1
|
Xing C, Chen H, Bi W, Lei T, Hang Z, Du H. Targeting 5-HT Is a Potential Therapeutic Strategy for Neurodegenerative Diseases. Int J Mol Sci 2024; 25:13446. [PMID: 39769209 PMCID: PMC11679250 DOI: 10.3390/ijms252413446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
There is increasing interest in the potential therapeutic role of 5-HT (serotonin) in the treatment of neurodegenerative diseases, which are characterized by the progressive degeneration and death of nerve cells. 5-HT is a vital neurotransmitter that plays a central role in regulating mood, cognition, and various physiological processes in the body. Disruptions in the 5-HT system have been linked to several neurological and psychiatric disorders, making it an attractive target for therapeutic intervention. Although the exact causes of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are not fully understood, researchers believe that regulating the 5-HT system could help alleviate symptoms and potentially slow the progression of these diseases. Here, we delve into the potential of harnessing 5-HT as a therapeutic target for the treatment of neurodegenerative diseases. It is important to note that the current clinical drugs targeting 5-HT are still limited in the treatment of these complex diseases. Therefore, further research and clinical trials are needed to evaluate the feasibility and effectiveness of its clinical application.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Hongyu Chen
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Wangyu Bi
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Zhongci Hang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China; (C.X.); (H.C.); (W.B.); (Z.H.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
2
|
Yang L, Cheng Y, Zhu Y, Cui L, Li X. The Serotonergic System and Amyotrophic Lateral Sclerosis: A Review of Current Evidence. Cell Mol Neurobiol 2023; 43:2387-2414. [PMID: 36729314 PMCID: PMC11410157 DOI: 10.1007/s10571-023-01320-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the premature death of motor neurons. Serotonin (5-HT) is a crucial neurotransmitter, and its dysfunction, whether as a contributor or by-product, has been implicated in ALS pathogenesis. Here, we summarize current evidence linking serotonergic alterations to ALS, including results from post-mortem and neuroimaging studies, biofluid testing, and studies of ALS animal models. We also discuss the possible role of 5-HT in modulating some important mechanisms of ALS (i.e. glutamate excitotoxity and neuroinflammation) and in regulating ALS phenotypes (i.e. breathing dysfunction and metabolic defects). Finally, we discuss the promise and limitations of the serotonergic system as a target for the development of ALS biomarkers and therapeutic approaches. However, due to a relative paucity of data and standardized methodologies in previous studies, proper interpretation of existing results remains a challenge. Future research is needed to unravel the mechanisms linking serotonergic pathways and ALS and to provide valid, reproducible, and translatable findings.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yanfei Cheng
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaoguang Li
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China.
- Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
3
|
Patel RB, Bajpai AK, Thirumurugan K. Differential Expression of MicroRNAs and Predicted Drug Target in Amyotrophic Lateral Sclerosis. J Mol Neurosci 2023; 73:375-390. [PMID: 37249795 DOI: 10.1007/s12031-023-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
ALS (Amyotrophic Lateral Sclerosis) is a rare type of neurodegenerative disease. It shows progressive degradation of motor neurons in the brain and spinal cord. At present, there is no treatment available that can completely cure ALS. The available treatments can only increase a patient's life span by a few months. Recently, microRNAs (miRNAs), a sub-class of small non-coding RNAs have been shown to play an essential role in the diagnosis, prognosis, and therapy of ALS. Our study focuses on analyzing differential miRNA profiles and predicting drug targets in ALS using bioinformatics and computational approach. The study identifies eight highly differentially expressed miRNAs in ALS patients, four of which are novel. We identified 42 hub genes for these eight highly expressed miRNAs with Amyloid Precursor Protein (APP) as a candidate gene among them for highly expressed down-regulated miRNA, hsa-miR-455-3p using protein-protein interaction network and Cytoscape analysis. A novel association has been found between hsa-miR-455-3p/APP/serotonergic pathway using KEGG pathway analysis. Also, molecular docking studies have revealed curcumin as a potential drug target that may be used for the treatment of ALS. Thus, the present study has identified four novel miRNA biomarkers: hsa-miR-3613-5p, hsa-miR-24, hsa-miR-3064-5p, and hsa-miR-4455. There is a formation of a novel axis, hsa-miR-455-3p/APP/serotonergic pathway, and curcumin is predicted as a potential drug target for ALS.
Collapse
Affiliation(s)
- Riya Ben Patel
- #412J, Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore-632014, India
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Kavitha Thirumurugan
- #412J, Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore-632014, India.
| |
Collapse
|
4
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
5
|
Li R, Deng M, Lin Y, Gao W, Liu B, Xia H. Genetically predicted circulating levels of glycine, glutamate, and serotonin in relation to the risks of three major neurodegenerative diseases: A Mendelian randomization analysis. Front Aging Neurosci 2022; 14:938408. [PMID: 36158554 PMCID: PMC9490425 DOI: 10.3389/fnagi.2022.938408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
It has been previously postulated that blood neurotransmitters might affect risks of neurodegenerative diseases. Here, a Mendelian Randomization (MR) study was conducted to explore whether genetically predicted concentrations of glycine, glutamate and serotonin were associated with risks of Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). From three genome-wide association studies of European ancestry, single nucleotide polymorphisms strongly associated with glycine, glutamate and serotonin were selected as genetic instrumental variables. Corresponding summary statistics were also obtained from the latest genome-wide association meta-analyses of AD, PD and ALS. The inverse-variance weighted MR and multiple sensitivity analyses were performed to evaluate causal effects of genetically predicted levels of neurotransmitters on risks of neurodegenerative diseases. The statistical significance threshold was set at P < 0.0056 using the Bonferroni-correction, while 0.0056 < P < 0.05 was considered suggestive evidence for a causal association. There was a causal association of elevated blood glutamate levels with higher AD risks. The odds ratio (OR) of AD was 1.311 [95% confidence interval (CI), 1.087-1.580; P = 0.004] per one standard deviation increase in genetically predicted glutamate concentrations. There was suggestive evidence in support of a protective effect of blood serotonin on AD (OR = 0.607; 95% CI, 0.396-0.932; P = 0.022). Genetically predicted glycine levels were not associated with the risk of AD (OR = 1.145; 95% CI, 0.939-1.396; P = 0.180). Besides, MR analyses indicated no causal roles of three blood neurotransmitters in PD or ALS. In conclusion, the MR study provided evidence supporting the association of elevated blood glutamate levels with higher AD risks and the association of increased blood serotonin levels with lower AD risks. Triangulating evidence across further study designs is still warranted to elucidate the role of blood neurotransmitters in risks of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruizhuo Li
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou, China
| | - Mengjuan Deng
- Department of Anesthesiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuhong Lin
- Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Gao
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou, China
| | - Bohao Liu
- Xiangya School of Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huimin Xia
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou, China
| |
Collapse
|
6
|
Ortiz YT, McMahon LR, Wilkerson JL. Medicinal Cannabis and Central Nervous System Disorders. Front Pharmacol 2022; 13:881810. [PMID: 35529444 PMCID: PMC9070567 DOI: 10.3389/fphar.2022.881810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 01/02/2023] Open
Abstract
Cannabinoids, including those found in cannabis, have shown promise as potential therapeutics for numerous health issues, including pathological pain and diseases that produce an impact on neurological processing and function. Thus, cannabis use for medicinal purposes has become accepted by a growing majority. However, clinical trials yielding satisfactory endpoints and unequivocal proof that medicinal cannabis should be considered a frontline therapeutic for most examined central nervous system indications remains largely elusive. Although cannabis contains over 100 + compounds, most preclinical and clinical research with well-controlled dosing and delivery methods utilize the various formulations of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the two most abundant compounds in cannabis. These controlled dosing and delivery methods are in stark contrast to most clinical studies using whole plant cannabis products, as few clinical studies using whole plant cannabis profile the exact composition, including percentages of all compounds present within the studied product. This review will examine both preclinical and clinical evidence that supports or refutes the therapeutic utility of medicinal cannabis for the treatment of pathological pain, neurodegeneration, substance use disorders, as well as anxiety-related disorders. We will predominately focus on purified THC and CBD, as well as other compounds isolated from cannabis for the aforementioned reasons but will also include discussion over those studies where whole plant cannabis has been used. In this review we also consider the current challenges associated with the advancement of medicinal cannabis and its derived potential therapeutics into clinical applications.
Collapse
Affiliation(s)
- Yuma T. Ortiz
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Lance R. McMahon
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Jenny L. Wilkerson
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
- *Correspondence: Jenny L. Wilkerson,
| |
Collapse
|
7
|
Abstract
Cannabinoids, including those found in cannabis, have shown promise as potential therapeutics for numerous health issues, including pathological pain and diseases that produce an impact on neurological processing and function. Thus, cannabis use for medicinal purposes has become accepted by a growing majority. However, clinical trials yielding satisfactory endpoints and unequivocal proof that medicinal cannabis should be considered a frontline therapeutic for most examined central nervous system indications remains largely elusive. Although cannabis contains over 100 + compounds, most preclinical and clinical research with well-controlled dosing and delivery methods utilize the various formulations of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the two most abundant compounds in cannabis. These controlled dosing and delivery methods are in stark contrast to most clinical studies using whole plant cannabis products, as few clinical studies using whole plant cannabis profile the exact composition, including percentages of all compounds present within the studied product. This review will examine both preclinical and clinical evidence that supports or refutes the therapeutic utility of medicinal cannabis for the treatment of pathological pain, neurodegeneration, substance use disorders, as well as anxiety-related disorders. We will predominately focus on purified THC and CBD, as well as other compounds isolated from cannabis for the aforementioned reasons but will also include discussion over those studies where whole plant cannabis has been used. In this review we also consider the current challenges associated with the advancement of medicinal cannabis and its derived potential therapeutics into clinical applications.
Collapse
|
8
|
Almalki AH, Naguib IA, Alshehri FS, Alghamdi BS, Alsaab HO, Althobaiti YS, Alshehri S, Abdallah FF. Application of Three Ecological Assessment Tools in Examining Chromatographic Methods for the Green Analysis of a Mixture of Dopamine, Serotonin, Glutamate and GABA: A Comparative Study. Molecules 2021; 26:5436. [PMID: 34576907 PMCID: PMC8467375 DOI: 10.3390/molecules26185436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
The assessment of greenness of analytical protocols is of great importance now to preserve the environment. Some studies have analyzed either only the neurotransmitters, dopamine, serotonin, glutamate, and gamma-aminobutyric acid (GABA), together or with other neurotransmitters and biomarkers. However, these methods have not been investigated for their greenness and were not compared with each other to find the optimum one. Therefore, this study aims to compare seven published chromatographic methods that analyzed the four neurotransmitters and their mixtures using the National Environmental Method Index, Analytical Eco-Scale Assessment (ESA), and Green Analytical Procedure Index (GAPI). As these methods cover both qualitative and quantitative aspects, they offer better transparency. Overall, GAPI showed maximum greenness throughout the analysis. Method 6 was proven to be the method of choice for analyzing the mixture, owing to its greenness, according to NEMI, ESA, and GAPI. Additionally, method 6 has a wide scope of application (13 components can be analyzed), high sensitivity (low LOQ values), and fast analysis (low retention times, especially for glutamate and GABA).
Collapse
Affiliation(s)
- Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.O.A.); (Y.S.A.)
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Hashem O. Alsaab
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.O.A.); (Y.S.A.)
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Yusuf S. Althobaiti
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.O.A.); (Y.S.A.)
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Fatma F. Abdallah
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| |
Collapse
|
9
|
Fifita JA, Chan Moi Fat S, McCann EP, Williams KL, Twine NA, Bauer DC, Rowe DB, Pamphlett R, Kiernan MC, Tan VX, Blair IP, Guillemin GJ. Genetic Analysis of Tryptophan Metabolism Genes in Sporadic Amyotrophic Lateral Sclerosis. Front Immunol 2021; 12:701550. [PMID: 34194442 PMCID: PMC8236844 DOI: 10.3389/fimmu.2021.701550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023] Open
Abstract
The essential amino acid tryptophan (TRP) is the initiating metabolite of the kynurenine pathway (KP), which can be upregulated by inflammatory conditions in cells. Neuroinflammation-triggered activation of the KP and excessive production of the KP metabolite quinolinic acid are common features of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In addition to its role in the KP, genes involved in TRP metabolism, including its incorporation into proteins, and synthesis of the neurotransmitter serotonin, have also been genetically and functionally linked to these diseases. ALS is a late onset neurodegenerative disease that is classified as familial or sporadic, depending on the presence or absence of a family history of the disease. Heritability estimates support a genetic basis for all ALS, including the sporadic form of the disease. However, the genetic basis of sporadic ALS (SALS) is complex, with the presence of multiple gene variants acting to increase disease susceptibility and is further complicated by interaction with potential environmental factors. We aimed to determine the genetic contribution of 18 genes involved in TRP metabolism, including protein synthesis, serotonin synthesis and the KP, by interrogating whole-genome sequencing data from 614 Australian sporadic ALS cases. Five genes in the KP (AFMID, CCBL1, GOT2, KYNU, HAAO) were found to have either novel protein-altering variants, and/or a burden of rare protein-altering variants in SALS cases compared to controls. Four genes involved in TRP metabolism for protein synthesis (WARS) and serotonin synthesis (TPH1, TPH2, MAOA) were also found to carry novel variants and/or gene burden. These variants may represent ALS risk factors that act to alter the KP and lead to neuroinflammation. These findings provide further evidence for the role of TRP metabolism, the KP and neuroinflammation in ALS disease pathobiology.
Collapse
Affiliation(s)
- Jennifer A. Fifita
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sandrine Chan Moi Fat
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emily P. McCann
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kelly L. Williams
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Natalie A. Twine
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, Health & Biosecurity Flagship, Sydney, NSW, Australia
| | - Denis C. Bauer
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, Health & Biosecurity Flagship, Sydney, NSW, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Dominic B. Rowe
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roger Pamphlett
- Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Matthew C. Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Vanessa X. Tan
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian P. Blair
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J. Guillemin
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
10
|
Minj E, Upadhayay S, Mehan S. Nrf2/HO-1 Signaling Activator Acetyl-11-keto-beta Boswellic Acid (AKBA)-Mediated Neuroprotection in Methyl Mercury-Induced Experimental Model of ALS. Neurochem Res 2021; 46:2867-2884. [PMID: 34075522 DOI: 10.1007/s11064-021-03366-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Methylmercury (MeHg) is a potent neurotoxin that causes neurotoxicity and neuronal cell death. MeHg exposure also leads to oligodendrocyte destruction, glial cell overactivation, and demyelination of motor neurons in the motor cortex and spinal cord. As a result, MeHg plays an important role in the progression of amyotrophic lateral sclerosis (ALS)-like neurocomplications. ALS is a fatal neurodegenerative disorder in which neuroinflammation is the leading cause of further CNS demyelination. Nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling pathway was thought to be a potential target for neuroprotection in ALS. Acetyl-11-keto-beta-boswellic acid (AKBA) is a multi-component pentacyclic triterpenoid mixture derived from Boswellia serrata with anti-inflammatory and antioxidant properties. The research aimed to investigate whether AKBA, as a Nrf2 / HO-1 activator, can provide protection against ALS. Thus, we explored the role of AKBA on the Nrf2/HO-1 signaling pathway in a MeHg-induced experimental ALS model. In this study, ALS was induced in Wistar rats by oral gavage of MeHg 5 mg/kg for 21 days. An open field test, force swim test, and grip strength were performed to observe experimental rats' motor coordination behaviors. In contrast, a morris water maze was performed for learning and memory. Administration of AKBA 50 mg/kg and AKBA 100 mg/kg continued from day 22 to 42. Neurochemical parameters were evaluated in the rat's brain homogenate. In the meantime, post-treatment with AKBA significantly improved behavioral, neurochemical, and gross pathological characteristics in the brain of rats by increasing the amount of Nrf2/HO-1 in brain tissue. Collectively, our findings indicated that AKBA could potentially avoid demyelination and encourage remyelination.
Collapse
Affiliation(s)
- Elizabeth Minj
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
11
|
Gunes ZI, Kan VWY, Ye X, Liebscher S. Exciting Complexity: The Role of Motor Circuit Elements in ALS Pathophysiology. Front Neurosci 2020; 14:573. [PMID: 32625051 PMCID: PMC7311855 DOI: 10.3389/fnins.2020.00573] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the degeneration of both upper and lower motor neurons. Despite decades of research, we still to date lack a cure or disease modifying treatment, emphasizing the need for a much-improved insight into disease mechanisms and cell type vulnerability. Altered neuronal excitability is a common phenomenon reported in ALS patients, as well as in animal models of the disease, but the cellular and circuit processes involved, as well as the causal relevance of those observations to molecular alterations and final cell death, remain poorly understood. Here, we review evidence from clinical studies, cell type-specific electrophysiology, genetic manipulations and molecular characterizations in animal models and culture experiments, which argue for a causal involvement of complex alterations of structure, function and connectivity of different neuronal subtypes within the cortical and spinal cord motor circuitries. We also summarize the current knowledge regarding the detrimental role of astrocytes and reassess the frequently proposed hypothesis of glutamate-mediated excitotoxicity with respect to changes in neuronal excitability. Together, these findings suggest multifaceted cell type-, brain area- and disease stage- specific disturbances of the excitation/inhibition balance as a cardinal aspect of ALS pathophysiology.
Collapse
Affiliation(s)
- Zeynep I Gunes
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Vanessa W Y Kan
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
12
|
Martin E, Cazenave W, Allain AE, Cattaert D, Branchereau P. Implication of 5-HT in the Dysregulation of Chloride Homeostasis in Prenatal Spinal Motoneurons from the G93A Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:E1107. [PMID: 32046135 PMCID: PMC7039234 DOI: 10.3390/ijms21031107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and muscle paralysis. The early presymptomatic onset of abnormal processes is indicative of cumulative defects that ultimately lead to a late manifestation of clinical symptoms. It remains of paramount importance to identify the primary defects that underlie this condition and to determine how these deficits lead to a cycle of deterioration. We recently demonstrated that prenatal E17.5 lumbar spinal motoneurons (MNs) from SOD1G93A mice exhibit a KCC2-related alteration in chloride homeostasis, i.e., the EGABAAR is more depolarized than in WT littermates. Here, using immunohistochemistry, we found that the SOD1G93A lumbar spinal cord is less enriched with 5-HT descending fibres than the WT lumbar spinal cord. High-performance liquid chromatography confirmed the lower level of the monoamine 5-HT in the SOD1G93A spinal cord compared to the WT spinal cord. Using ex vivo perforated patch-clamp recordings of lumbar MNs coupled with pharmacology, we demonstrated that 5-HT strongly hyperpolarizes the EGABAAR by interacting with KCC2. Therefore, the deregulation of the interplay between 5-HT and KCC2 may explain the alteration in chloride homeostasis detected in prenatal SOD1G93A MNs. In conclusion, 5-HT and KCC2 are two likely key factors in the presymptomatic phase of ALS, particular in familial ALS involving the SOD1G93A mutation.
Collapse
Affiliation(s)
| | | | | | | | - Pascal Branchereau
- University of Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France; (E.M.); (W.C.); (A.-E.A.); (D.C.)
| |
Collapse
|
13
|
Tan VX, Guillemin GJ. Kynurenine Pathway Metabolites as Biomarkers for Amyotrophic Lateral Sclerosis. Front Neurosci 2019; 13:1013. [PMID: 31616242 PMCID: PMC6764462 DOI: 10.3389/fnins.2019.01013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) currently lacks a robust and well-defined biomarker that can 1) assess the progression of the disease, 2) predict and/or delineate the various clinical subtypes, and 3) evaluate or predict a patient's response to treatments. The kynurenine Pathway (KP) of tryptophan degradation represent a promising candidate as it is involved with several neuropathological features present in ALS including neuroinflammation, excitotoxicity, oxidative stress, immune system activation and dysregulation of energy metabolism. Some of the KP metabolites (KPMs) can cross the blood brain barrier, and many studies have shown their levels are dysregulated in major neurodegenerative diseases including ALS. The KPMs can be easily analyzed in body fluids and tissue and as they are small molecules, and are stable. KPMs have a Janus face action, they can be either or both neurotoxic and/or neuroprotective depending of their levels. This mini review examines and presents evidence supporting the use of KPMs as a relevant set of biomarkers for ALS, and highlights the criteria required to achieve a valid biomarker set for ALS.
Collapse
Affiliation(s)
| | - Gilles J. Guillemin
- Macquarie University Centre for MND Research, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
14
|
Mirza KB, Golden CT, Nikolic K, Toumazou C. Closed-Loop Implantable Therapeutic Neuromodulation Systems Based on Neurochemical Monitoring. Front Neurosci 2019; 13:808. [PMID: 31481864 PMCID: PMC6710388 DOI: 10.3389/fnins.2019.00808] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/19/2019] [Indexed: 12/29/2022] Open
Abstract
Closed-loop or intelligent neuromodulation allows adjustable, personalized neuromodulation which usually incorporates the recording of a biomarker, followed by implementation of an algorithm which decides the timing (when?) and strength (how much?) of stimulation. Closed-loop neuromodulation has been shown to have greater benefits compared to open-loop neuromodulation, particularly for therapeutic applications such as pharmacoresistant epilepsy, movement disorders and potentially for psychological disorders such as depression or drug addiction. However, an important aspect of the technique is selection of an appropriate, preferably neural biomarker. Neurochemical sensing can provide high resolution biomarker monitoring for various neurological disorders as well as offer deeper insight into neurological mechanisms. The chemicals of interest being measured, could be ions such as potassium (K+), sodium (Na+), calcium (Ca2+), chloride (Cl−), hydrogen (H+) or neurotransmitters such as dopamine, serotonin and glutamate. This review focusses on the different building blocks necessary for a neurochemical, closed-loop neuromodulation system including biomarkers, sensors and data processing algorithms. Furthermore, it also highlights the merits and drawbacks of using this biomarker modality.
Collapse
Affiliation(s)
- Khalid B Mirza
- Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Caroline T Golden
- Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Konstantin Nikolic
- Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Christofer Toumazou
- Department of Electrical and Electronic Engineering, Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Osman KL, Kohlberg S, Mok A, Brooks R, Lind LA, McCormack K, Ferreira A, Kadosh M, Fagan MK, Bearce E, Nichols NL, Coates JR, Lever TE. Optimizing the Translational Value of Mouse Models of ALS for Dysphagia Therapeutic Discovery. Dysphagia 2019; 35:343-359. [PMID: 31300881 DOI: 10.1007/s00455-019-10034-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 01/03/2023]
Abstract
The goal of this study was to compare dysphagia phenotypes in low and high copy number (LCN and HCN) transgenic superoxide dismutase 1 (SOD1) mouse models of ALS to accelerate the discovery of novel and effective treatments for dysphagia and early amyotrophic lateral sclerosis (ALS) diagnosis. Clinicopathological features of dysphagia were characterized in individual transgenic mice and age-matched controls utilizing videofluoroscopy in conjunction with postmortem assays of the tongue and hypoglossal nucleus. Quantitative PCR accurately differentiated HCN-SOD1 and LCN-SOD1 mice and nontransgenic controls. All HCN-SOD1 mice developed stereotypical paralysis in both hindlimbs. In contrast, LCN-SOD1 mice displayed wide variability in fore- and hindlimb involvement. Lick rate, swallow rate, inter-swallow interval, and pharyngeal transit time were significantly altered in both HCN-SOD1 and LCN-SOD1 mice compared to controls. Tongue weight, tongue dorsum surface area, total tongue length, and caudal tongue length were significantly reduced only in the LCN-SOD1 mice compared to age-matched controls. LCN-SOD1 mice with lower body weights had smaller/lighter weight tongues, and those with forelimb paralysis and slower lick rates died at a younger age. LCN-SOD1 mice had a 32% loss of hypoglossal neurons, which differed significantly when compared to age-matched control mice. These novel findings for LCN-SOD1 mice are congruent with reported dysphagia and associated tongue atrophy and hypoglossal nucleus pathology in human ALS patients, thus highlighting the translational potential of this mouse model in ALS research.
Collapse
Affiliation(s)
- Kate L Osman
- Department of Otolaryngology - Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Dr. MA314, Columbia, MO, 65212, USA
| | - Sabrina Kohlberg
- Department of Otolaryngology - Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Dr. MA314, Columbia, MO, 65212, USA
| | - Alexis Mok
- Department of Otolaryngology - Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Dr. MA314, Columbia, MO, 65212, USA
| | - Ryan Brooks
- Department of Otolaryngology - Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Dr. MA314, Columbia, MO, 65212, USA
| | - Lori A Lind
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | - Katelyn McCormack
- Department of Otolaryngology - Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Dr. MA314, Columbia, MO, 65212, USA
| | - Andries Ferreira
- Department of Otolaryngology - Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Dr. MA314, Columbia, MO, 65212, USA
| | - Matan Kadosh
- Department of Otolaryngology - Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Dr. MA314, Columbia, MO, 65212, USA
| | - Mary K Fagan
- Department of Communication Science and Disorders, University of Missouri School of Health Professions, Columbia, MO, USA
| | - Elizabeth Bearce
- Department of Otolaryngology - Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Dr. MA314, Columbia, MO, 65212, USA
| | - Nicole L Nichols
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | - Joan R Coates
- Department of Veterinary Medicine and Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | - Teresa E Lever
- Department of Otolaryngology - Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Dr. MA314, Columbia, MO, 65212, USA. .,Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO, USA. .,Department of Communication Science and Disorders, University of Missouri School of Health Professions, Columbia, MO, USA.
| |
Collapse
|
16
|
Haney MM, Sinnott J, Osman KL, Deninger I, Andel E, Caywood V, Mok A, Ballenger B, Cummings K, Thombs L, Lever TE. Mice Lacking Brain-Derived Serotonin Have Altered Swallowing Function. Otolaryngol Head Neck Surg 2019; 161:468-471. [PMID: 31035861 DOI: 10.1177/0194599819846109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intricate sensorimotor neural circuits that control swallowing are heavily reliant on serotonin (5-hydroxytryptamine [5-HT]); however, the impact of 5-HT deficiency on swallow function remains largely unexplored. We investigated this using mice deficient in tryptophan-hydroxylase-2 (TPH2), the enzyme catalyzing the rate-limiting step in 5-HT synthesis. Videofluoroscopy was utilized to characterize the swallowing function of TPH2 knockout (TPH2-/-) mice as compared with littermate controls (TPH2+/+). Results showed that 5-HT deficiency altered all 3 stages of swallowing. As compared with controls, TPH2-/- mice had significantly slower lick and swallow rates and faster esophageal transit times. Future studies with this model are necessary to determine if 5-HT replacement may rescue abnormal swallowing function. If so, supplemental 5-HT therapy may have vast applications for a large population of patients with a variety of neurologic disorders resulting in life-diminishing dysphagia, particularly amyotrophic lateral sclerosis and Parkinson's disease, for which 5-HT deficiency is implicated in the disease pathogenesis.
Collapse
Affiliation(s)
- Megan M Haney
- 1 Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Joseph Sinnott
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kate L Osman
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Ian Deninger
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Ellyn Andel
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Victoria Caywood
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Alexis Mok
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Brayton Ballenger
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kevin Cummings
- 3 Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Lori Thombs
- 4 Department of Statistics, College of Arts and Sciences, University of Missouri, Columbia, Missouri, USA
| | - Teresa E Lever
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA.,3 Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
17
|
Sharma A, Castellani RJ, Smith MA, Muresanu DF, Dey PK, Sharma HS. 5-Hydroxytryptophan: A precursor of serotonin influences regional blood-brain barrier breakdown, cerebral blood flow, brain edema formation, and neuropathology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:1-44. [DOI: 10.1016/bs.irn.2019.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Vermeiren Y, Janssens J, Van Dam D, De Deyn PP. Serotonergic Dysfunction in Amyotrophic Lateral Sclerosis and Parkinson's Disease: Similar Mechanisms, Dissimilar Outcomes. Front Neurosci 2018; 12:185. [PMID: 29615862 PMCID: PMC5869258 DOI: 10.3389/fnins.2018.00185] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) share similar pathophysiological mechanisms. From a neurochemical point of view, the serotonin (5-hydroxytryptamine; 5-HT) dysfunction in both movement disorders—related to probable lesioning of the raphe nuclei—is profound, and, therefore, may be partially responsible for motor as well as non-motor disturbances. More specifically, in ALS, it has been hypothesized that serotonergic denervation leads to loss of its inhibitory control on glutamate release, resulting into glutamate-induced neurotoxicity in lower and/or upper motor neurons, combined with a detrimental decrease of its facilitatory effects on glutamatergic motor neuron excitation. Both events then may eventually give rise to the well-known clinical motor phenotype. Similarly, disruption of the organized serotonergic control on complex mesencephalic dopaminergic connections between basal ganglia (BG) nuclei and across the BG-cortico-thalamic circuits, has shown to be closely involved in the onset of parkinsonian symptoms. Levodopa (L-DOPA) therapy in PD largely seems to confirm the influential role of 5-HT, since serotonergic rather than dopaminergic projections release L-DOPA-derived dopamine, particularly in extrastriatal regions, emphasizing the strongly interwoven interactions between both monoamine systems. Apart from its orchestrating function, the 5-HT system also exerts neuroprotective and anti-inflammatory effects. In line with this observation, emerging therapies have recently focused on boosting the serotonergic system in ALS and PD, which may provide novel rationale for treating these devastating conditions both on the disease-modifying, as well as symptomatic level.
Collapse
Affiliation(s)
- Yannick Vermeiren
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Jana Janssens
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.,Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
19
|
Bairam AF, Rasool MI, Alherz FA, Abunnaja MS, El Daibani AA, Gohal SA, Kurogi K, Sakakibara Y, Suiko M, Liu MC. Sulfation of catecholamines and serotonin by SULT1A3 allozymes. Biochem Pharmacol 2018. [PMID: 29524394 DOI: 10.1016/j.bcp.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have demonstrated the involvement of sulfoconjugation in the metabolism of catecholamines and serotonin. The current study aimed to clarify the effects of single nucleotide polymorphisms (SNPs) of human SULT1A3 and SULT1A4 genes on the enzymatic characteristics of the sulfation of dopamine, epinephrine, norepinephrine and serotonin by SULT1A3 allozymes. Following a comprehensive search of different SULT1A3 and SULT1A4 genotypes, twelve non-synonymous (missense) coding SNPs (cSNPs) of SULT1A3/SULT1A4 were identified. cDNAs encoding the corresponding SULT1A3 allozymes, packaged in pGEX-2T vector were generated by site-directed mutagenesis. SULT1A3 allozymes were expressed, and purified. Purified SULT1A3 allozymes exhibited differential sulfating activity toward catecholamines and serotonin. Kinetic analyses demonstrated differences in both substrate affinity and catalytic efficiency of the SULT1A3 allozymes. Collectively, these findings provide useful information relevant to the differential metabolism of dopamine, epinephrine, norepinephrine and serotonin through sulfoconjugation in individuals having different SULT1A3/SULT1A4 genotypes.
Collapse
Affiliation(s)
- Ahsan F Bairam
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Mohammed I Rasool
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Department of Pharmacology, College of Pharmacy, University of Karbala, Karbala, Iraq
| | - Fatemah A Alherz
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Maryam S Abunnaja
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Amal A El Daibani
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Saud A Gohal
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Masahito Suiko
- Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
20
|
Fomina T, Weichwald S, Synofzik M, Just J, Schöls L, Schölkopf B, Grosse-Wentrup M. Absence of EEG correlates of self-referential processing depth in ALS. PLoS One 2017; 12:e0180136. [PMID: 28662161 PMCID: PMC5491131 DOI: 10.1371/journal.pone.0180136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Self-referential processing is a key cognitive process, associated with the serotonergic system and the default mode network (DMN). Decreased levels of serotonin and reduced activations of the DMN observed in amyotrophic lateral sclerosis (ALS) suggest that self-referential processing might be altered in patients with ALS. Here, we investigate the effects of ALS on the electroencephalography correlates of self-referential thinking. We find that electroencephalography (EEG) correlates of self-referential thinking are present in healthy individuals, but not in those with ALS. In particular, thinking about themselves or others significantly modulates the bandpower in the medial prefrontal cortex in healthy individuals, but not in ALS patients. This finding supports the view of ALS as a complex multisystem disorder which, as shown here, includes dysfunctional processing of the medial prefrontal cortex. It points towards possible alterations of self-consciousness in ALS patients, which might have important consequences for patients' self-conceptions, personal relations, and decision-making.
Collapse
Affiliation(s)
- Tatiana Fomina
- Department of Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
- International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Sebastian Weichwald
- Department of Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurology, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Jenifer Just
- Department of Neurology, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurology, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Bernhard Schölkopf
- Department of Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Moritz Grosse-Wentrup
- Department of Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| |
Collapse
|
21
|
ALSUntangled 40: Ayahuasca. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:627-631. [PMID: 28618842 DOI: 10.1080/21678421.2017.1337877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Patin F, Baranek T, Vourc'h P, Nadal-Desbarats L, Goossens JF, Marouillat S, Dessein AF, Descat A, Hounoum BM, Bruno C, Watier H, Si-Tahar M, Leman S, Lecron JC, Andres CR, Corcia P, Blasco H. Combined Metabolomics and Transcriptomics Approaches to Assess the IL-6 Blockade as a Therapeutic of ALS: Deleterious Alteration of Lipid Metabolism. Neurotherapeutics 2016; 13:905-917. [PMID: 27444617 PMCID: PMC5081117 DOI: 10.1007/s13311-016-0461-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), motor neuron degeneration occurs simultaneously with systemic metabolic impairment and neuroinflammation. Playing an important role in the regulation of both phenomena, interleukin (IL)-6, a major cytokine of the inflammatory response has been proposed as a target for management of ALS. Although a pilot clinical trial provided promising results in humans, another recent preclinical study showed that knocking out the IL-6 gene in mice carrying ALS did not improve clinical outcome. In this study, we aimed to determine the relevance of the IL-6 pathway blockade in a mouse model of ALS by using a pharmacological antagonist of IL-6, a murine surrogate of tocilizumab, namely MR16-1. We analyzed the immunological and metabolic effects of IL-6 blockade by cytokine measurement, blood cell immunophenotyping, targeted metabolomics, and transcriptomics. A deleterious clinical effect of MR16-1 was revealed, with a speeding up of weight loss (p = 0.0041) and decreasing body weight (p < 0.05). A significant increase in regulatory T-cell count (p = 0.0268) and a decrease in C-X-C ligand-1 concentrations in plasma (p = 0.0479) were observed. Metabolomic and transcriptomic analyses revealed that MR16-1 mainly affected branched-chain amino acid, lipid, arginine, and proline metabolism. IL-6 blockade negatively affected body weight, despite a moderated anti-inflammatory effect. Metabolic effects of IL-6 were mild compared with metabolic disturbances observed in ALS, but a modification of lipid metabolism by therapy was identified. These results indicate that IL-6 blockade did not improve clinical outcome of a mutant superoxide dismutase 1 mouse model of ALS.
Collapse
Affiliation(s)
- Franck Patin
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France.
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France.
| | - Thomas Baranek
- INSERM, UMR 1100 "Centre d'étude des Pathologies Respiratoires, Université François Rabelais, Tours, France
| | - Patrick Vourc'h
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
- PPF "Analyse des systèmes biologiques", Université François Rabelais de Tours, Tours, France
| | - Lydie Nadal-Desbarats
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- PPF "Analyse des systèmes biologiques", Université François Rabelais de Tours, Tours, France
| | - Jean-François Goossens
- Centre Universitaire de Mesures et d'Analyses (CUMA), Université de Lille 2, Lille, France
| | - Sylviane Marouillat
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
| | | | - Amandine Descat
- Centre Universitaire de Mesures et d'Analyses (CUMA), Université de Lille 2, Lille, France
| | | | - Clément Bruno
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| | - Hervé Watier
- CHRU de Tours, Laboratoire d'Immunologie, Tours, France
| | - Mustafa Si-Tahar
- INSERM, UMR 1100 "Centre d'étude des Pathologies Respiratoires, Université François Rabelais, Tours, France
| | - Samuel Leman
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
| | - Jean-Claude Lecron
- CHU de Poitiers, Laboratoire d'Immunologie, Poitiers, France
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UPRES EA4331, Pôle Biologie Santé, Université de Poitiers, Poitiers, France
| | - Christian R Andres
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| | - Philippe Corcia
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Fédération des CRCSLA Tours-Limoges (LITORALS), Tours, France
| | - Hélène Blasco
- INSERM, UMR U930 "Imagerie et Cerveau", Université François Rabelais, Tours, France
- CHRU de Tours, Laboratoire de Biochimie et de Biologie Moléculaire, Tours, France
| |
Collapse
|
23
|
Patin F, Corcia P, Vourc’h P, Nadal-Desbarats L, Baranek T, Goossens JF, Marouillat S, Dessein AF, Descat A, Madji Hounoum B, Bruno C, Leman S, Andres CR, Blasco H. Omics to Explore Amyotrophic Lateral Sclerosis Evolution: the Central Role of Arginine and Proline Metabolism. Mol Neurobiol 2016; 54:5361-5374. [DOI: 10.1007/s12035-016-0078-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
|
24
|
Zheng J, Wang M, Wei W, Keller JN, Adhikari B, King JF, King ML, Peng N, Laine RA. Dietary Plant Lectins Appear to Be Transported from the Gut to Gain Access to and Alter Dopaminergic Neurons of Caenorhabditis elegans, a Potential Etiology of Parkinson's Disease. Front Nutr 2016; 3:7. [PMID: 27014695 PMCID: PMC4780318 DOI: 10.3389/fnut.2016.00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Lectins from dietary plants have been shown to enhance drug absorption in the gastrointestinal tract of rats, be transported trans-synaptically as shown by tracing of axonal and dendritic paths, and enhance gene delivery. Other carbohydrate-binding protein toxins are known to traverse the gut intact in dogs. Post-feeding rhodamine- or TRITC-tagged dietary lectins, the lectins were tracked from gut to dopaminergic neurons (DAergic-N) in transgenic Caenorhabditis elegans (C. elegans) [egIs1(Pdat-1:GFP)] where the mutant has the green fluorescent protein (GFP) gene fused to a dopamine transport protein gene labeling DAergic-N. The lectins were supplemented along with the food organism Escherichia coli (OP50). Among nine tested rhodamine/TRITC-tagged lectins, four, including Phaseolus vulgaris erythroagglutinin (PHA-E), Bandeiraea simplicifolia (BS-I), Dolichos biflorus agglutinin (DBA), and Arachis hypogaea agglutinin (PNA), appeared to be transported from gut to the GFP-DAergic-N. Griffonia Simplicifolia and PHA-E, reduced the number of GFP-DAergic-N, suggesting a toxic activity. PHA-E, BS-I, Pisum sativum (PSA), and Triticum vulgaris agglutinin (Succinylated) reduced fluorescent intensity of GFP-DAergic-N. PHA-E, PSA, Concanavalin A, and Triticum vulgaris agglutinin decreased the size of GFP-DAergic-N, while BS-I increased neuron size. These observations suggest that dietary plant lectins are transported to and affect DAergic-N in C. elegans, which support Braak and Hawkes' hypothesis, suggesting one alternate potential dietary etiology of Parkinson's disease (PD). A recent Danish study showed that vagotomy resulted in 40% lower incidence of PD over 20 years. Differences in inherited sugar structures of gut and neuronal cell surfaces may make some individuals more susceptible in this conceptual disease etiology model.
Collapse
Affiliation(s)
- Jolene Zheng
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Mingming Wang
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Wenqian Wei
- Department of Veterinary Science, College of Agriculture, Louisiana State University, Baton Rouge, LA, USA
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Binita Adhikari
- Nicholls State University, Thibodaux, LA, USA
- Louisiana Biomedical Research Network (LBRN) Summer Research Program (2010), Baton Rouge, LA, USA
| | - Jason F. King
- Department of Biological Sciences, Louisiana State University and A&M College, Baton Rouge, LA, USA
- Department of Chemistry, Louisiana State University and A&M College, Baton Rouge, LA, USA
| | - Michael L. King
- Department of Biological Sciences, Louisiana State University and A&M College, Baton Rouge, LA, USA
- Department of Chemistry, Louisiana State University and A&M College, Baton Rouge, LA, USA
| | - Nan Peng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Roger A. Laine
- Department of Biological Sciences, Louisiana State University and A&M College, Baton Rouge, LA, USA
- Department of Chemistry, Louisiana State University and A&M College, Baton Rouge, LA, USA
| |
Collapse
|
25
|
Alves CJ, Maximino JR, Chadi G. Dysregulated expression of death, stress and mitochondrion related genes in the sciatic nerve of presymptomatic SOD1(G93A) mouse model of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2015; 9:332. [PMID: 26339226 PMCID: PMC4555015 DOI: 10.3389/fncel.2015.00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
Schwann cells are the main source of paracrine support to motor neurons. Oxidative stress and mitochondrial dysfunction have been correlated to motor neuron death in Amyotrophic Lateral Sclerosis (ALS). Despite the involvement of Schwann cells in early neuromuscular disruption in ALS, detailed molecular events of a dying-back triggering are unknown. Sciatic nerves of presymptomatic (60-day-old) SOD1(G93A) mice were submitted to a high-density oligonucleotide microarray analysis. DAVID demonstrated the deregulated genes related to death, stress and mitochondrion, which allowed the identification of Cell cycle, ErbB signaling, Tryptophan metabolism and Rig-I-like receptor signaling as the most representative KEGG pathways. The protein-protein interaction networks based upon deregulated genes have identified the top hubs (TRAF2, H2AFX, E2F1, FOXO3, MSH2, NGFR, TGFBR1) and bottlenecks (TRAF2, E2F1, CDKN1B, TWIST1, FOXO3). Schwann cells were enriched from the sciatic nerve of presymptomatic mice using flow cytometry cell sorting. qPCR showed the up regulated (Ngfr, Cdnkn1b, E2f1, Traf2 and Erbb3, H2afx, Cdkn1a, Hspa1, Prdx, Mapk10) and down-regulated (Foxo3, Mtor) genes in the enriched Schwann cells. In conclusion, molecular analyses in the presymptomatic sciatic nerve demonstrated the involvement of death, oxidative stress, and mitochondrial pathways in the Schwann cell non-autonomous mechanisms in the early stages of ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| |
Collapse
|
26
|
Pau A, Catto M, Pinna G, Frau S, Murineddu G, Asproni B, Curzu MM, Pisani L, Leonetti F, Loza MI, Brea J, Pinna GA, Carotti A. Multitarget-Directed Tricyclic Pyridazinones as G Protein-Coupled Receptor Ligands and Cholinesterase Inhibitors. ChemMedChem 2015; 10:1054-70. [DOI: 10.1002/cmdc.201500124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 11/11/2022]
|
27
|
Carey RJ, Damianopoulos EN. Serotonin and conditioning: focus on Pavlovian psychostimulant drug conditioning. Behav Brain Res 2015; 282:227-36. [PMID: 25446748 DOI: 10.1016/j.bbr.2014.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 11/27/2022]
Abstract
Serotonin containing neurons are located in nuclei deep in the brainstem and send axons throughout the central nervous system from the spinal cord to the cerebral cortex. The vast scope of these connections and interactions enable serotonin and serotonin analogs to have profound effects upon sensory/motor processes. In that conditioning represents a neuroplastic process that leads to new sensory/motor connections, it is apparent that the serotonin system has the potential for a critical role in conditioning. In this article we review the basics of conditioning as well as the serotonergic system and point up the number of non-associative ways in which manipulations of serotonin neurotransmission have an impact upon conditioning. We focus upon psychostimulant drug conditioning and review the contribution of drug stimuli in the use of serotonin drugs to investigate drug conditioning and the important impact drug stimuli can have on conditioning by introducing new sensory stimuli that can create or mask a CS. We also review the ways in which experimental manipulations of serotonin can disrupt conditioned behavioral effects but not the associative processes in conditioning. In addition, we propose the use of the recently developed memory re-consolidation model of conditioning as an approach to assess the possible role of serotonin in associative processes without the complexities of performance effects related to serotonin treatment induced alterations in sensory/motor systems.
Collapse
Affiliation(s)
- Robert J Carey
- Research Service and Development (151), VA Medical Center, 800 Irving Avenue, Syracuse, NY 13210, USA; Department of Psychiatry and Graduate School, SUNY Upstate Medical University at Syracuse, Syracuse, NY, USA.
| | - Ernest N Damianopoulos
- Research Service and Development (151), VA Medical Center, Room 326, 800 Irving Avenue, Syracuse, NY 13210, USA
| |
Collapse
|
28
|
Stern AL, Naidoo N. Wake-active neurons across aging and neurodegeneration: a potential role for sleep disturbances in promoting disease. SPRINGERPLUS 2015; 4:25. [PMID: 25635245 PMCID: PMC4306674 DOI: 10.1186/s40064-014-0777-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/23/2014] [Indexed: 12/13/2022]
Abstract
Sleep/wake disturbance is a feature of almost all common age-related neurodegenerative diseases. Although the reason for this is unknown, it is likely that this inability to maintain sleep and wake states is in large part due to declines in the number and function of wake-active neurons, populations of cells that fire only during waking and are silent during sleep. Consistent with this, many of the brain regions that are most susceptible to neurodegeneration are those that are necessary for wake maintenance and alertness. In the present review, these wake-active populations are systematically assessed in terms of their observed pathology across aging and several neurodegenerative diseases, with implications for future research relating sleep and wake disturbances to aging and age-related neurodegeneration.
Collapse
Affiliation(s)
- Anna L Stern
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
29
|
Kitagishi Y, Nakanishi A, Minami A, Asai Y, Yasui M, Iwaizako A, Suzuki M, Ono Y, Ogura Y, Matsuda S. Certain Diet and Lifestyle May Contribute to Islet β-cells Protection in Type-2 Diabetes via the Modulation of Cellular PI3K/AKT Pathway. Open Biochem J 2014; 8:74-82. [PMID: 25400709 PMCID: PMC4231374 DOI: 10.2174/1874091x01408010074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022] Open
Abstract
PI3K/AKT pathway has been shown to play a pivotal role on islet β-cell protection, enhancing β-cell survival by stimulating cell proliferation and inhibiting cell apoptosis. Accordingly, this pathway appears to be crucial in type-2 diabetes. Understanding the regulations of this pathway may provide a better efficacy of new therapeutic approaches. In this review, we summarize advances on the involvement of the PI3K/AKT pathway in hypothetical intra-cellular signaling of islet β-cells. As recent findings may show the nutritional regulation of the survival pathway in the islet β-cells through activation of the PI3K/AKT pathway, we also review studies on the features of several diets, correlated lifestyle, and its signaling pathway involved in type-2 diabetes. The molecular mechanisms contributing to the disease are the subject of considerable investigation, as a better understanding of the pathogenesis will lead to novel therapies against a condition of the disease.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yurina Asai
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Mai Yasui
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akiko Iwaizako
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Miho Suzuki
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuna Ono
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
30
|
Ruiz M, Martínez-Vidal AF, Morales JM, Monleón D, Giménez Y Ribotta M. Neurodegenerative changes are prevented by Erythropoietin in the pmn model of motoneuron degeneration. Neuropharmacology 2014; 83:137-53. [PMID: 24769002 DOI: 10.1016/j.neuropharm.2014.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 03/02/2014] [Accepted: 04/10/2014] [Indexed: 11/29/2022]
Abstract
Motoneuron diseases are fatal neurodegenerative disorders characterized by a progressive loss of motoneurons, muscle weakness and premature death. The progressive motor neuronopathy (pmn) mutant mouse has been considered a good model for the autosomal recessive childhood form of spinal muscular atrophy (SMA). Here, we investigated the therapeutic potential of Erythropoietin (Epo) on this mutant mouse. Symptomatic or pre-symptomatic treatment with Epo significantly prolongs lifespan by 84.6% or 87.2% respectively. Epo preserves muscle strength and significantly attenuates behavioural motor deficits of mutant pmn mice. Histological and metabolic changes in the spinal cord evaluated by immunohistochemistry, western blot, and high-resolution (1)H-NMR spectroscopy were also greatly prevented by Epo-treatment. Our results illustrate the efficacy of Epo in improving quality of life of mutant pmn mice and open novel therapeutic pathways for motoneuron diseases.
Collapse
Affiliation(s)
- Marta Ruiz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández (UMH), Av. Ramón y Cajal s/n, 03550 San Juan de Alicante, Alicante, Spain
| | - Ana Fe Martínez-Vidal
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández (UMH), Av. Ramón y Cajal s/n, 03550 San Juan de Alicante, Alicante, Spain
| | - José Manuel Morales
- Unidad Central de Investigación en Medicina, Universidad de Valencia, Valencia, Spain
| | - Daniel Monleón
- Fundación de Investigación del Hospital Clínico Universitario de Valencia (FIHCUV), Valencia, Spain
| | - Minerva Giménez Y Ribotta
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández (UMH), Av. Ramón y Cajal s/n, 03550 San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
31
|
Koschnitzky JE, Quinlan KA, Lukas TJ, Kajtaz E, Kocevar EJ, Mayers WF, Siddique T, Heckman CJ. Effect of fluoxetine on disease progression in a mouse model of ALS. J Neurophysiol 2014; 111:2164-76. [PMID: 24598527 DOI: 10.1152/jn.00425.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) and other antidepressants are often prescribed to amyotrophic lateral sclerosis (ALS) patients; however, the impact of these prescriptions on ALS disease progression has not been systematically tested. To determine whether SSRIs impact disease progression, fluoxetine (Prozac, 5 or 10 mg/kg) was administered to mutant superoxide dismutase 1 (SOD1) mice during one of three age ranges: neonatal [postnatal day (P)5-11], adult presymptomatic (P30 to end stage), and adult symptomatic (P70 to end stage). Long-term adult fluoxetine treatment (started at either P30 or P70 and continuing until end stage) had no significant effect on disease progression. In contrast, neonatal fluoxetine treatment (P5-11) had two effects. First, all animals (mutant SOD1(G93A) and control: nontransgenic and SOD1(WT)) receiving the highest dose (10 mg/kg) had a sustained decrease in weight from P30 onward. Second, the high-dose SOD1(G93A) mice reached end stage ∼8 days (∼6% decrease in life span) sooner than vehicle and low-dose animals because of an increased rate of motor impairment. Fluoxetine increases synaptic serotonin (5-HT) levels, which is known to increase spinal motoneuron excitability. We confirmed that 5-HT increases spinal motoneuron excitability during this neonatal time period and therefore hypothesized that antagonizing 5-HT receptors during the same time period would improve disease outcome. However, cyproheptadine (1 or 5 mg/kg), a 5-HT receptor antagonist, had no effect on disease progression. These results show that a brief period of antidepressant treatment during a critical time window (the transition from neonatal to juvenile states) can be detrimental in ALS mouse models.
Collapse
Affiliation(s)
- J E Koschnitzky
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - K A Quinlan
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - T J Lukas
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - E Kajtaz
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - E J Kocevar
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - W F Mayers
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - T Siddique
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - C J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
32
|
Delestrée N, Manuel M, Iglesias C, Elbasiouny SM, Heckman CJ, Zytnicki D. Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis. J Physiol 2014; 592:1687-703. [PMID: 24445319 DOI: 10.1113/jphysiol.2013.265843] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), an adult onset disease in which there is progressive degeneration of motoneurones, it has been suggested that an intrinsic hyperexcitability of motoneurones (i.e. an increase in their firing rates), contributes to excitotoxicity and to disease onset. Here we show that there is no such intrinsic hyperexcitability in spinal motoneurones. Our studies were carried out in an adult mouse model of ALS with a mutated form of superoxide dismutase 1 around the time of the first muscle fibre denervations. We showed that the recruitment current, the voltage threshold for spiking and the frequency-intensity gain in the primary range are all unchanged in most spinal motoneurones, despite an increased input conductance. On its own, increased input conductance would decrease excitability, but the homeostasis for excitability is maintained due to an upregulation of a depolarizing current that is activated just below the spiking threshold. However, this homeostasis failed in a substantial fraction of motoneurones, which became hypoexcitable and unable to produce sustained firing in response to ramps of current. We found similar results both in lumbar motoneurones recorded in anaesthetized mice, and in sacrocaudal motoneurones recorded in vitro, indicating that the lack of hyperexcitability is not caused by anaesthetics. Our results suggest that, if excitotoxicity is indeed a mechanism leading to degeneration in ALS, it is not caused by the intrinsic electrical properties of motoneurones but by extrinsic factors such as excessive synaptic excitation.
Collapse
Affiliation(s)
- Nicolas Delestrée
- Laboratoire de Neurophysique et Physiologie, UMR CNRS 8119, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France.
| | | | | | | | | | | |
Collapse
|
33
|
Rao DB, Little PB, Sills R. Subsite awareness in neuropathology evaluation of National Toxicology Program (NTP) studies: a review of select neuroanatomical structures with their functional significance in rodents. Toxicol Pathol 2013; 42:487-509. [PMID: 24135464 PMCID: PMC3965620 DOI: 10.1177/0192623313501893] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review article is designed to serve as an introductory guide in neuroanatomy for toxicologic pathologists evaluating general toxicity studies. The article provides an overview of approximately 50 neuroanatomical subsites and their functional significance across 7 transverse sections of the brain. Also reviewed are 3 sections of the spinal cord, cranial and peripheral nerves (trigeminal and sciatic, respectively), and intestinal autonomic ganglia. The review is limited to the evaluation of hematoxylin and eosin-stained tissue sections, as light microscopic evaluation of these sections is an integral part of the first-tier toxicity screening of environmental chemicals, drugs, and other agents. Prominent neuroanatomical sites associated with major neurological disorders are noted. This guide, when used in conjunction with detailed neuroanatomic atlases, may aid in an understanding of the significance of functional neuroanatomy, thereby improving the characterization of neurotoxicity in general toxicity and safety evaluation studies.
Collapse
Affiliation(s)
- Deepa B. Rao
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina
| | - Peter B. Little
- Consultant, Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina
| | - Robert Sills
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
34
|
Yang YM, Gupta SK, Kim KJ, Powers BE, Cerqueira A, Wainger BJ, Ngo HD, Rosowski KA, Schein PA, Ackeifi CA, Arvanites AC, Davidow LS, Woolf CJ, Rubin LL. A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell 2013; 12:713-26. [PMID: 23602540 DOI: 10.1016/j.stem.2013.04.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 03/08/2013] [Accepted: 04/01/2013] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease, characterized by motor neuron (MN) death, for which there are no truly effective treatments. Here, we describe a new small molecule survival screen carried out using MNs from both wild-type and mutant SOD1 mouse embryonic stem cells. Among the hits we found, kenpaullone had a particularly impressive ability to prolong the healthy survival of both types of MNs that can be attributed to its dual inhibition of GSK-3 and HGK kinases. Furthermore, kenpaullone also strongly improved the survival of human MNs derived from ALS-patient-induced pluripotent stem cells and was more active than either of two compounds, olesoxime and dexpramipexole, that recently failed in ALS clinical trials. Our studies demonstrate the value of a stem cell approach to drug discovery and point to a new paradigm for identification and preclinical testing of future ALS therapeutics.
Collapse
Affiliation(s)
- Yin M Yang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Turner MR, Agosta F, Bede P, Govind V, Lulé D, Verstraete E. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med 2012; 6:319-37. [PMID: 22731907 DOI: 10.2217/bmm.12.26] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The catastrophic system failure in amyotrophic lateral sclerosis is characterized by progressive neurodegeneration within the corticospinal tracts, brainstem nuclei and spinal cord anterior horns, with an extra-motor pathology that has overlap with frontotemporal dementia. The development of computed tomography and, even more so, MRI has brought insights into neurological disease, previously only available through post-mortem study. Although largely research-based, radionuclide imaging has continued to provide mechanistic insights into neurodegenerative disorders. The evolution of MRI to use advanced sequences highly sensitive to cortical and white matter structure, parenchymal metabolites and blood flow, many of which are now applicable to the spinal cord as well as the brain, make it a uniquely valuable tool for the study of a multisystem disorder such as amyotrophic lateral sclerosis. This comprehensive review considers the full range of neuroimaging techniques applied to amyotrophic lateral sclerosis over the last 25 years, the biomarkers they have revealed and future developments.
Collapse
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Rodríguez JJ, Noristani HN, Verkhratsky A. The serotonergic system in ageing and Alzheimer's disease. Prog Neurobiol 2012; 99:15-41. [DOI: 10.1016/j.pneurobio.2012.06.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/24/2012] [Accepted: 06/22/2012] [Indexed: 01/11/2023]
|
37
|
Bigford GE, Chaudhry NS, Keane RW, Holohean AM. 5-Hydroxytryptamine 5HT2C receptors form a protein complex with N-methyl-D-aspartate GluN2A subunits and activate phosphorylation of Src protein to modulate motoneuronal depolarization. J Biol Chem 2012; 287:11049-59. [PMID: 22291020 DOI: 10.1074/jbc.m111.277806] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA)-gated ion channels are known to play a critical role in motoneuron depolarization, but the molecular mechanisms modulating NMDA activation in the spinal cord are not well understood. This study demonstrates that activated 5HT2C receptors enhance NMDA depolarizations recorded electrophysiologically from motoneurons. Pharmacological studies indicate involvement of Src tyrosine kinase mediates 5HT2C facilitation of NMDA. RT-PCR analysis revealed edited forms of 5HT2C were present in mammalian spinal cord, indicating the availability of G-protein-independent isoforms. Spinal cord neurons treated with the 5HT2C agonist MK 212 showed increased Src(Tyr-416) phosphorylation in a dose-dependent manner thus verifying that Src is activated after treatment. In addition, 5HT2C antagonists and tyrosine kinase inhibitors blocked 5HT2C-mediated Src(Tyr-416) phosphorylation and also enhanced NMDA-induced motoneuron depolarization. Co-immunoprecipitation of synaptosomal fractions showed that GluN2A, 5HT2C receptors, and Src tyrosine kinase form protein associations in synaptosomes. Moreover, immunohistochemical analysis demonstrated GluN2A and 5HT2C receptors co-localize on the processes of spinal neurons. These findings reveal that a distinct multiprotein complex links 5-hydroxytryptamine-activated intracellular signaling events with NMDA-mediated functional activity.
Collapse
Affiliation(s)
- Gregory E Bigford
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
38
|
Singletary KG, Naidoo N. Disease and Degeneration of Aging Neural Systems that Integrate Sleep Drive and Circadian Oscillations. Front Neurol 2011; 2:66. [PMID: 22028699 PMCID: PMC3199684 DOI: 10.3389/fneur.2011.00066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022] Open
Abstract
Sleep/wake and circadian rest-activity rhythms become irregular with age. Typical outcomes include fragmented sleep during the night, advanced sleep phase syndrome and increased daytime sleepiness. These changes lead to a reduction in the quality of life due to cognitive impairments and emotional stress. More importantly, severely disrupted sleep and circadian rhythms have been associated with an increase in disease susceptibility. Additionally, many of the same brain areas affected by neurodegenerative diseases include the sleep and wake promoting systems. Any advances in our knowledge of these sleep/wake and circadian networks are necessary to target neural areas or connections for therapy. This review will discuss research that uses molecular, behavioral, genetic and anatomical methods to further our understanding of the interaction of these systems.
Collapse
Affiliation(s)
- Kristan G Singletary
- Center for Sleep and Circadian Neurobiology, School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
39
|
Yasuda S, Liu MY, Suiko M, Sakakibara Y, Liu MC. Hydroxylated serotonin and dopamine as substrates and inhibitors for human cytosolic SULT1A3. J Neurochem 2011; 103:2679-89. [PMID: 17908235 DOI: 10.1111/j.1471-4159.2007.04948.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sulfation as catalyzed by the cytosolic sulfotransferases (SULTs) is known to play an important role in the regulation and homeostasis of monoamine neurotransmitters. The current study was designed to examine the occurrence of the sulfation of 7-hydroxyserotonin and 6-hydroxydopamine by human cytosolic SULTs and to investigate the inhibitory effects of these hydroxylated derivatives on the sulfation of their unhydroxylated counterparts, serotonin and dopamine. A systematic study using 11 known human cytosolic SULTs revealed SULT1A3 as the responsible enzyme for the sulfation of 7-hydroxyserotonin and 6-hydroxydopamine. The pH-dependence and kinetic constants of SULT1A3 with 7-hydroxyserotonin or 6-hydroxydopamine as substrate were determined. The inhibitory effects of 7-hydroxyserotonin and 6-hydroxydopamine on the sulfation of serotonin and dopamine were evaluated. Kinetic analyses indicated that the mechanism underlying the inhibition by these hydroxylated monoamine derivatives is of a competitive-type. Metabolic labeling experiments showed the generation and release of [(35) S]sulfated 7-hydroxyserotonin and [(35) S]sulfated 6-hydroxydopamine when SK-N-MC human neuroblastoma cells were labeled with [(35) S]sulfate in the presence of 7-hydroxyserotonin or 6-hydroxydopamine. Upon transfection of the cells with siRNAs targeted at SULT1A3, diminishment of the SULT1A3 protein and concomitantly the sulfating activity toward these hydroxylated monoamines was observed. Taken together, these results indicated clearly the involvement of sulfation in the metabolism of 7-hydroxyserotonin and 6-hydroxydopamine. By serving as substrates for SULT1A3, these hydroxylated monoamines may interfere with the homeostasis of endogenous serotonin and dopamine.
Collapse
Affiliation(s)
- Shin Yasuda
- Department of Pharmacology, College of Pharmacy, The University of Toledo, Toledo, Ohio, USA
| | | | | | | | | |
Collapse
|
40
|
Meehan CF, Moldovan M, Marklund SL, Graffmo KS, Nielsen JB, Hultborn H. Intrinsic properties of lumbar motor neurones in the adult G127insTGGG superoxide dismutase-1 mutant mouse in vivo: evidence for increased persistent inward currents. Acta Physiol (Oxf) 2010; 200:361-76. [PMID: 20874803 DOI: 10.1111/j.1748-1716.2010.02188.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a preferential loss of motor neurones. Previous publications using in vitro neonatal preparations suggest an increased excitability of motor neurones in various superoxide dismutase-1 (SOD1) mutant mice models of ALS which may contribute to excitotoxicity of the motor neurones. METHODS Using intracellular recording, we tested this hypothesis in vivo in the adult presymptomatic G127insTGGG (G127X) SOD1 mutant mouse model of ALS. RESULTS At resting membrane potentials the basic intrinsic properties of lumbar motor neurones in the adult presymptomatic G127X mutant are not significantly different from those of wild type. However, at more depolarized membrane potentials, motor neurones in the G127X SOD1 mutants can sustain higher frequency firing, showing less spike frequency adaption (SFA) and with persistent inward currents (PICs) being activated at lower firing frequencies and being more pronounced. CONCLUSION We demonstrated that, in vivo, at resting membrane potential, spinal motor neurones of the adult G127X mice do not show an increased excitability. However, when depolarized they show evidence of an increased PIC and less SFA which may contribute to excitotoxicity of these neurones as the disease progresses.
Collapse
Affiliation(s)
- C F Meehan
- Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
41
|
Dupuis L, Spreux-Varoquaux O, Bensimon G, Jullien P, Lacomblez L, Salachas F, Bruneteau G, Pradat PF, Loeffler JP, Meininger V. Platelet serotonin level predicts survival in amyotrophic lateral sclerosis. PLoS One 2010; 5:e13346. [PMID: 20967129 PMCID: PMC2954194 DOI: 10.1371/journal.pone.0013346] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/20/2010] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a life-threatening neurodegenerative disease involving upper and lower motor neurons loss. Clinical features are highly variable among patients and there are currently few known disease-modifying factors underlying this heterogeneity. Serotonin is involved in a range of functions altered in ALS, including motor neuron excitability and energy metabolism. However, whether serotoninergic activity represents a disease modifier of ALS natural history remains unknown. METHODOLOGY Platelet and plasma unconjugated concentrations of serotonin and plasma 5-HIAA, the major serotonin metabolite, levels were measured using HPLC with coulometric detection in a cohort of 85 patients with ALS all followed-up until death and compared to a control group of 29 subjects. PRINCIPAL FINDINGS Platelet serotonin levels were significantly decreased in ALS patients. Platelet serotonin levels did not correlate with disease duration but were positively correlated with survival of the patients. Univariate Cox model analysis showed a 57% decreased risk of death for patients with platelet serotonin levels in the normal range relative to patients with abnormally low platelet serotonin (p = 0.0195). This protective effect remained significant after adjustment with age, gender or site of onset in multivariate analysis. Plasma unconjugated serotonin and 5-HIAA levels were unchanged in ALS patients compared to controls and did not correlate with clinical parameters. CONCLUSIONS/SIGNIFICANCE The positive correlation between platelet serotonin levels and survival strongly suggests that serotonin influences the course of ALS disease.
Collapse
|
42
|
Pigmented creatine deposits in Amyotrophic Lateral Sclerosis central nervous system tissues identified by synchrotron Fourier Transform Infrared microspectroscopy and X-ray fluorescence spectromicroscopy. Neuroscience 2010; 166:1119-28. [DOI: 10.1016/j.neuroscience.2010.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/06/2010] [Accepted: 01/08/2008] [Indexed: 11/18/2022]
|
43
|
Ghoddoussi F, Galloway MP, Jambekar A, Bame M, Needleman R, Brusilow WS. Methionine sulfoximine, an inhibitor of glutamine synthetase, lowers brain glutamine and glutamate in a mouse model of ALS. J Neurol Sci 2010; 290:41-7. [DOI: 10.1016/j.jns.2009.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 11/24/2009] [Accepted: 11/24/2009] [Indexed: 11/24/2022]
|
44
|
Serotonin and Basal Sensory–Motor Control. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1569-7339(10)70087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
45
|
Simone IL, Tortelli R, Samarelli V, D'Errico E, Sardaro M, Difruscolo O, Calabrese R, Francesco VDV, Livrea P, de Tommaso M. Laser evoked potentials in amyotrophic lateral sclerosis. J Neurol Sci 2010; 288:106-11. [DOI: 10.1016/j.jns.2009.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/20/2009] [Accepted: 09/23/2009] [Indexed: 11/30/2022]
|
46
|
|
47
|
Survey of ALS-associated factors potentially promoting Ca2+ overload of motor neurons. ACTA ACUST UNITED AC 2008; 8:260-5. [PMID: 17917848 DOI: 10.1080/17482960701523124] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The deleterious consequences of Ca(2+) overload are thought to be a probable cause of motoneuronal death in ALS, although the overloading mechanism is currently unclear. In this paper some ALS-linked factors are analysed with regard to their influence on Ca(2+ )influx into neurons. Intensive cortex activity can render motor neurons susceptible to stimulation of calcium-permeable glutamate NMDA-receptors; increase in CSF concentrations of glutamate, glycine, and norepinephrine supposedly can intensify these receptors' activity. Elevated CSF levels of GABA and reduced levels of serotonin can promote Ca(2+ )influx through glutamate AMPA-receptors and voltage-gated channels of L-, N-, and P-type. Additionally, brain ischaemia can contribute to Ca(2+ )overload of motor neurons. Thus, ALS is characterized by the unique combination of factors potentially able to promote the overload of motor neurons with calcium.
Collapse
|
48
|
Quartu M, Serra MP, Boi M, Ferretti MT, Lai ML, Del Fiacco M. Tissue distribution of Ret, GFRalpha-1, GFRalpha-2 and GFRalpha-3 receptors in the human brainstem at fetal, neonatal and adult age. Brain Res 2007; 1173:36-52. [PMID: 17825269 DOI: 10.1016/j.brainres.2007.07.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 07/28/2007] [Accepted: 07/30/2007] [Indexed: 11/30/2022]
Abstract
Occurrence and localization of receptor components of the glial cell line-derived neurotrophic factor (GDNF) family ligands, the Ret receptor tyrosine kinase and the GDNF family receptor (GFR) alpha-1 to -3, were examined by immunohistochemistry in the normal human brainstem at fetal, neonatal, and adult age. Immunoreactive elements were detectable at all examined ages with uneven distribution and consistent pattern for each receptor. As a rule, the GFRalpha-1 and GFRalpha-2 antisera produced the most abundant and diffuse tissue labelling. Immunoreactive perikarya were observed within sensory and motor nuclei of cranial nerves, dorsal column nuclei, olivary nuclear complex, reticular formation, pontine nuclei, locus caeruleus, raphe nuclei, substantia nigra, and quadrigeminal plate. Nerve fibers occurred within gracile and cuneate fasciculi, trigeminal spinal tract and nucleus, facial, trigeminal, vestibular and oculomotor nerves, solitary tract, medial longitudinal fasciculus, medial lemniscus, and inferior and superior cerebellar peduncles. Occasionally, glial cells were stained. Age changes were appreciable in the distribution pattern of each receptor. On the whole, in the grey matter, labelled perikarya were more frequently observed in pre- and perinatal than in adult specimens; on the other hand, in discrete regions, nerve fibers and terminals were abundant and showed a plexiform arrangement only in adult tissue; finally, distinct fiber systems in the white matter were immunolabelled only at pre- and perinatal ages. The results obtained suggest the involvement of Ret and GFRalpha receptors signalling in processes subserving both the organization of discrete brainstem neuronal systems during development and their functional activity and maintenance in adult life.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Anneser JMH, Jox RJ, Borasio GD. Inappropriate sexual behaviour in a case of ALS and FTD: successful treatment with sertraline. ACTA ACUST UNITED AC 2007; 8:189-90. [PMID: 17538783 DOI: 10.1080/17482960601073543] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In a subset of patients, ALS is associated with frontotemporal dysfunction (ALS-FTD). Clinically, ALS-FTD may present with a variable spectrum of cognitive and behavioural deficits. We report a 53-year-old ALS-FTD patient developing inappropriate sexual behaviour (ISB) manifesting as a vigorous sexual drive with exhausting demands for sexual intercourse and physical aggressions against his wife. This distressing symptom could be alleviated with the selective serotonin reuptake inhibitor sertraline. ISB is an embarrassing symptom for most patients and their caregivers and may therefore be under-reported. Since effective treatment is available, we suggest an open and proactive discussion of sexual issues in this patient group.
Collapse
|
50
|
Baade PD, Fritschi L, Freedman DM. Mortality due to amyotrophic lateral sclerosis and Parkinson's disease among melanoma patients. Neuroepidemiology 2007; 28:16-20. [PMID: 17164565 DOI: 10.1159/000097851] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Indexed: 11/19/2022] Open
Abstract
Recent studies in the USA and elsewhere have identified a possible association between Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and melanoma. However, empirical evidence is very limited. We conducted a study of all people diagnosed as having melanoma in Australia since 1982 (n = 127,037). The subjects, excluding those who had died within 12 months of diagnosis, were followed until 31 December 2001. We then compared their mortality risk of ALS and PD to that of the general population. There were a total of 53 ALS deaths and 129 deaths due to PD. Although the absolute risk is small, the melanoma cohort had a risk of death due to ALS 70% higher (standardised mortality ratio = 169.4, 95% CI = 127-221) than the general population, and nearly a 3-fold increased risk of dying from PD (standardised mortality ratio = 266.3, 95% CI = 222-317). These increased risks continued for long-term survivors, arguing against a surveillance effect (particularly for ALS). The consistency of these results in 2 separate populations (Australia and USA) strengthens the evidence for an association between melanoma and each of the 2 neurodegenerative diseases.
Collapse
Affiliation(s)
- P D Baade
- Epidemiology Unit, Viertel Centre for Research in Cancer Control, Queensland Cancer Fund, Brisbane, Australia.
| | | | | |
Collapse
|