID: PMC4627809 DOI: 10.1371/journal.pone.0141786] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.
Collapse
|
41
|
BAG2 expression dictates a functional intracellular switch between the p38-dependent effects of nicotine on tau phosphorylation levels via the α7 nicotinic receptor. Exp Neurol 2015; 275 Pt 1:69-77. [PMID: 26496817 DOI: 10.1016/j.expneurol.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 01/03/2023]
Abstract
The histopathological hallmarks present in Alzheimer's disease (AD) brain are plaques of Aβ peptide, neurofibrillary tangles of hyperphosphorylated tau protein, and a reduction in nicotinic acetylcholine receptor (nAChR) levels. The role of nAChRs in AD is particularly controversial. Tau protein function is regulated by phosphorylation, and its hyperphosphorylated forms are significantly more abundant in AD brain. Little is known about the relationship between nAChR and phospho-tau degradation machinery. Activation of nAChRs has been reported to increase and decrease tau phosphorylation levels, and the mechanisms responsible for this discrepancy are not presently understood. The co-chaperone BAG2 is capable of regulating phospho-tau levels via protein degradation. In SH-SY5Y cell line and rat primary hippocampal cell culture low endogenous BAG2 levels constitute an intracellular environment conducive to nicotine-induced accumulation of phosphorylated tau protein. Further, nicotine treatment inhibited endogenous expression of BAG2, resulting in increased levels of phosphorylated tau indistinguishable from those induced by BAG2 knockdown. Conversely, overexpression of BAG2 is conducive to a nicotine-induced reduction in cellular levels of phosphorylated tau protein. In both cases the effect of nicotine was p38MAPK-dependent, while the α7 antagonist MLA was synthetic to nicotine treatment, either increasing levels of phospho-Tau in the absence of BAG2, or further decreasing the levels of phospho-Tau in the presence of BAG2. Taken together, these findings reconcile the apparently contradictory effects of nicotine on tau phosphorylation by suggesting a role for BAG2 as an important regulator of p38-dependent tau kinase activity and phospho-tau degradation in response to nicotinic receptor stimulation. Thus, we report that BAG2 expression dictates a functional intracellular switch between the p38-dependent functions of nicotine on tau phosphorylation levels via the α7 nicotinic receptor.
Collapse
|
42
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
43
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, et alSchmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Show More Authors] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
OBJECTIVE We attempt to explore the pathogenesis and specific genes with aberrant expression in diabetic nephropathy (DN). METHODS The gene expression profile of GSE1009 was downloaded from Gene Expression Omnibus database, including 3 normal function glomeruli and DN glomeruli from cadaveric donor kidneys. The differentially expressed genes (DEGs) were analyzed and the aberrant gene-related functions were predicted by informatics methods. The protein-protein interaction (PPI) networks for DEGs were constructed and the functional sub-network was screened. RESULTS A total of 416 DEGs were found to be differentially expressed in DN samples comparing with normal controls, including 404 up-regulated genes and 12 down-regulated genes. DEGs were involved in the process of combination to saccharides and the decline of tissue repairing ability of the organisms. The genes of VEGFA, ACTG1, HSP90AA1 had high degree in the PPI network. The main biological process of genes in the sub-network was related with cell proliferation and signal transmitting of cell membrane receptor. CONCLUSION Significant nodes in PPI network provide new insights to understand the mechanism of DN. VEGFA, ACTG1 and HSP90AA1 may be the potential targets in the DN treatment.
Collapse
Affiliation(s)
- Fangming Fu
- a Department of Endocrinology , Jinan Central Hospital Affiliated to Shandong University , Jinan , Shandong Province , China
| | - Xueling Wei
- b Department of General Practice , Jinan Central Hospital Affiliated to Shandong University , Jinan , Shandong Province , China , and
| | - Jinbo Liu
- c Department of Endocrinology , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Nianrong Mi
- a Department of Endocrinology , Jinan Central Hospital Affiliated to Shandong University , Jinan , Shandong Province , China
| |
Collapse
|
45
|
Regulation and function of the human HSP90AA1 gene. Gene 2015; 570:8-16. [PMID: 26071189 DOI: 10.1016/j.gene.2015.06.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/21/2015] [Accepted: 06/06/2015] [Indexed: 12/11/2022]
Abstract
Heat shock protein 90α (Hsp90α), encoded by the HSP90AA1 gene, is the stress inducible isoform of the molecular chaperone Hsp90. Hsp90α is regulated differently and has different functions when compared to the constitutively expressed Hsp90β isoform, despite high amino acid sequence identity between the two proteins. These differences are likely due to variations in nucleotide sequence within non-coding regions, which allows for specific regulation through interaction with particular transcription factors, and to subtle changes in amino acid sequence that allow for unique post-translational modifications. This article will specifically focus on the expression, function and regulation of Hsp90α.
Collapse
|
46
|
Kuballa P, Baumann AL, Mayer K, Bär U, Burtscher H, Brinkmann U. Induction of heat shock protein HSPA6 (HSP70B′) upon HSP90 inhibition in cancer cell lines. FEBS Lett 2015; 589:1450-8. [DOI: 10.1016/j.febslet.2015.04.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/10/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
|
47
|
Transcriptional Response to Acute Thermal Exposure in Juvenile Chinook Salmon Determined by RNAseq. G3-GENES GENOMES GENETICS 2015; 5:1335-49. [PMID: 25911227 PMCID: PMC4502368 DOI: 10.1534/g3.115.017699] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermal exposure is a serious and growing challenge facing fish species worldwide. Chinook salmon (Oncorhynchus tshawytscha) living in the southern portion of their native range are particularly likely to encounter warmer water due to a confluence of factors. River alterations have increased the likelihood that juveniles will be exposed to warm water temperatures during their freshwater life stage, which can negatively impact survival, growth, and development and pose a threat to dwindling salmon populations. To better understand how acute thermal exposure affects the biology of salmon, we performed a transcriptional analysis of gill tissue from Chinook salmon juveniles reared at 12° and exposed acutely to water temperatures ranging from ideal to potentially lethal (12° to 25°). Reverse-transcribed RNA libraries were sequenced on the Illumina HiSeq2000 platform and a de novo reference transcriptome was created. Differentially expressed transcripts were annotated using Blast2GO and relevant gene clusters were identified. In addition to a high degree of downregulation of a wide range of genes, we found upregulation of genes involved in protein folding/rescue, protein degradation, cell death, oxidative stress, metabolism, inflammation/immunity, transcription/translation, ion transport, cell cycle/growth, cell signaling, cellular trafficking, and structure/cytoskeleton. These results demonstrate the complex multi-modal cellular response to thermal stress in juvenile salmon.
Collapse
|
48
|
Rauniyar N, Subramanian K, Lavallée-Adam M, Martínez-Bartolomé S, Balch WE, Yates JR. Quantitative Proteomics of Human Fibroblasts with I1061T Mutation in Niemann-Pick C1 (NPC1) Protein Provides Insights into the Disease Pathogenesis. Mol Cell Proteomics 2015; 14:1734-49. [PMID: 25873482 DOI: 10.1074/mcp.m114.045609] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in the late endosomal/lysosomal compartments. Mutations in the NPC1 protein are implicated in 95% of patients with NPC disease. The most prevalent mutation is the missense mutation I1061T that occurs in ∼ 15-20% of the disease alleles. In our study, an isobaric labeling-based quantitative analysis of proteome of NPC1(I1061T) primary fibroblasts when compared with wild-type cells identified 281 differentially expressed proteins based on stringent data analysis criteria. Gene ontology enrichment analysis revealed that these proteins play important roles in diverse cellular processes such as protein maturation, energy metabolism, metabolism of reactive oxygen species, antioxidant activity, steroid metabolism, lipid localization, and apoptosis. The relative expression level of a subset of differentially expressed proteins (TOR4A, DHCR24, CLGN, SOD2, CHORDC1, HSPB7, and GAA) was independently and successfully substantiated by Western blotting. We observed that treating NPC1(I1061T) cells with four classes of seven different compounds that are potential NPC drugs increased the expression level of SOD2 and DHCR24. We have also shown an abnormal accumulation of glycogen in NPC1(I1061T) fibroblasts possibly triggered by defective processing of lysosomal alpha-glucosidase. Our study provides a starting point for future more focused investigations to better understand the mechanisms by which the reported dysregulated proteins triggers the pathological cascade in NPC, and furthermore, their effect upon therapeutic interventions.
Collapse
Affiliation(s)
| | - Kanagaraj Subramanian
- §Department of Cell and Molecular Biology, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California-92037
| | | | | | - William E Balch
- §Department of Cell and Molecular Biology, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California-92037.
| | | |
Collapse
|
49
|
Stallings JD, Ippolito DL, Rakesh V, Baer CE, Dennis WE, Helwig BG, Jackson DA, Leon LR, Lewis JA, Reifman J. Patterns of gene expression associated with recovery and injury in heat-stressed rats. BMC Genomics 2014; 15:1058. [PMID: 25471284 PMCID: PMC4302131 DOI: 10.1186/1471-2164-15-1058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/24/2014] [Indexed: 02/08/2023] Open
Abstract
Background The in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model. Results We heated rats until implanted thermal probes indicated a maximal core temperature of 41.8°C (Tc,Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc,Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response. Conclusions Pathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1058) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan D Stallings
- Environmental Health Program, U,S, Army Center for Environmental Health Research, Bldg, 568 Doughten Drive, MD 21702-5010 Fort Detrick, Maryland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhao F, Xu G, Zhou Y, Wang L, Xie J, Ren S, Liu S, Zhu Y. MicroRNA-26b inhibits hepatitis B virus transcription and replication by targeting the host factor CHORDC1 protein. J Biol Chem 2014; 289:35029-41. [PMID: 25342750 DOI: 10.1074/jbc.m114.589978] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hepatitis B virus (HBV) causes acute and chronic hepatitis in humans, and HBV infection is a major threat to global health. HBV replication is regulated by a series of host factors, including microRNAs (miRNAs), which are highly conserved small noncoding RNAs that participate in a variety of physiological and pathological processes. Here, we report that a chemically synthesized mimic of miR-26b inhibited HBV antigen expression, transcription, and replication, whereas antisense knockdown of endogenous miR-26b enhanced HBV replication in HepG2 cells. Overexpression and knockdown experiments showed that miR-26b significantly decreased HBV enhancer/promoter activities. We identified the cysteine- and histidine-rich domain containing 1 (CHORDC1) as a novel host factor target of miR-26b. CHORDC1 protein but not mRNA was markedly decreased by miR-26b overexpression via base-pairing with complementary sequences in the 3'UTR of its mRNA. Overexpression and knockdown studies showed that CHORDC1 increased viral antigen expression, transcription, and replication by elevating HBV enhancer/promoter activities. Conversely, HBV infection suppressed miR-26b expression and increased CHORDC1 protein levels in human liver cells. Another mature miRNA of the hsa-miR-26 family, miR-26a, had a similar function as miR-26b in targeting CHORDC1 and affecting HBV production. These results suggest that suppression of miR-26b expression up-regulates its target gene CHORDC1, which increases HBV enhancer/promoter activities and promotes viral transcription, gene expression, and replication. Our study could provide new insights into miRNA expression and the persistence of HBV infection.
Collapse
Affiliation(s)
- Fanpeng Zhao
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Gang Xu
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Yaqin Zhou
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Lvyin Wang
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jiajia Xie
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Sheng Ren
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Shi Liu
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Ying Zhu
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|