1
|
Ding X, Tang R, Zhao J, Xu Y, Fu A, Zhan X. Lactobacillus reuteri alleviates LPS-induced intestinal mucosal damage by stimulating the expansion of intestinal stem cells via activation of the Wnt/β-catenin signaling pathway in broilers. Poult Sci 2024; 103:104072. [PMID: 39068698 PMCID: PMC11332868 DOI: 10.1016/j.psj.2024.104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The continuous expansion of intestinal stem cells (ISCs) is crucial for maintaining the renewal of the intestinal epithelium, particularly in inflammatory conditions. It remains largely unknown how the internal microbiota repair damage to the internal mucosal barrier. Hence, investigating potential anti-inflammatory probiotics from the intestinal symbolic microbes of broilers and analyzing their mechanism of action to support the intestinal mucosal barrier function can offer novel regulatory tools to alleviate broiler enteritis. In this research, we utilized in vivo broilers plus ex vivo organoids model to thoroughly examine the effectiveness of Lactobacillus reuteri (LR) in protecting the integrity of the intestinal mucosa during lipopolysaccharide-induced (LPS-induced) enteritis in broilers. The findings indicated that LR feeding maintained intestinal morphological and structural integrity, enhanced proliferation of intestinal epithelial cells, and inhibited cell apoptosis and inflammatory response against the deleterious effects triggered by LPS. Simultaneously, LR enhanced ISCs activity and stimulated intestinal epithelial regeneration to protect the intestinal barrier during LPS-induced injury conditions. The coculture system of LR and ileum organoids revealed that LR increased the growth of organoids and attenuated LPS-stimulated damage to organoids. Furthermore, the LPS-induced decrease in ISC activity was rescued by reactivation of Wnt/β-catenin signaling by LR ex vivo and in vivo. This research revealed that LR promoted the expansion of ISCs and intestinal epithelial cell renewal by regulating the Wnt/β-catenin signaling pathway, thereby maintaining the integrity of the intestinal mucosal barrier. This finding provided theoretical support for lactobacillus as a probiotic additive in livestock feed to improve intestinal inflammation and treat intestinal diseases.
Collapse
Affiliation(s)
- Xiaoqing Ding
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Runzi Tang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Jiayue Zhao
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Yibin Xu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Aikun Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Xiuan Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China.
| |
Collapse
|
2
|
Lin Y, Zhai JL, Wang YT, Guo PT, Zhang J, Wang CK, Jin L, Gao YY. Potassium diformate alleviated inflammation of IPEC-J2 cells infected with EHEC. Vet Microbiol 2024; 291:110013. [PMID: 38364468 DOI: 10.1016/j.vetmic.2024.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
Potassium diformate (KDF) is a kind of formate, which possesses the advantages of antimicrobial activity, growth promotion and preventing diarrhea in weaned piglets. However, the researches of KDF in animal production mostly focused on apparent indexes such as growth performance and the mechanisms of KDF on intestinal health have not been reported. Thus, porcine small intestinal epithelial cells (IPEC-J2) infected with Enterohemorrhagic Escherichia coli (EHEC) was used to investigate the role of KDF on alleviating intestinal inflammation in this study. The 0.125 mg/mL KDF treated IPEC-J2 cells for 6 h and IPEC-J2 cells challenged with 5 × 107 CFU/mL EHEC for 4 h were confirmed as the optimum concentration and time for the following experiment. The subsequent experiment was divided into four groups: control group (CON), EHEC group, KDF group, KDF+EHEC group. The results showed that KDF increased the cell viability and the gene expression levels of SGLT3 and TGF-β, while decreased the content of IL-1β compared with the CON group. The cell viability and the gene expressions of SGLT1, SGLT3, GLUT2, Claudin-1, Occludin and TGF-β, and the protein expression of ZO-1 in EHEC group were lower than those in CON group, whereas the gene expressions of IL-1β, TNF, IL-8 and TLR4, and the level of phosphorylation NF-кB protein were increased. Pretreatment with KDF reduced the content of IgM and IL-1β, the gene expressions of IL-1β, TNF, IL-8 and TLR4 and the level of phosphorylation NF-кB protein, and increased the gene expression of TGF-β and the protein expression of Occludin in IPEC-J2 cells infected EHEC. In conclusion, 0.125 mg/mL KDF on IPEC-J2 cells for 6 h had the beneficial effects on ameliorating the intestinal inflammation because of reduced pro-inflammatory cytokines and enhanced anti-inflammatory cytokines through regulating NF-кB signaling pathway under the EHEC challenge.
Collapse
Affiliation(s)
- Ying Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun-Lei Zhai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Ting Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping-Ting Guo
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang-Kang Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Jin
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu-Yun Gao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Liu S, Tao X, Deng B, Li Y, Xu Z. Genome-Wide Analysis of Long Noncoding RNAs in Porcine Intestine during Weaning Stress. Int J Mol Sci 2023; 24:5343. [PMID: 36982414 PMCID: PMC10049174 DOI: 10.3390/ijms24065343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in various biological processes, and they are considered to be closely associated with the pathogenesis of intestinal diseases. However, the role and expression of lncRNAs in intestinal damage during weaning stress remain unknown. Herein, we investigated the expression profiles of jejunal tissue from weaning piglets at 4 and 7 d after weaning (groups W4 and W7, respectively) and from suckling piglets on the same days (groups S4 and S7, respectively). Genome-wide analysis of lncRNAs was also performed using RNA sequencing technology. A total of 1809 annotated lncRNAs and 1612 novel lncRNAs were obtained from the jejunum of piglets. In W4 vs. S4, a total of 331 lncRNAs showed significant differential expression, and a total of 163 significantly differentially expressed lncRNAs (DElncRNAs) was identified in W7 vs. S7. Biological analysis indicated that DElncRNAs were involved in intestinal diseases, inflammation, and immune functions, and were mainly enriched in the Jak-STAT signaling pathway, inflammatory bowel disease, T cell receptor signaling pathway, B cell receptor signaling pathway and intestinal immune network for IgA production. Moreover, we found that lnc_000884 and target gene KLF5 were significantly upregulated in the intestine of weaning piglets. The overexpression of lnc_000884 also significantly promoted the proliferation and depressed apoptosis of IPEC-J2 cells. This result suggested that lnc_000884 may contribute to repairing intestinal damage. Our study identified the characterization and expression profile of lncRNAs in the small intestine of weaning piglets and provided new insights into the molecular regulation of intestinal damage during weaning stress.
Collapse
Affiliation(s)
| | | | | | | | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, China
| |
Collapse
|
4
|
Sarkar VK, De UK, Kala A, Verma AK, Chauhan A, Paul BR, Soni S, Gandhar JS, Chaudhuri P, Patra MK, Eregowda CG, Gaur GK. Early-Life Intervention of Lactoferrin and Probiotic in Suckling Piglets: Effects on Immunoglobulins, Intestinal Integrity, and Neonatal Mortality. Probiotics Antimicrob Proteins 2023; 15:149-159. [PMID: 35793035 DOI: 10.1007/s12602-022-09964-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 01/18/2023]
Abstract
The aim of this study was to determine the effects of early-life bovine lactoferrin and host specific probiotic interventions on growth performance, mortality, and concentrations of immunoglobulin A and immunoglobulin G and transforming growth factor beta 1 (a marker of intestinal integrity) in serum of neonatal piglets. A total of eight piglet litters from parity matched sows were randomly divided into four groups and assigned to one of the four interventions: control (sterile normal saline), bovine lactoferrin (100 mg bovine lactoferrin), probiotic (1 × 109 colony forming unit (cfu) of swine origin Pediococcus acidilactici FT28 probiotic), and bovine lactoferrin + probiotic (100 mg bovine lactoferrin and 1 × 109 CFU of P. acidilactici FT28 probiotic). All the interventions were given once daily through oral route for first 7 days of life. The average daily gain (p = 0.0004) and weaning weight (p < 0.0001) were significantly improved in the probiotic group. The piglet survivability was significantly higher in bovine lactoferrin and probiotic groups than control group in Log-rank (Mantel-Cox) test. The concentrations of immunoglobulin A on day 21 in bovine lactoferrin, probiotic, and bovine lactoferrin + probiotic groups increased significantly (p < 0.05). Immunoglobulin G concentrations on day 7 and 15 in bovine lactoferrin and bovine lactoferrin + probiotic groups and on day 15 in probiotic group were significantly (p < 0.05) elevated, whereas, the concentration of transforming growth factor-β1 was significantly (p < 0.05) increased from day 7 to 21 in all the supplemented groups. In conclusion, the early-life bovine lactoferrin and P. acidilactici FT28 probiotic interventions reduced the mortality in the suckling piglets by promoting the systemic immunity and enhancing the intestinal integrity.
Collapse
Affiliation(s)
- Varun Kumar Sarkar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Ujjwal Kumar De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India.
| | - Anju Kala
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Ashok Kumar Verma
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Anuj Chauhan
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Babul Rudra Paul
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Srishti Soni
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Jitendra Singh Gandhar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Pallab Chaudhuri
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Manas Kumar Patra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Chethan Gollahalli Eregowda
- Department of Veterinary Medicine, College of Veterinary Sciences and Animal Husbandry, Central Agriculture University, Selesih, Aizawl, 796014, Mizoram, India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| |
Collapse
|
5
|
Sampath V, Park JH, Shanmugam S, Kim IH. Lactating sows fed whey protein supplement has eventually increased the blood profile of piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:121-128. [PMID: 34957596 DOI: 10.1111/jpn.13674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The intension of this study was to examine the effect of dietary whey protein supplementation on the reproduction performance, growth performance and blood profile of sow and their offspring. From Day 114 of lactation to 21 days of weaning, a total of 21 sows (n = 7/ treatment) (Landrace × Yorkshire) were blocked according to average parity (2.4) and allocated to 1 of 3 dietary treatments: (i) CON-corn-soybean meal based basal diet, (ii) WPC-CON + 0.047% WPC whey protein concentrate (WPC) and (iii) WPH-CON + 0.02% whey protein hydrolysate (WPH). RESULTS The reproduction performance of sows was not affected by WPC or WPH supplementation. However, piglets that were born to WPC and WPH group sows showed higher body weight at birth (p = 0.057) and at weaning (p = 0.018). After farrowing, WPC and WPH group sows showed decreased (p = 0.043) RBC count and total iron-binding count (TIBC) (p = 0.046), whereas at the end of the experiment, the blood profile including red blood cells, iron, haemoglobulin and TIBC was significantly increased (p =0.042, 0.049, 0.051 and 0.052 respectively) in WPC group piglets compared to the CON and WPH groups. CONCLUSION Based on the positive impact on the blood profile of piglets, we conclude that whey protein supplement could serve as a potential energy source to suit lactating sows that could eventually benefit the performance of their offspring.
Collapse
Affiliation(s)
- Vetriselvi Sampath
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Jae Hong Park
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | | | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
6
|
Yin H, Liu W, Ji X, Yan G, Zeng X, Zhao W, Wang Y. Study on the mechanism of Wumei San in treating piglet diarrhea using network pharmacology and molecular docking. Front Vet Sci 2023; 10:1138684. [PMID: 36925608 PMCID: PMC10011153 DOI: 10.3389/fvets.2023.1138684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Wumei San (WMS) is a traditional Chinese medicine that has been widely applied in the treatment of piglet diarrhea (PD). However, the mechanism of WMS in PD has not been investigated. In this study, the main active compounds of WMS and the target proteins were obtained from the Traditional Chinese Medicine Systematic Pharmacology, PubChem, and SwissTargetPrediction databases. The molecular targets of PD were identified using GeneCards, OMIM, and NCBI databases. The common targets of WMS and PD were screened out and converted into UniProt gene symbols. PD-related target genes were constructed into a protein-protein interaction network, which was further analyzed by the STRING online database. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to construct the component-target gene-disease network. Molecular docking was then used to examine the relationship between the core compounds and proteins. As a result, a total of 32 active compounds and 638 target genes of WMS were identified, and a WMS-compound-target network was successfully constructed. Through network pharmacology analysis, 14 core compounds in WMS that showed an effect on PD were identified. The targets revealed by GO and KEGG enrichment analysis were associated with the AGE-RAGE signaling pathway, PI3K-Akt signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway, IL-17 signaling pathway, and other pathways and physiological processes. Molecular docking analysis revealed that the active compounds in WMS spontaneously bind to their targets. The results indicated that WMS may regulate the local immune response and inflammatory factors mainly through the TNF signaling pathway, IL-17 signaling pathway, and other pathways. WMS is a promising treatment strategy for PD. This study provides new insights into the potential mechanism of WMS in PD.
Collapse
Affiliation(s)
- Huihui Yin
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Wei Liu
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
- *Correspondence: Wei Liu ✉
| | - Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Guoqing Yan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Xueyan Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Wu Zhao
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Yanhua Wang
- Guangxi Mountain Comprehensive Technology Development Center, Nanning, China
| |
Collapse
|
7
|
Geng S, Cheng S, Li Y, Wen Z, Ma X, Jiang X, Wang Y, Han X. Faecal Microbiota Transplantation Reduces Susceptibility to Epithelial Injury and Modulates Tryptophan Metabolism of the Microbial Community in a Piglet Model. J Crohns Colitis 2018; 12:1359-1374. [PMID: 30010734 DOI: 10.1093/ecco-jcc/jjy103] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Faecal microbiota transplantation [FMT] has shown promise as a treatment for inflammatory bowel disease [IBD]. Using a piglet model, our previous study indicated that exogenous faecal microbiota can increase the expressions of tight junction proteins, mucin and antimicrobial peptide in the intestinal mucosa, suggesting a beneficial effect of FMT on gut barrier and gastrointestinal health. However, specific connections between FMT-induced microbial changes and modulation of the intestinal barrier remain to be fully illustrated. Here, we aimed to determine the potential role of metabolic function of gut microbiota in the beneficial effects of FMT. METHODS The influence of FMT on the maintenance of intestinal homeostasis was assessed by early-life gut microbiota intervention on newborn piglets and subsequent lipopolysaccharide [LPS] challenge. Analysis of the gut microbiome and metabolome was carried out by 16S rRNA gene sequencing and multiple mass spectrometry platforms. RESULTS FMT modulated the diversity and composition of colonic microbiota and reduced the susceptibility to LPS-induced destruction of epithelial integrity and severe inflammatory response. Metabolomic analysis revealed functional changes of the gut metabolome along with a significant increase of the typical microbiota-derived tryptophan catabolite indole-3-acetic acid in the colonic lumen. In concordance with the metabolome data, metagenomics prediction analysis based on 16S rRNA gene sequencing also demonstrated that FMT modulated the metabolic functions of gut microbiota associated with indole alkaloid biosynthesis, cytochrome P450 and intestinal homeostasis, which coincided with up-regulation of cytokine interleukin-22 and enhanced activation of aryl hydrocarbon receptor in the recipient colon. CONCLUSIONS Our data reveal a regulatory effect of FMT on tryptophan metabolism of gut microbiota in the recipient colon, which may play a potential role in maintenance of the intestinal barrier.
Collapse
Affiliation(s)
- Shijie Geng
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Saisai Cheng
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Li
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhengshun Wen
- School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xin Ma
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuemei Jiang
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyan Han
- The Key Laboratory of Animal Nutrition and Feed Science in East China of Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Huber LA, Hooda S, Fisher-Heffernan RE, Karrow NA, de Lange CFM. Effect of reducing the ratio of omega-6-to-omega-3 fatty acids in diets of low protein quality on nursery pig growth performance and immune response. J Anim Sci 2018; 96:4348-4359. [PMID: 30053222 PMCID: PMC6162592 DOI: 10.1093/jas/sky296] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 11/14/2022] Open
Abstract
A total of 240 newly weaned pigs (5.25 ± 0.15 kg BW) were used to determine the dietary omega-6-to-omega-3 (ω-6:ω-3) fatty acid ratio that optimized growth performance and immune responses when fed corn and soybean meal (SBM)-based diets with low protein quality. Pigs were randomly assigned to 1 of 5 dietary treatments (n = 6 pens per treatment; day 0 of study): [1] positive control (High; included animal proteins and 5% corn oil), [2] negative control (Low0; corn- and SBM-based and 5% corn oil), or 1 of 3 Low diets with increasing supplementation of fish oil to replace corn oil: [3] 1.25% (Low1.25), [4] 2.5% (Low2.5), [5] 5% (Low5) to achieve 5:1, 3:1, and 1:1 ω-6:ω-3 ratios, respectively. Pigs were fed dietary treatments in 2 phases for 7 and 14 d, respectively, followed by a common phase III diet for 21 d. On day 6 and 20, 12 pigs per treatment were immune sensitized with 0.5 mg ovalbumin (OVA) and 0.5 mg Quil A adjuvant in 1 mL saline. The dermal hypersensitivity response (DHR) was evaluated on day 40 in these same pigs, using intradermal injection of OVA; changes in skin-fold thickness were measured. On day 21, 4 pigs per pen were immune challenged with LPS (30 µg Escherichia coli LPS per kg BW) or saline (n = 12); rectal temperature was monitored over 3 h. During phase I only, ADG, ADFI, and G:F were greater for pigs fed the High diet vs. those fed the Low diet (P < 0.05), and increased with increasing fish oil supplementation up to 2.5% (Low2.5), but decreased for pigs fed the Low5 diet (quadratic; P < 0.05, P = 0.086, and P < 0.05 for ADG, ADFI, and G:F, respectively). On day 21, LPS increased rectal temperature (vs. saline at 1-, 2-, and 3-h post-challenge; P < 0.001); fish oil supplementation reduced rectal temperature 2-h post-challenge in the Low-fed pigs (linear; P < 0.05). On day 22, serum haptoglobin was greatest for pigs fed Low0 and decreased with increasing fish oil supplementation (linear; P < 0.05). Immunization with OVA induced a serum anti-OVA IgG response, which was reduced on day 34 among pigs fed Low diets with increasing fish oil supplementation (linear; P = 0.050). On day 40, and 6 h after intradermal injection of OVA, the DHR was least for pigs fed the Low2.5 diet (P < 0.05). Inclusion of 2.5% fish oil (3:1, ω-6:ω-3) optimized growth performance during the early nursery phase when pigs were most sensitive to diets with low protein quality; the ideal ω-6-to-ω-3 fatty acid ratio may differ when using immune responses as the major outcome.
Collapse
Affiliation(s)
- Lee-Anne Huber
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Seema Hooda
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
9
|
Xiao K, Cao S, Jiao L, Song Z, Lu J, Hu C. TGF-β1 protects intestinal integrity and influences Smads and MAPK signal pathways in IPEC-J2 after TNF-α challenge. Innate Immun 2017; 23:276-284. [PMID: 28142299 DOI: 10.1177/1753425917690815] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aim of this study was to investigate the protective effects of TGF-β1 on intestinal epithelial barrier, as well as canonical Smad and MAPK signal pathways involved in these protection processes by a IPEC-J2 model stimulated with TNF-α. IPEC-J2 monolayers were treated without or with TNF-α in the absence or presence of TGF-β1. The results showed that TGF-β1 pretreatment ameliorated TNF-α-induced intestinal epithelial barrier disturbances as indicated by decrease of transepithelial electrical resistance (TER) and increase of paracellular permeability. TGF-β1 also dramatically alleviated TNF-α-induced alteration of TJ proteins ZO-1 and occludin. Moreover, TGF-β1 pretreatment increased TβRII protein expression in IPEC-J2 monolayers challenged with TNF-α. In addition, a significant increase of Smad4 and Smad7 mRNA was also observed in the TGF-β1 pretreatment after TNF-α challenge compared with the control group. Furthermore, TGF-β1 pretreatment enhanced smad2 protein activation. These results indicated that the canonical Smad signaling pathway was activated by TGF-β1 pretreatment. Finally, TGF-β1 pretreatment decreased the ratios of the phosphorylated to total JNK and p38 (p-JNK/JNK and p-p38/p38) and increased the ratio of ERK (p-ERK/ERK). Anti-TGF-β1 Abs reduced these TGF-β1 effects. These results indicated that TGF-β1 protects intestinal integrity and influences Smad and MAPK signal pathways in IPEC-J2 after TNF-α challenge.
Collapse
Affiliation(s)
- Kan Xiao
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Shuting Cao
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Lefei Jiao
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Zehe Song
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Jianjun Lu
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Caihong Hu
- Animal Science College, Zhejiang University; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
10
|
Xiao K, Cao ST, Jiao LF, Lin FH, Wang L, Hu CH. Anemonin improves intestinal barrier restoration and influences TGF-β1 and EGFR signaling pathways in LPS-challenged piglets. Innate Immun 2016; 22:344-52. [PMID: 27189428 DOI: 10.1177/1753425916648223] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/14/2016] [Indexed: 01/30/2023] Open
Abstract
The present study was aimed at investigating whether dietary anemonin could alleviate LPS-induced intestinal injury and improve intestinal barrier restoration in a piglet model. Eighteen 35-d-old pigs were randomly assigned to three treatment groups (control, LPS and LPS+anemonin). The control and LPS groups were fed a basal diet, and the LPS + anemonin group received the basal diet + 100 mg anemonin/kg diet. After 21 d of feeding, the LPS- and anemonin-treated piglets received i.p. administration of LPS; the control group received saline. At 4 h post-injection, jejunum samples were collected. The results showed that supplemental anemonin increased villus height and transepithelial electrical resistance, and decreased crypt depth and paracellular flux of dextran (4 kDa) compared with the LPS group. Moreover, anemonin increased tight junction claudin-1, occludin and ZO-1 expression in the jejunal mucosa, compared with LPS group. Anemonin also decreased TNF-α, IL-6, IL-8 and IL-1β mRNA expression. Supplementation with anemonin also increased TGF-β1 mRNA and protein expression, Smad4 and Smad7 mRNA expressions, and epidermal growth factor and epidermal growth factor receptor (EGFR) mRNA expression in the jejunal mucosa. These findings suggest that dietary anemonin attenuates LPS-induced intestinal injury by improving mucosa restoration, alleviating intestinal inflammation and influencing TGF-β1 canonical Smads and EGFR signaling pathways.
Collapse
Affiliation(s)
- Kan Xiao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Shu Ting Cao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Le Fei Jiao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Fang Hui Lin
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Li Wang
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Cai Hong Hu
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
11
|
Wang J, Zeng L, Tan B, Li G, Huang B, Xiong X, Li F, Kong X, Liu G, Yin Y. Developmental changes in intercellular junctions and Kv channels in the intestine of piglets during the suckling and post-weaning periods. J Anim Sci Biotechnol 2016; 7:4. [PMID: 26819706 PMCID: PMC4729073 DOI: 10.1186/s40104-016-0063-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/17/2016] [Indexed: 01/06/2023] Open
Abstract
Background The intestinal epithelium is an important barrier that depends on a complex mixture of proteins and these proteins comprise different intercellular junctions. The purpose of this study was to investigate the postnatal and developmental changes in morphology, intercellular junctions and voltage-gated potassium (Kv) channels in the intestine of piglets during the suckling and post-weaning periods. Results Samples of the small intestine were obtained from 1-, 7-, 14-, and 21-d-old suckling piglets and piglets on d 1, 3, 5, and 7 after weaning at 14 d of age. The results showed that the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and alkaline phosphatase (AKP) activity, as well as the abundances of E-cadherin, occludin, and Kv1.5 mRNA and claudin-1, claudin-3, and occludin protein in the jejunum were increased from d 1 to d 21 during the suckling period (P < 0.05). Weaning induced decreases in the percentage of PCNA-positive cells, AKP activity and the abundances of E-cadherin, occludin and zonula occludens (ZO)-1 mRNA or protein in the jejunum on d 1, 3 and 5 post-weaning (P < 0.05). There were lower abundances of E-cadherin, occludin and ZO-1 mRNA as well as claudin-1, claudin-3 and ZO-1 protein in the jejunum of weanling piglets than in 21-d-old suckling piglets (P < 0.05). The abundances of E-cadherin, occludin, ZO-1 and integrin mRNA were positively related to the percentage of PCNA-positive cells. Conclusion Weaning at 14 d of age induced damage to the intestinal morphology and barrier. While there was an adaptive restoration on d 7 post-weaning, the measured values did not return to the pre-weaning levels, which reflected the impairment of intercellular junctions and Kv channels.
Collapse
Affiliation(s)
- Jing Wang
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; University of the Chinese Academy of Sciences, Beijing, 10008 China
| | - Liming Zeng
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; Science College of Jiangxi Agricultural University, Nanchang, Jiangxi 330045 China
| | - Bie Tan
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, Hunan 410000 China
| | - Guangran Li
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; University of the Chinese Academy of Sciences, Beijing, 10008 China
| | - Bo Huang
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China ; University of the Chinese Academy of Sciences, Beijing, 10008 China
| | - Xia Xiong
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Fengna Li
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Xiangfeng Kong
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Gang Liu
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| | - Yulong Yin
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 China
| |
Collapse
|
12
|
Whey protein concentrate enhances intestinal integrity and influences transforming growth factor-β1 and mitogen-activated protein kinase signalling pathways in piglets after lipopolysaccharide challenge. Br J Nutr 2016; 115:984-93. [PMID: 26810899 DOI: 10.1017/s0007114515005085] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Whey protein concentrate (WPC) has been reported to have protective effects on the intestinal barrier. However, the molecular mechanisms involved are not fully elucidated. Transforming growth factor-β1 (TGF-β1) is an important component in the WPC, but whether TGF-β1 plays a role in these processes is not clear. The aim of this study was to investigate the protective effects of WPC on the intestinal epithelial barrier as well as whether TGF-β1 is involved in these protection processes in a piglet model after lipopolysaccharide (LPS) challenge. In total, eighteen weanling pigs were randomly allocated to one of the following three treatment groups: (1) non-challenged control and control diet; (2) LPS-challenged control and control diet; (3) LPS+5 %WPC diet. After 19 d of feeding with control or 5 %WPC diets, pigs were injected with LPS or saline. At 4 h after injection, pigs were killed to harvest jejunal samples. The results showed that WPC improved (P<0·05) intestinal morphology, as indicated by greater villus height and villus height:crypt depth ratio, and intestinal barrier function, which was reflected by increased transepithelial electrical resistance and decreased mucosal-to-serosal paracellular flux of dextran (4 kDa), compared with the LPS group. Moreover, WPC prevented the LPS-induced decrease (P<0·05) in claudin-1, occludin and zonula occludens-1 expressions in the jejunal mucosae. WPC also attenuated intestinal inflammation, indicated by decreased (P<0·05) mRNA expressions of TNF-α, IL-6, IL-8 and IL-1β. Supplementation with WPC also increased (P<0·05) TGF-β1 protein, phosphorylated-Smad2 expression and Smad4 and Smad7 mRNA expressions and decreased (P<0·05) the ratios of the phosphorylated to total c-jun N-terminal kinase (JNK) and p38 (phospho-JNK:JNK and p-p38:p38), whereas it increased (P<0·05) the ratio of extracellular signal-regulated kinase (ERK) (phospho-ERK:ERK). Collectively, these results suggest that dietary inclusion of WPC attenuates the LPS-induced intestinal injury by improving mucosal barrier function, alleviating intestinal inflammation and influencing TGF-β1 canonical Smad and mitogen-activated protein kinase signalling pathways.
Collapse
|
13
|
Tao X, Xu Z, Men X. Transient changes of enzyme activities and expression of stress proteins in the small intestine of piglets after weaning. Arch Anim Nutr 2015; 69:201-11. [DOI: 10.1080/1745039x.2015.1034828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Xiao K, Song ZH, Jiao LF, Ke YL, Hu CH. Developmental changes of TGF-β1 and Smads signaling pathway in intestinal adaption of weaned pigs. PLoS One 2014; 9:e104589. [PMID: 25170924 PMCID: PMC4149345 DOI: 10.1371/journal.pone.0104589] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022] Open
Abstract
Weaning stress caused marked changes in intestinal structure and function. Transforming growth factor-β1 (TGF-β1) and canonical Smads signaling pathway are suspected to play an important regulatory role in post-weaning adaptation of the small intestine. In the present study, the intestinal morphology and permeability, developmental expressions of tight junction proteins and TGF-β1 in the intestine of piglets during the 2 weeks after weaning were assessed. The expressions of TGF-β receptor I/II (TβRI, TβRII), smad2/3, smad4 and smad7 were determined to investigate whether canonical smads signaling pathways were involved in early weaning adaption process. The results showed that a shorter villus and deeper crypt were observed on d 3 and d 7 postweaning and intestinal morphology recovered to preweaning values on d 14 postweaning. Early weaning increased (P<0.05) plasma level of diamine oxidase (DAO) and decreased DAO activities (P<0.05) in intestinal mucosa on d 3 and d 7 post-weaning. Compared with the pre-weaning stage (d 0), tight junction proteins level of occludin and claudin-1 were reduced (P<0.05) on d 3, 7 and 14 post-weaning, and ZO-1 protein was reduced (P<0.05) on d 3 and d 7 post-weaning. An increase (P<0.05) of TGF-β1 in intestinal mucosa was observed on d 3 and d 7 and then level down on d 14 post-weaning. Although there was an increase (P<0.05) of TβR II protein expression in the intestinal mucosa on d3 and d 7, no significant increase of mRNA of TβRI, TβRII, smad2/3, smad4 and smad7 was observed during postweaning. The results indicated that TGF-β1 was associated with the restoration of intestinal morphology and barrier function following weaning stress. The increased intestinal endogenous TGF-β1 didn't activate the canonical Smads signaling pathway.
Collapse
Affiliation(s)
- Kan Xiao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Ze-He Song
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Le-Fei Jiao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Ya-Lu Ke
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Cai-Hong Hu
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
15
|
Song ZH, Xiao K, Ke YL, Jiao LF, Hu CH. Zinc oxide influences mitogen-activated protein kinase and TGF-β1 signaling pathways, and enhances intestinal barrier integrity in weaned pigs. Innate Immun 2014; 21:341-8. [PMID: 24917655 DOI: 10.1177/1753425914536450] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/29/2014] [Indexed: 12/19/2022] Open
Abstract
Weaning is the most significant event in the life of pigs and is always related with intestinal disruption. Although it is well known that zinc oxide (ZnO) exerts beneficial effects on the intestinal barrier, the mechanisms underlying these effects have not yet been fully elucidated. We examined whether ZnO protects the intestinal barrier via mitogen-activated protein kinases and TGF-β1 signaling pathways. Twelve barrows weaned at 21 d of age were randomly assigned to two treatments (0 verus 2200 mg Zn/kg from ZnO) for 1 wk. The results showed that supplementation with ZnO increased daily gain and feed intake, and decreased postweaning scour scores. ZnO improved intestinal morphology, as indicated by increased villus height and villus height:crypt depth ratio, and intestinal barrier function, indicated by increased transepithelial electrical resistance and decreased mucosal-to-serosal permeability to 4-ku FITC dextran. ZnO decreased the ratios of the phosphorylated to total JNK and p38 (p-JNK/JNK and p-p38/p38), while it increased the ratio of ERK (p-ERK/ERK). Supplementation with ZnO increased intestinal TGF-β1 expression. The results indicate that supplementation with ZnO activates ERK ½, and inhibits JNK and p38 signaling pathways, and increases intestinal TGF-β1 expression in weaned pigs.
Collapse
Affiliation(s)
- Ze He Song
- Animal Science College, Zhejiang University, Hangzhou, PR China The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Kan Xiao
- Animal Science College, Zhejiang University, Hangzhou, PR China The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Ya Lu Ke
- Animal Science College, Zhejiang University, Hangzhou, PR China The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Le Fei Jiao
- Animal Science College, Zhejiang University, Hangzhou, PR China The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Cai Hong Hu
- Animal Science College, Zhejiang University, Hangzhou, PR China The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| |
Collapse
|
16
|
Mach N, Berri M, Esquerré D, Chevaleyre C, Lemonnier G, Billon Y, Lepage P, Oswald IP, Doré J, Rogel-Gaillard C, Estellé J. Extensive expression differences along porcine small intestine evidenced by transcriptome sequencing. PLoS One 2014; 9:e88515. [PMID: 24533095 PMCID: PMC3922923 DOI: 10.1371/journal.pone.0088515] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to analyse gene expression along the small intestine (duodenum, jejunum, ileum) and in the ileal Peyer's patches in four young pigs with no clinical signs of disease by transcriptome sequencing. Multidimensional scaling evidenced that samples clustered by tissue type rather than by individual, thus prefiguring a relevant scenario to draw tissue-specific gene expression profiles. Accordingly, 1,349 genes were found differentially expressed between duodenum and jejunum, and up to 3,455 genes between duodenum and ileum. Additionally, a considerable number of differentially expressed genes were found by comparing duodenum (7,027 genes), jejunum (6,122 genes), and ileum (6,991 genes) with ileal Peyer's patches tissue. Functional analyses revealed that most of the significant differentially expressed genes along small intestinal tissues were involved in the regulation of general biological processes such as cell development, signalling, growth and proliferation, death and survival or cell function and maintenance. These results suggest that the intrinsic large turnover of intestinal tissues would have local specificities at duodenum, ileum and jejunum. In addition, in concordance with their biological function, enteric innate immune pathways were overrepresented in ileal Peyer's patches. The reported data provide an expression map of the cell pathway variation in the different small intestinal tissues. Furthermore, expression levels measured in healthy individuals could help to understand changes in gene expression that occur in dysbiosis or pathological states.
Collapse
Affiliation(s)
- Núria Mach
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
- UMR1319 MICALIS, INRA, Jouy-en-Josas, France
- UMR1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
- * E-mail:
| | - Mustapha Berri
- UMR1282 ISP, INRA, Nouzilly, France
- UMR1282 ISP, Université de Tours, Tours, France
| | - Diane Esquerré
- UMR444 LGC-Plateforme GET, INRA, Castanet-Tolosan, France
| | - Claire Chevaleyre
- UMR1282 ISP, INRA, Nouzilly, France
- UMR1282 ISP, Université de Tours, Tours, France
| | - Gaëtan Lemonnier
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
| | | | - Patricia Lepage
- UMR1319 MICALIS, INRA, Jouy-en-Josas, France
- UMR1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Isabelle P. Oswald
- UMR1331 TOXALIM, INRA, Toulouse, France
- UMR1331 TOXALIM-INP, Université de Toulouse III, Toulouse, France
| | - Joël Doré
- UMR1319 MICALIS, INRA, Jouy-en-Josas, France
- UMR1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Claire Rogel-Gaillard
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
| | - Jordi Estellé
- UMR1313 Génétique Animale et Biologie Intégrative, INRA, Jouy-en-Josas, France
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Jouy-en-Josas, France
- DSV/iRCM/SREIT/LREG, CEA, Jouy-en-Josas, France
| |
Collapse
|
17
|
Tao X, Xu Z. MicroRNA transcriptome in swine small intestine during weaning stress. PLoS One 2013; 8:e79343. [PMID: 24260202 PMCID: PMC3832476 DOI: 10.1371/journal.pone.0079343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/30/2013] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in intestinal diseases; however, the role of miRNAs during weaning stress is unknown. In our study, six jejunal small RNA libraries constructed from weaning piglets at 1, 4 and 7 d after weaning (libraries W1, W4 and W7, respectively) and from suckling piglets on the same days as the weaning piglets (libraries S1, S4 and S7, respectively) were sequenced using Solexa high-throughput sequencing technology. Overall, 260 known swine miRNAs and 317 novel candidate miRNA precursors were detected in the six libraries. The results revealed that 16 differentially expressed miRNAs were found between W1 and S1; 98 differentially expressed miRNAs were found between W4 and S4 (ssc-mir-146b had the largest difference); and 22 differentially expressed miRNAs were found between W7 and S7. Sequencing miRNA results were validated using RT-qPCR. Approximately 11,572 miRNA-mRNA interactions corresponding to 3,979 target genes were predicted. The biological analysis further describe that the differentially expressed miRNAs regulated small intestinal metabolisms, stressful responses and immune functions in piglets. Therefore, the small intestine miRNA transcriptome was significantly different between weaning and suckling piglets; the difference varied with the number of days after weaning.
Collapse
Affiliation(s)
- Xin Tao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
18
|
Ben-Lulu S, Pollak Y, Mogilner J, Bejar J, G. Coran A, Sukhotnik I. Dietary transforming growth factor-beta 2 (TGF-β2) supplementation reduces methotrexate-induced intestinal mucosal injury in a rat. PLoS One 2012; 7:e45221. [PMID: 22984629 PMCID: PMC3440324 DOI: 10.1371/journal.pone.0045221] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/13/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Dietary supplementation with transforming growth factor-beta (TGF-β) has been proven to minimize intestinal damage and facilitate regeneration after mucosal injury. In the present study, we evaluated the effects of oral TGF-β2 supplementation on intestinal structural changes, enterocyte proliferation and apoptosis following methotrexate (MTX)-induced intestinal damage in a rat and in a cell culture model. METHODS Caco-2 cells were treated with MTX and were incubated with increasing concentrations of TGF-β2. Cell apoptosis was assessed using FACS analysis by annexin staining and cell viability was monitored using Trypan Blue assay. Male rats were divided into four experimental groups: Control rats, CONTR- TGF-β rats were treated with diet enriched with TGF-β2, MTX rats were treated with a single dose of methotrexate, and MTX- TGF-β rats were treated with diet enriched with TGF-β2. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined at sacrifice. Real Time PCR and Western blot were used to determine bax and bcl-2 mRNA, p-ERK, β-catenin, IL-1B and bax protein expression. RESULTS Treatment of MTX-pretreated Caco-2 cells with TGF-B2 resulted in increased cell viability and decreased cell apoptosis. Treatment of MTX-rats with TGF-β2 resulted in a significant increase in bowel and mucosal weight, DNA and protein content, villus-height (ileum), crypt-depth (jejunum), decreased intestinal-injury score, decreased level of apoptosis and increased cell proliferation in jejunum and ileum compared to the untreated MTX group. MTX-TGF-β2 rats demonstrated a lower bax mRNA and protein levels as well as increased bcl-2 mRNA levels in jejunum and ileum compared to MTX group. Treatment with TGF-β2 also led to increased pERK, IL-1B and β-catenin protein levels in intestinal mucosa. CONCLUSIONS Treatment with TGF-β2 prevents mucosal-injury, enhances p-ERK and β-catenin induced enterocyte proliferation, inhibits enterocyte apoptosis and improves intestinal recovery following MTX-induced intestinal-mucositis in rats.
Collapse
Affiliation(s)
- Shani Ben-Lulu
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yulia Pollak
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jorge Mogilner
- Department of Pediatric Surgery, Bnai Zion Medical Center, Haifa, Israel
| | - Jacob Bejar
- Department of Pathology, Bnai Zion Medical Center, Haifa, Israel
| | - Arnold G. Coran
- Section of Pediatric Surgery, C.S. Mott Children's Hospital and University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Igor Sukhotnik
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pediatric Surgery, Bnai Zion Medical Center, Haifa, Israel
- * E-mail:
| |
Collapse
|
19
|
Weedman SM, Rostagno MH, Patterson JA, Yoon I, Fitzner G, Eicher SD. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs. J Anim Sci 2011; 89:1908-21. [PMID: 21606447 DOI: 10.2527/jas.2009-2539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objectives of this study were to determine the influence of a Saccharomyces cerevisiae fermentation product on innate immunity and intestinal microbial ecology after weaning and transport stress. In a randomized complete block design, before weaning and in a split-plot analysis of a 2 × 2 factorial arrangement of yeast culture (YY) and transport (TT) after weaning, 3-d-old pigs (n = 108) were randomly assigned within litter (block) to either a control (NY, milk only) or yeast culture diet (YY; delivered in milk to provide 0.1 g of yeast culture product/kg of BW) from d 4 to 21. At weaning (d 21), randomly, one-half of the NY and YY pigs were assigned to a 6-h transport (NY-TT and YY-TT) before being moved to nursery housing, and the other one-half were moved directly to nursery housing (NY-NT and YY-NT, where NT is no transport). The yeast treatment was a 0.2% S. cerevisiae fermentation product and the control treatment was a 0.2% grain blank in feed for 2 wk. On d 1 before transport and on d 1, 4, 7, and 14 after transport, blood was collected for leukocyte assays, and mesenteric lymph node, jejunal, and ileal tissue, and jejunal, ileal, and cecal contents were collected for Toll-like receptor expression (TLR); enumeration of Escherichia coli, total coliforms, and lactobacilli; detection of Salmonella; and microbial analysis. After weaning, a yeast × transport interaction for ADG was seen (P = 0.05). Transport affected (P = 0.09) ADFI after weaning. Yeast treatment decreased hematocrit (P = 0.04). A yeast × transport interaction was found for counts of white blood cells (P = 0.01) and neutrophils (P = 0.02) and for the neutrophil-to-lymphocyte ratio (P = 0.02). Monocyte counts revealed a transport (P = 0.01) effect. Interactions of yeast × transport (P = 0.001) and yeast × transport × day (P = 0.09) for TLR2 and yeast × transport (P = 0.08) for TLR4 expression in the mesenteric lymph node were detected. Day affected lactobacilli, total coliform, and E. coli counts. More pigs were positive for Salmonella on d 7 and 14 than on d 4, and more YY-TT pigs were positive (P = 0.07) on d 4. The number of bands for microbial amplicons in the ileum was greater for pigs in the control treatment than in the yeast treatment on d 0, and this number tended to decrease (P = 0.066) between d 1 and 14 for all pigs. Similarity coefficients for jejunal contents were greater (P = 0.03) for pigs fed NY than for those fed YY, but pigs fed YY had greater similarity coefficients for ileal (P = 0.001) and cecal (P = 0.058) contents. The number of yeast × transport × day interactions demonstrates the complexity of the stress and dietary relationship.
Collapse
Affiliation(s)
- S M Weedman
- Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lackeyram D, Yang C, Archbold T, Swanson KC, Fan MZ. Early weaning reduces small intestinal alkaline phosphatase expression in pigs. J Nutr 2010; 140:461-8. [PMID: 20089775 DOI: 10.3945/jn.109.117267] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Expression of the small intestinal alkaline phosphatase (IAP) is enterocyte differentiation dependent and plays essential roles in the detoxification of pathogenic bacterial lipopolysaccharide endotoxin, maintenance of luminal pH, organic phosphate digestion, and fat absorption. This study was conducted to examine the effect of early weaning on adaptive changes in IAP digestive capacity (V(cap)) and IAP gene expression compared with suckling counterparts in pigs at ages 10-22 d. Weaning decreased (P < 0.05) IAP enzyme affinity by 26% and IAP maximal enzyme activity by 22%, primarily in the jejunal region, with the jejunum expressing 84-86% of the whole gut mucosal IAP V(cap) [mol/(kg body weight.d)]. The majority (98%) of the jejunal mucosal IAP maximal activity was associated with the apical membrane and the remaining (2%) existed as the intracellular soluble IAP. Weaning reduced the abundance of the 60-kDa IAP protein associated with the proximal jejunal apical membrane by 64% (P < 0.05). Furthermore, weaning reduced (P < 0.05) the relative abundance of the proximal jejunal IAP mRNA by 58% and this was in association with decreases (P < 0.05) in the abundances of cytoplasmic (27%) and nuclear (29%) origins of IAP caudal-associated homeobox transcription factor 1. In conclusion, early weaning decreased small intestinal IAP V(cap), IAP catalytic affinity, and IAP gene expression, and this may in part contribute to the susceptibility of early-weaned piglets to increased occurrence of enteric diseases and growth-check.
Collapse
Affiliation(s)
- Dale Lackeyram
- Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
21
|
Ogias D, de Andrade Sá ER, Alvares EP, Gama P. Opposite effects of fasting on TGF-beta3 and TbetaRI distribution in the gastric mucosa of suckling and early weanling rats. Nutrition 2009; 26:224-9. [PMID: 19524404 DOI: 10.1016/j.nut.2009.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 03/09/2009] [Accepted: 03/27/2009] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Our aim was to evaluate the effects of a dietary regimen (suckling or early weaning) and feeding status (fed or fasted) on the distribution of transforming growth factor-beta3 (TGF-beta3) and TGF receptor-I (TbetaRI) in the gastric epithelium of pups. METHODS Wistar rats were used. At 15 d, half of the pups were separated from dams and fed with hydrated powered chow. On day 17, suckling and early weanling rats were subjected to fasting (17h). Four different conditions were established: suckling fed and fasted and early weanling fed and fasted. At 18 d stomachs were collected under anesthesia and were fixed in 4% formaldehyde for immunohistochemistry. The number of immunostained epithelial cells per microscopic field was determined for TGF-beta3 and TbetaRI in longitudinal sections from the gastric mucosa. RESULTS We found that during suckling, fasting reduced the number of immunolabeled cells per field of both molecules when compared with the fed group (P<0.05), whereas in early weaning, food restriction increased TGF-beta3 and TbetaRI distributions (P<0.05). We also observed that TGF-beta3 and TbetaRI were more concentrated in parietal cells in the upper gland in suckling pups, whereas after early weaning these were displaced to parietal and chief cells at the bottom of the gland. CONCLUSION Suckling and early weaning directly influence TGF-beta3 and TbetaRI distributions in the gastric epithelium in response to fasting, such that early weaning anticipates the effects observed in adult rats. Furthermore, the differential concentrations of TGF-beta3 and TbetaRI indicate that they might be important for cell proliferation events in growth control.
Collapse
Affiliation(s)
- Daniela Ogias
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
22
|
Sangild PT, Mei J, Fowden AL, Xu RJ. The prenatal porcine intestine has low transforming growth factor-beta ligand and receptor density and shows reduced trophic response to enteral diets. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1053-62. [DOI: 10.1152/ajpregu.90790.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transforming growth factor-beta (TGF-β) plays a role in enterocyte proliferation control, cell differentiation, and immune regulation via binding to specific TGF-β receptors (TGF-β R) in the intestinal epithelium. Endogenous TGF-β production is low in the intestine during the perinatal period, but some exogenous TGF-β ligands are supplied by amniotic fluid intake in the fetus and by colostrum ingestion in the neonate. It is not clear, however, whether luminal TGF-β receptors are present and functional at this critical time. We studied intestinal TGF-β receptors by immunohistochemistry during the last 20% of gestation in pigs and in chronically catheterized fetuses following exposure to colostrum, milk, and amniotic fluid (control). In fetal pigs, the TGF-β Rs were predominantly localized to the crypt epithelium, but staining intensity increased markedly just before term and shifted to the villous epithelium in newborn pigs, concurrently with marked increases in villous heights and crypt depths (+100–200%, P < 0.05). In contrast to previous observations in term newborn pigs, fetal pigs did not show any milk-induced change in TGF-β receptor densities or localization, although a moderate increase in villous height was observed, relative to control (+25–50%, P < 0.05). We conclude that intestinal TGF-β receptor density and localization are immature and unresponsive to TGF-β containing milk diets in prenatal pigs. Immaturity of TGF-β-mediated immune regulation may play a role in the increased sensitivity of preterm neonates to diet-induced intestinal inflammatory disorders.
Collapse
|
23
|
Sehm J, Lindermayer H, Dummer C, Treutter D, Pfaffl MW. The influence of polyphenol rich apple pomace or red-wine pomace diet on the gut morphology in weaning piglets. J Anim Physiol Anim Nutr (Berl) 2007; 91:289-96. [PMID: 17614999 DOI: 10.1111/j.1439-0396.2006.00650.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alternative food ingredients, e.g. secondary plant compounds, are discussed to have beneficial effects and improve gut health. In this study, the effect of three different diets - normal piglets starter without additives, with apple pomace or with red-wine pomace - on the intestinal morphology was investigated from 3 days prior to weaning to 4 weeks post-weaning. At five time points, six piglets from each treatment group were slaughtered; at first time point only six animals from control group were slaughtered. Villus height, crypt depth and breadth of villi and crypts were determined in the jejunum, ileum and colon in 78 piglets. Additionally, the area of the Peyer's patches in the ileum was measured. In jejunum (p < 0.01) and ileum (p < 0.001) the villus length in the control group decreased after weaning but increased over the entire feeding experiment (p < 0.001). In the two-pomace groups, no decrease was measured after weaning. In jejunum, an increase in villi breadth occurred, 73% in the control group and approximately 10% in both treatment groups. A 35% increase was found in the ileum in all groups. Peyer's patches area increased approximately 21% in the control group over 26 days of treatment, whereas in other groups no significant differences were found. Different polyphenol rich pomaces have diverse effects in the gastrointestinal tract. Red-wine pomace has an inhibitory effect on the jejunum villi growth, whereas apple and red-wine pomace have stimulating effect on crypt size in piglet colon. Apple and red-wine pomace can reduce the GALT activation via the Peyer's patches in the ileum. In conclusion, the flavanoids rich feeding regimen showed positive effects on villi morphology, GALT activation and can improve pig health.
Collapse
Affiliation(s)
- J Sehm
- Lehrstuhl für Physiologie, Zentralinstitut für Ernährung-und Lebensmittelforschung, Wissenschaftszentrum Weihenstephan, Technische Universität München, D-85350 Freising, Germany
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Nguyen TV, Yuan L, Azevedo MS, Jeong KI, Gonzalez AM, Saif LJ. Transfer of maternal cytokines to suckling piglets: in vivo and in vitro models with implications for immunomodulation of neonatal immunity. Vet Immunol Immunopathol 2007; 117:236-48. [PMID: 17403542 PMCID: PMC4094377 DOI: 10.1016/j.vetimm.2007.02.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 02/08/2007] [Accepted: 02/26/2007] [Indexed: 11/24/2022]
Abstract
Maternal cytokines may play instructive roles in development of the neonatal immune system. However, cytokines in colostrum and milk and their transfer from mothers to neonates have not been well documented, except for TGF-beta. Swine provide a unique model to study lactogenic cytokines because the sow's impermeable placenta prohibits transplacental passage. We investigated IL-6 and TNF-alpha (pro-inflammatory), IFN-gamma and IL-12 (Th1), IL-10 and IL-4 (Th2) and TGF-beta1 (Th3) concentrations in sow serum and colostrum/milk and serum of their suckling and weaned piglets and in age-matched colostrum-deprived gnotobiotic piglets. All cytokines were detected in colostrum/milk and correlated with concentrations in sow serum except for mammary-derived TNF-alpha and TGF-beta1. Detection of IL-12 and TGF-beta1 in pre-suckling and colostrum-deprived gnotobiotic piglet serum suggests constitutive production: other cytokines were undetectable confirming absence of transplacental transfer. Peak median cytokine concentrations in suckling piglet serum occurred at post-partum days 1-2 (IL-4>IL-6>IFN-gamma>IL-10). The effects in vitro of physiologically relevant concentrations of the two predominant lactogenic cytokines (TGF-beta1 and IL-4) on porcine naive B cell responses to lipopolysaccharide (LPS) and rotavirus (RV) were investigated. High (10 ng/ml) TGF-beta1 suppressed immunoglobulin secreting cell responses to LPS and rotavirus; low concentrations (0.1 ng/ml) promoted isotype switching to IgA antibody. Interleukin-4 induced inverse dose-dependent (0.1 ng>10 ng/ml) isotype switching to IgA and enhanced IgM secreting cell responses to LPS and rotavirus. In summary, we documented the transfer and persistence of maternal cytokines from colostrum/milk to neonates and their potential role in Th-2 biased IgA responses and reduced immunologic responsiveness of neonates.
Collapse
Affiliation(s)
| | - Lijuan Yuan
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691-4096, USA
| | - Marli S.P. Azevedo
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691-4096, USA
| | - Kwang-il Jeong
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691-4096, USA
| | - Ana-Maria Gonzalez
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691-4096, USA
| | - Linda J. Saif
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691-4096, USA
- Correspondence address: Dr. Linda J. Saif, Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691-4096, USA. Telephone: (330)263-3742. Fax: (330)263-3677.
| |
Collapse
|
26
|
Oswald IP. Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Vet Res 2006; 37:359-68. [PMID: 16611553 DOI: 10.1051/vetres:2006006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 09/16/2005] [Indexed: 12/23/2022] Open
Abstract
The intestinal epithelium serves as a dynamic barrier, which in the course of its normal function, maintains regulated uptake of nutrients and water while excluding potential pathogens. Over the past decade many studies have also revealed the immunological importance of intestinal epithelial cells (IEC). IEC have developed a variety of mechanisms to reduce the risk of infection by invasive pathogens or damage by toxic compounds. The effective maintenance of a physical barrier function is dependent on the establishment of well-organised intercellular junctions and a constant state of regeneration/renewal of the epithelium. IEC also participate in the innate immune responsiveness of the intestine by their ability to secrete mucus and antimicrobial peptides. IEC are also able to secrete cytokines and to respond to exogenous chemokines. This review summarises the current knowledge of the innate immune mechanisms developed by porcine IEC.
Collapse
|