1
|
Bhardwaj V, Thakur N, Kumari P. Harnessing bee venom for inflammatory diseases management: from traditional medicine to nanotechnology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03991-6. [PMID: 40072552 DOI: 10.1007/s00210-025-03991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
This review investigates the anti-inflammatory potential of bee venom, a natural compound comprising peptides, enzymes, biogenic amines other bioactive amines, and other bioactive components. It aims to elucidate how bee venom mitigates inflammatory responses caused by tissue injury, infections, and trauma. This study also explores the advancements in nanotechnology to enhance bee venom's therapeutic effects. A systematic review of studies from Google Scholar and PubMed, up to 2025, was conducted. Both in vitro and in vivo research focusing on bee venom's effects on proinflammatory mediators were analyzed. Specific attention was given to its molecular mechanisms, therapeutic impact on inflammatory conditions, and the role of nanotechnology in improving drug delivery and stability. Bee venom and its components, including melittin, apamin, and phospholipase A2 demonstrate robust anti-inflammatory properties by inhibiting key proinflammatory mediators. These effects have been observed in the treatment of chronic inflammatory conditions such as rheumatoid arthritis and skin disorders. Studies show bee venom's capacity to reduce excessive inflammatory responses effectively. Moreover, incorporating nanotechnology significantly enhances its therapeutic benefits by improving delivery, stability, and bioavailability, paving the way for advanced applications. Bee venom offers a natural, powerful approach to combating the inflammation and related chromic disorders. Its ability to regulate inflammatory pathways is promising for therapeutic use. The integration of nanotechnology further amplifies its potential, providing innovative solutions for efficient and targeted treatments. This study also highlights the need for more clinical trials to establish bee venom as a mainstream therapeutic agent in modern medicine.
Collapse
Affiliation(s)
- Vandna Bhardwaj
- Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Naresh Thakur
- Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Priyanka Kumari
- Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
2
|
Bava R, Castagna F, Lupia C, Poerio G, Liguori G, Lombardi R, Naturale MD, Bulotta RM, Biondi V, Passantino A, Britti D, Statti G, Palma E. Hive Products: Composition, Pharmacological Properties, and Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:646. [PMID: 38794216 PMCID: PMC11124102 DOI: 10.3390/ph17050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Beekeeping provides products with nutraceutical and pharmaceutical characteristics. These products are characterized by abundance of bioactive compounds. For different reasons, honey, royal jelly, propolis, venom, and pollen are beneficial to humans and animals and could be used as therapeutics. The pharmacological action of these products is related to many of their constituents. The main bioactive components of honey include oligosaccharides, methylglyoxal, royal jelly proteins (MRJPs), and phenolics compounds. Royal jelly contains jelleins, royalisin peptides, MRJPs, and derivatives of hydroxy-decenoic acid, particularly 10-hydroxy-2-decenoic acid (10-HDA), which possess antibacterial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome-preventing, and anti-aging properties. Propolis has a plethora of activities that are referable to compounds such as caffeic acid phenethyl ester. Peptides found in bee venom include phospholipase A2, apamin, and melittin. In addition to being vitamin-rich, bee pollen also includes unsaturated fatty acids, sterols, and phenolics compounds that express antiatherosclerotic, antidiabetic, and anti-inflammatory properties. Therefore, the constituents of hive products are particular and different. All of these constituents have been investigated for their properties in numerous research studies. This review aims to provide a thorough screening of the bioactive chemicals found in honeybee products and their beneficial biological effects. The manuscript may provide impetus to the branch of unconventional medicine that goes by the name of apitherapy.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Giusi Poerio
- ATS Val Padana, Via dei Toscani, 46100 Mantova, Italy;
| | | | - Renato Lombardi
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy;
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy;
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Vito Biondi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy;
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Todorova T, Boyadzhiev K, Dimitrov M, Parvanova P. Bee venom genotoxicity on Saccharomyces cerevisiae cells - The role of mitochondria and YAP1 transcription factor. Toxicology 2024; 503:153768. [PMID: 38442839 DOI: 10.1016/j.tox.2024.153768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
The present work aims to clarify the genotype differences of a model organism Saccharomyces cerevisiae in response to bee venom. The study evaluated various endpoints including cell survival, induction of physiologically active superoxide anions, mitotic gene conversion, mitotic crossing-over, reverse mutations, DNA double-strand breaks, and Ty1 retrotransposition. The role of the intact mitochondria and the YAP1 transcription factor was also evaluated. Our results indicate a genotype-specific response. The first experimental evidence has been provided that bee venom induces physiologically active superoxide anions and DNA double-strand breaks in S. cerevisiae. The lack of oxidative phosphorylation due to disrupted or missing mitochondrial DNA reduces but not diminishes the cytotoxicity of bee venom. The possible modes of action could be considered direct damage to membranes (cytotoxic effect) and indirect damage to DNA through oxidative stress (genotoxic effect). YAP1 transcription factor was not found to be directly involved in cell defense against bee venom treatment.
Collapse
Affiliation(s)
- Teodora Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria.
| | - Krassimir Boyadzhiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| | - Martin Dimitrov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| | - Petya Parvanova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| |
Collapse
|
4
|
Gajski G, Leonova E, Sjakste N. Bee Venom: Composition and Anticancer Properties. Toxins (Basel) 2024; 16:117. [PMID: 38535786 PMCID: PMC10975291 DOI: 10.3390/toxins16030117] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 04/25/2025] Open
Abstract
Among the various natural compounds used in alternative and Oriental medicine, toxins isolated from different organisms have had their application for many years, and Apis mellifera venom has been studied the most extensively. Numerous studies dealing with the positive assets of bee venom (BV) indicated its beneficial properties. The usage of bee products to prevent the occurrence of diseases and for their treatment is often referred to as apitherapy and is based mainly on the experience of the traditional system of medical practice in diverse ethnic communities. Today, a large number of studies are focused on the antitumor effects of BV, which are mainly attributed to its basic polypeptide melittin (MEL). Previous studies have indicated that BV and its major constituent MEL cause a strong toxic effect on different cancer cells, such as liver, lung, bladder, kidney, prostate, breast, and leukemia cells, while a less pronounced effect was observed in normal non-target cells. Their proposed mechanisms of action, such as the effect on proliferation and growth inhibition, cell cycle alterations, and induction of cell death through several cancer cell death mechanisms, are associated with the activation of phospholipase A2 (PLA2), caspases, and matrix metalloproteinases that destroy cancer cells. Numerous cellular effects of BV and MEL need to be elucidated on the molecular level, while the key issue has to do with the trigger of the apoptotic cascade. Apoptosis could be either a consequence of the plasmatic membrane fenestration or the result of the direct interaction of the BV components with pro-apoptotic and anti-apoptotic factors. The interaction of BV peptides and enzymes with the plasma membrane is a crucial step in the whole process. However, before its possible application as a remedy, it is crucial to identify the correct route of exposure and dosage of BV and MEL for potential therapeutic use as well as potential side effects on normal cells and tissues to avoid any possible adverse event.
Collapse
Affiliation(s)
- Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Elina Leonova
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, 1004 Riga, Latvia
| | - Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, 1004 Riga, Latvia
- Genetics and Bioinformatics, Institute of Biology, University of Latvia, 1004 Riga, Latvia
| |
Collapse
|
5
|
Therapeutic Use of Bee Venom and Potential Applications in Veterinary Medicine. Vet Sci 2023; 10:vetsci10020119. [PMID: 36851423 PMCID: PMC9965945 DOI: 10.3390/vetsci10020119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Apitherapy is a branch of alternative medicine that consists of the treatment of diseases through products collected, processed, and secreted by bees, specifically pollen, propolis, honey, royal jelly, and bee venom. In traditional medicine, the virtues of honey and propolis have been well-known for centuries. The same, however, cannot be said for venom. The use of bee venom is particularly relevant for many therapeutic aspects. In recent decades, scientific studies have confirmed and enabled us to understand its properties. Bee venom has anti-inflammatory, antioxidant, central nervous system inhibiting, radioprotective, antibacterial, antiviral, and antifungal properties, among others. Numerous studies have often been summarised in reviews of the scientific literature that have focused on the results obtained with mouse models and their subsequent transposition to the human patient. In contrast, few reviews of scientific work on the use of bee venom in veterinary medicine exist. This review aims to take stock of the research achievements in this particular discipline, with a view to a recapitulation and stabilisation in the different research fields.
Collapse
|
6
|
Asma ST, Bobiş O, Bonta V, Acaroz U, Shah SRA, Istanbullugil FR, Arslan-Acaroz D. General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses. Nutrients 2022; 14:nu14173579. [PMID: 36079835 PMCID: PMC9460612 DOI: 10.3390/nu14173579] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Bee products have been extensively employed in traditional therapeutic practices to treat several diseases and microbial infections. Numerous bioactive components of bee products have exhibited several antibacterial, antifungal, antiviral, anticancer, antiprotozoal, hepatoprotective, and immunomodulatory properties. Apitherapy is a form of alternative medicine that uses the bioactive properties of bee products to prevent and/or treat different diseases. This review aims to provide an elaborated vision of the antiviral activities of bee products with recent advances in research. Since ancient times, bee products have been well known for their several medicinal properties. The antiviral and immunomodulatory effects of bee products and their bioactive components are emerging as a promising alternative therapy against several viral infections. Numerous studies have been performed, but many clinical trials should be conducted to evaluate the potential of apitherapy against pathogenic viruses. In that direction, here, we review and highlight the potential roles of bee products as apitherapeutics in combating numerous viral infections. Available studies validate the effectiveness of bee products in virus inhibition. With such significant antiviral potential, bee products and their bioactive components/extracts can be effectively employed as an alternative strategy to improve human health from individual to communal levels as well.
Collapse
Affiliation(s)
- Syeda Tasmia Asma
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Otilia Bobiş
- Department of Beekeeping and Sericulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (O.B.); (U.A.)
| | - Victoriţa Bonta
- Department of Beekeeping and Sericulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- Correspondence: (O.B.); (U.A.)
| | - Syed Rizwan Ali Shah
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Fatih Ramazan Istanbullugil
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Damla Arslan-Acaroz
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| |
Collapse
|
7
|
Nejabat S, Haghshenas MR, Farjadian S. Allergenome profiling of Vespa orientalis venom by serum IgE in patients with anaphylactic reaction to this hornet sting. Toxicon 2022; 214:130-135. [DOI: 10.1016/j.toxicon.2022.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
|
8
|
Maitip J, Mookhploy W, Khorndork S, Chantawannakul P. Comparative Study of Antimicrobial Properties of Bee Venom Extracts and Melittins of Honey Bees. Antibiotics (Basel) 2021; 10:antibiotics10121503. [PMID: 34943715 PMCID: PMC8698802 DOI: 10.3390/antibiotics10121503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Bee venom (BV), or apitoxin, is a complex substance produced by a gland in the abdominal cavity of bees. The main component of BV is melittin, which is a largely studied substance due to its biological properties. To date, the most well-known bee venom and melittin are derived from domesticated honey bees, while venom and melittin derived from wild honey bees have been under-investigated. Hence, this study primarily reports the antimicrobial activities of bee venom and synthetic melittin derived from four different honey bee species (Apis mellifera, A. cerana, A. dorsata, and A. florea) in Thailand. All the bee venom extracts and melittins showed more robust antibacterial activities against Gram-positive (Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, S. aureus MRSA, and S. epidermidis) than Gram-negative bacteria (Escherichia coli, Klebsiella pneuminiae, and Salmonella typhimurium) or a fungus (Candida albicans), while the synthetic melittins also have antimicrobial activity at higher concentrations than the bee venom extract. Furthermore, the A. cerana venom extract showed the highest activity against the tested bacteria, followed by A. mellifera, A. florea, and A. dorsata. Therefore, A. cerana venom may be further developed for use in medical applications as a potential alternative agent against Gram-positive bacteria and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jakkrawut Maitip
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand;
| | - Wannapha Mookhploy
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.M.); (S.K.)
| | - Supharerk Khorndork
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.M.); (S.K.)
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.M.); (S.K.)
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
9
|
Dashevsky D, Rodriguez J. A Short Review of the Venoms and Toxins of Spider Wasps (Hymenoptera: Pompilidae). Toxins (Basel) 2021; 13:toxins13110744. [PMID: 34822528 PMCID: PMC8622703 DOI: 10.3390/toxins13110744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Parasitoid wasps represent the plurality of venomous animals, but have received extremely little research in proportion to this taxonomic diversity. The lion’s share of investigation into insect venoms has focused on eusocial hymenopterans, but even this small sampling shows great promise for the development of new active substances. The family Pompilidae is known as the spider wasps because of their reproductive habits which include hunting for spiders, delivering a paralyzing sting, and entombing them in burrows with one of the wasp’s eggs to serve as food for the developing larva. The largest members of this family, especially the tarantula hawks of the genus Pepsis, have attained notoriety for their large size, dramatic coloration, long-term paralysis of their prey, and incredibly painful defensive stings. In this paper we review the existing research regarding the composition and function of pompilid venoms, discuss parallels from other venom literatures, identify possible avenues for the adaptation of pompilid toxins towards human purposes, and future directions of inquiry for the field.
Collapse
|
10
|
Scaccabarozzi D, Dods K, Le TT, Gummer JPA, Lussu M, Milne L, Campbell T, Wafujian BP, Priddis C. Factors driving the compositional diversity of Apis mellifera bee venom from a Corymbia calophylla (marri) ecosystem, Southwestern Australia. PLoS One 2021; 16:e0253838. [PMID: 34191849 PMCID: PMC8244862 DOI: 10.1371/journal.pone.0253838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022] Open
Abstract
Bee venom (BV) is the most valuable product harvested from honeybees ($30 - $300 USD per gram) but marginally produced in apiculture. Though widely studied and used in alternative medicine, recent efforts in BV research have focused on its therapeutic and cosmetic applications, for the treatment of degenerative and infectious diseases. The protein and peptide composition of BV is integral to its bioactivity, yet little research has investigated the ecological factors influencing the qualitative and quantitative variations in the BV composition. Bee venom from Apis mellifera ligustica (Apidae), collected over one flowering season of Corymbia calophylla (Myrtaceae; marri) was characterized to test if the protein composition and amount of BV variation between sites is influenced by i) ecological factors (temperature, relative humidity, flowering index and stage, nectar production); ii) management (nutritional supply and movement of hives); and/or iii) behavioural factors. BV samples from 25 hives across a 200 km-latitudinal range in Southwestern Australia were collected using stimulatory devices. We studied the protein composition of BV by mass spectrometry, using a bottom-up proteomics approach. Peptide identification utilised sequence homology to the A. mellifera reference genome, assembling a BV peptide profile representative of 99 proteins, including a number of previously uncharacterised BV proteins. Among ecological factors, BV weight and protein diversity varied by temperature and marri flowering stage but not by index, this latter suggesting that inter and intra-year flowering index should be further explored to better appreciate this influence. Site influenced BV protein diversity and weight difference in two sites. Bee behavioural response to the stimulator device impacted both the protein profile and weight, whereas management factors did not. Continued research using a combination of proteomics, and bio-ecological approaches is recommended to further understand causes of BV variation in order to standardise and improve the harvest practice and product quality attributes.
Collapse
Affiliation(s)
- Daniela Scaccabarozzi
- Research Service, ChemCentre, Resources and Chemistry Precinct, Bentley, WA, Australia
| | - Kenneth Dods
- Research and Innovation Division, ChemCentre, Resources and Chemistry Precinct, Bentley, WA, Australia
| | - Thao T. Le
- School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Joel P. A. Gummer
- Research and Innovation Division, ChemCentre, Resources and Chemistry Precinct, Bentley, WA, Australia
- School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Michele Lussu
- Regional Institute for Floriculture (IRF), San Remo, Italy
| | - Lynne Milne
- Research Service, ChemCentre, Resources and Chemistry Precinct, Bentley, WA, Australia
| | - Tristan Campbell
- Research Service, ChemCentre, Resources and Chemistry Precinct, Bentley, WA, Australia
| | | | - Colin Priddis
- Research and Innovation Division, ChemCentre, Resources and Chemistry Precinct, Bentley, WA, Australia
| |
Collapse
|
11
|
Memariani H, Memariani M. Melittin as a promising anti-protozoan peptide: current knowledge and future prospects. AMB Express 2021; 11:69. [PMID: 33983454 PMCID: PMC8119515 DOI: 10.1186/s13568-021-01229-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Protozoan diseases such as malaria, leishmaniasis, Chagas disease, and sleeping sickness still levy a heavy toll on human lives. Deplorably, only few classes of anti-protozoan drugs have thus far been developed. The problem is further compounded by their intrinsic toxicity, emergence of drug resistance, and the lack of licensed vaccines. Thus, there is a genuine exigency to develop novel anti-protozoan medications. Over the past years, melittin, the major constituent in the venom of European honeybee Apis mellifera, has gathered the attention of researchers due to its potential therapeutic applications. Insofar as we are aware, there has been no review pertinent to anti-protozoan properties of melittin. The present review outlines the current knowledge about anti-protozoan effects of melittin and its underlying mechanisms. The peptide has proven to be efficacious in killing different protozoan parasites such as Leishmania, Plasmodium, Toxoplasma, and Trypanosoma in vitro. Apart from direct membrane-disruptive activity, melittin is capable of destabilizing calcium homeostasis, reducing mitochondrial membrane potential, disorganizing kinetoplast DNA, instigating apoptotic cell death, and induction of autophagy in protozoan pathogens. Emerging evidence suggests that melittin is a promising candidate for future vaccine adjuvants. Transmission-blocking activity of melittin against vector-borne pathogens underscores its potential utility for both transgenic and paratransgenic manipulations. Nevertheless, future research should focus upon investigating anti-microbial activities of melittin, alone or in combination with the current anti-protozoan medications, against a far broader spectrum of protozoan parasites as well as pre-clinical testing of the peptide in animal models.
Collapse
|
12
|
Zaworra M, Nauen R. New approaches to old problems: Removal of phospholipase A 2 results in highly active microsomal membranes from the honey bee, Apis mellifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:68-76. [PMID: 31685199 DOI: 10.1016/j.pestbp.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Over the last 50 years numerous studies were published by insect toxicologists using native microsomal membrane preparations in order to investigate in vitro cytochrome P450-(P450) mediated oxidative metabolism of xenobiotics, including insecticides. Whereas the preparation of active microsomal membranes from many pest insect species is straightforward, their isolation from honey bees, Apis mellifera (Hymenoptera: Apidae) remained difficult, if not impossible, due to the presence of a yet unidentified endogenous inhibitory factor released during abdominal gut membrane isolation. Thus hampering in vitro toxicological studies on microsomal oxidative phase 1 metabolism of xenobiotics, including compounds of ecotoxicological concern. The use of microsomal membranes rather than individually expressed P450s offers advantages and allows to develop a better understanding of phase 1 driven metabolic fate of foreign compounds. Here we biochemically investigated the problems associated with the isolation of active honey bee microsomes and developed a method resulting in highly active native microsomal preparations from adult female worker abdomens. This was achieved by removal of the abdominal venom gland sting complex prior to microsomal membrane preparation. Molecular sieve chromatography of the venom sac content leads to the identification of phospholipase A2 as the enzyme responsible for the immediate inhibition of cytochrome P450 activity in microsomal preparations. The substrate specificity of functional honey bee microsomes was investigated with different fluorogenic substrates, and revealed a strong preference for coumarin over resorufin derivatives. Furthermore we were able to demonstrate the metabolism of insecticides by honey bee microsomes using an approach coupled to LC-MS/MS analysis of hydroxylated metabolites. Our work provides access to a new and simple in vitro tool to study honey bee phase 1 metabolism of xenobiotics utilising the entire range of microsomal cytochrome P450s.
Collapse
Affiliation(s)
- Marion Zaworra
- Bayer AG, Crop Science Division, R&D, Alfred Nobel Str. 50, D-40789 Monheim, Germany; University of Bonn, INRES, Molecular Phytomedicine, Karlrobert-Kreiten-Str. 13, D-53115 Bonn, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel Str. 50, D-40789 Monheim, Germany.
| |
Collapse
|
13
|
Abd El-Wahed AA, Khalifa SA, Sheikh BY, Farag MA, Saeed A, Larik FA, Koca-Caliskan U, AlAjmi MF, Hassan M, Wahabi HA, Hegazy MEF, Algethami AF, Büttner S, El-Seedi HR. Bee Venom Composition: From Chemistry to Biological Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019:459-484. [DOI: 10.1016/b978-0-444-64181-6.00013-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Gage SL, Ahumada F, Rivera A, Graham H, DeGrandi-Hoffman G. Smoke Conditions Affect the Release of the Venom Droplet Accompanying Sting Extension in Honey Bees (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5060209. [PMID: 30060211 PMCID: PMC6105110 DOI: 10.1093/jisesa/iey073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Honey bees (Apis mellifera) (Hymenoptera: Apidae) are social insects that have evolved a coordinated defensive response to ensure colony survival. Their nests may contain valuable resources such as pollen and nectar that are attractive to a range of insect and mammalian intruders and need protecting. With sufficient provocation, honey bees will mobilize and sting intruders, who are likely to incur additional stings. To inspect and manage their colonies, beekeepers apply smoke to decrease the likelihood of being stung. The use of smoke is a ubiquitous beekeeping practice, but the reasons behind its efficacy remain unknown. In this study, we examined the effects of smoke on honey bee defensive behavior by assessing individual sting extension responses under smoke conditions. We applied a brief voltage to the bee, ranging from a mild to a strong perturbation, and assessed four components of the sting extension reflex using two types of smoke. We found that smoke did not influence the probability of sting extension, but it did affect whether a venom droplet was released with the stinger. The venom droplet was more likely to be released at higher voltage levels, but this effect was significantly reduced under smoke conditions. Based on these results, we propose that the venom droplet coincides with greater agitation in individual bees; and smoke reduces the probability of its release. We speculate that the venom droplet serves to amplify the sting alarm pheromone, and smoke, in its ability to reduce droplet formation, may indicate that less alarm pheromone is released.
Collapse
Affiliation(s)
- Stephanie L Gage
- Carl Hayden Bee Research Center, USDA-Agricultural Research Service, Tucson
| | | | - Angela Rivera
- Carl Hayden Bee Research Center, USDA-Agricultural Research Service, Tucson
| | - Henry Graham
- Carl Hayden Bee Research Center, USDA-Agricultural Research Service, Tucson
| | | |
Collapse
|
15
|
Diniz-Sousa R, Kayano AM, Caldeira CA, Simões-Silva R, Monteiro MC, Moreira-Dill LS, Grabner FP, Calderon LA, Zuliani JP, Stábeli RG, Soares AM. Biochemical characterization of a phospholipase A 2 homologue from the venom of the social wasp Polybia occidentalis. J Venom Anim Toxins Incl Trop Dis 2018; 24:5. [PMID: 29467796 PMCID: PMC5815181 DOI: 10.1186/s40409-018-0143-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/19/2018] [Indexed: 12/28/2022] Open
Abstract
Background Wasp venoms constitute a molecular reservoir of new pharmacological substances such as peptides and proteins, biological property holders, many of which are yet to be identified. Exploring these sources may lead to the discovery of molecules hitherto unknown. This study describes, for the first time in hymenopteran venoms, the identification of an enzymatically inactive phospholipase A2 (PLA2) from the venom of the social wasp Polybia occidentalis. Methods P. occidentalis venom was fractioned by molecular exclusion and reverse phase chromatography. For the biochemical characterization of the protein, 1D and 2D SDS-PAGE were performed, along with phospholipase activity assays on synthetic substrates, MALDI-TOF mass spectrometry and sequencing by Edman degradation. Results The protein, called PocTX, was isolated using two chromatographic steps. Based on the phospholipase activity assay, electrophoresis and mass spectrometry, the protein presented a high degree of purity, with a mass of 13,896.47 Da and a basic pI. After sequencing by the Edman degradation method, it was found that the protein showed a high identity with snake venom PLA2 homologues. Conclusion This is the first report of an enzymatically inactive PLA2 isolated from wasp venom, similar to snake PLA2 homologues.
Collapse
Affiliation(s)
- Rafaela Diniz-Sousa
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil.,3Postgraduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO Brazil.,São Lucas University Center (UniSL), Porto Velho, RO Brazil
| | - Anderson M Kayano
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil
| | - Cleópatra A Caldeira
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil.,5Postgraduate Program in Biodiversity and Biotechnology, Bionorte Network, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil
| | - Rodrigo Simões-Silva
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil
| | - Marta C Monteiro
- 6School of Pharmacy, Federal University of Pará (UFPA), Belém, PA Brazil
| | - Leandro S Moreira-Dill
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil
| | - Fernando P Grabner
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,São Lucas University Center (UniSL), Porto Velho, RO Brazil
| | - Leonardo A Calderon
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil
| | - Juliana P Zuliani
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil
| | - Rodrigo G Stábeli
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,7Department of Medicine, UFSCar, São Carlos, Center of Translational Medicine, Fiocruz - SP, and School of Medicine of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Andreimar M Soares
- Center for the Study of Biomolecules Applicable to Health (CEBio), Oswaldo Cruz Foundation - Rondônia (Fiocruz - Rondônia), Porto Velho, RO Brazil.,2Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, RO Brazil.,São Lucas University Center (UniSL), Porto Velho, RO Brazil
| |
Collapse
|
16
|
Laurino S, Grossi G, Pucci P, Flagiello A, Bufo SA, Bianco G, Salvia R, Vinson SB, Vogel H, Falabella P. Identification of major Toxoneuron nigriceps venom proteins using an integrated transcriptomic/proteomic approach. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:49-61. [PMID: 27388778 DOI: 10.1016/j.ibmb.2016.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/28/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Endoparasitoids in the order Hymenoptera are natural enemies of several herbivorous insect pest species. During oviposition they inject a mixture of factors, which include venom, into the host, ensuring the successful parasitism and the development of their progeny. Although these parasitoid factors are known to be responsible for host manipulation, such as immune system suppression, little is known about both identity and function of the majority of their venom components. To identify the major proteins of Toxoneuron nigriceps (Hymenoptera: Braconidae) venom, we used an integrated transcriptomic and proteomic approach. The tandem-mass spectrometric (LC-MS/MS) data combined with T. nigriceps venom gland transcriptome used as a reference database resulted in the identification of a total of thirty one different proteins. While some of the identified proteins have been described in venom from several parasitoids, others were identified for the first time. Among the identified proteins, hydrolases constituted the most abundant family followed by transferases, oxidoreductases, ligases, lyases and isomerases. The hydrolases identified in the T. nigriceps venom glands included proteases, peptidases and glycosidases, reported as common components of venom from several parasitoid species. Taken together, the identified proteins included factors that could potentially inhibit the host immune system, manipulate host physiological processes and host development, as well as provide nutrients to the parasitoid progeny, degrading host tissues by specific hydrolytic enzymes. The venom decoding provides us with information about the identity of candidate venom factors which could contribute to the success of parasitism, together with other maternal and embryonic factors.
Collapse
Affiliation(s)
- Simona Laurino
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Gerarda Grossi
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Pietro Pucci
- Dipartimento di Scienze Chimiche e Ceinge Biotecnologie Avanzate, Università di Napoli Federico II, Via Cintia 6, 80126, Napoli, Italy
| | - Angela Flagiello
- Ceinge Biotecnologie Avanzate, Via Gaetano Salvatore 482, 80131, Napoli, Italy
| | - Sabino Aurelio Bufo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Rosanna Salvia
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - S Bradleigh Vinson
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Patrizia Falabella
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
17
|
Matysiak J, Hajduk J, Pietrzak Ł, Schmelzer CEH, Kokot ZJ. Shotgun proteome analysis of honeybee venom using targeted enrichment strategies. Toxicon 2014; 90:255-64. [PMID: 25173076 DOI: 10.1016/j.toxicon.2014.08.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 01/30/2023]
Abstract
The aim of this study was to explore the honeybee venom proteome applying a shotgun proteomics approach using different enrichment strategies (combinatorial peptide ligand libraries and solid phase extraction). The studies were conducted using nano-LC/MALDI-TOF/TOF-MS system. The MS analysis of peptide profiles (in the range of 900-4500 Da) and virtual gel-image of proteins from Lab-on-Chip assay (in the range of 10-250 kDa) confirm that use of targeted enrichment strategies increase detection of honeybee venom components. The gel-free shotgun strategy and sophisticated instrumentation led to a significant increase of the sensitivity and higher number of identified peptides in honeybee venom samples, comparing with the current literature. Moreover, 11 of 12 known honeybee venom allergens were acknowledged and 4 new, so far uncharacterized proteins were identified. In addition, similarity searches were performed in order to investigate biological relations and homology between newly identified proteins sequences from Apis mellifera and other Hymenoptera.
Collapse
Affiliation(s)
- Jan Matysiak
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland.
| | - Joanna Hajduk
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Łukasz Pietrzak
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Christian E H Schmelzer
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Zenon J Kokot
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| |
Collapse
|
18
|
Sookrung N, Wong-din-Dam S, Tungtrongchitr A, Reamtong O, Indrawattana N, Sakolvaree Y, Visitsunthorn N, Manuyakorn W, Chaicumpa W. Proteome and allergenome of Asian wasp, Vespa affinis, venom and IgE reactivity of the venom components. J Proteome Res 2014; 13:1336-44. [PMID: 24437991 DOI: 10.1021/pr4009139] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vespa affinis (Asian wasp, Thai banded tiger wasp, or local name: Tor Hua Seua) causes the most frequent incidence of medically important Hymenoptera sting in South and Southeast Asia. However, data on the venom components attributable to the sting derived-clinical manifestations (local reactions, IgE mediated-anaphylaxis, or systemic envenomation) are lacking. This study provides the first set information on V. affinis venom proteome, allergenome, and IgE reactivity of individual venom components. From 2DE-gel based-proteomics, the venom revealed 93 protein spots, of which proteins in 51 spots could be identified and classified into three groups: typical venom components and structural and housekeeping proteins. Venom proteins in 32 spots reacted with serum IgE of wasp allergic patients. Major allergenic proteins that reacted to IgE of >50% of the wasp allergic patients included PLA1 (100%), arginine kinase (73%), heat shock 70 kDa protein (73.3%), venom allergen-5 (66.7%), enolase (66.7%), PLA1 magnifin (60%), glyceraldehyde-3-phosphate dehydrogenase (60%), hyaluronidase (53.3%), and fructose-bisphosphate aldolase (53.3%). The venom minor allergens were GB17876 transcript (40%), GB17291 transcript (20%), malic enzyme (13.3%), aconitate hydratase (6.7%), and phosphoglucomutase (6.7%). The information has diagnostic and clinical implications for future improvement of case diagnostic sensitivity and specificity, component-resolve diagnosis, and design of specific Hymenoptera venom immunotherapy.
Collapse
Affiliation(s)
- Nitat Sookrung
- Department of Research and Development, ‡Graduate Program in Immunology, Department of Immunology, §Department of Parasitology, and ∥Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok 10700, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hoshina MM, Santos LD, Palma MS, Marin-Morales MA. Cytotoxic, genotoxic/antigenotoxic and mutagenic/antimutagenic effects of the venom of the wasp Polybia paulista. Toxicon 2013; 72:64-70. [PMID: 23796727 DOI: 10.1016/j.toxicon.2013.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023]
Abstract
Hymenoptera venoms are constituted by a complex mixture of chemically or pharmacologically bioactive agents, such as phospholipases, hyaluronidases and mastoparans. Venoms can also contain substances that are able to inhibit and/or diminish the genotoxic or mutagenic action of other compounds that are capable of promoting damages in the genetic material. Thus, the present study aimed to assess the effect of the venom of Polybia paulista, a neotropical wasp, by assays with HepG2 cells maintained in culture. The cytotoxic potential of the wasp venom, assessed by the methyl thiazolyl tetrazolium assay (MTT assay), was tested for the concentrations of 10 μg/mL, 5 μg/mL and 1 μg/mL. As these concentrations were not cytotoxic, they were used to evaluate the genotoxic (comet assay) and mutagenic potential (micronucleus test) of the venom. In this study, it was verified that these concentrations induced damages in the DNA of the exposed cells, and it was necessary to test lower concentrations until it was found those that were not considered genotoxic and mutagenic. The concentrations of 1 ng/mL, 100 pg/mL and 10 pg/mL, which did not induce genotoxicity and mutagenicity, were used in four different treatments (post-treatment, pre-treatment, simultaneous treatment with and without incubation), in order to evaluate if these concentrations were able to inhibit or decrease the genotoxic and mutagenic action of methyl methanesulfonate (MMS). None of the concentrations was able to inhibit and/or decrease the MMS activity. The genotoxic and mutagenic activity of the venom of P. paulista could be caused by the action of phospholipase, mastoparan and hyaluronidase, which are able to disrupt the cell membrane and thereby interact with the genetic material of the cells or even facilitate the entrance of other compounds of the venom that can act on the DNA. Another possible explanation for the genotoxicity and mutagenicity of the venom can be the presence of substances able to trigger inflammatory process and, consequently, generate oxygen reactive species that can interact with the DNA of the exposed cells.
Collapse
Affiliation(s)
- Márcia M Hoshina
- UNESP, Avenida 24 A, 1515, CP 199, 13506-900 Rio Claro, SP, Brazil
| | | | | | | |
Collapse
|
20
|
dos Santos Pinto JRA, Fox EGP, Saidemberg DM, Santos LD, da Silva Menegasso AR, Costa-Manso E, Machado EA, Bueno OC, Palma MS. Proteomic View of the Venom from the Fire Ant Solenopsis invicta Buren. J Proteome Res 2012; 11:4643-53. [DOI: 10.1021/pr300451g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- José R. A. dos Santos Pinto
- Institute of Biosciences, Center
of the Study of Social Insects/Department of Biology, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
| | - Eduardo G. P. Fox
- Laboratório
de Entomologia Médica e Molecular, Instituto de Biofísica
Carlos Chagas Filho, Federal University of Rio de Janeiro (IBCCF/UFRJ), Rio de Janeiro, Brazil
| | - Daniel M. Saidemberg
- Institute of Biosciences, Center
of the Study of Social Insects/Department of Biology, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
| | - Lucilene D. Santos
- Institute of Biosciences, Center
of the Study of Social Insects/Department of Biology, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
| | - Anally R. da Silva Menegasso
- Institute of Biosciences, Center
of the Study of Social Insects/Department of Biology, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
| | | | - Ednildo A. Machado
- Laboratório
de Entomologia Médica e Molecular, Instituto de Biofísica
Carlos Chagas Filho, Federal University of Rio de Janeiro (IBCCF/UFRJ), Rio de Janeiro, Brazil
| | - Odair C. Bueno
- Institute of Biosciences, Center
of the Study of Social Insects/Department of Biology, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
| | - Mario S. Palma
- Institute of Biosciences, Center
of the Study of Social Insects/Department of Biology, University of São Paulo State (UNESP), Rio Claro,
SP, Brazil
| |
Collapse
|
21
|
Heinen TE, Gorini da Veiga AB. Arthropod venoms and cancer. Toxicon 2011; 57:497-511. [DOI: 10.1016/j.toxicon.2011.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/13/2010] [Accepted: 01/04/2011] [Indexed: 12/29/2022]
|
22
|
dos Santos LD, da Silva Menegasso AR, dos Santos Pinto JRA, Santos KS, Castro FM, Kalil JE, Palma MS. Proteomic characterization of the multiple forms of the PLAs from the venom of the social wasp Polybia paulista. Proteomics 2011; 11:1403-12. [PMID: 21365748 DOI: 10.1002/pmic.201000414] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/05/2010] [Accepted: 01/11/2011] [Indexed: 12/16/2022]
Abstract
The phospholipases A(1) (PLA(1) s) from the venom of the social wasp Polybia paulista occur as a mixture of different molecular forms. To characterize the molecular origin of these structural differences, an experimental strategy was planned combining the isolation of the pool of PLAs from the wasp venom with proteomic approaches by using 2-D, MALDI-TOF-TOF MS and classical protocols of protein chemistry, which included N- and C-terminal sequencing. The existence of an intact form of PLA(1) and seven truncated forms was identified, apparently originating from controlled proteolysis of the intact protein; in addition to this, four of these truncated forms also presented carbohydrates attached to their molecules. Some of these forms are immunoreactive to specific-IgE, while others are not. These observations permit to raise the hypothesis that naturally occurring proteolysis of PLA(1) , combined with protein glycosylation may create a series of different molecular forms of these proteins, with different levels of allergenicity. Two forms of PLA(2) s, apparently related to each other, were also identified; however, it was not possible to determine the molecular origin of the differences between both forms, except that one of them was glycosylated. None of these forms were immunoreactive to human specific IgE.
Collapse
Affiliation(s)
- Lucilene Delazari dos Santos
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects/Dept. Biology, University of São Paulo State (UNESP), Rio Claro, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
dos Santos LD, Santos KS, Pinto JRA, Dias NB, Souza BMD, dos Santos MF, Perales J, Domont GB, Castro FM, Kalil JE, Palma MS. Profiling the Proteome of the Venom from the Social Wasp Polybia paulista: A Clue to Understand the Envenoming Mechanism. J Proteome Res 2010; 9:3867-77. [DOI: 10.1021/pr1000829] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lucilene Delazari dos Santos
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, SP, Brazil, Discipline of Allergy and Immunology/InCor (HC/FMUSP), SP, Brazil, Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil, Department of Physiology and Pharmacodynamics, FIOCRUZ, RJ, Brazil, and Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia/iii
| | - Keity Souza Santos
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, SP, Brazil, Discipline of Allergy and Immunology/InCor (HC/FMUSP), SP, Brazil, Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil, Department of Physiology and Pharmacodynamics, FIOCRUZ, RJ, Brazil, and Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia/iii
| | - José Roberto Aparecido Pinto
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, SP, Brazil, Discipline of Allergy and Immunology/InCor (HC/FMUSP), SP, Brazil, Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil, Department of Physiology and Pharmacodynamics, FIOCRUZ, RJ, Brazil, and Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia/iii
| | - Nathalia Baptista Dias
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, SP, Brazil, Discipline of Allergy and Immunology/InCor (HC/FMUSP), SP, Brazil, Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil, Department of Physiology and Pharmacodynamics, FIOCRUZ, RJ, Brazil, and Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia/iii
| | - Bibiana Monson de Souza
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, SP, Brazil, Discipline of Allergy and Immunology/InCor (HC/FMUSP), SP, Brazil, Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil, Department of Physiology and Pharmacodynamics, FIOCRUZ, RJ, Brazil, and Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia/iii
| | - Marise Fonseca dos Santos
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, SP, Brazil, Discipline of Allergy and Immunology/InCor (HC/FMUSP), SP, Brazil, Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil, Department of Physiology and Pharmacodynamics, FIOCRUZ, RJ, Brazil, and Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia/iii
| | - Jonas Perales
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, SP, Brazil, Discipline of Allergy and Immunology/InCor (HC/FMUSP), SP, Brazil, Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil, Department of Physiology and Pharmacodynamics, FIOCRUZ, RJ, Brazil, and Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia/iii
| | - Gilberto Barbosa Domont
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, SP, Brazil, Discipline of Allergy and Immunology/InCor (HC/FMUSP), SP, Brazil, Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil, Department of Physiology and Pharmacodynamics, FIOCRUZ, RJ, Brazil, and Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia/iii
| | - Fabio Morato Castro
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, SP, Brazil, Discipline of Allergy and Immunology/InCor (HC/FMUSP), SP, Brazil, Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil, Department of Physiology and Pharmacodynamics, FIOCRUZ, RJ, Brazil, and Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia/iii
| | - Jorge Elias Kalil
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, SP, Brazil, Discipline of Allergy and Immunology/InCor (HC/FMUSP), SP, Brazil, Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil, Department of Physiology and Pharmacodynamics, FIOCRUZ, RJ, Brazil, and Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia/iii
| | - Mario Sergio Palma
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Rio Claro, SP, Brazil, Discipline of Allergy and Immunology/InCor (HC/FMUSP), SP, Brazil, Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), RJ, Brazil, Department of Physiology and Pharmacodynamics, FIOCRUZ, RJ, Brazil, and Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia/iii
| |
Collapse
|
24
|
de Graaf DC, Brunain M, Scharlaken B, Peiren N, Devreese B, Ebo DG, Stevens WJ, Desjardins CA, Werren JH, Jacobs FJ. Two novel proteins expressed by the venom glands of Apis mellifera and Nasonia vitripennis share an ancient C1q-like domain. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:1-10. [PMID: 20167013 DOI: 10.1111/j.1365-2583.2009.00913.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An in-depth proteomic study of previously unidentified two-dimensional polyacrylamide gel electrophoresis spots of honey bee (Apis mellifera, Hymenoptera) venom revealed a new protein with a C1q conserved domain (C1q-VP). BlastP searching revealed a strong identity with only two proteins from other insect species: the jewel wasp, Nasonia vitripennis (Hymenoptera), and the green pea aphid, Acyrthosiphon pisum (Hemiptera). In higher organisms, C1q is the first subcomponent of the classical complement pathway and constitutes a major link between innate and acquired immunity. Expression of C1q-VP in a variety of tissues of honey bee workers and drones was demonstrated. In addition, a wide spatial and temporal pattern of expression was observed in N. vitripennis. We suggest that C1q-VP represents a new member of the emerging group of venom trace elements. Using degenerate primers the corresponding gene was found to be highly conserved in eight hymenopteran species, including species of the Aculeata and the Parasitica groups (suborder Apocrita) and even the suborder Symphyta. A preliminary test using recombinant proteins failed to demonstrate Am_C1q-VP-specific immunoglobulin E recognition by serum from patients with a documented severe bee venom allergy.
Collapse
Affiliation(s)
- D C de Graaf
- Laboratory of Zoophysiology, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abdulkader RC, Barbaro KC, Barros EJG, Burdmann EA. Nephrotoxicity of Insect and Spider Venoms in Latin America. Semin Nephrol 2008; 28:373-382. [DOI: 10.1016/j.semnephrol.2008.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Santos LD, Santos KS, de Souza BM, Arcuri HA, Cunha-Neto E, Castro FM, Kalil JE, Palma MS. Purification, sequencing and structural characterization of the phospholipase A1 from the venom of the social wasp Polybia paulista (Hymenoptera, Vespidae). Toxicon 2007; 50:923-37. [PMID: 17761205 DOI: 10.1016/j.toxicon.2007.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
The biochemical and functional characterization of wasp venom toxins is an important prerequisite for the development of new tools both for the therapy of the toxic reactions due to envenomation caused by multiple stinging accidents and also for the diagnosis and therapy of allergic reactions caused by this type of venom. PLA(1) was purified from the venom of the neotropical social wasp Polybia paulista by using molecular exclusion and cation exchange chromatographies; its amino acid sequence was determined by using automated Edman degradation and compared to the sequences of other vespid venom PLA(1)'s. The enzyme exists as a 33,961.40 Da protein, which was identified as a lipase of the GX class, liprotein lipase superfamily, pancreatic lipases (ab20.3) homologous family and RP2 sub-group of phospholipase. P. paulista PLA(1) is 53-82% identical to the phospholipases from wasp species from Northern Hemisphere. The use restrained-based modeling permitted to describe the 3-D structure of the enzyme, revealing that its molecule presents 23% alpha-helix, 28% beta-sheet and 49% coil. The protein structure has the alpha/beta fold common to many lipases; the core consists of a tightly packed beta-sheet constituted of six-stranded parallel and one anti-parallel beta-strand, surrounded by four alpha-helices. P. paulista PLA(1) exhibits direct hemolytic action against washed red blood cells with activity similar to the Cobra cardiotoxin from Naja naja atra. In addition to this, PLA(1) was immunoreactive to specific IgE from the sera of P. paulista-sensitive patients.
Collapse
Affiliation(s)
- Lucilene D Santos
- Department of Biology, Institute of Biosciences of Rio Claro, Center of the Study of Social Insects, University of São Paulo State (UNESP), Av. 24A no. 1515, Bela Vista, Rio Claro, SP CEP 13506-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Turillazzi S, Bruschini C, Lambardi D, Francese S, Spadolini I, Mastrobuoni G. Comparison of the medium molecular weight venom fractions from five species of common social wasps by MALDI-TOF spectra profiling. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:199-205. [PMID: 17173348 DOI: 10.1002/jms.1152] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The average spectral profiles and the exact mass weight (MW) of biomolecules present in the medium fraction (from 900 to 3000 Da) of the venom of five social wasps (three European and one North American Polistes and the European hornet Vespa crabro) were determined by matrix assisted laser desorption ionization time of flight (MALDI-TOF) MS. Data were obtained analyzing the venom of single specimens (N = 46) and elaborated with the ClinProTools 2.0 (CPT) software to search for differences among the five species examined. Interesting differences in the spectral profiles were found, allowing the discrimination of venoms belonging to the different species, and their possible use as a quality control method in venom immunotherapy (VIT) for allergic patients.
Collapse
Affiliation(s)
- Stefano Turillazzi
- Centro Interdipartimentale di Spettrometria di Massa, Università degli Studi di Firenze, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Han S, Lee K, Yeo J, Kweon H, Woo S, Lee M, Baek H, Park K. Effect of venom from the Asian honeybee ( Apis ceranaFab.) on LPS-induced nitric oxide and tumor necrosis factor-α production in RAW 264.7 Cell Line. JOURNAL OF APICULTURAL RESEARCH 2006; 45:131-136. [DOI: 10.1080/00218839.2006.11101331] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
29
|
Orsolić N, Sver L, Verstovsek S, Terzić S, Basić I. Inhibition of mammary carcinoma cell proliferation in vitro and tumor growth in vivo by bee venom. Toxicon 2003; 41:861-70. [PMID: 12782086 DOI: 10.1016/s0041-0101(03)00045-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The possible tumor growth- and metastasis-inhibiting effects of bee venom in mice and in tumor cell cultures were studied. The tumor was a transplantable mammary carcinoma (MCa) of CBA mouse. Intravenous administration of bee venom to mice significantly reduced the number of metastases in the lung. However, subcutaneous administration of bee venom did not reduce the number of lung metastases, indicating that the antitumor effect of the venom could be highly dependent on the route of injection as well as close contact between the components of the venom and the tumor cells, as was shown by in vitro studies on MCa cells. We also observed variations in immunological parameter induced by bee venom. We proposed that bee venom has an indirect mechanism of tumor growth inhibition and promotion of tumor rejection that is based on stimulation of the local cellular immune responses in lymph nodes. Apoptosis, necrosis, and lysis of tumor cells are other possible mechanisms by which bee venom inhibits tumor growth.
Collapse
Affiliation(s)
- Nada Orsolić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10 000 Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
30
|
Costa H, Palma MS. Agelotoxin: a phospholipase A(2) from the venom of the neotropical social wasp cassununga (Agelaia pallipes pallipes) (Hymenoptera-Vespidae). Toxicon 2000; 38:1367-79. [PMID: 10758272 DOI: 10.1016/s0041-0101(99)00199-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The neotropical wasp Agelaia pallipes pallipes is aggressive and endemic in southeast of Brazil, where very often it causes stinging accidents in rural areas. By using gel filtration on Sephadex G-100, followed by high performance reversed phase chromatography in a C-18 column under acetonitrile/water gradient, the agelotoxin was purified: a toxin presenting phospholipase A(2) (PLA(2)) activity, which occurs under equilibrium of three different aggregation states: monomer (mol. wt 14 kDa), trimer (mol. wt 42 kDa) and pentamer (mol. wt 74 kDa). The enzyme presents high sugar contents attached to the protein chain (22% [w/w]) and a transition of the values of pH optimum for the substrate hydrolysis from 7.5 to 9.0, under aggregation from monomer to pentamer. All the aggregation states present Michaelian steady-state kinetic behavior and the monomer polymerization caused a decreasing of phospholipasic activity due a non-competitive inhibition promoted by the formation of a quaternary structure. The PLA(2) catalytic activity of agelotoxin changes according to its state of aggregation (from 833 to 12533 micromol mg(-1) min(-1)) and both the monomeric and oligomeric forms present lowest activities than the PLA(2) from Apis mellifera venom and hornetin from Vespa basalis. Agelotoxin is also a very potent direct hemolysin; the monomer of agelotoxin presented hemolytic actions until 200 times higher than the PbTx from P. paulista, 740 times higher than the PLA(2) from A. mellifera, 570 times higher than that of neutral PLA(2) from N. nigricolis and about 1250 times than that of cardiotoxin from Naja naja atra venom.
Collapse
Affiliation(s)
- H Costa
- Department of Biology, University of São Paulo State (UNESP), Rio Claro, Brazil
| | | |
Collapse
|
31
|
|
32
|
de Oliveira MR, Palma MS. Polybitoxins: a group of phospholipases A2 from the venom of the neotropical social wasp paulistinha (Polybia paulista). Toxicon 1998; 36:189-99. [PMID: 9604292 DOI: 10.1016/s0041-0101(97)00053-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neotropical wasp Polybia paulistinha is very aggressive and endemic in south-east Brazil, where it frequently causes stinging accidents. By using gel filtration on Sephadex G-200, followed by ion-exchange chromatography on DEAE-Cellulose under a pH gradient, a group of four toxins (designated as polybitoxins-I, II, III and IV) presenting phospholipase A2 (PLA2) activities was purified. These toxins are dimeric with mol. wts ranging from 115,000 to 132,000 and formed by different subunits. The four toxins contain very high sugar contents attached to their molecules (22-43% w/w) and presented different values of pH optimum from 7.8 to 9.0; when dissociated, only residual catalytic activities were maintained. The catalytic activities of polybitoxins (from 18 to 771 mumoles/mg per minute) are lower than that of PLA2 from Apis mellifera venom and hornetin from Vespa basalis. The polybitoxins presented a non-linear steady-state kinetic behavior for the hydrolysis of phosphatidylcholine at pH 7.9, compatible with the negative co-operativity phenomena. All of the polybitoxins were very potent direct hemolysins, especially the polybitoxins-III and IV, which are as potent as the lethal toxin from V. basalis and hornetin from Vespa flavitarsus, respectively; polybitoxin-IV presented hemolytic action 20 times higher than that of PLA2 from A. meliferra, 17 times higher than that of neutral PLA2 from Naja nigricolis and about 37 times higher than that of cardiotoxin from Naja naja atra venom.
Collapse
Affiliation(s)
- M R de Oliveira
- Department of Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, Brazil
| | | |
Collapse
|
33
|
VARANDA EA, TAVARES DC. RADIOPROTECTION: MECHANISMS AND RADIOPROTECTIVE AGENTS INCLUDING HONEYBEE VENOM. ACTA ACUST UNITED AC 1998. [DOI: 10.1590/s0104-79301998000100002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- E. A. VARANDA
- São Paulo State University; UNESP, São Paulo State University, Botucatu, SP, Brazil
| | | |
Collapse
|
34
|
Periquet G, Bigot Y, Doury G. Physiological and Biochemical Analysis of Factors in the Female Venom Gland and Larval Salivary Secretions of the Ectoparasitoid Wasp Eupelmus orientalis. JOURNAL OF INSECT PHYSIOLOGY 1997; 43:69-81. [PMID: 12769931 DOI: 10.1016/s0022-1910(96)00053-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The stinging adult female and the biting newly-hatched larva of the solitary ectoparasitoid wasp Eupelmus orientalis can both cause permanent paralysis and stop the development of Callosobruchus maculatus host larvae. These two processes of host envenomation appeared to be independent and complementary in primary parasitism or in hyperparasitism of a distantly related hymenopteran host species. In contrast, the development of larvae as hyperparasites on members of their own species or genus depended completely on the prior injection of female venom. The venoms of the female and the first instar larva had similar effects on the cellular metabolism of the primary hosts. Protein synthesis was blocked in C. maculatus hosts envenomated by a female or a first instar larva of E. orientalis, but the absence of DNA breakdown indicated that these paralysed hosts were alive and quiescent. The venomous secretions injected by adult females and first instar larvae of E. orientalis had distinct electrophoretic profiles. The immunoreactive features of proteins from female venom and larval secretions were also examined. There is evidence for antigenic conservation between some venom proteins of E. orientalis and Apis mellifera. Lastly, the hyaluronidase, phospholipase and lipase activities in the female venom gland and in larval-derived secretions of E. orientalis were assayed. No lipase activity was detected. Phospholipase activity was found in both the female venom and the larval secretions of E. orientalis, whereas hyaluronidase was specific to the female venom.
Collapse
Affiliation(s)
- G Periquet
- Institut de Biocénotique Expérimentale des Agrosystèmes, URA CNRS 1298, Faculté des Sciences, Parc Grandmont, 37200, Tours, France
| | | | | |
Collapse
|
35
|
Biochemical variability between venoms from different honey-bee (Apis mellifera) races. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0742-8413(93)90157-g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Azevedo-Marques MM, Ferreira DB, Costa RS. Rhabdomyonecrosis experimentally induced in Wistar rats by Africanized bee venom. Toxicon 1992; 30:344-8. [PMID: 1529465 DOI: 10.1016/0041-0101(92)90875-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Damage is reported to skeletal muscle experimentally induced in Wistar rats by Africanized bee venom (ABV). Rhabdomyonecrosis was demonstrated indirectly by increased serum levels of the enzymes aspartate-aminotransferase and total creatine kinase, and directly by necrosis and inflammation observed by standard light microscopy of skeletal muscle. To our knowledge, this is the first report of a systemic damaging effect of ABV on skeletal muscle of experimentally envenomated rats. These data appear to reproduce experimentally some of the findings reported in cases of human envenomation due to multiple Africanized bee stings.
Collapse
Affiliation(s)
- M M Azevedo-Marques
- Department of Internal Medicine, Faculty of Medicine, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
37
|
|