1
|
He BZ, Wang L. Functional and therapeutic significant of heat-shock protein 90 (HSP90) in reproductive cancers. Clin Transl Oncol 2025; 27:1933-1942. [PMID: 39369360 DOI: 10.1007/s12094-024-03743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/21/2024] [Indexed: 10/07/2024]
Abstract
Reproductive cancers, such as ovarian, cervical, and endometrial carcinomas, have a poor prognosis in metastatic stages. Researchers are continuously seeking improved and safer methods to target cancer-related oncoproteins, addressing the limitations of current treatments, including their limited effectiveness, drug resistance, and off-target effects. Recent advancements in understanding the molecular mechanisms involved in the progress of reproductive cancers have provided valuable insights into potential targeted therapies. By engaging with oncoproteins and co-chaperones, heat-shock protein 90 (HSP90) regulates signaling networks and fixes protein folding errors in cancer cells. The potential of HSP90 inhibition as cancer-targeted treatments is underscored by the continuous discovery and testing of novel HSP90-targeted molecules for their antitumor properties in preclinical and clinical settings. Therefore, this study aims to shed light on the mechanism and recent research breakthroughs of HSP90, as well as provide an in-depth review of their therapeutic potential in reproductive cancers.
Collapse
Affiliation(s)
- Ben-Zhen He
- Department of Radiology, The Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, Zhejiang, People's Republic of China.
| | - Liang Wang
- Department of Radiology, The Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Saeed L, Sajjad S, Zubair M, Jabeen F. Therapeutic potential of silica nanoparticles, cisplatin, and quercetin on ovarian cancer: In vivo model. Biochem Biophys Res Commun 2025; 742:151121. [PMID: 39657355 DOI: 10.1016/j.bbrc.2024.151121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
The present study evaluated the effect of silica nanoparticles, quercetin, and cisplatin against ovarian cancer. Cisplatin is a potent antineoplastic agent but has greater toxicity against cancer. Quercetin is a powerful flavonoid with remarkable anti-cancer activity due to its anti-apoptotic nature. Forty female albino rats were randomly divided into eight groups, with five rats per group. Group 1 (G1) was normal control, G2 received Carboxymethylcellulose; G3 was the normal control and treated with quercetin, G4 was given silica nanoparticles, G5 was treated with cisplatin. G6 was the tumor control. Tumor induction was done by 7, 12-dimethylbenz (a) anthracene (DMBA), G7 was treated with quercetin-cisplatin-silica nanoparticles, and in G8 quercetin-cisplatin silica nanoparticles were used to treat the induced tumor. Chemically synthesized silica nanoparticles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and Fourier Transform Infrared (FTIR). After the treatment, animals were sacrificed and tested for biochemical and hormonal assays. G6 displayed increased body weight and a significant rise in CA125 as compared to G1. G6 also exhibited an altered hormonal profile, with a particular increase in estrogen, FSH, and testosterone, along with reduced LH and progesterone levels. Lipid profile, liver enzymes, and renal parameters (urea and creatinine) increased in G6, but G8 significantly ameliorated all damaging effects of DMBA as observed in G6. The current study revealed that silica nanoparticles combined with cisplatin and quercetin demonstrated greater protection against drastic changes induced by carcinogens in ovarian cancer mice models.
Collapse
Affiliation(s)
- Laiba Saeed
- Department of Zoology, Lahore College for Women University, Pakistan
| | - Sumera Sajjad
- Department of Zoology, Lahore College for Women University, Pakistan.
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Dean of Life Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
3
|
Kartikasari AER, Michel-Lara P, Exton H, Tekin-Sari K, Alnefai EMM, Mitchell A, Sanchez-Huertas C, Plebanski M. Circulating microRNAs as Diagnostic Biomarkers to Detect Specific Stages of Ovarian Cancer: A Comprehensive Meta-Analysis. Cancers (Basel) 2024; 16:4190. [PMID: 39766088 PMCID: PMC11674734 DOI: 10.3390/cancers16244190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Ovarian cancer (OC) is one of the most common gynecological cancers [...].
Collapse
Affiliation(s)
- Apriliana Ellya Ratna Kartikasari
- Cancer, Ageing, and Vaccine Research Group (CAVA), School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia (E.M.M.A.)
| | - Paul Michel-Lara
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne 3001, Australia
| | - Hayden Exton
- Cancer, Ageing, and Vaccine Research Group (CAVA), School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia (E.M.M.A.)
| | - Kaan Tekin-Sari
- Cancer, Ageing, and Vaccine Research Group (CAVA), School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia (E.M.M.A.)
| | - Ebtesam Motlaq M. Alnefai
- Cancer, Ageing, and Vaccine Research Group (CAVA), School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia (E.M.M.A.)
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne 3001, Australia
| | - Cesar Sanchez-Huertas
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne 3001, Australia
| | - Magdalena Plebanski
- Cancer, Ageing, and Vaccine Research Group (CAVA), School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia (E.M.M.A.)
| |
Collapse
|
4
|
Paswan MK, Tudu HMM, Gupta SK, Banerjee S, Tirkey D. Histopathological spectrum of ovarian tumors in Jharkhand, India: A retrospective study. J Family Med Prim Care 2024; 13:5861-5867. [PMID: 39790752 PMCID: PMC11709009 DOI: 10.4103/jfmpc.jfmpc_1086_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 01/12/2025] Open
Abstract
Background Ovarian tumors are the most prevalent neoplasms worldwide, affecting women of all ages. According to Globocan's 2022 projections, by 2050, the number of women diagnosed with ovarian cancer worldwide will increase by over 55% to 503,448. The number of women dying from ovarian cancer is projected to increase to 350,956 each year, an increase of almost 70% from 2022. Aims and Objectives The aim of this study was to analyze the various histopathological spectra of ovarian tumors according to the latest 2020 WHO classification and to assess the age distribution, frequency of incidence, and laterality of different subtypes of ovarian tumors. Materials and Methods This retrospective study included 190 cases of histopathologically proven ovarian tumors reported by the pathology department from March 2020 to March 2024 at the Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India. Results A total of 190 cases were studied, 154 (81.1%) were benign, 8 (4.2%) were borderline, and 28 (14.7%) cases were malignant. Surface epithelial tumors (SETs) were the most common (n = 139, 73.2%), followed by germ cell tumors (GCTs) (n = 38, 20%). Serous cystadenomas (n = 63, 33%) were the most common benign tumors, whereas the most common malignant tumors were serous carcinomas ( n=11, 5.7% ). Most ovarian tumors (n = 45, 23.68%) occurred in the 31-40-year-old age group. Conclusion The present study showed various histopathological patterns of ovarian tumors. This study indicated a slight increase in the prevalence of malignant ovarian tumors in the middle-aged group and and a relative increase in the percentage of SETs over GCTs in recent years in our tertiary care center in Jharkhand, India. With limited resources in our institute, histopathological examination remains the mainstay for the early diagnosis of these tumors and their timlely and appropriate management.Categories: Pathology.
Collapse
Affiliation(s)
- Manoj K. Paswan
- Histopathology, Department of Pathology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Helen M. M. Tudu
- Histopathology, Department of Pathology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Smita Kumari Gupta
- Histopathology, Department of Pathology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Saurav Banerjee
- Histopathology, Department of Pathology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Deepali Tirkey
- Histopathology, Department of Pathology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| |
Collapse
|
5
|
Arshadi M, Hesari E, Ahmadinezhad M, Yekta EM, Ebrahimi F, Azizi H, Esfarjani SV, Rostami M, Khodamoradi F. The association between oral contraceptive pills and ovarian cancer risk: A systematic review and meta-analysis. Bull Cancer 2024; 111:918-929. [PMID: 39261253 DOI: 10.1016/j.bulcan.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Previous study results have been inconclusive, so this meta-analysis aims to evaluate the association between ovarian cancer and oral contraceptive pills (OCPs). METHODS PubMed, EMBASE, Scopus, and Web of Science were searched to identify studies on the association between OCPs and ovarian cancer from January 1, 2000 through February 5, 2023. The pooled relative risk (RR) and odds ratio (OR) were used to measure this relationship. RESULTS A total of 67 studies were included. In the association between ever-use compared with never-use of OCPs and ovarian cancer risk, the pooled RR in cohort studies was 0.69 [95% CI: 0.61, 0.78]. For the relationship between duration of OCPs use and ovarian cancer in the cohort studies, no association between duration of use1-12 months 0.92 [95% CI: 0.82, 1.03] and duration of use 13-60 months 0.87 [95% CI: 0.73, 1.04], but there is a statistically significant inverse relationship between duration of use 61-120 months 0.62 [95% CI: 0.48, 0.81] and more than 120 months 0.51 [95% CI: 0.32, 0.80] and ovarian cancer. For the relationship between OCPs and histological subtype of epithelial ovarian cancer in the cohort studies, the pooled RR for invasive was 0.70 [95% CI: 0.56, 0.87], but no association between OCPs and borderline ovarian cancer 0.64 [95% CI: 0.31, 1.31]. CONCLUSION Our analysis shows a statistically significant inverse relationship between ever-use compared to never-use of OCPs and ovarian cancer risk,and also between invasive cancer and OCPs. By increasing the duration of OCPs use, the risk of ovarian cancer decreased.
Collapse
Affiliation(s)
- Maedeh Arshadi
- Department of Epidemiology and Biostatistics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elahe Hesari
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Ahmadinezhad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Mansouri Yekta
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Ebrahimi
- Department of Epidemiology and Biostatistics, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hosein Azizi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Vaziri Esfarjani
- Department of Social Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Rostami
- Department of Social Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzad Khodamoradi
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Srinivasamurthy BC, Ramamoorthi S. The Progression and Prospects of the Gene Expression Profiling in Ovarian Epithelial Cancer. Gynecol Minim Invasive Ther 2024; 13:141-145. [PMID: 39184260 PMCID: PMC11343359 DOI: 10.4103/gmit.gmit_13_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 08/27/2024] Open
Abstract
Ovarian cancer is one of the most common cancers with a high mortality rate among females worldwide. The understanding of the pathogenesis of the disease is highly important to provide personalized therapy to the patients. Ovarian cancer is as heterogeneous as colon and breast cancer which makes it difficult to treat. The development of gene signature is the only hope in providing targeted therapy to improve the survival of ovarian cancer patients. Malignant epithelial carcinomas are the most common cancers of the ovary with different histological and molecular subtypes and clinical behavior. The development of precursor lesions of ovarian carcinoma in the tubes and endometrium has provided a new dimension to the origin of ovarian cancers. The clinical utility of various gene signatures may not be logical unless validated. Validated gene signatures can aid the clinician in deciding the appropriate line of treatment.
Collapse
|
7
|
Zhao P, Meng D, Hu Z, Liang Y, Feng Y, Sun T, Cheng L, Zheng X, Li H. Intra-sample reversed pairs based on differentially ranked genes reveal biosignature for ovarian cancer. Comput Biol Med 2024; 172:108208. [PMID: 38484696 DOI: 10.1016/j.compbiomed.2024.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/26/2024]
Abstract
Ovarian cancer, a major gynecological malignancy, often remains undetected until advanced stages, necessitating more effective early screening methods. Existing biomarker based on differential genes often suffers from variations in clinical practice. To overcome the limitations of absolute gene expression values including batch effects and biological heterogeneity, we introduced a pairwise biosignature leveraging intra-sample differentially ranked genes (DRGs) and machine learning for ovarian cancer detection across diverse cohorts. We analyzed ten cohorts comprising 872 samples with 796 ovarian cancer and 76 normal. Our method, DRGpair, involves three stages: intra-sample ranking differential analysis, reversed gene pair analysis, and iterative LASSO regression. We identified four DRG pairs, demonstrating superior diagnostic performance compared to current state-of-the-art biomarkers and differentially expressed genes in seven independent cohorts. This rank-based approach not only reduced computational complexity but also enhanced the specificity and effectiveness of biomarkers, revealing DRGs as promising candidates for ovarian cancer detection and offering a scalable model adaptable to varying cohort characteristics.
Collapse
Affiliation(s)
- Pengfei Zhao
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Dian Meng
- School of Computing and Information Technology, Great Bay University, Guangdong, China
| | - Zunkai Hu
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yining Liang
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yating Feng
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Tongjie Sun
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Lixin Cheng
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Xubin Zheng
- School of Computing and Information Technology, Great Bay University, Guangdong, China; Great Bay Institute for Advanced Study, Guangdong, China
| | - Haili Li
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
8
|
Meteran H, Knudsen AØ, Jørgensen TL, Nielsen D, Herrstedt J. Carboplatin plus Paclitaxel in Combination with the Histone Deacetylate Inhibitor, Vorinostat, in Patients with Recurrent Platinum-Sensitive Ovarian Cancer. J Clin Med 2024; 13:897. [PMID: 38337591 PMCID: PMC10856581 DOI: 10.3390/jcm13030897] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/04/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Background: This phase II study evaluated the efficacy and safety of the histone deacetylase (HDAC) inhibitor, vorinostat, administered in combination with paclitaxel and carboplatin in patients with platinum sensitive recurrent ovarian cancer. Methods: Women with recurrent platinum-sensitive ovarian, peritoneal, or Fallopian tube carcinoma, a performance status of 0-2, and good overall organ function were eligible. Patients received 6 courses of paclitaxel (175 mg/m2) and carboplatin area under the curve (AUC) of 5.0 mg/mL/min administered via intravenous infusion on day 1 of a 3-week schedule. In addition, patients received vorinostat 400 mg orally once daily on days -4 through 10 of Cycle 1 and days 1 through 14 of each subsequent treatment cycle. The primary endpoints were progression-free survival (PFS) and adverse events. The secondary endpoints were the objective response rate and overall survival. Results: Fifty-five patients were included. CR was obtained in 14 patients (26.4%) and PR in 19 patients (35.8%), resulting in an ORR of 62.2%. Twenty patients (37.7%) had SD. The median duration of response (DoR) was 12.6 (range 6-128) months. The median PFS was 11.6 months (95% CI, 10.3-18.0; p < 0.001). Median OS was 40.6 months (95% Cl, 25.1-56.1). The most common treatment-related adverse events (all grades) were fatigue, anemia, thrombocytopenia, neutropenia, anorexia, nausea, pain, sensory neuropathy, myalgia, stomatitis and diarrhea. Conclusions: Vorinostat combined with carboplatin plus paclitaxel was tolerable and generated significant responses including a long median overall survival in recurrent platinum-sensitive ovarian cancer.
Collapse
Affiliation(s)
- Hanieh Meteran
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Anja Ør Knudsen
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
| | - Trine Lembrecht Jørgensen
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Dorte Nielsen
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Copenhagen, Denmark
| | - Jørn Herrstedt
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Chen J, Hu C, Chen G, Zhang Y. Vitamin D receptor (VDR) variants are risk factors for ovarian cancer: a meta-analysis and trial sequential analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1114-1128. [PMID: 38240318 DOI: 10.1080/15257770.2024.2302525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 12/05/2024]
Abstract
The importance of Vitamin D in ovarian cancer (OC) has been well documented, and lower levels have been associated with susceptibility to OC. Vitamin D exerts its effect through the vitamin D receptor (VDR). Common genetic variants in the VDR gene (Fok I, TaqI, BamI and ApaI) have been linked with the susceptibility to the development of OC; however, the reports remain contradictory. To draw a valid conclusion, we performed a meta-analysis of the earlier published reports in the present study. The literature search was performed in PubMed, Google Scholar, and Scopus databases. All relevant articles were screened, and eligible reports were identified based on prefixed inclusion and exclusion criteria. Data such as author's details, year of publication, ethnicity, genotype and allele prevalence in cases and controls were extracted from the eligible reports. The meta-analysis was performed using Comprehensive Meta-analysis Software (CMA) V3. Eight articles, including data from fourteen independent cohorts, comprised 4276 cases and 6739 healthy controls considered for the analysis. VDR FokI and BamI variants revealed a significant association with an increased risk of OC. Other VDR polymorphisms (TaqI and ApaI) failed to demonstrate such an association with OC. Interestingly, the sensitivity analysis revealed minimal deviation from the parent meta-analysis, supporting the robustness of the present analysis. The trial sequential analysis revealed the inclusion of a sufficient number of studies for FokI polymorphism. It highlighted the requirement for additional case-control studies in VDR (ApaI, BamI and TaqI) to draw a definitive conclusion. FokI and BamI polymorphisms are associated with susceptibility to OC.
Collapse
Affiliation(s)
- Juan Chen
- Department of Gynaecology, Panzhihua Maternal and Child Health Hospital (Panzhihua Women & Children Hospital), Panzhihua City, Sichuan Province, China
| | - Chunyan Hu
- Department of Gynaecology, Hainan General Hospital, Haikou City, Hainan Province, China
| | - Guiying Chen
- Department of Obstetrics, Taian Central Hospital, Taian City, Shandong Province, China
| | - Yi Zhang
- Department of Gynaecology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
10
|
Ma J, Chen Y, Ren J, Zhou T, Wang Z, Li C, Qiu L, Gao T, Ding P, Ding Z, Ou L, Wang J, Xu J, Zhou Z, Jia C, Sun N, Pei R, Zhu W. Purification of Circulating Tumor Cells Based on Multiantibody-Modified Magnetic Nanoparticles and Molecular Analysis toward Epithelial Ovarian Cancer Detection. ACS Sens 2023; 8:3744-3753. [PMID: 37773014 DOI: 10.1021/acssensors.3c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Circulating tumor cells (CTCs) are valuable circulating biomarkers of cancer, which carry primary tumor information and may provide real-time assessment of tumor status as well as treatment response in cancer patients. Herein, we developed a novel assay for accurate diagnosis and dynamic monitoring of epithelial ovarian cancer (EOC) using CTC RNA analysis. Multiantibody-modified magnetic nanoparticles were prepared for purification of EOC CTCs from whole blood samples of clinical patients. Subsequently, nine EOC-specific mRNAs of purified CTCs were quantified using droplet digital PCR. The EOC CTC Score was generated using a multivariate logistic regression model for each sample based on the transcripts of the nine genes. This assay exhibited a distinguishing diagnostic performance for the detection of EOC (n = 17) from benign ovarian tumors (n = 30), with an area under the receiver operating characteristic curve (AUC) of 0.96 (95% CI = 0.91-1.00). Moreover, dynamic changes of the EOC CTC Score were observed in patients undergoing treatment, demonstrating the potential of the assay for monitoring EOC. In conclusion, we present an accurate assay for the diagnosis and monitoring of EOC via CTC RNA analysis, and the results suggest that it may provide a promising solution for the detection and treatment response assessment of EOC.
Collapse
Affiliation(s)
- Jialing Ma
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ying Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jing Ren
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tongping Zhou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhili Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Cheng Li
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Qiu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Pi Ding
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zixin Ding
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Li Ou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jun Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jinni Xu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhirun Zhou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chenxin Jia
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Na Sun
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Weipei Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
11
|
Katoh K, Katoh Y, Kubo A, Iida M, Ikeda Y, Iwata T, Nishio H, Sugawara M, Kato D, Suematsu M, Hirai S, Kawana K. Serum Free Fatty Acid Changes Caused by High Expression of Stearoyl-CoA Desaturase 1 in Tumor Tissues Are Early Diagnostic Markers for Ovarian Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1840-1852. [PMID: 37712874 PMCID: PMC10498943 DOI: 10.1158/2767-9764.crc-23-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/17/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Ovarian cancer has a poor prognosis and is difficult to detect in early stages. Therefore, developing new diagnostic markers for early-stage ovarian cancer is critical. Here, we developed a diagnostic marker for early-stage ovarian cancer on the basis of fatty acid metabolism characteristics of cancer cells. The expression of various fatty acid metabolizing enzymes such as stearoyl-CoA desaturase 1 (SCD1) was altered in early-stage ovarian cancer tissue compared with that in normal ovarian tissue. Changes in the expression of fatty acid metabolizing enzymes, particularly SCD1, in cancer tissues were found to alter concentrations of multiple free fatty acids (FFA) in serum. We were the first to show that fatty acid metabolic characteristics in tissues are related to the FFA composition of serum. Surprisingly, patients with stage I/II ovarian cancer also showed significant changes in serum levels of eight FFAs, which can be early diagnostic markers. Finally, using statistical analysis, an optimal early diagnostic model combining oleic and arachidic acid levels, fatty acids associated with SCD1, was established and confirmed to have higher diagnostic power than CA125, regardless of histology. Thus, our newly developed diagnostic model using serum FFAs may be a powerful tool for the noninvasive early detection of ovarian cancer. SIGNIFICANCE Measurement of serum FFA levels by changes in the expression of fatty acid metabolizing enzymes in tumor tissue would allow early detection of ovarian cancer. In particular, the SCD1-associated FFAs, oleic and arachidic acid, would be powerful new screening tools for early-stage ovarian cancer.
Collapse
Affiliation(s)
- Kanoko Katoh
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Yuki Katoh
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Akiko Kubo
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Miho Iida
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Yuji Ikeda
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Iwata
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishio
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Sugawara
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daiki Kato
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
- WPI-Bio2Q Research Center and Central Institute for Experimental Animals, Kawasaki, Japan
| | - Shuichi Hirai
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Qian L, Sun R, Xue Z, Guo T. Mass Spectrometry-based Proteomics of Epithelial Ovarian Cancers: a Clinical Perspective. Mol Cell Proteomics 2023:100578. [PMID: 37209814 PMCID: PMC10388592 DOI: 10.1016/j.mcpro.2023.100578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Increasing proteomic studies focused on epithelial ovarian cancer (EOC) have attempted to identify early disease biomarkers, establish molecular stratification, and discover novel druggable targets. Here we review these recent studies from a clinical perspective. Multiple blood proteins have been used clinically as diagnostic markers. The ROMA test integrates CA125 and HE4, while the OVA1 and OVA2 tests analyze multiple proteins identified by proteomics. Targeted proteomics has been widely used to identify and validate potential diagnostic biomarkers in EOCs, but none has yet been approved for clinical adoption. Discovery proteomic characterization of bulk EOC tissue specimens has uncovered a large number of dysregulated proteins, proposed new stratification schemes, and revealed novel targets of therapeutic potential. A major hurdle facing clinical translation of these stratification schemes based on bulk proteomic profiling is intra-tumor heterogeneity, namely that single tumor specimens may harbor molecular features of multiple subtypes. We reviewed over 2500 interventional clinical trials of ovarian cancers since 1990, and cataloged 22 types of interventions adopted in these trials. Among 1418 clinical trials which have been completed or are not recruiting new patients, about 50% investigated chemotherapies. Thirty-seven clinical trials are at phase 3 or 4, of which 12 focus on PARP, 10 on VEGFR, 9 on conventional anti-cancer agents, and the remaining on sex hormones, MEK1/2, PD-L1, ERBB, and FRα. Although none of the foregoing therapeutic targets were discovered by proteomics, newer targets discovered by proteomics, including HSP90 and cancer/testis antigens, are being tested also in clinical trials. To accelerate the translation of proteomic findings to clinical practice, future studies need to be designed and executed to the stringent standards of practice-changing clinical trials. We anticipate that the rapidly evolving technology of spatial and single-cell proteomics will deconvolute the intra-tumor heterogeneity of EOCs, further facilitating their precise stratification and superior treatment outcomes.
Collapse
Affiliation(s)
- Liujia Qian
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China.
| | - Rui Sun
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zhangzhi Xue
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Tiannan Guo
- iMarker lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China.
| |
Collapse
|
13
|
Bader JM, Albrecht V, Mann M. MS-based proteomics of body fluids: The end of the beginning. Mol Cell Proteomics 2023:100577. [PMID: 37209816 PMCID: PMC10388585 DOI: 10.1016/j.mcpro.2023.100577] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
Accurate biomarkers are a crucial and necessary precondition for precision medicine, yet existing ones are often unspecific and new ones have been very slow to enter the clinic. Mass spectrometry (MS)-based proteomics excels by its untargeted nature, specificity of identification and quantification making it an ideal technology for biomarker discovery and routine measurement. It has unique attributes compared to affinity binder technologies, such as OLINK Proximity Extension Assay and SOMAscan. In a previous review we described technological and conceptual limitations that had held back success (Geyer et al., 2017). We proposed a 'rectangular strategy' to better separate true biomarkers by minimizing cohort-specific effects. Today, this has converged with advances in MS-based proteomics technology, such as increased sample throughput, depth of identification and quantification. As a result, biomarker discovery studies have become more successful, producing biomarker candidates that withstand independent verification and, in some cases, already outperform state-of-the-art clinical assays. We summarize developments over the last years, including the benefits of large and independent cohorts, which are necessary for clinical acceptance. They are also required for machine learning or deep learning. Shorter gradients, new scan modes and multiplexing are about to drastically increase throughput, cross-study integration, and quantification, including proxies for absolute levels. We have found that multi-protein panels are inherently more robust than current single analyte tests and better capture the complexity of human phenotypes. Routine MS measurement in the clinic is fast becoming a viable option. The full set of proteins in a body fluid (global proteome) is the most important reference and the best process control. Additionally, it increasingly has all the information that could be obtained from targeted analysis although the latter may be the most straightforward way to enter into regular use. Many challenges remain, not least of a regulatory and ethical nature, but the outlook for MS-based clinical applications has never been brighter.
Collapse
Affiliation(s)
- Jakob M Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Vincent Albrecht
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
14
|
Ain QU, Muhammad S, Hai Y, Peiling L. The role of urine and serum biomarkers in the early detection of ovarian epithelial tumours. J OBSTET GYNAECOL 2023; 42:3441-3449. [PMID: 36757337 DOI: 10.1080/01443615.2022.2151352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Ovarian cancer (OC) is one of the leading causes of gynaecological cancer mortality in women worldwide. If detected at an early stage (I, II), OC has a 90% 5-year survival rate; nevertheless, symptoms are often hidden, leading to late-stage (III, IV) diagnosis and a poor prognosis. The current diagnostic procedures, such as a pelvic exam, transvaginal ultrasound, CA-125 blood tests, serum HE4 tests and multivariate index assays (MIA), are insufficient. Sadly, surgery is frequently required to confirm a positive diagnosis. Therefore, there has been an increased interest in different biomarkers using a non-invasive test as a tool for the earlier diagnosis of OC to resolve the need for precise and non-invasive diagnostic methods. This review article aims to investigate how biomarkers influence early OC detection and to emphasise the role of using a combination of serum biomarkers panel rather than a single biomarker. In addition, this review provides insights into the current serum biomarkers, urine biomarkers and other emerging biomarkers in the early detection of OC for better specificity and sensitivity and to improve the overall survival (OS) rate.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin medical university, Harbin, PR China
| | - Shan Muhammad
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yang Hai
- Department of International Education, Harbin Medical University, Harbin, PR China
| | - Li Peiling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin medical university, Harbin, PR China
| |
Collapse
|
15
|
Ngo H, Amartumur S, Tran VTA, Tran M, Diep YN, Cho H, Lee LP. In Vitro Tumor Models on Chip and Integrated Microphysiological Analysis Platform (MAP) for Life Sciences and High-Throughput Drug Screening. BIOSENSORS 2023; 13:231. [PMID: 36831997 PMCID: PMC9954135 DOI: 10.3390/bios13020231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The evolution of preclinical in vitro cancer models has led to the emergence of human cancer-on-chip or microphysiological analysis platforms (MAPs). Although it has numerous advantages compared to other models, cancer-on-chip technology still faces several challenges such as the complexity of the tumor microenvironment and integrating multiple organs to be widely accepted in cancer research and therapeutics. In this review, we highlight the advancements in cancer-on-chip technology in recapitulating the vital biological features of various cancer types and their applications in life sciences and high-throughput drug screening. We present advances in reconstituting the tumor microenvironment and modeling cancer stages in breast, brain, and other types of cancer. We also discuss the relevance of MAPs in cancer modeling and precision medicine such as effect of flow on cancer growth and the short culture period compared to clinics. The advanced MAPs provide high-throughput platforms with integrated biosensors to monitor real-time cellular responses applied in drug development. We envision that the integrated cancer MAPs has a promising future with regard to cancer research, including cancer biology, drug discovery, and personalized medicine.
Collapse
Affiliation(s)
- Huyen Ngo
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sarnai Amartumur
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Thi Ai Tran
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minh Tran
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yen N. Diep
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Luke P. Lee
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Huang Y, Zhou Y, Zhang M. Identification of seven hypoxia-related genes signature and risk score models for predicting prognosis for ovarian cancer. Funct Integr Genomics 2023; 23:39. [PMID: 36642729 PMCID: PMC9841006 DOI: 10.1007/s10142-022-00956-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023]
Abstract
Ovarian cancer (OC) is the most common malignant cancer in the female reproductive system. Hypoxia is an important part of tumor immune microenvironment (TIME), which is closely related to cancer progression and could significantly affect cancer metastasis and prognosis. However, the relationship between hypoxia and OC remained unclear. OCs were molecularly subtyped by consensus clustering analysis based on the expression characteristics of hypoxia-related genes. Kaplan-Meier (KM) survival was used to determine survival characteristics across subtypes. Immune infiltration analysis was performed by using Estimation of Stromal and Immune cells in Malignant Tumors using Expression data (ESTIMATE) and microenvironment cell populations-counter (MCP-Counter). Differential expression analysis was performed by using limma package. Next, univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were used to build a hypoxia-related risk score model (HYRS). Mutational analysis was applied to determine genomic variation across the HYRS groups. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to compare the effectiveness of HYRS in immunotherapy prediction. We divided OC samples into two molecular subtypes (C1 and C2 subtypes) based on the expression signature of hypoxia genes. Compared with C1 subtype, there was a larger proportion of poor prognosis genotypes in the C2 subtype. And most immune cells scored higher in the C2 subtype. Next, we obtained a HYRS based on 7 genes. High HYRS group had a higher gene mutation rate, such as TP53. Moreover, HYRS performed better than TIDE in predicting immunotherapy effect. Combined with clinicopathological features, the nomogram showed that HYRS had the greatest impact on survival prediction and a strong robustness.
Collapse
Affiliation(s)
- Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200000, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200000, China
| | - Yuqi Zhou
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200000, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200000, China
| | - Meiqin Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200000, China.
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200000, China.
| |
Collapse
|
17
|
Wani S, Humaira, Farooq I, Ali S, Rehman MU, Arafah A. Proteomic profiling and its applications in cancer research. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
18
|
Noei-Khesht Masjedi M, Asgari Y, Sadroddiny E. Differential expression analysis in epithelial ovarian cancer using functional genomics and integrated bioinformatics approaches. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
19
|
Cancer proteomics: Application of case studies in diverse cancers. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
20
|
Muacevic A, Adler JR, Bamardouf NO, Khesfaty DM, Fatani MM, Alghamdi MK, Saharti SN. The Histopathological Patterns of Ovarian Neoplasms in Different Age Groups: A Retrospective Study in a Tertiary Care Center. Cureus 2022; 14:e33092. [PMID: 36721593 PMCID: PMC9884105 DOI: 10.7759/cureus.33092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Objectives Ovarian cancer is one of the most prevalent neoplasms worldwide and it affects women of all ages. This study aimed to identify the common histopathological patterns of ovarian cancer among different age groups in the western region of Saudi Arabia. Methods This was a retrospective study that reviewed all ovarian specimens diagnosed as "ovarian tumors" by the Pathology Department from January 2016 to December 2020 at King Abdulaziz University Hospital, Saudi Arabia. The frequencies of ovarian neoplasm subtypes and their frequencies in different age groups were calculated. Results Out of 565 ovarian specimens studied, 63.2% were ovarian neoplasms while 36.8% were non-neoplastic functional cysts. Benign neoplasms 64.4% were more common than borderline 6.2% and malignant ones 29.4% in all age groups, except above the age of 60. Collectively as a category, surface epithelial neoplasms were the most common (59.4%). However, germ cell tumor in the form of mature cystic teratoma was the most common benign neoplasm 33.9% and the most common malignant was serous cystadenocarcinoma (40%). Conclusion Documenting new trends of histopathological patterns of ovarian neoplasms helps to detect variation among different age groups and to understand probable predisposing factors. This study found that the percentage of ovarian malignancy has increased over the years in the western region of Saudi Arabia. This signifies the need to increase awareness in order to achieve timely diagnosis and management.
Collapse
|
21
|
Zhang Q, Wang X, Zhang X, Zhan J, Zhang B, Jia J, Chen J. TMEM14A aggravates the progression of human ovarian cancer cells by enhancing the activity of glycolysis. Exp Ther Med 2022; 24:614. [PMID: 36160886 PMCID: PMC9468797 DOI: 10.3892/etm.2022.11551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/06/2022] [Indexed: 12/09/2022] Open
Affiliation(s)
- Qingmei Zhang
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Xiaohong Wang
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Xuan Zhang
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Jingfen Zhan
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Binbin Zhang
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Jin Jia
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Jie Chen
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
22
|
Nikolaidi A, Fountzilas E, Fostira F, Psyrri A, Gogas H, Papadimitriou C. Neoadjuvant treatment in ovarian cancer: New perspectives, new challenges. Front Oncol 2022; 12:820128. [PMID: 35957909 PMCID: PMC9360510 DOI: 10.3389/fonc.2022.820128] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer remains the leading cause of death from gynecological cancer. Survival is significantly related to the stage of the disease at diagnosis. Of quite importance is primary cytoreductive surgery, having as a goal to remove all visible tumor tissue, and is the standard primary treatment in combination with platinum-based chemotherapy for patients with advanced ovarian carcinoma. Neo-adjuvant chemotherapy (NACT) has been implemented mostly in treating advanced disease, with studies performed having numerous limitations. Data extrapolated from these studies have not shown inferiority survival of NACT, compared to primary debulking surgery. The role of NACT is of particular interest because of the intrinsic mechanisms that are involved in the process, which can be proven as therapeutic approaches with enormous potential. NACT increases immune infiltration and programmed death ligand-1 (PDL-1) expression, induces local immune activation, and can potentiate the immunogenicity of immune-exclude high grade serous ovarian tumors, while the combination of NACT with bevacizumab, PARP inhibitors or immunotherapy remains to be evaluated. This article summarizes all available data on studies implementing NACT in the treatment of ovarian cancer, focusing on clinical outcomes and study limitations. High mortality rates observed among ovarian cancer patients necessitates the identification of more effective treatments, along with biomarkers that will aid treatment individualization.
Collapse
Affiliation(s)
- Adamantia Nikolaidi
- Oncology Department, Private General Maternity, Gynecological and Pediatric Clinic “MITERA“ Hospital, Athens, Greece
- *Correspondence: Adamantia Nikolaidi,
| | - Elena Fountzilas
- Second Department of Medical Oncology, Euromedica General Clinic of Thessaloniki, Thessaloniki, Greece
- European University Cyprus, Engomi, Cyprus
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Amanda Psyrri
- Section of Medical Oncology, Department of Internal Medicine, “Attikon” Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Helen Gogas
- First Department of Medicine, ‘Laiko’ General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Christos Papadimitriou
- Oncology Unit, Second Department of Surgery, “Aretaieion” University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
23
|
Rani S, Sehgal A, Kaur J, Pandher DK, Punia RS. Osteopontin as a Tumor Marker in Ovarian Cancer. J Midlife Health 2022; 13:200-205. [PMID: 36950209 PMCID: PMC10025823 DOI: 10.4103/jmh.jmh_52_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/28/2023] Open
Abstract
Introduction Ovarian cancer is associated with high morbidity and mortality. This is due to the nonspecific symptoms and no effective screening methods. Currently, carbohydrate antigen-125 (CA125) is used as a tumor biomarker for the diagnosis of ovarian cancer, but it has its own limitations. Hence, there is a need for other tumor biomarkers for the diagnosis of ovarian cancer. Objective of the study was to evaluate the diagnostic test characteristics of plasma osteopontin (OPN) in detecting ovarian malignancy and comparing its performance with CA125. Materials and Methods This is a prospective cross-sectional diagnostic test evaluation. Women with adnexal mass detected by clinical or radiological examination were enrolled as suspected cases. Women who presented with other gynecological conditions were enrolled as controls. OPN and CA125 levels were measured in all enrolled subjects. Results Among 106 women enrolled, 26 were ovarian cancer, 31 had benign ovarian masses, and 49 were controls. Median plasma CA125 levels were higher in subjects with ovarian cancer (298 U/ml; interquartile range [IQR]: 84-1082 U/ml vs. 37.5U/ml; IQR: 17.6-82.9U/ml; P < 0.001). CA125 sensitivity, specificity, positive, and negative likelihood ratios were 88.5%, 61.3%, 2.10, and 0.19, respectively. Median plasma OPN levels were higher in subjects with ovarian cancer (63.1 ng/ml; IQR: 39.3-137 ng/ml vs. 27 ng/ml; IQR: 20-52 ng/ml; P = 0.001). Sensitivity, specificity, positive, and negative likelihood ratios of OPN were 50%, 87%, 2.58, and 0.62, respectively. Conclusion OPN levels were higher in ovarian cancer than in the benign ovarian mass and had better specificity than CA125. OPN can better differentiate between benign and malignant ovarian mass as compared to CA125.
Collapse
Affiliation(s)
- Shikha Rani
- Department of Obstetrics and Gynaecology, Dr. BR Ambedkar Institute of Medical Sciences, Mohali, Punjab, India
| | - Alka Sehgal
- Department of Obstetrics and Gynaecology, Government Medical College and Hospital, Chandigarh, India
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India
| | - Dilpreet Kaur Pandher
- Department of Obstetrics and Gynaecology, Government Medical College and Hospital, Chandigarh, India
| | - Rajpal Singh Punia
- Department of Pathology, Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
24
|
Beg A, Parveen R, Fouad H, Yahia ME, Hassanein AS. Role of different non-coding RNAs as ovarian cancer biomarkers. J Ovarian Res 2022; 15:72. [PMID: 35715825 PMCID: PMC9206245 DOI: 10.1186/s13048-022-01002-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Among many gynecological malignancies ovarian cancer is the most prominent and leading cause of female mortality worldwide. Despite extensive research, the underlying cause of disease progression and pathology is still unknown. In the progression of ovarian cancer different non-coding RNAs have been recognized as important regulators. The biology of ovarian cancer which includes cancer initiation, progression, and dissemination is found to be regulated by different ncRNA. Clinically ncRNA shows high prognostic and diagnostic importance. Results In this review, we prioritize the role of different non-coding RNA and their perspective in diagnosis as potential biomarkers in the case of ovarian cancer. Summary of some of the few miRNAs involved in epithelial ovarian cancer their expression and clinical features are being provided in the table. Also, in cancer cell proliferation, apoptosis, invasion, and migration abnormal expression of piRNAs are emerging as a crucial regulator hence the role of few piRNAs is being given. Both tRFs and tiRNAs play important roles in tumorigenesis and are promising diagnostic biomarkers and therapeutic targets for cancer. lncRNA has shown a leading role in malignant transformation and potential therapeutic value in ovarian cancer therapy. Conclusions Hence in this review we demonstrated the role of different ncRNA that play an important role in serving strong potential as a therapeutic approach for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Anam Beg
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rafat Parveen
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Hassan Fouad
- Applied Medical Science Department, CC, King Saud University, P.O Box 10219, Riyadh, 11433, Saudi Arabia
| | - M E Yahia
- Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Azza S Hassanein
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt
| |
Collapse
|
25
|
The role of the inflammasome and its related pathways in ovarian cancer. Clin Transl Oncol 2022; 24:1470-1477. [PMID: 35288840 DOI: 10.1007/s12094-022-02805-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/03/2022] [Indexed: 10/18/2022]
Abstract
Ovarian cancer (OC) is the most lethal tumor of the female reproductive tract and one of the most prevalent causes of death among female cancer patients. The absence of suitable procedures for early diagnosis, chemoresistance, and limited surgical debulking are all contributing to poor survival in patients. Despite aggressive treatments, the majority of patients have a recurrence within 16-22 months. Inflammasomes are multimeric protein complexes that play a major role in the innate immune system and inflammation. The overexpression of inflammasome-related pathways, including NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), Absent in melanoma 2 (AIM2), caspase-1, and Interleukin (IL)-1 have been reported in OC patients and in vitro cell lines. Therefore, inflammasome-related genes and protein might have a role in OC pathogenesis. Considering the potential relationship between inflammasome and OC, this study aimed to provide a literature-based review to explain the role of inflammasome and inflammation in cancer progression in OC.
Collapse
|
26
|
Point-of-care detection assay based on biomarker-imprinted polymer for different cancers: a state-of-the-art review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Alberto-Aguilar DR, Hernández-Ramírez VI, Osorio-Trujillo JC, Gallardo-Rincón D, Toledo-Leyva A, Talamás-Rohana P. PHD finger protein 20-like protein 1 (PHF20L1) in ovarian cancer: from its overexpression in tissue to its upregulation by the ascites microenvironment. Cancer Cell Int 2022; 22:6. [PMID: 34991589 PMCID: PMC8740351 DOI: 10.1186/s12935-021-02425-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023] Open
Abstract
Background Ovarian cancer is the most aggressive gynecological malignancy. Transcriptional regulators impact the tumor phenotype and, consequently, clinical progression and response to therapy. PHD finger protein 20-like protein 1 (PHF20L1) is a transcriptional regulator with several isoforms, and studies on its role in ovarian cancer are limited. We previously reported that PHF20L1 is expressed as a fucosylated protein in SKOV-3 cells stimulated with ascites from patients with ovarian cancer. Methods We decided to analyze the expression of PHF20L1 in ovarian cancer tissues, determine whether a correlation exists between PHF20L1 expression and patient clinical data, and analyze whether ascites can modulate the different isoforms of this protein. Ovarian cancer biopsies from 29 different patients were analyzed by immunohistochemistry, and the expression of the isoforms in ovarian cancer cells with or without exposure to the tumor microenvironment, i.e., the ascitic fluid, was determined by western blotting assays. Results Immunohistochemical results suggest that PHF20L1 exhibits increased expression in sections of tumor tissues from patients with ovarian cancer and that higher PHF20L1 expression correlates with shorter progression-free survival and shorter overall survival. Furthermore, western blotting assays determined that protein isoforms are differentially regulated in SKOV-3 cells in response to stimulation with ascites from patients with epithelial ovarian cancer. Conclusion The results suggest that PHF20L1 could play a relevant role in ovarian cancer given that higher PHF20L1 protein expression is associated with lower overall patient survival. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02425-6.
Collapse
Affiliation(s)
- Dulce Rosario Alberto-Aguilar
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Verónica Ivonne Hernández-Ramírez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Juan Carlos Osorio-Trujillo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Dolores Gallardo-Rincón
- Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Delegación Tlalpan, 07360, Mexico City, Mexico
| | - Alfredo Toledo-Leyva
- Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Delegación Tlalpan, 07360, Mexico City, Mexico
| | - Patricia Talamás-Rohana
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, Mexico City, Mexico.
| |
Collapse
|
28
|
Kumar V, Gupta S, Varma K, Chaurasia A, Sachan M. Diagnostic performance of microRNA-34a, let-7f and microRNA-31 in epithelial ovarian cancer prediction. J Gynecol Oncol 2022; 33:e49. [PMID: 35557032 PMCID: PMC9250857 DOI: 10.3802/jgo.2022.33.e49] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 03/05/2022] [Indexed: 11/30/2022] Open
Abstract
Objective To correlate the genome-wide methylation signature of microRNA genes with dysregulated expression of selected candidate microRNA in tissue and serum samples of epithelial ovarian cancer (EOC) and control using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and evaluation of EOC predictive value of candidate microRNA at an early stage. Methods We performed Methylated DNA Immunoprecipitation coupled with NGS (MeDIP-NGS) sequencing of 6 EOC and 2 normal tissue samples of the ovary. Expression of selected microRNA from tissue (EOC=85, normal=30) and serum (EOC=50, normal=15) samples was evaluated using qRT-PCR. We conducted bioinformatics analysis to identify the candidate miRNA’s potential target and functional role. Results MeDIP-NGS sequencing revealed hypermethylation of several microRNAs gene promoters. Three candidate microRNAs were selected (microRNA-34a, let-7f, and microRNA-31) from MeDIP-NGS data analysis based on log2FC and P-value. The relative expression level of microRNA-34a, let-7f, and microRNA-31 was found to be significantly reduced in early-stage EOC tissues and serum samples (p<0.0001). The receiver operating characteristic analysis of microRNA-34a, let-7f and miR-31 showed improved diagnostic value with area under curve(AUC) of 92.0 (p<0.0001), 87.9 (p<0.0001), and 85.6 (p<0.0001) and AUC of 82.7 (p<0.0001), 82.0 (p<0.0001), and 81.0 (p<0.0001) in stage III-IV and stage I-II EOC serum samples respectively. The integrated diagnostic performance of microRNA panel (microRNA-34a+let-7f+microRNA-31) in late-stage and early-stage serum samples was 95.5 and 96.9 respectively. Conclusion Our data correlated hypermethylation-associated downregulation of microRNA in EOC. In addition, a combined microRNA panel from serum could predict the risk of EOC with greater AUC, sensitivity, and specificity. miR-34a, let-7f, and miR-31 promoters were significantly methylated in EOC samples. Significant reduced level of miR-34a, miR-31 and let-7f was observed in EOC samples. Individual and combined miRNA panel have higher diagnostic value for EOC prediction. miR-34a, let-7f and miR-31 can discriminate metastatic over non-metastatic samples.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Kachnar Varma
- Department of Pathology, Motilal Nehru Medical College Allahabad, Prayagraj, India
| | - Amrita Chaurasia
- Department of Gynaecology and Obstetrics, Motilal Nehru Medical College Allahabad, Prayagraj, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
29
|
Caeiro C, Leão I, Oliveira I, Sousa I, André T. Recurrent Ovarian Cancer with BRCAness Phenotype: A Treatment Challenge. Adv Ther 2022; 39:5289-5299. [PMID: 36063278 PMCID: PMC9442551 DOI: 10.1007/s12325-022-02259-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Ovarian cancer is a leading cause of death among women with gynecologic malignancies. The relapse rate is high after platinum-based therapy, with the effectiveness of subsequent treatment lines decreasing over time. Recent data suggest the benefit of maintenance therapy with niraparib in platinum-sensitive recurrent disease. CASE PRESENTATIONS We report a case series of five women with advanced ovarian cancer and BRCAness phenotype who responded favorably, and in some cases with long-term response, to maintenance therapy with niraparib. Toxicities were as expected and generally manageable. Two patients developed grade 2/3 hematological toxicity, which resolved with treatment suspension and subsequent dose reductions, and one patient reported a rare skin toxicity while responding to full-dose niraparib treatment, which was controlled with photoprotection and sunscreen. DISCUSSION AND CONCLUSIONS This case series highlights the role of PARP1/2 inhibitors as a new standard of care as maintenance therapy for recurrent platinum-sensitive high-grade ovarian cancer, irrespective of BRCA status.
Collapse
Affiliation(s)
- Cláudia Caeiro
- Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Inês Leão
- Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Inês Oliveira
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, 1099-023 Lisbon, Portugal
| | - Isabel Sousa
- Centro Hospitalar Universitário de São João, Porto, Portugal
| | | |
Collapse
|
30
|
Barr JL, Kruse A, Restaino AC, Tulina N, Stuckelberger S, Vermeer SJ, Williamson CS, Vermeer DW, Madeo M, Stamp J, Bell M, Morgan M, Yoon JY, Mitchell MA, Budina A, Omran DK, Schwartz LE, Drapkin R, Vermeer PD. Intra-Tumoral Nerve-Tracing in a Novel Syngeneic Model of High-Grade Serous Ovarian Carcinoma. Cells 2021; 10:3491. [PMID: 34944001 PMCID: PMC8699855 DOI: 10.3390/cells10123491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Dense tumor innervation is associated with enhanced cancer progression and poor prognosis. We observed innervation in breast, prostate, pancreatic, lung, liver, ovarian, and colon cancers. Defining innervation in high-grade serous ovarian carcinoma (HGSOC) was a focus since sensory innervation was observed whereas the normal tissue contains predominantly sympathetic input. The origin, specific nerve type, and the mechanisms promoting innervation and driving nerve-cancer cell communications in ovarian cancer remain largely unknown. The technique of neuro-tracing enhances the study of tumor innervation by offering a means for identification and mapping of nerve sources that may directly and indirectly affect the tumor microenvironment. Here, we establish a murine model of HGSOC and utilize image-guided microinjections of retrograde neuro-tracer to label tumor-infiltrating peripheral neurons, mapping their source and circuitry. We show that regional sensory neurons innervate HGSOC tumors. Interestingly, the axons within the tumor trace back to local dorsal root ganglia as well as jugular-nodose ganglia. Further manipulations of these tumor projecting neurons may define the neuronal contributions in tumor growth, invasion, metastasis, and responses to therapeutics.
Collapse
Affiliation(s)
- Jeffrey L. Barr
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
| | - Allison Kruse
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
| | - Anthony C. Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
- Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA
| | - Natalia Tulina
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA; (N.T.); (S.S.); (M.M.); (M.A.M.); (D.K.O.); (R.D.)
| | - Sarah Stuckelberger
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA; (N.T.); (S.S.); (M.M.); (M.A.M.); (D.K.O.); (R.D.)
| | - Samuel J. Vermeer
- Lincoln High School, 2900 South Cliff Avenue, Sioux Falls, SD 57105, USA;
| | - Caitlin S. Williamson
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
| | - Daniel W. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
| | - Marianna Madeo
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
| | - Jillian Stamp
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
| | - Maria Bell
- Sanford Gynecologic Oncology, Sanford Health, 1309 West 17th St., Sioux Falls, SD 57104, USA;
| | - Mark Morgan
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA; (N.T.); (S.S.); (M.M.); (M.A.M.); (D.K.O.); (R.D.)
| | - Ju-Yoon Yoon
- Laboratory Medicine, Department of Pathology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; (J.-Y.Y.); (A.B.); (L.E.S.)
| | - Marilyn A. Mitchell
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA; (N.T.); (S.S.); (M.M.); (M.A.M.); (D.K.O.); (R.D.)
| | - Anna Budina
- Laboratory Medicine, Department of Pathology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; (J.-Y.Y.); (A.B.); (L.E.S.)
| | - Dalia K. Omran
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA; (N.T.); (S.S.); (M.M.); (M.A.M.); (D.K.O.); (R.D.)
| | - Lauren E. Schwartz
- Laboratory Medicine, Department of Pathology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; (J.-Y.Y.); (A.B.); (L.E.S.)
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA; (N.T.); (S.S.); (M.M.); (M.A.M.); (D.K.O.); (R.D.)
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
- Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA
| |
Collapse
|
31
|
Lusk H, Burdette JE, Sanchez LM. Models for measuring metabolic chemical changes in the metastasis of high grade serous ovarian cancer: fallopian tube, ovary, and omentum. Mol Omics 2021; 17:819-832. [PMID: 34338690 PMCID: PMC8649074 DOI: 10.1039/d1mo00074h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy and high grade serous ovarian cancer (HGSOC) is the most common and deadly subtype, accounting for 70-80% of OC deaths. HGSOC has a distinct pattern of metastasis as many believe it originates in the fallopian tube and then it metastasizes first to the ovary, and later to the adipose-rich omentum. Metabolomics has been heavily utilized to investigate metabolite changes in HGSOC tumors and metastasis. Generally, metabolomics studies have traditionally been applied to biospecimens from patients or animal models; a number of recent studies have combined metabolomics with innovative cell-culture techniques to model the HGSOC metastatic microenvironment for the investigation of cell-to-cell communication. The purpose of this review is to serve as a tool for researchers aiming to model the metastasis of HGSOC for metabolomics analyses. It will provide a comprehensive overview of current knowledge on the origin and pattern of metastasis of HGSOC and discuss the advantages and limitations of different model systems to help investigators choose the best model for their research goals, with a special emphasis on compatibility with different metabolomics modalities. It will also examine what is presently known about the role of small molecules in the origin and metastasis of HGSOC.
Collapse
Affiliation(s)
- Hannah Lusk
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S Ashland Ave., Chicago, IL, 60607, USA
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
32
|
Eroglu EC, Tunug S, Geckil OF, Gulec UK, Vardar MA, Paydas S. Discovery of metabolomic biomarkers for discriminating platinum-sensitive and platinum-resistant ovarian cancer by using GC-MS. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2021; 27:235-248. [PMID: 34806450 DOI: 10.1177/14690667211057996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aims to determine ovarian cancer (OC) patients with platinum resistance for alternative treatment protocols by using metabolomic methodologies. Urine and serum samples of platinum-resistant and platinum-sensitive OC were analyzed using GC-MS. After data processing of GC-MS raw data, multivariate analyses were performed to interpret complex data for biologically meaningful information and to identify the biomarkers that cause differences between two groups. The biomarkers were verified after univariate, multivariate, and ROC analysis. Finally, metabolomic pathways related to group separations were specified. The results of biomarker analysis showed that 3,4-dihydroxyphenylacetic acid, 4-hydroxybutyric acid, L-threonine, D- mannose, and sorbitol metabolites were potential biomarkers in urine samples. In serum samples, L-arginine, linoleic acid, L-glutamine, and hypoxanthine were identified as important biomarkers. R2Y, Q2, AUC, sensitivity and specificity values of platinum-resistant and sensitive OC patients' urine and serum samples were 0.85, 0.545, 0.844, 91.30%, 81.08 and 0.570, 0.206, 0.743, 77.78%, 74.28%, respectively. In metabolic pathway analysis of urine samples, tyrosine metabolism and fructose and mannose metabolism were found to be statistically significant (p < 0.05) for the discrimination of the two groups. While 3,4-dihydroxyphenylacetic acid, L-tyrosine, and fumaric acid metabolites were effective in tyrosine metabolism. D-sorbitol and D-mannose metabolites were significantly important in fructose and mannose metabolism. However, seven metabolomic pathways were significant (p < 0.05) in serum samples. In terms of p-value, L-glutamine in the nitrogen metabolic pathway from the first three pathways; L-glutamine and pyroglutamic acid metabolites in D-glutamine and D-glutamate metabolism. In the arginine and proline metabolic pathway, L-arginine, L-proline, and L-ornithine metabolites differed significantly between the two groups.
Collapse
Affiliation(s)
- Evren C Eroglu
- Department of Biotechnology, 37506Cukurova University, Adana, Turkey
- Alata Horticultural Research Institute, Mersin, Turkey
| | - Sule Tunug
- Department of Gynecological Oncology, 37506Cukurova University, Adana, Turkey
| | - Omer Faruk Geckil
- Department of Gynecological Oncology, 37506Cukurova University, Adana, Turkey
| | | | - Mehmet Ali Vardar
- Department of Gynecological Oncology, 37506Cukurova University, Adana, Turkey
| | - Semra Paydas
- Department of Oncology, 37506Cukurova University, Adana, Turkey
| |
Collapse
|
33
|
Tanha K, Mottaghi A, Nojomi M, Moradi M, Rajabzadeh R, Lotfi S, Janani L. Investigation on factors associated with ovarian cancer: an umbrella review of systematic review and meta-analyses. J Ovarian Res 2021; 14:153. [PMID: 34758846 PMCID: PMC8582179 DOI: 10.1186/s13048-021-00911-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
Following cervical and uterine cancer, ovarian cancer (OC) has the third rank in gynecologic cancers. It often remains non-diagnosed until it spreads throughout the pelvis and abdomen. Identification of the most effective risk factors can help take prevention measures concerning OC. Therefore, the presented review aims to summarize the available studies on OC risk factors. A comprehensive systematic literature search was performed to identify all published systematic reviews and meta-analysis on associated factors with ovarian cancer. Web of Science, Cochrane Library databases, and Google Scholar were searched up to 17th January 2020. This study was performed according to Smith et al. methodology for conducting a systematic review of systematic reviews. Twenty-eight thousand sixty-two papers were initially retrieved from the electronic databases, among which 20,104 studies were screened. Two hundred seventy-seven articles met our inclusion criteria, 226 of which included in the meta-analysis. Most commonly reported genetic factors were MTHFR C677T (OR=1.077; 95 % CI (1.032, 1.124); P-value<0.001), BSML rs1544410 (OR=1.078; 95 %CI (1.024, 1.153); P-value=0.004), and Fokl rs2228570 (OR=1.123; 95 % CI (1.089, 1.157); P-value<0.001), which were significantly associated with increasing risk of ovarian cancer. Among the other factors, coffee intake (OR=1.106; 95 % CI (1.009, 1.211); P-value=0.030), hormone therapy (RR=1.057; 95 % CI (1.030, 1.400); P-value<0.001), hysterectomy (OR=0.863; 95 % CI (0.745, 0.999); P-value=0.049), and breast feeding (OR=0.719, 95 % CI (0.679, 0.762) and P-value<0.001) were mostly reported in studies. Among nutritional factors, coffee, egg, and fat intake significantly increase the risk of ovarian cancer. Estrogen, estrogen-progesterone, and overall hormone therapies also are related to the higher incidence of ovarian cancer. Some diseases, such as diabetes, endometriosis, and polycystic ovarian syndrome, as well as several genetic polymorphisms, cause a significant increase in ovarian cancer occurrence. Moreover, other factors, for instance, obesity, overweight, smoking, and perineal talc use, significantly increase the risk of ovarian cancer.
Collapse
Affiliation(s)
- Kiarash Tanha
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Mottaghi
- Research Center for Prevention of Cardiovascular Diseases, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Nojomi
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Community and Family Medicine Department, School of Medicine,Iran University of Medical Sciences, Tehran, Iran
- Department of Sociology & Anthropology, Nipissing University, Ontario North Bay, Canada
| | - Marzieh Moradi
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvan Rajabzadeh
- School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Lotfi
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Janani
- Imperial Clinical Trials Unit, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
34
|
Hegde P, B R S, Ballal S, Swamy BM, Inamdar SR. Rhizoctonia bataticola lectin induces apoptosis and inhibits metastasis in ovarian cancer cells by interacting with CA 125 antigen differentially expressed on ovarian cells. Glycoconj J 2021; 38:669-688. [PMID: 34748163 DOI: 10.1007/s10719-021-10027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
A N-glycan specific lectin from Rhizoctonia bataticola [RBL] was shown to induce growth inhibitory and apoptotic effect in human ovarian, colon and leukemic cells but mitogenic effect on normal PBMCs as reported earlier, revealing its clinical potential. RBL has unique specificity for high mannose tri and tetra antennary N-glycans, expressed in ovarian cancer and also recognizes glycans which are part of CA 125 antigen, a well known ovarian cancer marker. Hence, in the present study diagnostic and therapeutic potential of RBL was investigated using human ovarian epithelial cancer SKOV3 and OVCAR3 cells known for differentially expressing CA 125. RBL binds differentially to human ovarian normal, cyst and cancer tissues. Flow cytometry, western blot analysis of membrane proteins showed the competitive binding of RBL and CA 125 antibody for the same binding sites on SKOV3 and OVCAR3 cells. RBL has strong binding to both SKOV3 and OVCAR3 cells with MFI of 173 and 155 respectively. RBL shows dose and time dependent growth inhibitory effect with IC50 of 2.5 and 8 μg/mL respectively for SKOV3 and OVCAR3 cells. RBL induces reproductive cell death, morphological changes, nuclear degradation and increased release of ROS in SKOV3 and OVCAR3 cells leading to cell death. This is also supported by increase in hypodiploid population, altered MMP leading to apoptosis possibly involving intrinsic pathway. Adhesion, wound healing, invasion and migration assays demonstrated anti-metastasis effect of RBL apart from its growth inhibitory effect. These results show the promising potential of RBL both as a diagnostic and therapeutic agent.
Collapse
Affiliation(s)
- Prajna Hegde
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Sindhura B R
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Suhas Ballal
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India.
| |
Collapse
|
35
|
Kumar V, Gupta S, Chaurasia A, Sachan M. Evaluation of Diagnostic Potential of Epigenetically Deregulated MiRNAs in Epithelial Ovarian Cancer. Front Oncol 2021; 11:681872. [PMID: 34692473 PMCID: PMC8529058 DOI: 10.3389/fonc.2021.681872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies among women worldwide. Early diagnosis of EOC could help in ovarian cancer management. MicroRNAs, a class of small non-coding RNA molecules, are known to be involved in post-transcriptional regulation of ~60% of human genes. Aberrantly expressed miRNAs associated with disease progression are confined in lipid or lipoprotein and secreted as extracellular miRNA in body fluid such as plasma, serum, and urine. MiRNAs are stably present in the circulation and recently have gained an importance to serve as a minimally invasive biomarker for early detection of epithelial ovarian cancer. Methods Genome-wide methylation pattern of six EOC and two normal ovarian tissue samples revealed differential methylation regions of miRNA gene promoter through MeDIP-NGS sequencing. Based on log2FC and p-value, three hypomethylated miRNAs (miR-205, miR-200c, and miR-141) known to have a potential role in ovarian cancer progression were selected for expression analysis through qRT-PCR. The expression of selected miRNAs was analyzed in 115 tissue (85 EOC, 30 normal) and 65 matched serum (51 EOC and 14 normal) samples. Results All three miRNAs (miR-205, miR-200c, and miR-141) showed significantly higher expression in both tissue and serum cohorts when compared with normal controls (p < 0.0001). The receiver operating characteristic curve analysis of miR-205, miR-200c, and miR-141 has area under the curve (AUC) values of 87.6 (p < 0.0001), 78.2 (p < 0.0001), and 86.0 (p < 0.0001), respectively; in advance-stage serum samples, however, ROC has AUC values of 88.1 (p < 0.0001), 78.9 (p < 0.0001), and 86.7 (p < 0.0001), respectively, in early-stage serum samples. The combined diagnostic potential of the three miRNAs in advance-stage serum samples and early-stage serum samples has AUC values of 95.9 (95% CI: 0.925-1.012; sensitivity = 96.6% and specificity = 80.0%) and 98.1 (95% CI: 0.941-1.021; sensitivity = 90.5% and specificity = 100%), respectively. Conclusion Our data correlate the epigenetic deregulation of the miRNA genes with their expression. In addition, the miRNA panel (miR-205 + miR-200c + miR-141) has a much higher AUC, sensitivity, and specificity to predict EOC at an early stage in both tissue and serum samples.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Amrita Chaurasia
- Department of Gynaecology and Obstetrics, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
36
|
Omer WE, Abdelbar MF, El-Kemary NM, Fukata N, El-Kemary MA. Cancer antigen 125 assessment using carbon quantum dots for optical biosensing for the early diagnosis of ovarian cancer. RSC Adv 2021; 11:31047-31057. [PMID: 35498938 PMCID: PMC9041374 DOI: 10.1039/d1ra05121k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/04/2021] [Indexed: 12/20/2022] Open
Abstract
Fluorometric quantification of biological molecules is a key feature used in many biosensing studies. Fluorescence resonance energy transfer (FRET) using highly fluorescent quantum dots offers highly sensitive detection of the in-proximity wide variety of analyst molecules. In this contribution, we report the use of carbon quantum dots (CDs) for the ultrasensitive optical biosensing of cancer antigen 125 (CA-125) in the early malignant stage. This approach is based on monitoring the quenching of CDs luminescence at 535 nm by CA-125 after excitation at 425 nm and pH 10. The calibration of this method was performed in the concentration range of CA-125 from 0.01 to 129 U ml−1 (R2 = 0.99) with a detection limit of 0.66 U ml−1, which matches remarkably with the standard chemiluminometric method in control and real patient samples. The sensing mechanism for cancer antigen 125 assessment was discussed on the basis of fluorescence quenching of CDs and time-resolved photoluminescence spectroscopy. The current method is easy, sensitive, cost-effective and provides a wide range of validity, which helps in overcoming the limitations of high cost and time consumption exhibited by many other traditional clinical assays for CA-125 quantification. Fluorometric quantification of biological molecules is a key feature used in many biosensing studies.![]()
Collapse
Affiliation(s)
- Walaa E Omer
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University 33516 Kafr Elsheikh Egypt
| | - Mostafa F Abdelbar
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University 33516 Kafr Elsheikh Egypt .,International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0044 Japan
| | - Nesma M El-Kemary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Kafrelsheikh University 33516 Kafr Elsheikh Egypt
| | - Naoki Fukata
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Kafrelsheikh University 33516 Kafr Elsheikh Egypt.,Graduate School of Pure and Applied Sciences, University of Tsukuba Tsukuba Ibaraki 305-8573 Japan
| | - Maged A El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University 33516 Kafr Elsheikh Egypt
| |
Collapse
|
37
|
Abstract
Ovarian cancer (OC) is characterized by a high morbidity and mortality, highlighting a great need for a better understanding of biological mechanisms that affect OC progression and improving its early detection methods. This study investigates effects of prolactin (PRL) on ovarian cancer cells, analyzes PRL receptors (PRLR) in tissue micro arrays and relates PRLR expression to survival of ovarian cancer. A database, composed of transcript profiles from OC, was searched for PRLR expression and results were put in relation to survival. Expression of PRLR in OC tissue sections and OC cell lines SKOV3, OV2008 and OVSAHO was assessed using immunohistochemistry, western blots and quantitative real-time PCR. The biological function of PRLR was evaluated by proliferation, colony formation and wound healing assays. Levels of PRLR mRNA are related to survival; in epithelial OC a high PRLR mRNA expression is related to a shorter survival. Analysis of a tissue micro array consisting of 84 OC showed that 72% were positive for PRLR immuno-staining. PRLR staining tended to be higher in OC of high grade tumors compared to lower grades. PRLR mRNA and protein can further be detected in OC cell lines. Moreover, in vitro treatment with PRL significantly activated the JAK/STAT pathway. PRLR expression is associated with OC survivals. PRL and its receptor may play an onco-modulatory role and promote tumor aggressiveness in OC. Alternatively, increased PRLR levels may form a base for the development of PRLR antagonist or PRLR antagonist-drug conjugate to increase selective uptake of anti-cancer drugs.
Collapse
|
38
|
Otsuka K, Ochiya T. Possible connection between diet and microRNA in cancer scenario. Semin Cancer Biol 2021; 73:4-18. [DOI: 10.1016/j.semcancer.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
|
39
|
Di Fiore R, Suleiman S, Drago-Ferrante R, Felix A, O’Toole SA, O’Leary JJ, Ward MP, Beirne J, Yordanov A, Vasileva-Slaveva M, Subbannayya Y, Pentimalli F, Giordano A, Calleja-Agius J. LncRNA MORT (ZNF667-AS1) in Cancer-Is There a Possible Role in Gynecological Malignancies? Int J Mol Sci 2021; 22:7829. [PMID: 34360598 PMCID: PMC8346052 DOI: 10.3390/ijms22157829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 01/21/2023] Open
Abstract
Gynecological cancers (GCs) are currently among the major threats to female health. Moreover, there are different histologic subtypes of these cancers, which are defined as 'rare' due to an annual incidence of <6 per 100,000 women. The majority of these tend to be associated with a poor prognosis. Long non-coding RNAs (lncRNAs) play a critical role in the normal development of organisms as well as in tumorigenesis. LncRNAs can be classified into tumor suppressor genes or oncogenes, depending on their function within the cellular context and the signaling pathways in which they are involved. These regulatory RNAs are potential therapeutic targets for cancer due to their tissue and tumor specificity. However, there still needs to be a deeper understanding of the mechanisms by which lncRNAs are involved in the regulation of numerous biological functions in humans, both in normal health and disease. The lncRNA Mortal Obligate RNA Transcript (MORT; alias ZNF667-AS1) has been identified as a tumor-related lncRNA. ZNF667-AS1 gene, located in the human chromosome region 19q13.43, has been shown to be silenced by DNA hypermethylation in several cancers. In this review, we report on the biological functions of ZNF667-AS1 from recent studies and describe the regulatory functions of ZNF667-AS1 in human disease, including cancer. Furthermore, we discuss the emerging insights into the potential role of ZNF667-AS1 as a biomarker and novel therapeutic target in cancer, including GCs (ovarian, cervical, and endometrial cancers).
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | | | - Ana Felix
- Department of Pathology, Instituto Portugues de Oncologia de Lisboa, NOVA Medical School, University NOVA of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology, Trinity St James’s Cancer Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland;
| | - John J. O’Leary
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Mark P. Ward
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - James Beirne
- Department of Gynaecological Oncology, Trinity St James’s Cancer Institute, St James Hospital, Trinity College Dublin, D08 X4RX Dublin, Ireland;
| | - Angel Yordanov
- Department of Gynecologic Oncology, Medical University Pleven, 5800 Pleven, Bulgaria;
| | | | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| |
Collapse
|
40
|
Jacobson D, Moore K, Gunderson C, Rowland M, Austin R, Honap TP, Xu J, Warinner C, Sankaranarayanan K, Lewis Jr CM. Shifts in gut and vaginal microbiomes are associated with cancer recurrence time in women with ovarian cancer. PeerJ 2021; 9:e11574. [PMID: 34178459 PMCID: PMC8214851 DOI: 10.7717/peerj.11574] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
Many studies investigating the human microbiome-cancer interface have focused on the gut microbiome and gastrointestinal cancers. Outside of human papillomavirus driving cervical cancer, little is known about the relationship between the vaginal microbiome and other gynecological cancers, such as ovarian cancer. In this retrospective study, we investigated the relationship between ovarian cancer, platinum-free interval (PFI) length, and vaginal and gut microbiomes. We observed that Lactobacillus-dominated vaginal communities were less common in women with ovarian cancer, as compared to existing datasets of similarly aged women without cancer. Primary platinum-resistance (PPR) disease is strongly associated with survivability under one year, and we found over one-third of patients with PPR (PFI < 6 months, n = 17) to have a vaginal microbiome dominated by Escherichia (>20% relative abundance), while only one platinum super-sensitive (PFI > 24 months, n = 23) patient had an Escherichia-dominated microbiome. Additionally, L. iners was associated with little, or no, gross residual disease, while other Lactobacillus species were dominant in women with >1 cm gross residual disease. In the gut microbiome, we found patients with PPR disease to have lower phylogenetic diversity than platinum-sensitive patients. The trends we observe in women with ovarian cancer and PPR disease, such as the absence of Lactobacillus and presence of Escherichia in the vaginal microbiome as well as low gut microbiome phylogenetic diversity have all been linked to other diseases and/or pro-inflammatory states, including bacterial vaginosis and autoimmune disorders. Future prospective studies are necessary to explore the translational potential and underlying mechanisms driving these associations.
Collapse
Affiliation(s)
- David Jacobson
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma, United States
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, Oklahoma, United States
| | - Kathleen Moore
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Camille Gunderson
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michelle Rowland
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Saint Luke’s Hospital of Kansas City, Kansas City, Missouri, United States
| | - Rita Austin
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma, United States
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, Oklahoma, United States
| | - Tanvi Prasad Honap
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma, United States
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, Oklahoma, United States
| | - Jiawu Xu
- Ragon Institute, MGH, MIT, and Harvard, Cambridge, Massachusetts, United States
- Harvard Medical School, Harvard University, Boston, Massachusetts, United States
| | - Christina Warinner
- Department of Anthropology, Harvard University, Cambridge, Massachusetts, United States
| | - Krithivasan Sankaranarayanan
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, Oklahoma, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States
| | - Cecil M. Lewis Jr
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma, United States
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, Oklahoma, United States
| |
Collapse
|
41
|
Ladegaard Baun ML, Dueholm M, Heje HN, Hamilton W, Petersen LK, Vedsted P. Direct access from general practice to transvaginal ultrasound for early detection of ovarian cancer: a feasibility study. Scand J Prim Health Care 2021; 39:230-239. [PMID: 34092179 PMCID: PMC8293964 DOI: 10.1080/02813432.2021.1922831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/31/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To investigate the feasibility of providing general practitioners (GPs) direct and fast referral access to transvaginal ultrasound (TVUS). DESIGN A prospective cohort study. SETTING A total of 232 Danish general practices in parts of the Central Denmark Region. SUBJECTS Women aged ≥40 years who consulted their GP for vague and non-specific symptoms (n = 479). MAIN OUTCOME MEASURES The feasibility assessment included the GPs' referral rate, indications for referral, management of test results, and findings from TVUS. RESULTS A total of 479 women were referred to TVUS. The examinations revealed abnormalities in 104 (21.7%) women. Additional investigations were needed in 68 (14.2%) women of whom seven (1.5%) underwent major surgery. No case of ovarian cancer was diagnosed during the study period or the 6-month follow-up. However, three (0.6%) women with an abnormal transvaginal ultrasound were diagnosed with urogynecological cancer; this yielded a PPV of 4.4% (95% confidence interval: 1.5-12.2) and an NPV of 100.0% (95% confidence interval: 96.7-100.0) for urogynecological cancer. CONCLUSION Providing GPs with direct access to transvaginal ultrasound was feasible; 80% of the investigated women were referred back to the GP, 14% were further investigated, 0.6% were diagnosed with urogynecological cancer, and 1.5% had major procedures performed without complications. IMPLICATIONS Direct access to TVUS could be an important pathway to ensure fast evaluation of women presenting with vague non-specific symptoms of potential ovarian cancer. Future studies should explore the patient experience, cancer outcomes, and health economics issues.KEY POINTS Current awareness • GPs have no fast referral option for women presenting with vague non-specific symptoms that could indicate underlying ovarian cancer. Key findings • We offered GPs direct and fast referral access to TVUS; 51.7% of practices used the opportunity. • The GPs referred 479 women to TVUS; 104 had an abnormal TVUS and 68 needed additional investigations. • Seven women underwent major surgery, leading to three cases of urogynecological cancer. No woman had a false negative TVUS result.
Collapse
Affiliation(s)
- Marie-Louise Ladegaard Baun
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Research Centre for Cancer Diagnosis in Primary Care, Research Unit for General Practice – Aarhus, Aarhus, Denmark
| | - Margit Dueholm
- Department of Gynaecology and Obstetrics, Aarhus University Hospital, Palle Juul-Jensens, Aarhus, Denmark
| | | | - William Hamilton
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Lone Kjeld Petersen
- Department of Gynaecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - Peter Vedsted
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Research Centre for Cancer Diagnosis in Primary Care, Research Unit for General Practice – Aarhus, Aarhus, Denmark
| |
Collapse
|
42
|
Review of biomarker systems as an alternative for early diagnosis of ovarian carcinoma. Clin Transl Oncol 2021; 23:1967-1978. [PMID: 33840014 DOI: 10.1007/s12094-021-02604-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Early diagnosis of ovarian carcinoma is bound to boost the long-term endurance rate of the patients. Most ovarian tumors happen post menopause when the ovaries have no vital operation and therefore irregular ovarian role causes no signs. According to Muinao T. et al. (Heliyon. 5(12):e02826, 2019), if we consider the frequency of ovarian carcinoma to be moderate, a screening technique must accomplish a base specificity of 99.6% and sensitivity of over 75%. The classification and approval of early diagnostic biomarkers explicit to ovarian carcinoma are essentially required. Prevailing methods for early diagnosis of ovarian carcinoma incorporate TVS, biological marker examination, or a blend of the two or other. In recent years, it has been revealed that a combination of at least two biomarkers has beaten single biomarkers in measures for early diagnosis of the illness. In the present document, we survey the ongoing exploration of innovative characteristic methodologies and possible panels of carcinoma biological markers for the early diagnosis of ovarian carcinoma and discuss biomarkers as the plausible apparatus for model improvement and other progressed approaches as an effective alternative to the prevailing methods for early diagnosis of this dreadful disease to evade bogus analysis and inordinate expense.
Collapse
|
43
|
Romeo FJ, Seropian IM, Chiabrando JG, Raleigh JV, Smietniansky M, Cal M, Falconi M, Kotowicz V, Agatiello CR, Berrocal DH. Additive prognostic value of carbohydrate antigen-125 over frailty in patients undergoing transcatheter aortic valve replacement. Catheter Cardiovasc Interv 2021; 97:E263-E273. [PMID: 32597028 DOI: 10.1002/ccd.29067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND To evaluate the additive prognostic value of myocardial, inflammatory, and renal biomarkers according to frailty status in patients undergoing transcatheter aortic valve replacement (TAVR) for aortic stenosis (AS). METHODS A total of 111 subjects who underwent TAVR at Hospital Italiano de Buenos Aires, Argentina between January 2016 and December 2018 were retrospectively reviewed. Plasma levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), high sensitivity troponin T (hs-cTnT), C-reactive protein (CRP), cystatin-c (Cys-C) and carbohydrate antigen-125 (CA-125) were assessed prior to TAVR. Frailty status was assessed according to the fried physical frailty phenotype (FPFP). The primary endpoint was defined as all-cause death and/or readmission for worsening congestive heart failure (CHF) within the first year after TAVR. RESULTS Of the 111 patients included, 48/111 (43%) were considered to be "frail" according to the FPFP. Among biomarkers, we found CA-125 to be strongly associated with the primary endpoint (p = .006). CA-125 ≥ 18.2 U/ml was present in 41% and was associated with a higher rate of the primary endpoint (31% vs. 9%; p = .003). After multivariable adjustment, CA-125 ≥ 18.2 U/ml (hazard ratio [HR] 3.17; p = .024) was the only independent predictor of the primary endpoint. Finally, the inclusion of CA-125 to frailty significantly improved C-index (0.68-0.74; p < .05), and provided a Net Reclassification Improvement (NRI) of 0.34 (95% CI 0.19-0.49, p = .031), largely through reductions in risk estimates among pre-frail and frail patients. CONCLUSIONS CA-125, a tumor biomarker, outperformed frailty for predicting the primary endpoint within the first year after TAVR.
Collapse
Affiliation(s)
- Francisco José Romeo
- Department of Interventional Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Ignacio Miguel Seropian
- Department of Interventional Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Juan Guido Chiabrando
- Department of Interventional Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Juan Valle Raleigh
- Department of Interventional Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Smietniansky
- Department of Internal Medicine and Geriatrics, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Mariela Cal
- Department of Internal Medicine and Geriatrics, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Falconi
- Department of Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Vadim Kotowicz
- Department of Cardiovascular Surgery, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Carla Romina Agatiello
- Department of Interventional Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Horacio Berrocal
- Department of Interventional Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
44
|
Pereira M, Matuszewska K, Jamieson C, Petrik J. Characterizing Endocrine Status, Tumor Hypoxia and Immunogenicity for Therapy Success in Epithelial Ovarian Cancer. Front Endocrinol (Lausanne) 2021; 12:772349. [PMID: 34867818 PMCID: PMC8635771 DOI: 10.3389/fendo.2021.772349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse. Tumor heterogeneity leads to diversity in therapy response within the tumor, which can lead to resistance or recurrence. Advancements in therapy development and tumor profiling have initiated a shift from a "one-size-fits-all" approach towards precision patient-based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate tumorigenesis and contribute to treatment failure. These tumor characteristics should be considered when designing novel therapies or characterizing mechanisms of treatment resistance. Individual patients vary considerably in terms of age, fertility and contraceptive use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors differ significantly in their immune profile, which can impact the efficacy of immunotherapies. Tumor size, presence of malignant ascites and vascular density further alters the tumor microenvironment, creating areas of significant hypoxia that is notorious for increasing tumorigenesis, resistance to standard of care therapies and promoting stemness and metastases. We further expand on strategies aimed at improving oxygenation status in tumors to dampen downstream effects of hypoxia and set the stage for better response to therapy.
Collapse
|
45
|
Pergialiotis V, Papoutsi E, Androutsou A, Tzortzis AS, Frountzas M, Papapanagiotou A, Kontzoglou K. Galectins-1, -3, -7, -8 and -9 as prognostic markers for survival in epithelial ovarian cancer: A systematic review and meta-analysis. Int J Gynaecol Obstet 2020; 152:299-307. [PMID: 33156523 DOI: 10.1002/ijgo.13471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/24/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Galectins are a family of proteins that have recently emerged as regulators of cancer biology. OBJECTIVES To investigate the impact of peritumoral and tumoral galectin expression on ovarian cancer prognosis. SEARCH STRATEGY We searched Medline, Cochrane, and EMBASE databases from inception until March 22, 2020. SELECTION CRITERIA All studies correlating galectins and ovarian cancer prognosis were selected. DATA COLLECTION AND ANALYSIS The literature search presented 11 studies, which contained 1034 patients. Meta-analysis was performed with RevMan 5.3 software. MAIN RESULTS Studies were stratified into two groups depending on the location of galectin expression (peritumoral stroma or nucleus/cytoplasm of tumor cells). Tumoral galectin-7 and galectin-9 expression was significantly associated with poor overall survival (odds ratio [OR] 2.06, 95% confidence interval [CI] 1.32-3.21, P = 0.001; OR 1.71, 95% CI 1.27-2.30, P < 0.001, respectively). The total effect of high tumoral expression of galectins in overall survival and progression-free survival was significant (OR 1.51, 95% CI 1.02-2.23, P = 0.04; OR 2.76, 95% CI 1.73-4.40, P < 0.001, respectively). CONCLUSIONS Our results suggest that galectins are implicated in ovarian cancer prognosis; however, further research is needed to ascertain their actual importance as well as their diagnostic accuracy.
Collapse
Affiliation(s)
- Vasilios Pergialiotis
- Laboratory of Experimental Surgery and Surgical Research NS Christeas, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Papoutsi
- Laboratory of Experimental Surgery and Surgical Research NS Christeas, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Androutsou
- Laboratory of Experimental Surgery and Surgical Research NS Christeas, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andrianos-Serafeim Tzortzis
- Laboratory of Experimental Surgery and Surgical Research NS Christeas, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maximos Frountzas
- Laboratory of Experimental Surgery and Surgical Research NS Christeas, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Papapanagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- Laboratory of Experimental Surgery and Surgical Research NS Christeas, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
CA125 and Ovarian Cancer: A Comprehensive Review. Cancers (Basel) 2020; 12:cancers12123730. [PMID: 33322519 PMCID: PMC7763876 DOI: 10.3390/cancers12123730] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary CA125 has been the most promising biomarker for screening ovarian cancer; however, it still does not have an acceptable accuracy in population-based screening for ovarian cancer. In this review article, we have discussed the role of CA125 in diagnosis, evaluating response to treatment and prognosis of ovarian cancer and provided some suggestions in improving the clinical utility of this biomarker in the early diagnosis of aggressive ovarian cancers. These include using CA125 to screen individuals with symptoms who seek medical care rather than screening the general population, increasing the cutoff point for the CA125 level in the plasma and performing the test at point-of-care rather than laboratory testing. By these strategies, we would detect more aggressive ovarian cancer patients in stages that the tumour can be completely removed by surgery, which is the most important factor in redusing recurrence rate and improving the survival of the patients with ovarian cancer. Abstract Ovarian cancer is the second most lethal gynecological malignancy. The tumour biomarker CA125 has been used as the primary ovarian cancer marker for the past four decades. The focus on diagnosing ovarian cancer in stages I and II using CA125 as a diagnostic biomarker has not improved patients’ survival. Therefore, screening average-risk asymptomatic women with CA125 is not recommended by any professional society. The dualistic model of ovarian cancer carcinogenesis suggests that type II tumours are responsible for the majority of ovarian cancer mortality. However, type II tumours are rarely diagnosed in stages I and II. The recent shift of focus to the diagnosis of low volume type II ovarian cancer in its early stages of evolution provides a new and valuable target for screening. Type II ovarian cancers are usually diagnosed in advanced stages and have significantly higher CA125 levels than type I tumours. The detection of low volume type II carcinomas in stage IIIa/b is associated with a higher likelihood for optimal cytoreduction, the most robust prognostic indicator for ovarian cancer patients. The diagnosis of type II ovarian cancer in the early substages of stage III with CA125 may be possible using a higher cutoff point rather than the traditionally used 35 U/mL through the use of point-of-care CA125 assays in primary care facilities. Rapid point-of-care testing also has the potential for effective longitudinal screening and quick monitoring of ovarian cancer patients during and after treatment. This review covers the role of CA125 in the diagnosis and management of ovarian cancer and explores novel and more effective screening strategies with CA125.
Collapse
|
47
|
Rahman Z, Bazaz MR, Devabattula G, Khan MA, Godugu C. Targeting H3K9 methyltransferase G9a and its related molecule GLP as a potential therapeutic strategy for cancer. J Biochem Mol Toxicol 2020; 35:e22674. [PMID: 33283949 DOI: 10.1002/jbt.22674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
H3K9 methyltransferase (G9a) and its relevant molecule GLP are the SET domain proteins that specifically add mono, di and trimethyl groups on to the histone H3K9, which lead to the transcriptional inactivation of chromatin and reduce the expression of cancer suppressor genes, which trigger growth and progress of several cancer types. Various studies have demonstrated that overexpression of H3K9 methyltransferase G9a and GLP in different kinds of tumors, like lung, breast, bladder, colon, cervical, gastric, skin cancers, hepatocellular carcinoma and hematological malignancies. Several G9a and GLP inhibitors such as BIX-01294, UNC0642, A-366 and DCG066 were developed to combat various cancers; however, there is a need for more effective and less toxic compounds. The current molecular docking study suggested that the selected new compounds such as ninhydrin, naphthoquinone, cysteamine and disulfide cysteamine could be suitable molecules as a G9a and GLP inhibitors. Furthermore, detailed cell based and preclinical animal studies are required to confirm their properties. In the current review, we discussed the role of G9a and GLP mediated epigenetic regulation in the cancers. A thorough literature review was done related to G9a and GLP. The databases used extensively for retrieval of information were PubMed, Medline, Scopus and Science-direct. Further, molecular docking was performed using Maestro Schrodinger version 9.2 software to investigate the binding profile of compounds with Human G9a HMT (PDB ID: 3FPD, 3RJW) and Human GLP MT (PDB ID: 6MBO, 6MBP).
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Rabi Bazaz
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Geetanjali Devabattula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Abrar Khan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
48
|
Leandersson P, Åkesson A, Hedenfalk I, Malander S, Borgfeldt C. A multiplex biomarker assay improves the diagnostic performance of HE4 and CA125 in ovarian tumor patients. PLoS One 2020; 15:e0240418. [PMID: 33075095 PMCID: PMC7571712 DOI: 10.1371/journal.pone.0240418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Survival in epithelial ovarian cancer (EOC) remains poor. Most patients are diagnosed in late stages. Early diagnosis increases the chance of survival. We used the proximity extension assay from Olink Proteomics to search for new protein biomarkers with the potential to improve the diagnostic performance of CA125 and HE4 in patients with ovarian tumors. MATERIAL AND METHODS Plasma samples were obtained from 180 women with ovarian tumors; 30 cases of benign tumor, 28 cases with borderline tumors, 25 early EOC cases (FIGO stage I) and 97 advanced EOC cases (FIGO stages II-IV). Proteins were measured using the Olink® Oncology II and Inflammation panels. For statistical analyses, patients were categorized into benign tumors versus cancer and benign tumors versus borderline + cancer, respectively. RESULTS We analyzed 177 biomarkers. Thirty-four proteins had ROC AUC > 0.7 for discrimination between benign tumors and cancer. Fifteen proteins had ROC AUC > 0.7 for discrimination between benign tumors and borderline tumors + cancer. HE4 ranked highest for both comparisons. A reference model with HE4, CA125 and age (AUC 0.838 for benign tumors vs. cancer and AUC 0.770 for benign tumors vs. borderline tumors + cancer) was compared to the reference model with the addition of each of the remaining proteins with AUC > 0.7. ITGAV was the only individual biomarker found to improve diagnostic performance of the reference model, to AUC 0.874 for benign tumors vs. cancer and AUC 0.818 for benign tumors vs. borderline tumors + cancer (p < 0.05). Cross-validation and LASSO regression was combined to select multiple biomarker combinations. The best performing model for discrimination between benign tumors and borderline tumors + cancer was a 6-biomarker combination (HE4, CA125, ITGAV, CXCL1, CEACAM1, IL-10RB) and age (AUC 0.868, sensitivity 0.86 and specificity 0.82, p = 0.016 for comparison with the reference model). CONCLUSION HE4 was the best performing individual biomarker for discrimination between benign ovarian tumors and EOC including borderline tumors. The addition of other carcinogenesis-related biomarkers in a multiplex biomarker panel can improve the diagnostic performance of the established biomarkers HE4 and CA125.
Collapse
Affiliation(s)
- Pia Leandersson
- Department of Clinical Sciences, Obstetrics and Gynecology, Lund University, Reproductive Medicine Center, Skåne University Hospital Malmö, Malmo, Sweden
- * E-mail:
| | - Anna Åkesson
- Clinical Studies Sweden–Forum South, Skåne University Hospital Lund, Lund, Sweden
| | - Ingrid Hedenfalk
- Department of Clinical Sciences, Oncology and Pathology, Lund University, Lund, Sweden
| | - Susanne Malander
- Department of Clinical Sciences, Oncology and Pathology, Lund University, Skåne University Hospital Lund, Lund, Sweden
| | - Christer Borgfeldt
- Department of Clinical Sciences, Obstetrics and Gynecology, Lund University, Skåne University Hospital Lund, Lund, Sweden
| |
Collapse
|
49
|
Tuncer SB, Erdogan OS, Erciyas SK, Saral MA, Celik B, Odemis DA, Turkcan GK, Yazici H. miRNA expression profile changes in the peripheral blood of monozygotic discordant twins for epithelial ovarian carcinoma: potential new biomarkers for early diagnosis and prognosis of ovarian carcinoma. J Ovarian Res 2020; 13:99. [PMID: 32854743 PMCID: PMC7453540 DOI: 10.1186/s13048-020-00706-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ovarian cancer is the second most common gynecologic cancer with high mortality rate and generally diagnosed in advanced stages. The 5-year disease-free survival is below 40%. MicroRNAs, subset of the non-coding RNA molecules, regulate the translation in post transcriptional level by binding to specific mRNAs to promote or degrade the target oncogenes or tumor suppressor genes. Abnormal expression of miRNAs were found in numerous human cancer, including ovarian cancer. Investigating the miRNAs derived from the peripheral blood samples can be used as a marker in the diagnose, treatment and prognosis of ovarian cancer. We aimed to find biological markers for early diagnosis of ovarian cancer by investigating BRCA1 gene mutation carrier monozygotic discordant twins and their high risk healthy family individual's miRNAs. METHODS The study was conducted on monozygotic twins discordant for ovarian cancer, and the liquid biopsy exploration of miRNAs was performed on mononuclear cells that were isolated from the peripheral blood samples. The miRNA expression profile changes in the study were found by using microarray analysis. miRNA isolation procedure performed from the lymphocyte in accordance with the kit protocol. The presence and quality of the isolated miRNAs screened by electrophoresis. Raw data logarithmic analysis was studied by identifying the threshold, normalization, correlation, mean and median values. Target proteins were detected for each miRNA by using different algorithms. RESULTS After the comparison of monozygotic discordant twins for epithelial ovarian carcinoma upregulation of the 4 miRNAs, miR-6131, miR-1305, miR-197-3p, miR-3651 and downregulation of 4 miRNAs, miR-3135b, miR-4430, miR-664b-5p, miR-766-3p were found statically significant. CONCLUSIONS The detected 99 miRNAs out of 2549 miRNAs might be used in the clinic as new biological indicators in the diagnosis and follow up of epithelial ovarian cancer with complementary studies. The miRNA expression profiles were identified to be statistically significant in the evaluation of ovarian cancer etiology, BRCA1 mutation status, and ovarian cancer risk in accordance with the obtained data. There is a need for validation of the miRNAs which were particularly detected between monozygotic twins and its association with ovarian cancer was emphasized in our study in wider cohorts including ovarian cancer patients, and healthy individuals.
Collapse
Affiliation(s)
- Seref Bugra Tuncer
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Seda Kilic Erciyas
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Mukaddes Avsar Saral
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Betul Celik
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Demet Akdeniz Odemis
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Gozde Kuru Turkcan
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Hulya Yazici
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
50
|
Challenges and Opportunities in Clinical Applications of Blood-Based Proteomics in Cancer. Cancers (Basel) 2020; 12:cancers12092428. [PMID: 32867043 PMCID: PMC7564506 DOI: 10.3390/cancers12092428] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The traditional approach in identifying cancer related protein biomarkers has focused on evaluation of a single peptide/protein in tissue or circulation. At best, this approach has had limited success for clinical applications, since multiple pathological tumor pathways may be involved during initiation or progression of cancer which diminishes the significance of a single candidate protein/peptide. Emerging sensitive proteomic based technologies like liquid chromatography mass spectrometry (LC-MS)-based quantitative proteomics can provide a platform for evaluating serial serum or plasma samples to interrogate secreted products of tumor–host interactions, thereby revealing a more “complete” repertoire of biological variables encompassing heterogeneous tumor biology. However, several challenges need to be met for successful application of serum/plasma based proteomics. These include uniform pre-analyte processing of specimens, sensitive and specific proteomic analytical platforms and adequate attention to study design during discovery phase followed by validation of discovery-level signatures for prognostic, predictive, and diagnostic cancer biomarker applications. Abstract Blood is a readily accessible biofluid containing a plethora of important proteins, nucleic acids, and metabolites that can be used as clinical diagnostic tools in diseases, including cancer. Like the on-going efforts for cancer biomarker discovery using the liquid biopsy detection of circulating cell-free and cell-based tumor nucleic acids, the circulatory proteome has been underexplored for clinical cancer biomarker applications. A comprehensive proteome analysis of human serum/plasma with high-quality data and compelling interpretation can potentially provide opportunities for understanding disease mechanisms, although several challenges will have to be met. Serum/plasma proteome biomarkers are present in very low abundance, and there is high complexity involved due to the heterogeneity of cancers, for which there is a compelling need to develop sensitive and specific proteomic technologies and analytical platforms. To date, liquid chromatography mass spectrometry (LC-MS)-based quantitative proteomics has been a dominant analytical workflow to discover new potential cancer biomarkers in serum/plasma. This review will summarize the opportunities of serum proteomics for clinical applications; the challenges in the discovery of novel biomarkers in serum/plasma; and current proteomic strategies in cancer research for the application of serum/plasma proteomics for clinical prognostic, predictive, and diagnostic applications, as well as for monitoring minimal residual disease after treatments. We will highlight some of the recent advances in MS-based proteomics technologies with appropriate sample collection, processing uniformity, study design, and data analysis, focusing on how these integrated workflows can identify novel potential cancer biomarkers for clinical applications.
Collapse
|