1
|
Hamed YS, Abdin M, Rayan AM, Saleem Akhtar HM, Zeng X. Synergistic inhibition of isolated flavonoids from Moringa oleifera leaf on α-glucosidase activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2
|
Montenegro MF, Sundqvist ML, Nihlén C, Hezel M, Carlström M, Weitzberg E, Lundberg JO. Profound differences between humans and rodents in the ability to concentrate salivary nitrate: Implications for translational research. Redox Biol 2016; 10:206-210. [PMID: 27810735 PMCID: PMC5094378 DOI: 10.1016/j.redox.2016.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 12/21/2022] Open
Abstract
In humans dietary circulating nitrate accumulates rapidly in saliva through active transport in the salivary glands. By this mechanism resulting salivary nitrate concentrations are 10–20 times higher than in plasma. In the oral cavity nitrate is reduced by commensal bacteria to nitrite, which is subsequently swallowed and further metabolized to nitric oxide (NO) and other bioactive nitrogen oxides in blood and tissues. This entero-salivary circulation of nitrate is central in the various NO-like effects observed after ingestion of inorganic nitrate. The very same system has also been the focus of toxicologists studying potential carcinogenic effects of nitrite-dependent nitrosamine formation. Whether active transport of nitrate and accumulation in saliva occurs also in rodents is not entirely clear. Here we measured salivary and plasma levels of nitrate and nitrite in humans, rats and mice after administration of a standardized dose of nitrate. After oral (humans) or intraperitoneal (rodents) sodium nitrate administration (0.1 mmol/kg), plasma nitrate levels increased markedly reaching ~300 µM in all three species. In humans ingestion of nitrate was followed by a rapid increase in salivary nitrate to >6000 µM, ie 20 times higher than those found in plasma. In contrast, in rats and mice salivary nitrate concentrations never exceeded the levels in plasma. Nitrite levels in saliva and plasma followed a similar pattern, ie marked increases in humans but modest elevations in rodents. In mice there was also no accumulation of nitrate in the salivary glands as measured directly in whole glands obtained after acute administration of nitrate. This study suggests that in contrast to humans, rats and mice do not actively concentrate circulating nitrate in saliva. These apparent species differences should be taken into consideration when studying the nitrate-nitrite-nitric oxide pathway in rodents, when calculating doses, exploring physiological, therapeutic and toxicological effects and comparing with human data. In humans, dietary nitrate is effectively concentrated in saliva through active transport in the salivary glands. In humans salivary nitrate levels are10–20 times higher than in plasma. In contrast to humans, rats and mice do not actively concentrate nitrate in saliva. These species differences have implcations for translational research.
Collapse
Affiliation(s)
| | - Michaela L Sundqvist
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Function Area Clinical Nutrition, Karolinska University Hospital, Stockholm, Sweden
| | - Carina Nihlén
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Hezel
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlström
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Petersson J, Jädert C, Phillipson M, Borniquel S, Lundberg JO, Holm L. Physiological recycling of endogenous nitrate by oral bacteria regulates gastric mucus thickness. Free Radic Biol Med 2015; 89:241-7. [PMID: 26163002 DOI: 10.1016/j.freeradbiomed.2015.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Inorganic nitrate from exogenous and endogenous sources is accumulated in saliva, reduced to nitrite by oral bacteria and further converted to nitric oxide (NO) and other bioactive nitrogen oxides in the acidic gastric lumen. To further explore the role of oral microbiota in this process we examined the gastric mucus layer in germ free (GF) and conventional mice given different doses of nitrate and nitrite. METHODS Mice were given either nitrate (100mg/kg/d) or nitrite (0.55-11 mg/kg/d) in the drinking water for 7 days, with the lowest nitrite dose resembling the levels provided by swallowing of fasting saliva. The gastric mucus layer was measured in vivo. RESULTS GF animals were almost devoid of the firmly adherent mucus layer compared to conventional mice. Dietary nitrate increased the mucus thickness in conventional animals but had no effect in GF mice. In contrast, nitrite at all doses, restored the mucus thickness in GF mice to the same levels as in conventional animals. The nitrite-mediated increase in gastric mucus thickness was not inhibited by the soluble guanylyl cyclase inhibitor ODQ. Mice treated with antibiotics had significantly thinner mucus than controls. Additional studies on mucin gene expression demonstrated down regulation of Muc5ac and Muc6 in germ free mice after nitrite treatment. CONCLUSION Oral bacteria remotely modulate gastric mucus generation via bioactivation of salivary nitrate. In the absence of a dietary nitrate intake, salivary nitrate originates mainly from NO synthase. Thus, oxidized NO from the endothelium and elsewhere is recycled to regulate gastric mucus homeostasis.
Collapse
Affiliation(s)
- Joel Petersson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Cecilia Jädert
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sara Borniquel
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Chenni FZ, Taché S, Naud N, Guéraud F, Hobbs DA, Kunhle GGC, Pierre FH, Corpet DE. Heme-induced biomarkers associated with red meat promotion of colon cancer are not modulated by the intake of nitrite. Nutr Cancer 2013; 65:227-33. [PMID: 23441609 DOI: 10.1080/01635581.2013.749291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Red and processed meat consumption is associated with the risk of colorectal cancer. Three hypotheses are proposed to explain this association, via heme-induced oxidation of fat, heterocyclic amines, or N-nitroso compounds. Rats have often been used to study these hypotheses, but the lack of enterosalivary cycle of nitrate in rats casts doubt on the relevance of this animal model to predict nitroso- and heme-associated human colon carcinogenesis. The present study was thus designed to clarify whether a nitrite intake that mimics the enterosalivary cycle can modulate heme-induced nitrosation and fat peroxidation. This study shows that, in contrast with the starting hypothesis, drinking water added with nitrite to mimic the salivary nitrite content did not change the effect of hemoglobin on biochemical markers linked to colon carcinogenesis, notably lipid peroxidation and cytotoxic activity in the colon of rat. However, ingested sodium nitrite increased fecal nitroso-compounds level, but their fecal concentration and their nature (iron-nitrosyl) would probably not be associated with an increased risk of cancer. We thus suggest that the rat model could be relevant for study the effect of red meat on colon carcinogenesis, in spite of the lack of nitrite in the saliva of rats.
Collapse
Affiliation(s)
- Fatima Z Chenni
- Department of Biology, Université Djillali Liabes, Sidi Bel Abbes, Algeria
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Affiliation(s)
- Eddie Weitzberg
- Department of Physiology and Pharmacology, 1Section for Anesthesiology and Intensive Care,
| | - Jon O. Lundberg
- Division of Pharmacology, Karolinska Institutet, S-171 77, Stockholm, Sweden; ,
| |
Collapse
|
6
|
Jin L, Qin L, Xia D, Liu X, Fan Z, Zhang C, Gu L, He J, Ambudkar IS, Deng D, Wang S. Active secretion and protective effect of salivary nitrate against stress in human volunteers and rats. Free Radic Biol Med 2013; 57:61-7. [PMID: 23277147 PMCID: PMC4059197 DOI: 10.1016/j.freeradbiomed.2012.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/16/2012] [Accepted: 12/17/2012] [Indexed: 02/06/2023]
Abstract
Up to 25% of the circulating nitrate in blood is actively taken up, concentrated, and secreted into saliva by the salivary glands. Salivary nitrate can be reduced to nitrite by the commensal bacteria in the oral cavity or stomach and then further converted to nitric oxide (NO) in vivo, which may play a role in gastric protection. However, whether salivary nitrate is actively secreted in human beings has not yet been determined. This study was designed to determine whether salivary nitrate is actively secreted in human beings as an acute stress response and what role salivary nitrate plays in stress-induced gastric injury. To observe salivary nitrate function under stress conditions, alteration of salivary nitrate and nitrite was analyzed among 22 healthy volunteers before and after a strong stress activity, jumping down from a platform at the height of 68 m. A series of stress indexes was analyzed to monitor the stress situation. We found that both the concentration and the total amount of nitrate in mixed saliva were significantly increased in the human volunteers immediately after the jump, with an additional increase 1h later (p<0.01). Saliva nitrite reached a maximum immediately after the jump and was maintained 1h later. To study the biological functions of salivary nitrate and nitrite in stress protection, we further carried out a water-immersion-restraint stress (WIRS) assay in male adult rats with bilateral parotid and submandibular duct ligature (BPSDL). Intragastric nitrate, nitrite, and NO; gastric mucosal blood flow; and gastric ulcer index (UI) were monitored and nitrate was administrated in drinking water to compensate for nitrate secretion in BPSDL animals. Significantly decreased levels of intragastric nitrate, nitrite, and NO and gastric mucosal blood flow were measured in BPSDL rats during the WIRS assay compared to sham control rats (p<0.05). Recovery was observed in the BPSDL rats upon nitrate administration. The WIRS-induced UI was significantly higher in the BPSDL animals compared to controls, and nitrate administration rescued the WIRS-induced gastric injury in BPSDL rats. In conclusion, this study suggests that stress promotes salivary nitrate secretion and nitrite formation, which may play important roles in gastric protection against stress-induced injury via the nitrate-dependent NO pathway.
Collapse
Affiliation(s)
- Luyuan Jin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People’s Republic of China
| | - Lizheng Qin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People’s Republic of China
| | - Dengsheng Xia
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People’s Republic of China
| | - Xibao Liu
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1190, USA
| | - Zhipeng Fan
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People’s Republic of China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People’s Republic of China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, People’s Republic of China
| | - Junqi He
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing 100069, People’s Republic of China
| | - Indu S. Ambudkar
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1190, USA
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, People’s Republic of China
- Corresponding author. Fax: +86 10 88122437
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing 100069, People’s Republic of China
- Corresponding author at: Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People’s Republic of China. Fax: +86 10 67062012
| |
Collapse
|
7
|
Takahama U, Hirota S. Effects of starch on nitrous acid-induced oxidation of kaempferol and inhibition of α-amylase-catalysed digestion of starch by kaempferol under conditions simulating the stomach and the intestine. Food Chem 2013; 141:313-9. [PMID: 23768363 DOI: 10.1016/j.foodchem.2013.02.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/17/2012] [Accepted: 02/11/2013] [Indexed: 01/03/2023]
Abstract
Kaempferol glycosides can be hydrolyzed to their aglycone kaempferol during cooking under acidic conditions and in the oral cavity and the intestine by glycosidases. Kaempferol was oxidised by nitrite under acidic conditions (pH 2.0) to produce nitric oxide (NO), and the nitrite-induced oxidation of kaempferol was enhanced and inhibited by 10 and 100mg of starch ml(-1), respectively. The opposite effects of starch were discussed by considering the binding of kaempferol to starch and starch-dependent inhibition of the accessibility of nitrous acid to kaempferol. Kaempferol inhibited α-amylase-catalysed starch digestion by forming starch/kaempferol complexes, and the inhibitory effects increased in the order of amylopectin<soluble starch<amylose. The different effects of kaempferol were discussed to be due to the difference in binding sites of kaempferol between amylose and amylopectin. From the present study, dual-function of kaempferol became apparent in the digestive tract.
Collapse
Affiliation(s)
- Umeo Takahama
- Department of Bioscience, Kyushu Dental University, Kitakyushu 803-8580, Japan.
| | | |
Collapse
|
8
|
Takahama U, Ansai T, Hirota S. Nitrogen Oxides Toxicology of the Aerodigestive Tract. ADVANCES IN MOLECULAR TOXICOLOGY 2013. [DOI: 10.1016/b978-0-444-62645-5.00004-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Takahama U, Hirota S. Effects of the food additive sulfite on nitrite-dependent nitric oxide production under conditions simulating the mixture of saliva and gastric juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1102-1112. [PMID: 22224438 DOI: 10.1021/jf2049257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The food additive sulfite is mixed with saliva, which contains nitrite, in the oral cavity, and the mixture is mixed with gastric juice in the stomach. In the stomach, salivary nitrite can be transformed to nitric oxide (NO). In this study, the effects of sulfite on nitrite-dependent NO production were investigated using acidified saliva (pH 2.6) and acidic buffer solutions (pH 2.0). Sulfite enhanced NO production in acidified saliva and acidic buffer solutions, and the enhancement increased with the increase in sulfite concentration from 0 to 0.1 mM, whereas suppressed NO production and the suppression increased as the concentration was increased over 0.2 mM. The enhancement was due to the increase in reaction rate between nitrous acid and nitrososulfonate (ONSO(3)(-)) that was formed by the reaction of nitrous acid with hydrogen sulfite, and the suppression was due to the increase in hydrogen sulfite-dependent consumption rate of ONSO(3)(-). A salivary component SCN(-) (1 mM) enhanced and suppressed NO production induced by 1 mM nitrite when sulfite concentrations were lower and higher than 1 mM, respectively. ONSO(3)(-) formed from hydrogen sulfite and nitrosyl thiocyanate (ONSCN), which was produced by the reaction of nitrous acid with SCN(-), seemed to contribute to the enhancement and suppression. NO production induced by nitrite/ascorbic acid systems was suppressed by sulfite, and the suppressive effects were decreased by SCN(-), whereas sulfite-induced suppression of NO production in nitrite/rutin systems was increased by SCN(-). During reactions of nitrite with sulfite in the presence and absence of SCN(-), oxygen was taken up. The oxygen uptake is discussed to be due to autoxidation of NO and radical chain reactions initiated by hydrogen sulfite radicals. The results of the present study suggest that sulfite can enhance and suppress nitrite-dependent NO production. It is discussed that radicals including hydrogen sulfite radicals can be formed through the reactions of nitrite and sulfite in the stomach.
Collapse
Affiliation(s)
- Umeo Takahama
- Department of Bioscience, Kyushu Dental College, Kitakyushu, Japan.
| | | |
Collapse
|
10
|
Kevil CG, Kolluru GK, Pattillo CB, Giordano T. Inorganic nitrite therapy: historical perspective and future directions. Free Radic Biol Med 2011; 51:576-93. [PMID: 21619929 PMCID: PMC4414241 DOI: 10.1016/j.freeradbiomed.2011.04.042] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 12/24/2022]
Abstract
Over the past several years, investigators studying nitric oxide (NO) biology and metabolism have come to learn that the one-electron oxidation product of NO, nitrite anion, serves as a unique player in modulating tissue NO bioavailability. Numerous studies have examined how this oxidized metabolite of NO can act as a salvage pathway for maintaining NO equivalents through multiple reduction mechanisms in permissive tissue environments. Moreover, it is now clear that nitrite anion production and distribution throughout the body can act in an endocrine manner to augment NO bioavailability, which is important for physiological and pathological processes. These discoveries have led to renewed hope and efforts for an effective NO-based therapeutic agent through the unique action of sodium nitrite as an NO prodrug. More recent studies also indicate that sodium nitrate may also increase plasma nitrite levels via the enterosalivary circulatory system resulting in nitrate reduction to nitrite by microorganisms found within the oral cavity. In this review, we discuss the importance of nitrite anion in several disease models along with an appraisal of sodium nitrite therapy in the clinic, potential caveats of such clinical uses, and future possibilities for nitrite-based therapies.
Collapse
Affiliation(s)
- Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71130, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
In this contribution we will show that research in the field of toxicology, pharmacology and physiology is by and large characterised by a pendulum swing of which the amplitudes represent risks and benefits of exposure. As toxicology usually tests at higher levels than the populace routinely is exposed to, it reverts to mostly linear extrapolative models that express the risks of exposure, irrespective of dosages, only. However, as we will explicate in two examples, depending on dosages, it is less easy to separate risks and benefits than current toxicological research and regulatory efforts suggest. The same chemical compound, in the final analysis, is represented within the boundaries of both amplitudes, that is, show a biphasic, hormetic, dose-response. This is notable, as low-level exposures from the food-matrix are progressively more under scrutiny as a result of increasing analytical capabilities. Presence of low-level concentrations of a chemical in food is a regulatory proxy for human health, but in light of this hormetic dose-response objectionable. Moreover, given that an ecological threshold probably holds for most, if not all, man-made (bio)organic chemicals, these will be found to be naturally present in the food matrix. Both aspects require toxicology to close the gap between reductionist models and its extrapolative deficiencies and real-life scenarios.
Collapse
Affiliation(s)
- Jaap C Hanekamp
- Roosevelt Academy, The Netherlands, University of Massachusetts, and Chemical Food Safety & Toxicity Working Group of the Global Harmonization Initiative
| |
Collapse
|
12
|
Takahama U, Tanaka M, Hirota S. Formation of nitric oxide, ethyl nitrite and an oxathiolone derivative of caffeic acid in a mixture of saliva and white wine. Free Radic Res 2010; 44:293-303. [PMID: 20166894 DOI: 10.3109/10715760903486057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactions of salivary nitrite with components of wine were studied using an acidic mixture of saliva and wine. The formation of nitric oxide (NO) in the stomach after drinking wine was observed. The formation of NO was also observed in the mixture (pH 3.6) of saliva and wine, which was prepared by washing the oral cavity with wine. A part of the NO formation in the stomach and the oral cavity was due to the reduction of salivary nitrite by caffeic and ferulic acids present in wine. Ethyl nitrite produced by the reaction of salivary nitrite and ethyl alcohol in wine also contributed to the formation of NO. In addition to the above reactions, caffeic acid in wine could be transformed to the oxathiolone derivative, which might have pharmacological functions. The results obtained in this study may help in understanding the effects of drinking wine on human health.
Collapse
Affiliation(s)
- Umeo Takahama
- Department of Bioscience, Kyushu Dental College, Kitakyushu 803-8580, Japan.
| | | | | |
Collapse
|
13
|
Takahama U, Imamura H, Hirota S. Nitration of the salivary component 4-hydroxyphenylacetic acid in the human oral cavity: enhancement of nitration under acidic conditions. Eur J Oral Sci 2009; 117:555-62. [PMID: 19758252 DOI: 10.1111/j.1600-0722.2009.00671.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
4-Hydroxyphenylacetic acid (HPA) and nitrite are present in human mixed whole saliva, and HPA can be nitrated by peroxidase/hydrogen peroxide (H(2)O(2))/nitrite systems in the oral cavity. Thus, the objectives of the present study were to estimate the concentrations of HPA, nitrated HPA [4-hydroxy-3-nitrophenylacetic acid (NO(2)HPA)], nitrite, and thiocyanate (SCN(-)) in saliva from 73 patients with periodontal diseases and to elucidate the conditions necessary to induce nitration of HPA. High concentrations of HPA, nitrite, and SCN(-) were found in the saliva of patients older than 50 yr of age. NO(2)HPA was detected in seven patients who were older than 60 yr of age. Nitrite-dependent formation of NO(2)HPA by a bacterial fraction prepared from mixed whole saliva was faster at pH 5.3 than at pH 7, and increased as the rate of H(2)O(2) formation increased. The formation of NO(2)HPA was inhibited by SCN(-) and by salivary antioxidants such as uric acid, ascorbic acid, and glutathione. These results suggest that nitration can proceed at an acidic site in the oral cavity where H(2)O(2) is produced under conditions of decreased concentrations of SCN(-) and of antioxidants.
Collapse
Affiliation(s)
- Umeo Takahama
- Department of Bioscience, Kyushu Dental College, Kitakyushu, Japan.
| | | | | |
Collapse
|
14
|
Ohtake K, Shimada N, Uchida H, Kobayashi J. Proteomic approach for identification of protein S-nitrosation in mouse gastric mucosa treated with S-nitrosoglutathione. J Proteomics 2009; 72:750-60. [DOI: 10.1016/j.jprot.2009.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 02/09/2009] [Accepted: 03/01/2009] [Indexed: 11/16/2022]
|
15
|
Petersson J, Carlström M, Schreiber O, Phillipson M, Christoffersson G, Jägare A, Roos S, Jansson EA, Persson AEG, Lundberg JO, Holm L. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radic Biol Med 2009; 46:1068-75. [PMID: 19439233 DOI: 10.1016/j.freeradbiomed.2009.01.011] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/09/2009] [Accepted: 01/09/2009] [Indexed: 12/20/2022]
Abstract
Recently, it has been suggested that the supposedly inert nitrite anion is reduced in vivo to form bioactive nitric oxide with physiological and therapeutic implications in the gastrointestinal and cardiovascular systems. Intake of nitrate-rich food such as vegetables results in increased levels of circulating nitrite in a process suggested to involve nitrate-reducing bacteria in the oral cavity. Here we investigated the importance of the oral microflora and dietary nitrate in regulation of gastric mucosal defense and blood pressure. Rats were treated twice daily with a commercial antiseptic mouthwash while they were given nitrate-supplemented drinking water. The mouthwash greatly reduced the number of nitrate-reducing oral bacteria and as a consequence, nitrate-induced increases in gastric NO and circulating nitrite levels were markedly reduced. With the mouthwash the observed nitrate-induced increase in gastric mucus thickness was attenuated and the gastroprotective effect against an ulcerogenic compound was lost. Furthermore, the decrease in systemic blood pressure seen during nitrate supplementation was now absent. These results suggest that oral symbiotic bacteria modulate gastrointestinal and cardiovascular function via bioactivation of salivary nitrate. Excessive use of antiseptic mouthwashes may attenuate the bioactivity of dietary nitrate.
Collapse
Affiliation(s)
- Joel Petersson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Takahama U, Tanaka M, Hirota S. Interaction between ascorbic acid and chlorogenic acid during the formation of nitric oxide in acidified saliva. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:10406-10413. [PMID: 18922016 DOI: 10.1021/jf8018535] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
When saliva and gastric juice are mixed, salivary nitrite is transformed to nitrous acid to produce nitric oxide (NO). The NO formation in acidified saliva was enhanced by ascorbic acid and chlorogenic acid. Thiocyanate ion (SCN(-)) also enhanced the transformation of nitrous acid to NO. During the NO formation in the presence of both ascorbic acid and chlorogenic acid, ascorbic acid was preferentially oxidized. Chlorogenic acid was oxidized after ascorbic acid had been oxidized. Ascorbyl radical was detected during the oxidation of ascorbic acid, and the radical intensity was decreased by chlorogenic acid. The decrease is discussed to be due to the reduction of the oxidation intermediate or product of chlorogenic acid by ascorbyl radical. The result obtained in this study suggests that ascorbic acid was preferentially oxidized and that not only ascorbic acid but also ascorbyl radical could interact with the oxidation intermediate or product of chlorogenic acid when chlorogenic acid was added to the mixture of saliva and gastric juice that contained ascorbic acid.
Collapse
Affiliation(s)
- Umeo Takahama
- Department of Bioscience, Kyushu Dental College, Kitakyushu 803-8580, Japan.
| | | | | |
Collapse
|
17
|
Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 2008; 7:156-67. [PMID: 18167491 DOI: 10.1038/nrd2466] [Citation(s) in RCA: 1911] [Impact Index Per Article: 112.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inorganic anions nitrate (NO3-) and nitrite (NO2-) were previously thought to be inert end products of endogenous nitric oxide (NO) metabolism. However, recent studies show that these supposedly inert anions can be recycled in vivo to form NO, representing an important alternative source of NO to the classical L-arginine-NO-synthase pathway, in particular in hypoxic states. This Review discusses the emerging important biological functions of the nitrate-nitrite-NO pathway, and highlights studies that implicate the therapeutic potential of nitrate and nitrite in conditions such as myocardial infarction, stroke, systemic and pulmonary hypertension, and gastric ulceration.
Collapse
Affiliation(s)
- Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
18
|
L'hirondel M, Soubeyrand E, L'hirondel JL, Rousselot P, Letellier P, Compère JF, Bénateau H. [Salivary nitrates. New perspectives concerning the physiological function of saliva]. ACTA ACUST UNITED AC 2007; 108:115-9. [PMID: 17368690 DOI: 10.1016/j.stomax.2006.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 11/23/2006] [Indexed: 11/25/2022]
Abstract
For many years, nitrate ions have been thought to be "toxic agents", but scientific reality seems very different. The source of nitrate ions is double: exogenous and endogenous, and the metabolism of nitrates is partly salivary. The strong concentration of nitrate ions in saliva has many beneficial physiological effects. Salivary nitrate has anti-infectious effects on the oral cavity and all along the digestive tract. They give cardiovascular protection, are instrumental in the adaptive relaxation of the stomach by acting on smooth stomach muscles and have a protective action on the gastric mucosa.
Collapse
Affiliation(s)
- M L'hirondel
- Service de médecine interne, CHU de Côte de Nacre, Caen, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Petersson J, Phillipson M, Jansson EA, Patzak A, Lundberg JO, Holm L. Dietary nitrate increases gastric mucosal blood flow and mucosal defense. Am J Physiol Gastrointest Liver Physiol 2007; 292:G718-24. [PMID: 17082222 DOI: 10.1152/ajpgi.00435.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Salivary nitrate from dietary or endogenous sources is reduced to nitrite by oral bacteria. In the acidic stomach, nitrite is further reduced to bioactive nitrogen oxides, including nitric oxide (NO). In this study, we investigated the gastroprotective role of nitrate intake and of luminally applied nitrite against provocation with diclofenac and taurocholate. Mucosal permeability ((51)Cr-EDTA clearance) and gastric mucosal blood flow (laser-Doppler flowmetry) were measured in anesthetized rats, either pretreated with nitrate in the drinking water or given acidified nitrite luminally. Diclofenac was given intravenously and taurocholate luminally to challenge the gastric mucosa. Luminal NO content and nitrite content in the gastric mucus were determined by chemiluminescence. The effect of luminal administration of acidified nitrite on the mucosal blood flow was also investigated in endothelial nitric oxide synthase-deficient mice. Rats pretreated with nitrate or given nitrite luminally had higher gastric mucosal blood flow than controls. Permeability increased more during the provocation in the controls than in the nitrate- and nitrite-treated animals. Dietary nitrate increased luminal NO levels 50 times compared with controls. Nitrate intake also resulted in nitrite accumulation in the loosely adherent mucous layer; after removal of this mucous layer, blood flow was reduced. Nitrite administrated luminally in endothelial nitric oxide synthase-deficient mice increased mucosal blood flow. We conclude that dietary nitrate and direct luminal application of acidified nitrite decrease diclofenac- and taurocholate-induced mucosal damage. The gastroprotective effect likely involves a higher mucosal blood flow caused by nonenzymatic NO production. These data suggest an important physiological role of nitrate in the diet.
Collapse
Affiliation(s)
- Joel Petersson
- Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
20
|
Björne H, Weitzberg E, Lundberg JO. Intragastric generation of antimicrobial nitrogen oxides from saliva--physiological and therapeutic considerations. Free Radic Biol Med 2006; 41:1404-12. [PMID: 17023267 DOI: 10.1016/j.freeradbiomed.2006.07.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/11/2006] [Accepted: 07/25/2006] [Indexed: 11/18/2022]
Abstract
Salivary nitrite is suggested to enhance the antimicrobial properties of gastric juice by conversion to nitric oxide (NO) and other reactive nitrogen intermediates in the stomach. Intubated patients exhibit extremely low gastric levels of NO, because they do not swallow their saliva. The present investigation was designed to examine the antibacterial effects of human saliva and gastric juice. Furthermore, we studied a new mode of NO delivery, involving formation from acidified nitrite, which could prevent bacterial growth in the gastric juice of intubated patients in intensive care units. The growth of Escherichia coli ATCC 25922 and the formation of NO and nitroso/nitrosyl species were determined after incubation of gastric juice with saliva from healthy volunteers that was rich (nitrate ingestion) or poor (overnight fasting) in nitrite. In a stomach model containing gastric juice from intubated patients, we inserted a catheter with a silicone retention cuff filled with ascorbic acid and nitrite and determined the resulting antibacterial effects on E. coli and Candida albicans. Saliva enhanced the bactericidal effect of gastric juice, especially saliva rich in nitrite. Formation of NO and nitroso/nitrosyl species by nitrite-rich saliva was 10-fold greater than that by saliva poor in nitrite. In our stomach model, E. coli and C. albicans were killed after exposure to ascorbic acid and nitrite. In conclusion, saliva rich in nitrite enhances the bactericidal effects of gastric juice, possibly through the generation of reactive nitrogen intermediates, including NO. Acidified nitrite inside a gas-permeable retention cuff may be useful for restoring gastric NO levels and host defense in critically ill patients.
Collapse
Affiliation(s)
- Håkan Björne
- Department of Physiology and Pharmacology, Karolinska Institute, 177 76 Stockholm, Sweden.
| | | | | |
Collapse
|
21
|
Nishio H, Hayashi Y, Terashima S, Takeuchi K. Role of endogenous nitric oxide in mucosal defense of inflamed rat stomach following iodoacetamide treatment. Life Sci 2006; 79:1523-30. [PMID: 16730029 DOI: 10.1016/j.lfs.2006.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/11/2006] [Accepted: 04/21/2006] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) plays a role in regulating the mucosal integrity of the stomach. However, its part in the mucosal defense of the inflamed stomach remains unclear. In the present study, we examined the effects of various NO synthase (NOS) inhibitors on gastric ulcerogenic and acid secretory responses following daily exposure of the stomach to iodoacetamide and investigated the role of each NOS isozyme in gastric protection from subchronic mucosal irritation. Gastric mucosal irritation was induced in rats by addition of 0.1% iodoacetamide to drinking water, and the gastric mucosa was examined on the 6th day. L-NAME (a nonselective NOS inhibitor: 20 mg/kg) or aminoguanidine (a selective iNOS inhibitor: 20 mg/kg) was given s.c. twice 24 h and 3 h before the termination of iodoacetamide treatment. Giving iodoacetamide in drinking water for 5 days produced minimal damage in the stomach with an increase in myeloperoxidase (MPO) activity and lipid peroxidation. Iodoacetamide treatment up-regulated the expression of iNOS mRNA and NO production in the stomach, without affecting nNOS expression. Both L-NAME and aminoguanidine markedly aggravated gastric lesions induced by iodoacetamide treatment, with a further enhancement in MPO activity and lipid peroxidation. Basal acid secretion as determined in pylorous-ligated stomachs was decreased following iodoacetamide treatment, but the response was significantly restored by both L-NAME and aminoguanidine. These results suggest that endogenous NO derived from both cNOS and iNOS is involved in mucosal defense of the inflamed stomach, partly by decreasing acid secretion, and contributes to maintaining mucosal integrity under such conditions.
Collapse
Affiliation(s)
- Hikaru Nishio
- Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8414, Japan
| | | | | | | |
Collapse
|
22
|
Magkos F, Arvaniti F, Zampelas A. Organic Food: Buying More Safety or Just Peace of Mind? A Critical Review of the Literature. Crit Rev Food Sci Nutr 2006; 46:23-56. [PMID: 16403682 DOI: 10.1080/10408690490911846] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Consumer concern over the quality and safety of conventional food has intensified in recent years, and primarily drives the increasing demand for organically grown food, which is perceived as healthier and safer. Relevant scientific evidence, however, is scarce, while anecdotal reports abound. Although there is an urgent need for information related to health benefits and/or hazards of food products of both origins, generalized conclusions remain tentative in the absence of adequate comparative data. Organic fruits and vegetables can be expected to contain fewer agrochemical residues than conventionally grown alternatives; yet, the significance of this difference is questionable, inasmuch as actual levels of contamination in both types of food are generally well below acceptable limits. Also, some leafy, root, and tuber organic vegetables appear to have lower nitrate content compared with conventional ones, but whether or not dietary nitrate indeed constitutes a threat to human health is a matter of debate. On the other hand, no differences can be identified for environmental contaminants (e.g. cadmium and other heavy metals), which are likely to be present in food from both origins. With respect to other food hazards, such as endogenous plant toxins, biological pesticides and pathogenic microorganisms, available evidence is extremely limited preventing generalized statements. Also, results for mycotoxin contamination in cereal crops are variable and inconclusive; hence, no clear picture emerges. It is difficult, therefore, to weigh the risks, but what should be made clear is that 'organic' does not automatically equal 'safe.' Additional studies in this area of research are warranted. At our present state of knowledge, other factors rather than safety aspects seem to speak in favor of organic food.
Collapse
Affiliation(s)
- Faidon Magkos
- Laboratory of Nutrition and Clinical Dietetics, Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Ave, Kallithea, Athens, 176 71, Greece
| | | | | |
Collapse
|
23
|
Takahama U, Oniki T. Salivary thiocyanate/nitrite inhibits hydroxylation of 2-hydroxybenzoic acid induced by hydrogen peroxide/Fe(II) systems under acidic conditions: possibility of thiocyanate/nitrite-dependent scavenging of hydroxyl radical in the stomach. Biochim Biophys Acta Gen Subj 2004; 1675:130-8. [PMID: 15535976 DOI: 10.1016/j.bbagen.2004.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/31/2004] [Accepted: 09/01/2004] [Indexed: 11/22/2022]
Abstract
Formation of OH radicals in the stomach is possible by Fenton-type reactions, as gastric juice contains ascorbic acid (AA), iron ions and H2O2. An objective of the present study is to elucidate the effects of salivary SCN- and NO2- on the hydroxylation of salicylic acid which was induced by H2O2/Fe(II) and AA/H2O2/Fe(II) systems. Thiocyanate ion inhibited the hydroxylation of salicylic acid by the above systems in acidic buffer solutions and in acidified saliva. The inhibition by SCN- was deduced to be due to SCN- -dependent scavenging of OH radicals. Nitrite ion could enhance the SCN- -dependent inhibition of the hydroxylation induced by AA/H2O2/Fe(II) systems. The enhancement was suggested to be due to scavenging of OH radicals by NO which was formed by the reactions among AA, HNO2 and SCN- contained in the reaction mixture. The concentrations of SCN- and NO2-, which were effective for the inhibition, were in ranges of their normal salivary concentrations. These results suggest that salivary SCN- can cooperate with NO2- to protect stomach from OH radicals formed by AA/H2O2/Fe(II) systems under acidic conditions.
Collapse
Affiliation(s)
- Umeo Takahama
- Department of Bioscience, Kyushu Dental University, Kitakyushu 803-8580, Japan.
| | | |
Collapse
|
24
|
Sobko T, Reinders C, Norin E, Midtvedt T, Gustafsson LE, Lundberg JO. Gastrointestinal nitric oxide generation in germ-free and conventional rats. Am J Physiol Gastrointest Liver Physiol 2004; 287:G993-7. [PMID: 15256364 DOI: 10.1152/ajpgi.00203.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide (NO) is a central mediator of various physiological events in the gastrointestinal tract. The influence of the intestinal microflora for NO production in the gut is unknown. Bacteria could contribute to this production either by stimulating the mucosa to produce NO, or they could generate NO themselves. Using germ-free and conventional rats, we measured gaseous NO directly in the gastrointestinal tract and from the luminal contents using a chemiluminescence technique. Mucosal NO production was studied by using an NO synthase (NOS) inhibitor, and to evaluate microbial contribution to the NO generation, nitrate was given to the animals. In conventional rats, luminal NO differed profoundly along the gastrointestinal tract with the greatest concentrations in the stomach [>4,000 parts per billion (ppb)] and cecum (approximately 200 ppb) and lower concentrations in the small intestine and colon (< or =20 ppb). Cecal NO correlated with the levels in incubated luminal contents. NOS inhibition lowered NO levels in the colon, without affecting NO in the stomach and in the cecum. Gastric NO increased greatly after a nitrate load, proving it to be a substrate for NO generation. In germ-free rats, NO was low (< or =30 ppb) throughout the gastrointestinal tract and absent in the incubated luminal contents. NO also remained low after a nitrate load. Our results demonstrate a pivotal role of the intestinal microflora in gastrointestinal NO generation. Distinctly compartmentalized qualitative and quantitative NO levels in conventional and germ-free rats reflect complex host microbial cross talks, possibly making NO a regulator of the intestinal eco system.
Collapse
Affiliation(s)
- Tanja Sobko
- Centre for Allergy Research, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Jon O Lundberg
- Department of Physiology & Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
26
|
Larauche M, Anton PM, Peiro G, Eutamène H, Buéno L, Fioramonti J. Role of capsaicin-sensitive afferent nerves in different models of gastric inflammation in rats. Auton Neurosci 2004; 110:89-97. [PMID: 15046732 DOI: 10.1016/j.autneu.2003.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 10/28/2003] [Accepted: 11/27/2003] [Indexed: 11/25/2022]
Abstract
Capsaicin-sensitive afferent nerves are described as being protective against gastric inflammation; their destruction leads to an exacerbation of inflammatory processes. However, these nerves have been shown to exert a pro-inflammatory action on stress-induced gastritis in rats. Our study aimed to investigate the role of capsaicin-sensitive afferent nerves in different experimental models of gastritis in rats. Functional ablation of sensory nerves was achieved by systemic capsaicin treatment (100 mg/kg). Gastritis was induced by mild (iodoacetamide, diquat, surgical duodeno-gastric reflux [DGR]) and strong (70% ethanol, indomethacin) inflammatory agents. Antagonists of the CGRP1 and NK1 receptors, hCGRP8-37 and SR140333, were administered in rats treated with iodoacetamide and ethanol. Macroscopic damage scores (MDS), myeloperoxidase (MPO) activity and malondialdehyde (MDA) concentration were evaluated after sacrifice. Macroscopic lesions appeared only in ethanol and indomethacin gastritis and were enhanced by capsaicin treatment. Gastric MPO activity was significantly increased by all agents compared to controls. Capsaicin treatment did not have any effect on MPO activity in indomethacin-treated rats or in rats submitted to surgery for duodeno-gastric reflux. However, it abolished the increase in MPO induced by iodoacetamide and diquat, and significantly enhanced that induced by ethanol. hCGRP8-37 and SR140333 abolished the increase in MPO activity and MDA concentration in iodoacetamide treated rats. In ethanol-treated rats, SR140333 diminished MPO activity. These results indicate that, depending upon the nature and duration of the experimental inflammation, capsaicin-sensitive afferent nerves may act differently to control gastric inflammatory processes, suggesting the involvement of a neurogenic component in some forms of gastric inflammation.
Collapse
Affiliation(s)
- Muriel Larauche
- Neuro-Gastroenterology and Nutrition Unit, INRA, 180 chemin de Tournefeuille, BP 3, 31931 Toulouse cedex 9, France
| | | | | | | | | | | |
Collapse
|
27
|
Björne H H, Petersson J, Phillipson M, Weitzberg E, Holm L, Lundberg JO. Nitrite in saliva increases gastric mucosal blood flow and mucus thickness. J Clin Invest 2004; 113:106-14. [PMID: 14702114 PMCID: PMC300767 DOI: 10.1172/jci19019] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 10/21/2003] [Indexed: 12/18/2022] Open
Abstract
Salivary nitrate from dietary or endogenous sources is reduced to nitrite by oral bacteria. In the acidic stomach, nitrite is further reduced to NO and related compounds, which have potential biological activity. We used an in vivo rat model as a bioassay to test effects of human saliva on gastric mucosal blood flow and mucus thickness. Gastric mucosal blood flow and mucus thickness were measured after topical administration of human saliva in HCl. The saliva was collected either after fasting (low in nitrite) or after ingestion of sodium nitrate (high in nitrite). In additional experiments, saliva was exchanged for sodium nitrite at different doses. Mucosal blood flow was increased after luminal application of nitrite-rich saliva, whereas fasting saliva had no effects. Also, mucus thickness increased in response to nitrite-rich saliva. The effects of nitrite-rich saliva were similar to those of topically applied sodium nitrite. Nitrite-mediated effects were associated with generation of NO and S-nitrosothiols. In addition, pretreatment with an inhibitor of guanylyl cyclase markedly inhibited nitrite-mediated effects on blood flow. We conclude that nitrite-containing human saliva given luminally increases gastric mucosal blood flow and mucus thickness in the rat. These effects are likely mediated through nonenzymatic generation of NO via activation of guanylyl cyclase. This supports a gastroprotective role of salivary nitrate/nitrite.
Collapse
Affiliation(s)
- HåKan Björne H
- Department of Anesthesiology and Intensive Care, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Björne H H, Petersson J, Phillipson M, Weitzberg E, Holm L, Lundberg JO. Nitrite in saliva increases gastric mucosal blood flow and mucus thickness. J Clin Invest 2004. [PMID: 14702114 DOI: 10.1172/jci200419019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Salivary nitrate from dietary or endogenous sources is reduced to nitrite by oral bacteria. In the acidic stomach, nitrite is further reduced to NO and related compounds, which have potential biological activity. We used an in vivo rat model as a bioassay to test effects of human saliva on gastric mucosal blood flow and mucus thickness. Gastric mucosal blood flow and mucus thickness were measured after topical administration of human saliva in HCl. The saliva was collected either after fasting (low in nitrite) or after ingestion of sodium nitrate (high in nitrite). In additional experiments, saliva was exchanged for sodium nitrite at different doses. Mucosal blood flow was increased after luminal application of nitrite-rich saliva, whereas fasting saliva had no effects. Also, mucus thickness increased in response to nitrite-rich saliva. The effects of nitrite-rich saliva were similar to those of topically applied sodium nitrite. Nitrite-mediated effects were associated with generation of NO and S-nitrosothiols. In addition, pretreatment with an inhibitor of guanylyl cyclase markedly inhibited nitrite-mediated effects on blood flow. We conclude that nitrite-containing human saliva given luminally increases gastric mucosal blood flow and mucus thickness in the rat. These effects are likely mediated through nonenzymatic generation of NO via activation of guanylyl cyclase. This supports a gastroprotective role of salivary nitrate/nitrite.
Collapse
Affiliation(s)
- HåKan Björne H
- Department of Anesthesiology and Intensive Care, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Cui MH, Hu FL, Dong XH. Preventive effects of gastric mucosal protective on H. pylori CCS-induced gastric mucosal lesion in rats. Shijie Huaren Xiaohua Zazhi 2004; 12:355-358. [DOI: 10.11569/wcjd.v12.i2.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the roles of H. pylori concentrated culture supernatants (CCS) on the gastric mucosa of mouse and to investigate the protective effects of gastric mucosal protectives sucrafate and sanjiuweitai on CCS-induced gastric mucosal lesion in Balb/c rats.
METHODS: Fifty-six healthy male Balb/c rats were randomly divided into seven groups: normal saline control (Ⅰ), injured simply (ⅡA, ⅡB), sucrafate pretreatment (ⅡA, ⅡB), sanjiuweitai pretreatment (ⅡA, ⅡB). Group A was dealt with small amounts of CCS and group B with large amounts of CCS. CCS were drawn from cytotoxic H. pylori strain (NCTC11637). The four protective groups were pretreated with sucrafate and sanjiuweitai separately, and then infused orally with different amounts of CCS. The pathological changes on histological sections and ultrastructural sections of gastric mucosa were assessed under microscope or electron microscope. The epithelial damage scoring (EDS) of the gastric mucosa was measured.
RESULTS: The management with large amounts of CCS from cytotoxic strains induced various epithelial lesions, which included vacuolation, erosions, ulcers and loss of gastric gland architecture. Infiltration of inflammatory cells in the lamina propria was not significant. At ultrastructural level, there was the presence of intracytoplasmic vacuoles, dilation of endoplasmic reticulum and mitochondrion, increasing of phagolysosomes, loose connection between cells and degenerative changes of microvilli. Small amounts of CCS from cytotoxic strain induced epithelial lesions less seriousey than large amounts of CCS. The results of the EDS of the gastric mucosa in the groups Ⅰ, ⅡA, ⅡB, ⅢA, ⅢB, ⅣA and ⅣB arranged successively as follows, 1.13±0.35, 2.25±0.46, 3.63±0.52, 1.25±0.46, 1.75±0.71, 1.50±0.53 and 1.63±0.74 respectively. A remarkable protection was found in gastric mucosa pretreated with sucrafate and sanjiuweitai. In comparison with the purely injured group, the EDS of the gastric mucosa descended significantly (P<0.05).
CONCLUSION: Cytotoxin has an important role in the induction of gastric mucosa lesions, but not in eliciting obvious inflammation; The gastric mucosal protection of sucrafate and sanjiuweitai against CCS-induced gastric mucosal lesion in rats is significant.
Collapse
|
30
|
Larauche M, Buéno L, Fioramonti J. Effect of dietary nitric oxide on gastric mucosal mast cells in absence or presence of an experimental gastritis in rats. Life Sci 2003; 73:1505-16. [PMID: 12865090 DOI: 10.1016/s0024-3205(03)00480-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic nitric oxide donors are known to protect the gastric mucosa from damage and dietary nitrate is known to release NO in the stomach. Mast cells have been found to be involved in gastric mucosal damage in humans or in rodents, and recent studies have pointed out the possibility of nitric oxide from endogenous or exogenous origin to modulate mast cell reactivity. This study aimed to determine whether the protective effect afforded by dietary nitrate against gastric mucosal damage was linked to mast cell stabilization. Mast cell involvement in iodoacetamide-induced gastritis was investigated in rats receiving oral administration of iodoacetamide together with the mast cell stabilizer doxantrazole (ip) or its solvent. The effects of dietary nitrate on mast cells during gastritis were investigated in rats receiving iodoacetamide orally, associated or not with KNO3. Control groups were given water instead of iodoacetamide either with or without KNO3, doxantrazole or its solvent. After sacrifice, blood samples were taken to determine RMCP II serum level and the stomach was resected in order to determine myeloperoxidase (MPO) activity and mucosal mast cell (MMC) number. Iodoacetamide significantly increased gastric MPO activity but did not modify RMCP II serum level or MMC number. Doxantrazole and KNO3 significantly reduced iodoacetamide-induced increase in gastric MPO activity, increased MMC number, and decreased RMCP II serum level in basal conditions. Only doxantrazole was able to modify all parameters under inflammatory conditions. These results suggest that nitric oxide released by dietary nitrate in the stomach stabilizes mast cells in basal conditions but exerts its protective effect against experimental gastritis through other pathways.
Collapse
Affiliation(s)
- Muriel Larauche
- Neurogastroenterology & Nutrition Unit, Institut National de la Recherche Agronomique, 180 chemin de Tournefeuille, B.P. 3, 31931 Toulouse, F-31931, France
| | | | | |
Collapse
|