1
|
Oudi A, Esmaeili AA, Habibi A. One-pot three-component synthesis of azaspirononatriene derivatives. Sci Rep 2025; 15:15174. [PMID: 40307286 PMCID: PMC12043965 DOI: 10.1038/s41598-025-97860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
The present investigation has introduced a new class of isocyanide/acetylene-based multicomponent reactions (IAMCRs). These are a robust technique for efficiently synthesizing intricate spiro architectures through a zwitterionic adduct. The coupling reaction between the "in situ" generated dipoles of the isocyanide-acetylenic ester adducts and 3-alkyl-4-arylidene-isoxazol-5(4H)-one derivative presents a highly effective synthetic pathway for obtaining novel 1-oxo-2-oxa-3-azaspiro[4.4]nona-3,6,8-triene heterocycles. The broad range of substrates, standard experimental conditions, straightforward procedure, and impressive yields make our catalyst-free three-component approach highly practical and green, as it remarkably offers step-, time- and cost-effectiveness based on the green metrics.
Collapse
Affiliation(s)
- Ali Oudi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Ali Esmaeili
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Azizollah Habibi
- Department of Chemistry, Faculty of Science, Kharazmi University, Tehran, Iran
| |
Collapse
|
2
|
Singh B, Kashyap S, Soni H, Verma I, Ghorai MK. Ring-Opening Cyclization (ROC) of spiro-Epoxyoxindoles with Indoles/Aldehydes: An Easy Access to Polyheterocyclic spiro-Oxindoles. J Org Chem 2025; 90:3897-3919. [PMID: 40062546 DOI: 10.1021/acs.joc.4c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A simple one-pot, two-step strategy for the synthesis of three-dimensional (3D) polyheterocyclic spiro-oxindoles by Lewis-acid-catalyzed Friedel-Crafts type C-3 alkylation of indoles via regioselective nucleophilic ring opening of spiro-epoxyoxindoles, followed by p-TSA-catalyzed Pictet-Spengler reaction with aldehydes in up to 98% yield and 1.4:1 diastereomeric ratio has been developed.
Collapse
Affiliation(s)
- Bharat Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Suraj Kashyap
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Hardik Soni
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Indresh Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
3
|
Zając A, Żurawiński R, Sieroń L, Drabowicz J. Unexpected Formation of a Chiral spiro-system in the Reaction of the Dilithium Derivative of Hexafluorocumyl Alcohol with N-(t-butylsulfenyl)phthalimide. Chempluschem 2025; 90:e202400614. [PMID: 39588797 DOI: 10.1002/cplu.202400614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 11/27/2024]
Abstract
An unexpected course of the reaction of hexafluorocumyl alcohol dilithium derivative 2 with N-(t-butylsulfenyl)phthalimide (3) has been presented. The process proceeded under mild conditions and resulted in previously undescribed chiral spiro-system- 3',3'-bis(trifluoromethyl)-3H,3'H-1,1'-spirobis(isobenzofuran)-3-one (5) as the only product. A detailed spectral analysis of the product has been provided, and mechanistic aspects have been investigated. Attempts to separate the enantiomers of compound 5 using a semipreparative HPLC method with a chiral stationary phase column have been described. The repeatability of the reaction using analogs of alcohol 4 has also been tested. DFT calculations of absolute configuration assignment have been performed successfully.
Collapse
Affiliation(s)
- Adrian Zając
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, 61-612, Poznan, Poland
| | - Remigiusz Żurawiński
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Lesław Sieroń
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Józef Drabowicz
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
- Department of Chemistry, Environmental Protection and Biotechnology, Jan Dlugosz University in Czestochowa, al. Armii Krajowej 13/15, 42-201, Czestochowa, Poland
| |
Collapse
|
4
|
Sun H, Ding S, Wang B, Huang J, Guo H. Palladium-catalyzed [3 + 2] cycloaddition of 4-vinyl-4-butyrolactones with sulfamate-derived cyclic imines: construction of sulfamate-fused pyrrolidines. Org Biomol Chem 2024; 23:90-93. [PMID: 39530223 DOI: 10.1039/d4ob01611d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The palladium-catalyzed [3 + 2] decarboxylative cycloaddition of 4-vinyl-4-butyrolactones with sulfamate-derived cyclic imines has been developed, providing the sulfamate-fused pyrrolidine derivatives in high yields with good diastereoselectivities. The scale-up reaction and further derivation of the product worked well, demonstrating the potential application of the current reaction in organic synthesis. A plausible reaction mechanism was also proposed.
Collapse
Affiliation(s)
- Honghao Sun
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Siyuan Ding
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jiaxing Huang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
5
|
Faragó T, Mészáros R, Wéber E, Palkó M. Synthesis and Docking Studies of Novel Spiro[5,8-methanoquinazoline-2,3'-indoline]-2',4-dione Derivatives. Molecules 2024; 29:5112. [PMID: 39519753 PMCID: PMC11547464 DOI: 10.3390/molecules29215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, a set of spiro[5,8-methanoquinazoline-2,3'-indoline]-2',4-dione derivatives 3a-p were synthesized starting from unsubstituted and N-methyl-substituted diendo- and diexo-2-aminonorbornene carboxamides, as well as various substituted isatins. The typical method involves a condensation reaction of alicyclic aminocarboxamide and isatin in the presence of a catalyst, using a solvent and an acceptable temperature. We developed a cost-effective and ecologically benign high-speed ball milling (HSBM), microwave irradiation (MW), and continuous flow (CF) technique to synthesize spiroquinazolinone molecule 3a. The structures of the synthesized compounds 3a-p were determined using 1D and 2D NMR spectroscopies. Furthermore, docking studies and absorption, distribution, metabolism, and toxicity (ADMET) predictions were used in this work. In agreement with the corresponding features found in the case of both the SARS-CoV-2 main protease (RCSB Protein Data Bank: 6LU7) and human mast cell tryptase (RCSB Protein Data Bank: 2ZA5) based on the estimated total energy and binding affinity, H bonds, and hydrophobicity in silico, compound 3d among our 3a-g, 3i-k, and 3m derivatives was found to be our top-rated compound.
Collapse
Affiliation(s)
- Tünde Faragó
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; (T.F.); (R.M.)
| | - Rebeka Mészáros
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; (T.F.); (R.M.)
| | - Edit Wéber
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720 Szeged, Hungary
| | - Márta Palkó
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; (T.F.); (R.M.)
| |
Collapse
|
6
|
Chaudhary HR, Patel DM. Recent trends for chemoselectivity modulation in one-pot organic transformations. RSC Adv 2024; 14:31072-31116. [PMID: 39351407 PMCID: PMC11440482 DOI: 10.1039/d4ra05495d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
In organic reactions, chemoselectivity refers to the selective reactivity of one functional group in the presence of another. This can be more successful if the reagent and reaction parameters are appropriately chosen. One-pot reactions have been shown to be an effective structural variety technique for the development of novel heterocyclic or carbocyclic compounds. This review article focuses on recent efforts by researchers from around the world to synthesise novel organic molecules utilising these methodologies (2013-2024), as well as their mechanism insights. The substrate, catalyst, solvent, and temperature conditions all have a significant impact on chemoselectivity in the organic reactions described here. The manipulation of chemoselectivity in organic processes creates new potential for the production of novel heterocycles and carbocycles.
Collapse
Affiliation(s)
- Hiren R Chaudhary
- Department of Chemistry, Sankalchand Patel University Visnagar 384315 Gujarat India
| | - Divyang M Patel
- Department of Chemistry, Sankalchand Patel University Visnagar 384315 Gujarat India
| |
Collapse
|
7
|
Trujillo-Sierra J, Sansano JM, Pardos J, Tejero T, Merino P, Retamosa MDG. Asymmetric Remote Aldol Cyclization Reaction to Synthesize Trifluoromethylated Heterospirocyclic Frameworks. J Org Chem 2024; 89:13654-13660. [PMID: 39234920 DOI: 10.1021/acs.joc.4c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The highly enantioselective organocatalytic synthesis of dihydropyran spirocyclic compounds bearing di- and trifluoromethyl groups by aldol cyclization reaction via trienamine using cyclic 2,5-dienones and different di- and trifluoromethylketones is described. Using a bifunctional aminothiourea catalyst, trifluoromethyl-functionalized dihydropyran spirocyclic products were obtained with good yields and enantioselectivities. Subsequent transformation with H2 and Pd/C has allowed the synthesis of the tetrahydropyran structure with three stereocenters. The plausible reaction mechanism was investigated by computational methods.
Collapse
Affiliation(s)
- José Trujillo-Sierra
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Institute of Organic Synthesis, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - José Miguel Sansano
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Institute of Organic Synthesis, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Jorge Pardos
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Facultad de Ciencias, Universidad de Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - Tomás Tejero
- Instituto de Síntesis Química Y Catálisis Homogénea (ISQCH), Facultad de Ciencias, Universidad de Zaragoza-CSIC, Campus San Francisco, 50009 Zaragoza, Spain
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Facultad de Ciencias, Universidad de Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - María de Gracia Retamosa
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Institute of Organic Synthesis, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| |
Collapse
|
8
|
Tsering D, Dey P, Kapoor KK, Seth SK. An Energetic and Topological Approach to Understanding the Interplay of Noncovalent Interactions in a Series of Crystalline Spiropyrrolizine Compounds. ACS OMEGA 2024; 9:36242-36258. [PMID: 39220545 PMCID: PMC11360030 DOI: 10.1021/acsomega.4c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Synthesis of quinoline-containing spiropyrrolizine was achieved via a 1,3-dipolar cycloaddition reaction of azomethine ylide (generated in situ from ninhydrin and l-proline) and (E)-2-styrylquinoline. The synthesized compounds were characterized by 1H NMR, 13C NMR, HRMS, and single-crystal XRD analysis. The XRD data revealed that the solid-state structures of the compounds belong to the monoclinic system of the space group P21/c and are stabilized through various weak noncovalent interactions such as C-H···O, C-H···π, and π···π interactions. The noncovalent interactions are characterized and quantified through Hirshfeld surface analysis. Moreover, the interaction energies of the intermolecular noncovalent interactions are calculated through PIXEL calculation. The PIXEL calculation provides precise interaction energy with an energy decomposition scheme. Energy Framework calculations have also been performed to delve deeper into understanding the intermolecular interactions. The intermolecular interactions are further characterized using Bader's theory of "atoms in molecules" (QTAIM) and the "noncovalent" (NCI) interaction plot index. The nature and strength of noncovalent interactions are analyzed from the topological parameters at (3, -1) bond critical points (BCPs).
Collapse
Affiliation(s)
- Dolma Tsering
- Department
of Chemistry, University of Jammu, Jammu 180006, India
| | - Pratik Dey
- Department
of Physics, Jadavpur University, Kolkata 700032, India
| | - Kamal K. Kapoor
- Department
of Chemistry, University of Jammu, Jammu 180006, India
| | | |
Collapse
|
9
|
Torkashvand Z, Sepehrmansourie H, Zolfigol MA, Gu Y. Ti-based MOFs with acetic acid pendings as an efficient catalyst in the preparation of new spiropyrans with biological moieties. Sci Rep 2024; 14:14101. [PMID: 38890358 PMCID: PMC11189590 DOI: 10.1038/s41598-024-62757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The strategy of designing heterogeneous porous catalysts by a post-modification method is a smart strategy to increase the catalytic power of desired catalysts. Accordingly, in this report, metal-organic frameworks based on titanium with acetic acid pending were designed and synthesized via post-modification method. The structure of the target catalyst has been investigated using different techniques such as FT-IR, XRD, SEM, EDX, Mapping, and N2 adsorption/desorption (BET/the BJH) the correctness of its formation has been proven. The catalytic application of Ti-based MOFs functionalized with acetic acid was evaluated in the preparation of new spiropyrans, and the obtained results show that the catalytic performance is improved by this modification. The strategy of designing heterogeneous porous catalysts through post-modification methods presents a sophisticated approach to enhancing the catalytic efficacy of desired catalysts. In this context, our study focuses on the synthesis and characterization of metal-organic frameworks (MOFs) based on titanium, functionalized with acetic acid pendants, using a post-modification method. Various characterization techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), mapping, and N2 adsorption/desorption (BET/BJH), were employed to investigate the structure and composition of the synthesized catalyst. These techniques collectively confirmed the successful formation and structural integrity of the target catalyst. The structure of the synthesized products was confirmed by melting point, 1H-NMR and 13C-NMR and FT-IR techniques. Examining the general process of catalyst synthesis and its catalytic application shows that the mentioned modification is very useful for catalytic purposes. The presented catalyst was used in synthesis of a wide range of biologically active spiropyrans with good yields. The simultaneous presence of several biologically active cores in the synthesized products will highlight the biological properties of these compounds. The present study offers a promising insight into the rational design, synthesis, and application of task-specific porous catalysts, particularly in the context of synthesizing biologically active candidate molecules.
Collapse
Affiliation(s)
- Zahra Torkashvand
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| |
Collapse
|
10
|
Sarkar A, Mandal RD, Chakraborty N, Das AR. Cascade [4 + 1] Annulation through Activation of the C(sp 2)-H Bond Enabling Benzothiadiazinoisoindolcarboxylate, Benzothiadiazinoisoindole, and Benzothiadiazinoisoindolepyrrolidinedione as Hybrid Spiro-Heterocyclic Frameworks†. J Org Chem 2024. [PMID: 38758359 DOI: 10.1021/acs.joc.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Two structurally distinct and biologically privileged succinimide and isoindole heteroarenes bearing benzothiadiazinedioxide motif-centered hybrid conjugates are proficiently achieved through Rh(III)-catalyzed sequential C(sp2)-H bond activation, ortho-alkenylation and finally cascade intramolecular cyclization. The significant feature of this developed protocol is that the resulting diversely decorated heterocycles contain a quaternary carbon center and this has been coursed through atypical [4 + 1] annulation ignoring the prevalent [4 + 2]-cyclization pathway and interestingly the applied coupling partners (e.g., maleimide, maleate, and styrene) to materialize the protocol functioned only as C1 synthon. Furthermore, the selective reduction strategy enables to modify the hybrid conjugate of succinimide and benzothiazine dioxide to benzothiazine dioxide-based spirocyclic isoindolopyrrolidinedione skeleton following preferential reduction of one carbonyl group of imide functionality. Overall this methodology emerges to be easily handled, versatile, time-efficient, and manifests relatively unfamiliar spiro-cyclization and good functional group tolerance so easy to grab a library of the entirely new variant of decorated hybrid spiro-heterocyclic scaffolds.
Collapse
Affiliation(s)
- Anindita Sarkar
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Rahul Dev Mandal
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | | | - Asish R Das
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| |
Collapse
|
11
|
Das B, Dahiya A, Patel BK. Isothiocyanates: happy-go-lucky reagents in organic synthesis. Org Biomol Chem 2024; 22:3772-3798. [PMID: 38656266 DOI: 10.1039/d4ob00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Owing to their unique structural features, isothiocyanates (ITCs) are a class of highly useful and inimitable reagents as the -NCS group serves both as electrophile and nucleophile in organic synthesis. ITCs share a rich legacy in organic, medicinal, and combinatorial chemistry. Compared to their oxygen equivalents, isocyanates, ITCs are easily available, less unpleasant, and somewhat less harmful to work with (mild conditions) which makes them happy-go-lucky reagents. Functionalized ITCs can finely tune the reactivity of the -NCS group and thus can be exploited in the late-stage functionalization processes. This review's primary aim is to outline ITC chemistry in the construction and derivatization of heterocycles through the lens of sustainability. For ease and brevity, the sections are divided based on reactive centers present in functionalized ITCs and modes of cyclisation. Scrutinizing their probable unexplored directions for future research studies is also addressed.
Collapse
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
- Department of Chemistry, Bagadhar Brahma Kishan College, Jalah, Assam 781327, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| |
Collapse
|
12
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
13
|
Pal S, Das D, Bhunia S. p-Toluenesulfonic acid-promoted organic transformations for the generation of molecular complexity. Org Biomol Chem 2024; 22:1527-1579. [PMID: 38275082 DOI: 10.1039/d3ob01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Since the beginning of this century, p-toluenesulfonic acid (p-TSA) catalysed organic transformations have been an active area of research for developing efficient synthetic methodologies. Often, catalysis using p-TSA is associated with many advantages, such as operational simplicity, high selectivity, excellent yields, and ease of product isolation, which make organic synthesis convenient and versatile. Notably, p-TSA is a non-toxic, commercially available, inexpensive solid organic compound that is soluble in water, alcohols, and other polar organic solvents. p-TSA is a strong acid compared to many protic or mineral acids and its high acidity helps activate different organic functional groups. p-TSA-promoted conversions are fast, have a high atom and pot economy, and feature a multiple bond-forming index. Therefore, the utilization of p-TSA enables the synthesis of many important structural scaffolds without any hazardous metals, making it desirable in numerous applications of sustainable and green chemistry. Recently, this emerging area of research has become one of the pillars of synthetic organic chemistry to synthesise biologically relevant, complex carbocycles and heterocycles. This study provides a comprehensive summary of methods, applications, and mechanistic insights into p-TSA-catalysed organic transformations, covering the literature reports that have appeared since 2012.
Collapse
Affiliation(s)
- Sanchari Pal
- Department of Chemistry, Triveni Devi Bhalotia College, Raniganj, India.
| | - Debjit Das
- Department of Chemistry, Triveni Devi Bhalotia College, Raniganj, India.
| | - Sabyasachi Bhunia
- Department of Chemistry, Central University of Jharkhand, Ranchi, Jharkhand, India.
| |
Collapse
|
14
|
Javahershenas R, Makarem A, Klika KD. Recent advances in microwave-assisted multicomponent synthesis of spiro heterocycles. RSC Adv 2024; 14:5547-5565. [PMID: 38357035 PMCID: PMC10866134 DOI: 10.1039/d4ra00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Spiro heterocycle frameworks are a class of organic compounds that possesses unique structural features making them highly sought-after targets in drug discovery due to their diverse biological and pharmacological activities. Microwave-assisted organic synthesis has emerged as a powerful tool for assembling complex molecular architectures. The use of microwave irradiation in synthetic chemistry is a promising method for accelerating reaction rates and improving yields. This review provides insights into the current state of the art and highlights the potential of microwave-assisted multicomponent reactions in the synthesis of novel spiro heterocyclic compounds that were reported between 2017 and 2023.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Ata Makarem
- Institute of Pharmacy, University of Hamburg 20146 Hamburg Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ) 69120 Heidelberg Germany
| |
Collapse
|
15
|
Hossain M, Habib I, Singha K, Kumar A. FDA-approved heterocyclic molecules for cancer treatment: Synthesis, dosage, mechanism of action and their adverse effect. Heliyon 2024; 10:e23172. [PMID: 38163206 PMCID: PMC10755292 DOI: 10.1016/j.heliyon.2023.e23172] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
As the incorporation of heterocycles increases the physical characteristics and biological activity of pharmacological molecules, heterocyclic scaffolds are commonly discovered as common cores in a wide spectrum of biologically active drugs. In the contemporary context, many heterocycles have arisen, playing vital roles in diverse pharmaceutical compounds that benefit humanity. Over 85 % of FDA-approved medication molecules contain heterocycles, and most importantly, numerous heterocyclic medicinal molecules indicate potential benefits against a range: of malignancies. The unique flexibility and dynamic core scaffold of these compounds have aided anticancer research. These medications are used to treat cancer patients by targeting particular genes, enzymes, and receptors. Aside from the drugs that are now on the market, numerous forms are being researched for their potential anti-cancer activity. Here in this review, we classified some molecules and biologically active heterocycles containing anticancer medicinal moieties approved by the FDA between 2019 and 2021 based on their use in various forms of cancer. We will focus on those that are suitable for cancer treatment, as well as the essential biochemical mechanisms of action, biological targets, synthetic methods, and inherent limiting considerations in their use.
Collapse
Affiliation(s)
- Mossaraf Hossain
- Synthetic Organic Research Laboratory, UGC-HRDC (Chemistry), University of North Bengal, Darjeeling, 734013, India
| | - Imran Habib
- Synthetic Organic Research Laboratory, UGC-HRDC (Chemistry), University of North Bengal, Darjeeling, 734013, India
| | - Koustav Singha
- Synthetic Organic Research Laboratory, UGC-HRDC (Chemistry), University of North Bengal, Darjeeling, 734013, India
| | - Anoop Kumar
- Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| |
Collapse
|
16
|
Sadiq Z, Ghani A, Hashmi MA, Dahshan A, Shahnaz, Al-Mijalli SH, Iqbal M, Hussain EA. Green synthesis of novel spiropyrazoline-indolinones in neutral deep eutectic solvents and DFT studies. Heliyon 2024; 10:e23814. [PMID: 38226241 PMCID: PMC10788502 DOI: 10.1016/j.heliyon.2023.e23814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Novel spiropyrazoline-indolinones (4a-t) have been synthesized successfully in neutral deep eutectic solvents by reacting 5-Cl/Br-isatin (1a-b) with aromatic ketones (2a-b) and a variety of substituted hydrazines (3a-e) in good to excellent yields. This eco-friendly straightforward synthetic protocol discloses good functional group compatibility. The conventional synthetic approach was compared with the greener route of microwave-assisted synthesis of spiropyrazolines using ethanol. This approach utilized mild reaction conditions which furnished high yields in short reaction time employing one pot two-step multicomponent. All new compounds were structurally confirmed by detailed spectroscopic analysis and density functional theory calculations. This method provides efficient access to spiropyrazole derivatives using biodegradable and green solvent.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemistry, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Ambreen Ghani
- Department of Chemistry, University of Education Lahore, Vehari Campus, 61100, Pakistan
| | - Muhammad A. Hashmi
- Department of Chemistry, University of Education, Attock Campus, Attock, 43600, Pakistan
| | - A. Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Shahnaz
- Department of Chemistry, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Samiah H. Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Erum A. Hussain
- Department of Chemistry, Lahore College for Women University, Lahore, 54000, Pakistan
| |
Collapse
|
17
|
Jaber AM, Zahra JA, El-Abadelah MM, Al-Mahadeen MM, Sabri SS, Kasabri V, Haddadin RN. Evaluation of Spirooxindole-3,3'-pyrrolines-incorporating Isoquinoline Motif as Antitumor, Anti-inflammatory, Antibacterial, Antifungal, and Antioxidant Agents. Antiinflamm Antiallergy Agents Med Chem 2024; 23:261-272. [PMID: 39069700 DOI: 10.2174/0118715230322113240705071750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND A series of novel 2-(isoquinolin-1-yl)-spiro[oxindole-3,3'-pyrrolines] were synthesized by a one-pot three-component reaction involving dimethyl acetylenedicarboxylate, 3-phenylimidazo[5,1-a]isoquinoline and N-alkylisatins in chloroform at ∼60°C for 24 h. AIMS This study aimed at the synthesis of novel spirooxindole-3,3'-pyrrolines derivatives and in vitro evaluation of cytotoxicity affinities in cross-correlations with their anti-inflammation and radical scavenging capacities. OBJECTIVES The objective of this study was to use a one-pot, three-component reaction to synthesize a novel set of spirooxindole-3,3'-pyrrolines derivatives. METHODS A novel set of spirooxindole-3,3'-pyrrolines (8a-i) was synthesized by a one-pot three-component reaction involving dimethyl acetylenedicarboxylate, 3-phenylimidazo[5,1- a]isoquinoline and N-alkylisatins in chloroform at ∼60°C for 24 h. These new compounds were characterized by 1HNMR, 13C-NMR, and HRMS spectral data and screened for their antitumor, anti-inflammatory, antibacterial, antifungal, and antioxidant activities. RESULTS The new synthetic spirooxindole-3,3'-pyrrolines (8a-i)-tested compounds displayed significant anti-inflammatory properties and were noncytotoxic on PDL fibroblasts. However, they lacked antioxidative-DPPH radical scavenging capabilities. Notably, Doxorubicin and cisplatin demonstrated antiproliferative effects on various cancer monolayers. Moreover, compounds 8b, 8d, 8f, 8h, and 8i exhibited pronounced viability reduction properties in colorectal and pancreatic cancer monolayers, as well as across skin, lung, prostate, and cervical adenocarcinomas, with higher cytotoxicity in mammary cancer cells MCF7 and T47D. None of the tested compounds had significant antibacterial activity against S. aureus or E. coli. However, compounds 8c, 8d, and 8f exhibited notable antifungal properties, indicating potential for further investigation. CONCLUSION Eight new synthetic spiro[indoline-3,3-pyrroles] were prepared, characterized, and evaluated for their anti-inflammatory and cytotoxic properties. The compounds showed significant anti-inflammatory effects and promising cytotoxicity against various cancer monolayers, especially in colorectal and pancreatic cancers. Some compounds also exhibited antifungal properties. However, they did not exhibit significant antibacterial activity.
Collapse
Affiliation(s)
- Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Jalal A Zahra
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Mustafa M El-Abadelah
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Mohammed M Al-Mahadeen
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Salim S Sabri
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Violet Kasabri
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, University of Jordan, Amman, 11942, Jordan
| | - Randa N Haddadin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| |
Collapse
|
18
|
Zhao H, Zhao Y. Engaging Isatins and Amino Acids in Multicomponent One-Pot 1,3-Dipolar Cycloaddition Reactions-Easy Access to Structural Diversity. Molecules 2023; 28:6488. [PMID: 37764264 PMCID: PMC10536439 DOI: 10.3390/molecules28186488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Multicomponent reactions (MCRs) have undoubtedly emerged as the most indispensable tool for organic chemists worldwide, finding extensive utility in the synthesis of intricate natural products, heterocyclic molecules with significant bioactivity, and pharmaceutical agents. The multicomponent one-pot 1,3-dipolar cycloaddition reactions, which were initially conceptualized by Rolf Huisgen in 1960, find extensive application in contemporary heterocyclic chemistry. In terms of green synthesis, the multicomponent 1,3-dipolar cycloaddition is highly favored owing to its numerous advantages, including high step- and atom-economies, remarkable product diversity, as well as excellent efficiency and diastereoselectivity. Among the numerous pieces of research, the most fascinating reaction involves the utilization of azomethine ylides generated from isatins and amino acids that can be captured by various dipolarophiles. This approach offers a highly efficient and convenient method for constructing spiro-pyrrolidine oxindole scaffolds, which are crucial building blocks in biologically active molecules. Consequently, this review delves deeper into the dipolarophiles utilized in the 1,3-dipolar cycloaddition of isatins and amino acids over the past six years.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | | |
Collapse
|
19
|
Rupa K, Anbarasan P. Rhodium Catalyzed [4 + 1]-Annulation of o-Acylanilines with 3-Diazoindoline-2-imines. Org Lett 2023; 25:6357-6362. [PMID: 37602993 DOI: 10.1021/acs.orglett.3c02288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
An efficient rhodium catalyzed [4 + 1]-annulation of o-acylanilines with 3-diazoindoline-2-imines has been successfully accomplished for the synthesis of spiroindolines in good to excellent yield. The reaction occurs through formation of N-ylide followed by cyclization and showed good tolerance to various functional groups. Gram-scale synthesis, diastereoselective construction of tetrasubstituted indoline, synthesis of spirooxindole, and isolation of potential intermediates have also been demonstrated.
Collapse
Affiliation(s)
- Kavuri Rupa
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
20
|
Ezzat MAF, Elmasry GF, El-Mageed MMAA, Fouad MA, Abdel-Aziz HA, Elewa SI. Design, synthesis, and biological evaluation of furan-bearing pyrazolo[3,4-b]pyridines as novel inhibitors of CDK2 and P53-MDM2 protein-protein interaction. Drug Dev Res 2023; 84:1183-1203. [PMID: 37191966 DOI: 10.1002/ddr.22079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023]
Abstract
The novel series of furan-bearing pyrazolo[3,4-b]pyridines were designed as cyclin-dependent kinase 2 (CDK2) inhibitors and as p53-murine double minute 2 (MDM2) inhibitors. The newly synthesized compounds were screened for their antiproliferative activity toward hepatocellular carcinoma (HepG2) and breast cancer (MCF7) cell lines. The most active compounds on both cell lines were additionally evaluated for their in vitro CDK2 inhibitory activity. Compounds 7b and 12f displayed enhanced activity (half-maximal inhibitory concentration [IC50 ] = 0.46 and 0.27 µM, respectively) in comparison to the standard roscovitine (IC50 = 1.41 ± 0.03 µM), in addition to, cell cycle arrest at S phase and G1/S transition phase in MCF7 cells treated with both compounds, respectively. Moreover, the most active spiro-oxindole derivative against MCF7 cell line, 16a, exhibited enhanced inhibitory activity against p53-MDM2 interaction in vitro (IC50 = 3.09 ± 0.12 µM) compared to nutlin, and increased the levels of both p53 and p21 by nearly fourfold in comparison to the negative control. Molecular docking studies demonstrated the plausible interaction patterns of the most potent derivatives 17b and 12f in the CDK2 binding pocket and the spiro-oxindole 16a with p53-MDM2 complex, respectively. Consequently, the new chemotypes 7b, 12f, and 16a can be presented as promising antitumor hits for further studies and optimization.
Collapse
Affiliation(s)
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Marwa A Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, School of Pharmacy, NewGiza University, Cairo, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Giza, Egypt
| | - Safaa I Elewa
- Organic Chemistry Department, Faculty of Women's for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
21
|
Pan XF, Bao X, Xu RR, Qi X, Wu XF. Palladium-catalyzed Heck/aminocarbonylation of alkene-tethered carbamoyl chlorides with nitro compounds for the synthesis of carbamoyl-substituted oxindoles. Org Biomol Chem 2023; 21:6107-6110. [PMID: 37461849 DOI: 10.1039/d3ob01004j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A straightforward and efficient approach for the synthesis of carbamoyl-substituted oxindoles has been developed via a palladium-catalyzed Heck cyclization and reductive aminocarbonylation reaction of alkene-tethered carbamoyl chlorides with nitro compounds. The reaction showed good compatibility toward versatile functional groups, and both nitroarenes and nitroalkanes were well tolerated. Using Mo(CO)6 as a solid CO source, without external reductants, a broad range of carbamoyl-substituted oxindoles were obtained in moderate to high yields.
Collapse
Affiliation(s)
- Xing-Feng Pan
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
| | - Xuanzhang Bao
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
| | - Ren-Rui Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
| | - Xinxin Qi
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China.
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, Rostock 18059, Germany.
| |
Collapse
|
22
|
Reddy CR, Ajaykumar U, Kolgave DH, Ramesh R. CAN-Promoted Thiolative ipso-Annulation of Unactivated N-Benzyl Acrylamides: Access to SCN/SCF 3/SO 2Ar Containing Azaspirocycles. J Org Chem 2023. [PMID: 37192481 DOI: 10.1021/acs.joc.3c00374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A variety of acrylamides holding an unactivated N-benzyl group underwent dearomative ipso-cyclization induced by sulfur-centered radicals (SCN/ SCF3/ SO2Ar) in the presence of ceric ammonium nitrate (CAN) as the oxidant to furnish azaspirocycles in good yields. This is the first report on ipso-dearomatization of N-benzyl acrylamides that proceeds without a substituent at the para-position of the aromatic ring. The developed conditions are also found to be suitable for substrates holding substituents such as F, NO2, OMe, OH, and OAc at the para-position. The reaction features water as the source of oxygen, is compatible with a variety of functional groups, and proceeds in a short time.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Remya Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
23
|
Jaber AM, Zahra JA, El-Abadelah MM, Sabri SS, Sabbah DS. Thermodynamic control synthesis of spiro[oxindole-3,3'-pyrrolines] via 1,4-dipolar cycloaddition utilizing imidazo[1,5- a]quinoline. Z NATURFORSCH C 2023; 78:141-148. [PMID: 36796786 DOI: 10.1515/znc-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
A series of novel 2-(quinolin-2-yl)-spiro[oxindole-3,3'-pyrrolines] were synthesized by one-pot three-component reaction involving dimethyl acetylenedicarboxylate, 1-phenylimidazo[1,5-a]quinoline and N-alkylisatins in chloroform at ∼60 °C for 24 h. Structures of these new spiro derivatives were deduced from HRMS and NMR spectral data. A plausible mechanism for the observed thermodynamic control pathway is presented herewith. Interestingly, the spiro adduct, derived from 5-chloro-1-methylisatin, exhibited excellent antiproliferative activity on MCF7, A549 and Hela human cell lines (IC50 ≃ 7 μM).
Collapse
Affiliation(s)
- Areej M Jaber
- Chemistry Department, Faculty of Science, The University of Jordan, Amman 11942, Jordan.,Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Jalal A Zahra
- Chemistry Department, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Mustafa M El-Abadelah
- Chemistry Department, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Salim S Sabri
- Chemistry Department, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Dua'a S Sabbah
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman 11196, Jordan
| |
Collapse
|
24
|
Brandner L, Müller TJJ. Multicomponent synthesis of chromophores – The one-pot approach to functional π-systems. Front Chem 2023; 11:1124209. [PMID: 37007054 PMCID: PMC10065161 DOI: 10.3389/fchem.2023.1124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/19/2023] Open
Abstract
Multicomponent reactions, conducted in a domino, sequential or consecutive fashion, have not only considerably enhanced synthetic efficiency as one-pot methodology, but they have also become an enabling tool for interdisciplinary research. The highly diversity-oriented nature of the synthetic concept allows accessing huge structural and functional space. Already some decades ago this has been recognized for life sciences, in particular, lead finding and exploration in pharma and agricultural chemistry. The quest for novel functional materials has also opened the field for diversity-oriented syntheses of functional π-systems, i.e. dyes for photonic and electronic applications based on their electronic properties. This review summarizes recent developments in MCR syntheses of functional chromophores highlighting syntheses following either the framework forming scaffold approach by establishing connectivity between chromophores or the chromogenic chromophore approach by de novo formation of chromophore of interest. Both approaches warrant rapid access to molecular functional π-systems, i.e. chromophores, fluorophores, and electrophores for various applications.
Collapse
|
25
|
Mohammad Abu-Taweel G, Alharthi SS, Al-Saidi HM, Babalghith AO, Ibrahim MM, Khan S. Heterocyclic Organic Compounds as a Fluorescent Chemosensor for Cell Imaging Applications: A Review. Crit Rev Anal Chem 2023; 54:2538-2553. [PMID: 36880659 DOI: 10.1080/10408347.2023.2186695] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Fluorometric determination of different biologically, industrially, and environmentally important analytes is a powerful technique because this technique has excellent selectivity, high sensitivity, rapid photoluminescence response, low cost, applicability to bioimaging, and low detection limit. Fluorescence imaging is a powerful technique for screening different analytes in the living system. Heterocyclic organic compounds have been extensively used as a fluorescence chemosensor for the determination of different biologically important cations like Co2+, Zn2+, Cu2+, Hg2+, Ag+, Ni2+, Cr3+, Al3+, Pd2+, Fe3+ Pt2+, Mn2+, Sn2+, Pd2+, Au3+, Pd2+, Cd2+, Pb2+ and other ions in biological and environmental systems. These compounds also showed significant biological applications such as anti-cancer, anti-ulcerogenic, antifungal, anti-inflammatory, anti neuropathic, antihistaminic, antihypertensive, analgesic, antitubercular, antioxidant, antimalarial, antiparasitic, antiglycation, antiviral anti-obesity, and antibacterial potency. In this review, we summarize the heterocyclic organic compounds based on fluorescent chemosensors and their applications in bioimaging studies for the recognition of different biologically important metal ions.
Collapse
Affiliation(s)
| | - Salman S Alharthi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department College of Medicine, Umm Al-Qura University Makkah, Saudi Arabia
| | - Munjed M Ibrahim
- Department of Pharmaceutical Chemistry, College of pharmacy, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
26
|
Matsuo B, Majhi J, Granados A, Sharique M, Martin RT, Gutierrez O, Molander GA. Transition metal-free photochemical C-F activation for the preparation of difluorinated-oxindole derivatives. Chem Sci 2023; 14:2379-2385. [PMID: 36873833 PMCID: PMC9977406 DOI: 10.1039/d2sc06179a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The development of strategies for single and selective C-F bond activation represents an important avenue to overcome limitations in the synthesis of valuable fluorine-containing compounds. The synthetic and medicinal research communities would benefit from new routes that access such relevant molecules in a simple manner. Herein we disclose a straightforward and mechanistically distinct pathway to generate gem-difluoromethyl radicals and their installation onto N-arylmethacrylamides for the preparation of valuable difluorinated oxindole derivatives. To achieve operational simplicity, the use of a readily available benzenethiol as a photocatalyst under open-to-air conditions was developed, demonstrating the facile multigram preparation of the targeted fluorinated molecules. Additionally, dispersion-corrected density functional theory (DFT) and empirical investigations provide a new basis to support the proposed reaction pathway, indicating that arene thiolate is an efficient organophotocatalyst for this transformation.
Collapse
Affiliation(s)
- Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Robert T Martin
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive College Park Maryland 20742 USA
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive College Park Maryland 20742 USA.,Department of Chemistry, Texas A&M University 580 Ross St. College Station Texas 77843 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
27
|
Talab F, Ullah S, Alam A, Halim SA, Rehman NU, Zainab, Ali M, Latif A, Khan A, Al-Harrasi A, Ahmad M. Bio-Oriented Synthesis of Novel Polyhydroquinoline Derivatives as α-Glucosidase Inhibitor for Management of Diabetes. ACS OMEGA 2023; 8:6234-6243. [PMID: 36844517 PMCID: PMC9948207 DOI: 10.1021/acsomega.2c05390] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/27/2022] [Indexed: 09/11/2023]
Abstract
Polyhydroquinoline derivatives (1-15) were synthesized through an unsymmetrical Hantzsch reaction in excellent yields by treating 3,5-dibromo-4-hydroxybenzaldehyde, dimedone, ammonium acetate, and ethyl acetoacetate in ethanol solvent. The structures of the synthesized compounds (1-15) were deduced through different spectroscopic techniques such as 1H NMR, 13C NMR, and HR-ESI-MS. The synthesized products were tested for their α-glucosidase inhibitory activity where compounds 11 (IC50 = 0.56 ± 0.01 μM), 10 (IC50 = 0.94 ± 0.01 μM), 4 (IC50 = 1.47 ± 0.01 μM), 2 (IC50 = 2.20 ± 0.03 μM), 6 (IC50 = 2.20 ± 0.03 μM), 12 (IC50 = 2.22 ± 0.07 μM), 7 (IC50 = 2.76 ± 0.04 μM), 9 (IC50 = 2.78 ± 0.03 μM), and 3 (IC50 = 2.88 ± 0.05 μM) exhibited high potential for the inhibition of α-glucosidase, while the rest of the compounds (8, 5, 14, 15, and 13) showed significant α-glucosidase inhibitory potential with IC50 values of 3.13 ± 0.10, 3.34 ± 0.06, 4.27 ± 0.13, 6.34 ± 0.15, and 21.37 ± 0.61 μM, respectively. Among the synthesized series, two compounds, i.e., 11 and 10, showed potent α-glucosidase inhibitory potential higher than the standard. All the compounds were compared with standard drug "acarbose" (IC50 = 873.34 ± 1.67 μM). An in silico method was used to predict their mode of binding within the active site of enzyme to understand their mechanism of inhibition. Our in silico observation complements with the experimental results.
Collapse
Affiliation(s)
- Faiz Talab
- Department
of Chemistry, University of Malakand, P.O. Box 18800,
Dir Lower, Malakand18800Khyber Pakhtunkhwa, Pakistan
| | - Saeed Ullah
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, PC, Birkat Al Mauz, 616Nizwa, Sultanate of Oman
| | - Aftab Alam
- Department
of Chemistry, University of Malakand, P.O. Box 18800,
Dir Lower, Malakand18800Khyber Pakhtunkhwa, Pakistan
| | - Sobia Ahsan Halim
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, PC, Birkat Al Mauz, 616Nizwa, Sultanate of Oman
| | - Najeeb Ur Rehman
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, PC, Birkat Al Mauz, 616Nizwa, Sultanate of Oman
| | - Zainab
- College
of Chemistry and Materials Science, Hebei
Normal University, Shijiazhuang050024, China
| | - Mumtaz Ali
- Department
of Chemistry, University of Malakand, P.O. Box 18800,
Dir Lower, Malakand18800Khyber Pakhtunkhwa, Pakistan
| | - Abdul Latif
- Department
of Chemistry, University of Malakand, P.O. Box 18800,
Dir Lower, Malakand18800Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, PC, Birkat Al Mauz, 616Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, PC, Birkat Al Mauz, 616Nizwa, Sultanate of Oman
| | - Manzoor Ahmad
- Department
of Chemistry, University of Malakand, P.O. Box 18800,
Dir Lower, Malakand18800Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
28
|
Tang WX, Chen KQ, Sun DQ, Chen XY. Photoinduced halogen-bonding enabled synthesis of oxindoles and isoindolinones from aryl iodides. Org Biomol Chem 2023; 21:715-718. [PMID: 36412116 DOI: 10.1039/d2ob01818g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report the use of halogen bonding (XB) for the generation of aryl radicals from aryl halides under blue light irradiation and applied it in radical generation/1,5-hydrogen-atom transfer/radical cyclization cascade reactions for the synthesis of oxindoles and isoindolinones. On the basis of experimental studies, we propose that DBU can serve as a suitable XB acceptor with aryl halides for the formation of a photoactive electron donor and acceptor complex.
Collapse
Affiliation(s)
- Wen-Xin Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Kun-Quan Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - De-Qun Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China. .,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, P. R. China
| |
Collapse
|
29
|
Dhadda S, Sharma S, Jakhar P, Sharma H. Contemporary progress in the green synthesis of spiro-thiazolidines and their medicinal significance: a review. RSC Adv 2023; 13:3723-3742. [PMID: 36756557 PMCID: PMC9891087 DOI: 10.1039/d2ra07474e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
The development of new strategies for the production of nitrogen and sulfur-containing heterocycles remains an extremely alluring but challenging proposition. Among these heterocyclic compounds, spiro-thiazolidines are a distinct class of heterocyclic motifs with an all-encompassing range of pharmaceutical activities such as anti-histaminic, anti-proliferative, anesthetic, hypnotic, anti-fungal, anti-inflammatory, anti-HIV, anthelmintic, CNS stimulant, and anti-viral potentials. Consequently, investigators have produced these heterocycles through diversified intricate pathways as object structures for medicinal studies. Notwithstanding their innumerable manmade solicitations, there is yet no special periodical on MCRs concerning spiro-thiazolidine via green synthesis. Thus, this in-depth review encompasses the excursion of MCRs to spiro-thiazolidines, including the environment-friendly synthetic approaches, reaction situations, rationale behind the optimal selection of catalyst, scope, anticipated mechanism, and biological activities. In this review, we have focussed on the furthermost current developments in spiro-thiazolidine creation under different conditions, such as ionic liquid-assisted, microwave-assisted, on-water, solid-supported acid-catalyzed, asymmetric, and nanocatalyst-assisted syntheses, developed over the last 8 years. This study details works regarding the total amalgamation of spiro-thiazolidines under N- and S-containing heterocycles. Furthermore, this article summarizes the developments of artificially and pharmaceutically important spiro-thiazolidine candidates.
Collapse
Affiliation(s)
- Surbhi Dhadda
- Department of Chemistry, Faculty of Basic and Applied Sciences, Vivekananda Global UniversityJagatpuraJaipurRajasthan303012India
| | - Shaily Sharma
- Microwave Chemistry Lab, Department of Chemistry, UCOS, Mohanlal Sukhadia University Udaipur Rajasthan 313001 India
| | - Prakash Jakhar
- Microwave Chemistry Lab, Department of Chemistry, UCOS, Mohanlal Sukhadia University Udaipur Rajasthan 313001 India
| | - Himanshu Sharma
- Microwave Chemistry Lab, Department of Chemistry, UCOS, Mohanlal Sukhadia University Udaipur Rajasthan 313001 India
| |
Collapse
|
30
|
Jeon HJ, Park SM, Lee YL, Lee SG. Divergent Asymmetric Synthesis of Chiral Spiroheterocycles through Pd-Catalyzed Enantio- and Diastereoselective [3 + 2] Spiroannulation. Org Lett 2022; 24:9189-9193. [PMID: 36508499 DOI: 10.1021/acs.orglett.2c03643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The palladium-catalyzed divergent asymmetric synthesis of chiral spiro-furanindoline derivatives is described. The zwitterionic alkoxy π-allyl Pd(II) intermediate, generated catalytically from vinyl ethylene carbonate (VEC), could undergo ligand-controlled enantio- and diastereoselective dipolar [3 + 2] spiroannulation with indole-based azadienes to afford the optically active spiro-furanindolines embedding an all-carbon quaternary stereocenter in high yields (up to 99%) with good to excellent stereoselectivities (up to 99% ee and up to >94:6 dr).
Collapse
Affiliation(s)
- Hyun Ji Jeon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Su Min Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yu Lim Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Sang-Gi Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
31
|
Phukon J, Jyoti Borah A, Gogoi S. Transition‐Metal‐Catalyzed Synthesis of Spiro Compounds through Activation and Cleavage of C−H Bonds. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jyotshna Phukon
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Arun Jyoti Borah
- Department of Chemistry Gauhati University Guwahati 781014 India
| | - Sanjib Gogoi
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
32
|
Nanda T, Fastheem M, Linda A, Pati BV, Banjare SK, Biswal P, Ravikumar PC. Recent Advancement in Palladium-Catalyzed C–C Bond Activation of Strained Ring Systems: Three- and Four-Membered Carbocycles as Prominent C3/C4 Building Blocks. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02667] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Muhammed Fastheem
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Astha Linda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Pragati Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C. Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
33
|
Bashar BS, Kareem HA, Hasan YM, Ahmad N, Alshehri AM, Al-Majdi K, Hadrawi SK, AL Kubaisy MMR, Qasim MT. Application of novel Fe3O4/Zn-metal organic framework magnetic nanostructures as an antimicrobial agent and magnetic nanocatalyst in the synthesis of heterocyclic compounds. Front Chem 2022; 10:1014731. [PMID: 36300031 PMCID: PMC9589061 DOI: 10.3389/fchem.2022.1014731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Using the microwave-assisted method, novel Fe3O4/Zn-metal organic framework magnetic nanostructures were synthesized. The crystallinity, thermal stability, adsorption/desorption isotherms, morphology/size distribution, and magnetic hysteresis of synthesized Fe3O4/Zn-metal organic framework magnetic nanostructures were characterized by XRD patterns, TGA curve, BET adsorption/desorption technique, SEM image, and VSM curve, respectively. After confirming the Fe3O4/Zn-metal organic framework magnetic nanostructures, its antimicrobial properties against Gram-positive bacterial, Gram-negative bacterial, and fungal strains based on minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) values were studied. The MIC values in antimicrobial activity for Gram-positive and Gram-negative bacterial strains, between 16–128 μg/ml, and for fungal strain, 128 μg/ml were observed. The results showed that the high specific surface area of Fe3O4/Zn-metal organic framework magnetic nanostructures caused the antimicrobial power of nanoparticles to be high, and the observed antimicrobial effects were higher than some known commercial antimicrobial drugs. Another advantage of the specific surface area of Fe3O4/Zn-metal organic framework magnetic nanostructures was its high catalytic properties in the three-component reaction of isatin, malononitrile, and dimedone. New spiro [indoline-pyranopyrimidines] derivatives were synthesized with high efficiency. The catalytic activity results of Fe3O4/Zn-metal organic framework magnetic nanostructures showed that, in addition to recyclability, derivatives could be synthesized in less time than previously reported methods. The results of investigating the catalytic activity of Fe3O4/Zn-metal organic framework magnetic nanostructures showed that the spiro [indoline-pyranopyrimidines] derivatives were synthesized in the time range of 10–20 min with an efficiency of over 85%. As a final result, it can be concluded that the microwave synthesis method improves the unique properties of magnetic nanostructures, especially its specific surface area, and has increased its efficiency.
Collapse
Affiliation(s)
- Bashar S. Bashar
- Department of Computing Technologies Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Hawraa A. Kareem
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | - Nafis Ahmad
- Department of Physics, College of Science, King Khalid University, Abha, Saudi Arabia
| | - A. M. Alshehri
- Department of Physics, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kadhum Al-Majdi
- Department of Biomedical Engineering, Ashur University College, Baghdad, Iraq
- *Correspondence: Kadhum Al-Majdi,
| | - Salema K. Hadrawi
- Refrigeration and Air-conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | | | - Maytham T. Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
34
|
Rozeh P, Shahvelayati AS, Khalil Moghaddam S. Efficient Synthesis and Antioxidant Activity Evaluation of Novel Fused Indenofurane Derivatives Using Fe 3O 4-Magnetic Nanoparticles. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Peyman Rozeh
- Department o f Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Ashraf Sadat Shahvelayati
- Department o f Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Khalil Moghaddam
- Department of Biology, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
35
|
BF3*OEt2 catalyzed synthesis of spiropyrrolidine frameworks via (3,5)-oxonium-ene cyclization. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Sachdeva H, Khaturia S, Saquib M, Khatik N, Khandelwal AR, Meena R, Sharma K. Oxygen- and Sulphur-Containing Heterocyclic Compounds as Potential Anticancer Agents. Appl Biochem Biotechnol 2022; 194:6438-6467. [PMID: 35900713 DOI: 10.1007/s12010-022-04099-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
Oxygen- and sulphur-based heterocycles form the core structure of many biologically active molecules as well as U.S. FDA-approved drugs. Moreover, they possess broad range of biological activities, viz. anticancer, antiinflammatory, antioxidant, antitumour, antibacterial, antiviral, antidiabetic, anticonvulsant, anti-tubercular, analgesic, anti-leishmanial, antimalarial, antifungal, and anti-histaminic, Hence, O- and S-based heterocycles are gaining more attention in recent years on the road to the discovery of innovative anticancer drugs after the extensive investigation of nitrogen-based heterocycles as anticancer agents. Several attempts have been made to synthesize fused oxygen- and sulphur-based heterocyclic derivatives as joining one heterocyclic moiety with another may lead to improvement in the biological profile of a molecule. Humans have been cursed with cancer since long time. Despite the development of several heterocyclic anticancer medications such as 5-fluorouracil, doxorubicin, methotrexate, and daunorubicin, cure of cancer is difficult. Hence, researchers are trying to synthesize new fused/spiro heterocyclic molecules to discover novel anticancer drugs which may show promising anticancer effects with fewer side effects. Furthermore, fused heterocycles behave as DNA intercalating agents which have the ability to interact with DNA, leading to cell death thereby exerting anticancer effect. This review article highlights the synthesis and anticancer potentiality of oxygen- and sulphur-containing heterocyclic compounds covering the period from 2011 to 2021.
Collapse
Affiliation(s)
- Harshita Sachdeva
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India.
| | - Sarita Khaturia
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh (Sikar), Rajasthan, India
| | - Mohammad Saquib
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Narsingh Khatik
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | | | - Ravina Meena
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | - Khushboo Sharma
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| |
Collapse
|
37
|
Lanthanoid-containing polyoxometalate nanocatalysts in the synthesis of bioactive isatin-based compounds. Sci Rep 2022; 12:12004. [PMID: 35835941 PMCID: PMC9283471 DOI: 10.1038/s41598-022-16384-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Lanthanoid-containing polyoxometalates (Ln-POMs) have been developed as effective and robust catalysts due to their Lewis acid–base active sites including the oxygen-enriched surfaces of POM and the unique 4f. electron configuration of Ln. As an extension of our interest in Ln-POMs, a series of as-synthesized nanocatalysts K15[Ln(BW11O39)2] (Ln-B2W22, Ln = La, Ce, Nd, Sm, Gd, and Er) synthesized and fully characterized using different techniques. The Ln3+ ion with a big ionic radius was chosen as the Lewis acid center which is sandwiched by two mono-lacunary Keggin [BW11O39]9− units to form Ln-containing sandwiched type cluster. Consequently, the catalytic activity of nanocatalysts with different Ln was examined in the synthesis of bioactive isatin derivatives and compared under the same optimized reaction conditions in terms of yields of obtained products, indicating the superiority of the nano-Gd-B2W22 in the aforementioned simple one-pot reaction. The effects of different dosages of nanocatalyst, type of solvent, reaction time, and reaction temperature in this catalytic system were investigated and the best results were obtained in the presence of 10 mol% of nano-Gd-B2W22 in water for 12 min at the reflux condition.
Collapse
|
38
|
Chitti S, Nandikolla A, Khetmalis YM, Van Calster K, Kumar BVS, Kumar BK, Murugesan S, Cappoen D, Kondapalli CSVG. Design, Synthesis and Biological Evaluation of Novel Spiro-[chroman-2,4'-piperidin]-4-one Analogues as Anti-Tubercular Agents. Chem Biodivers 2022; 19:e202200304. [PMID: 35821618 DOI: 10.1002/cbdv.202200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
A series of novel spiro-[chromane-2,4'-piperidine]-4(3 H )-one derivatives were designed, synthesized and structures were confirmed by analytical methods viz., 1 H NMR, 13 C NMR and Mass spectrometry. Synthesized derivatives were evaluated for their anti-mycobacterial activity against Mycobacterium tuberculosis ( Mtb ) H37Ra strain. Among all the evaluated compounds, PS08 exhibited significant inhibition with MIC value of 3.72 μM while MIC values of the remaining compounds ranged from 7.68 to 230.42 μM in comparison to the standard drug INH (MIC 0.09 μM). The two most active compounds however showed acute cytotoxicity towards the human MRC-5 lung fibroblast cell line. The in-silico ADMET profiles of the titled compounds were predicted and found within the prescribed limits of the Lipinski and Jorgenson rules. Molecular docking study of the significantly active compound ( PS08 ) was also carried out after performing validation in order to understand the putative binding position of the test ligand at the active site of selected target protein Mtb tyrosine phosphatase (PtpB).
Collapse
Affiliation(s)
- Surendar Chitti
- Birla Institute of Technology & Science Pilani - Hyderabad Campus, Department of chemistry, Alwal, hyderabad, INDIA
| | - Adinarayana Nandikolla
- Birla Institute of Technology & Science Pilani - Hyderabad Campus, Department of chemistry, VYAS Bhavan, V169, Jawaha, 500078, Hyderabad, INDIA
| | - Yogesh Mahadu Khetmalis
- Birla Institute of Technology & Science Pilani - Hyderabad Campus, Department of chemistry, jawahar nagar, hyderabad, INDIA
| | - Kevin Van Calster
- University of Antwerp - City campus: Universiteit Antwerpen, Department of Pharmaceutical Sciences, Wilrijk, Wilrijk, BELGIUM
| | - Boddupalli Venkata Siva Kumar
- Birla Institute of Technology & Science Pilani - Hyderabad Campus, Department of chemistry, nacharam, hyderabad, INDIA
| | - Banoth Karan Kumar
- Birla Institute of Technology and Science - Pilani Campus: Birla Institute of Technology & Science Pilani, Department of Pharmacy, nacharam, hyderabad, INDIA
| | - Sankaranarayanan Murugesan
- Birla Institute of Technology and Science - Pilani Campus: Birla Institute of Technology & Science Pilani, Department of Pharmacy, pilani, Pilani, INDIA
| | - Davie Cappoen
- University of Antwerp - City campus: Universiteit Antwerpen, Department of Pharmaceutical Sciences, Wilrijk, Wilrijk, BELGIUM
| | - Chandra Sekhar Venkata Gowri Kondapalli
- Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Chemistry Department, Jawahar Nagar, Shamirpet Mandal, Ranga Reddy District, 500 078, Hyderabad, INDIA
| |
Collapse
|
39
|
Filatov AS, Khoroshilova OV, Larina AG, Boitsov VM, Stepakov AV. Synthesis of bis-spirocyclic derivatives of 3-azabicyclo[3.1.0]hexane via cyclopropene cycloadditions to the stable azomethine ylide derived from Ruhemann's purple. Beilstein J Org Chem 2022; 18:769-780. [PMID: 35859623 PMCID: PMC9263550 DOI: 10.3762/bjoc.18.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
A reliable method for the synthesis of bis-spirocyclic derivatives of 3-azabicyclo[3.1.0]hexanes through the 1,3-dipolar cycloaddition (1,3-DC) reactions of cyclopropenes to the stable azomethine ylide - protonated form of Ruhemann's purple (PRP) has been developed. Both 3-substituted and 3,3-disubstituted cyclopropenes reacted with PRP, affording the corresponding bis-spirocyclic 3-azabicyclo[3.1.0]hexane cycloadducts in moderate to good yields with high diastereofacial selectivity. Moreover, several unstable 1,2-disubstituted cyclopropenes were successfully trapped by the stable 1,3-dipole under mild conditions. The mechanism of the cycloaddition reactions of cyclopropenes with PRP has been thoroughly studied using density functional theory (DFT) methods at the M11/cc-pVDZ level of theory. The cycloaddition reactions have been found to be HOMOcyclopropene-LUMOylide controlled while the transition-state energies for the reaction of 3-methyl-3-phenylcyclopropene with PRP are fully consistent with the experimentally observed stereoselectivity.
Collapse
Affiliation(s)
- Alexander S Filatov
- Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
| | - Olesya V Khoroshilova
- Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
| | - Anna G Larina
- Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
| | - Vitali M Boitsov
- Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg, Russian Federation
| | - Alexander V Stepakov
- Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation
- Saint-Petersburg State Institute of Technology, Moskovskii pr. 26, 190013, St. Petersburg, Russian Federation
| |
Collapse
|
40
|
Huo H, Li G, Shi B, Li J. Recent advances on synthesis and biological activities of C-17 aza-heterocycle derived steroids. Bioorg Med Chem 2022; 69:116882. [PMID: 35749841 DOI: 10.1016/j.bmc.2022.116882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Steroids modification for improving their biological activities is one of the most efficient and fruitful methods to develop novel medicines. Steroids with aza-heterocycles attaching to the C-17 owing various biological activities have received great attentions and some of the compounds are developed successfully as drugs. In this review, the research of the syntheses and biological activities of steroids bearing various aza-heterocycles published in the last 8 years is assembled, and some important structure-activity relationships (SARs) of active compounds are presented. According to the analysis of the literatures and our experiences in this field, the potential of aza-heterocyclic steroids as medicinal drugs is proposed.
Collapse
Affiliation(s)
- Haibo Huo
- Department of Life Sciences, Changzhi University, Changzhi 046011, Shanxi, China
| | - Guixia Li
- Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Li
- Department of Life Sciences, Changzhi University, Changzhi 046011, Shanxi, China; Department of Chemistry, Changzhi University, Changzhi 046011, Shanxi, China.
| |
Collapse
|
41
|
Hoshikawa S, Yanai H, Matsumoto T. Synthesis of Spirocyclic Cyclobutenes through Desulfinative Spirocyclisation of
gem
‐Bis(triflyl)cyclobutenes. Chemistry 2022; 28:e202200704. [DOI: 10.1002/chem.202200704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Shoki Hoshikawa
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Hikaru Yanai
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Takashi Matsumoto
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
42
|
Borah B, Chowhan LR. Ultrasound-assisted transition-metal-free catalysis: a sustainable route towards the synthesis of bioactive heterocycles. RSC Adv 2022; 12:14022-14051. [PMID: 35558846 PMCID: PMC9092113 DOI: 10.1039/d2ra02063g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Heterocycles of synthetic and natural origin are a well-established class of compounds representing a broad range of organic molecules that constitute over 60% of drugs and agrochemicals in the market or research pipeline. Considering the vast abundance of these structural motifs, the development of chemical processes providing easy access to novel complex target molecules by introducing environmentally benign conditions with the main focus on improving the cost-effectiveness of the chemical transformation is highly demanding and challenging. Accordingly, sonochemistry appears to be an excellent alternative and a highly feasible environmentally benign energy input that has recently received considerable and steadily increasing interest in organic synthesis. However, the involvement of transition-metal-catalyst(s) in a chemical process often triggers an unintended impact on the greenness or sustainability of the transformation. Consequently, enormous efforts have been devoted to developing metal-free routes for assembling various heterocycles of medicinal interest, particularly under ultrasound irradiation. The present review article aims to demonstrate a brief overview of the current progress accomplished in the ultrasound-assisted synthesis of pharmaceutically relevant diverse heterocycles using transition-metal-free catalysis.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
43
|
Eichhorst A, Gallhof M, Voss A, Sekora A, Eggers L, Le Thi H, Junghanss C, Murua Escobar H, Brasholz M. Spirooxindol‐1,3‐oxazine alkaloids: highly potent and selective antitumor agents evolved from iterative structure optimization. ChemMedChem 2022; 17:e202200162. [PMID: 35491398 PMCID: PMC9400852 DOI: 10.1002/cmdc.202200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Indexed: 11/10/2022]
Abstract
Spirooxindole‐1,3‐oxazines are a small and structurally unique class of spirooxindole alkaloids. To date, only four of these compounds have been isolated from natural sources, and their biological properties remained unknown thus far. Dioxyreserpine is a synthetic spirooxindole‐1,3‐oxazine, that can readily be prepared from the Rauvolfia alkaloid (–)‐reserpine by catalytic photooxygenation. While dioxyreserpine itself was now identified as a moderately effective antitumoral agent, structurally modified analogs of it emerged as a new class of highly potent and selective growth inhibitors of various human cancers, including pancreatic cancers. Systematic structural optimization ultimately led to an inhibitor displaying low‐micromolar IC50‐values against six cancer cell lines as well as selective apoptosis induction in vitro.
Collapse
Affiliation(s)
- Annika Eichhorst
- Universitätsklinikum Rostock: Universitatsmedizin Rostock Department of Internal Medicine, Medical Clinic III GERMANY
| | - Malte Gallhof
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat Institut für Chemie GERMANY
| | - Alice Voss
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat Institut für Chemie GERMANY
| | - Anett Sekora
- Universitätsklinikum Rostock: Universitatsmedizin Rostock Department of Internal Medicine, Medical Clinic III GERMANY
| | - Leon Eggers
- Universitätsklinikum Rostock: Universitatsmedizin Rostock Department of Internal Medicine, Medical Clinic III GERMANY
| | - Huyen Le Thi
- Hanoi University of Science: Vietnam National University University of Science Institute of Chemistry GERMANY
| | - Christian Junghanss
- Universitätsklinikum Rostock: Universitatsmedizin Rostock Department of Internal Medicine, Medical Clinic III GERMANY
| | - Hugo Murua Escobar
- Universitätsklinikum Rostock: Universitatsmedizin Rostock Department of Internal Medicine, Medical Clinic III GERMANY
| | - Malte Brasholz
- Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat Institute of Chemistry Albert-Einstein-Str. 3a 18059 Rostock GERMANY
| |
Collapse
|
44
|
Borah B, Bora J, Ramesh P, Chowhan LR. Sonochemistry in an organocatalytic domino reaction: an expedient multicomponent access to structurally functionalized dihydropyrano[3,2- b]pyrans, spiro-pyrano[3,2- b]pyrans, and spiro-indenoquinoxaline-pyranopyrans under ambient conditions. RSC Adv 2022; 12:12843-12857. [PMID: 35496344 PMCID: PMC9048984 DOI: 10.1039/d2ra01917e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
A highly convenient and sustainable one-pot approach for the diversely-oriented synthesis of a variety of medicinally privileged amino-substituted 4,8-dihydropyrano[3,2-b]pyran-3-carbonitriles, and spiro[indoline-3,4'-pyrano[3,2-b]pyran]-3-carbonitrile/carboxylate derivatives on the basis of a domino three-component reaction of readily available carbonyl compounds including aryl aldehydes or isatins, active methylene compounds, and kojic acid as a Michael donor using secondary amine catalyst l-proline under ultrasound irradiation in aqueous ethanolic solution at ambient temperature has been developed. This methodology can involve the assembly of C-C, C[double bond, length as m-dash]C, C-O, C-N bonds via a one-pot operation, and following this protocol, a series of novel amino-substituted spiro[indeno[1,2-b]quinoxaline-11,4-pyrano[3,2-b]pyran]-3-carbonitrile/carboxylates have been synthesized. The practical utility of this method was found to be very efficient for scale-up reaction and other useful transformations. The methodology provides significant advantages including mild reaction conditions, energy-efficiency, short reaction time, fast reaction, simple work-up procedure, broad functional group tolerances, utilization of reusable catalyst, green solvent system, being metal-free, ligand-free, waste-free, inexpensive, etc. Excellent chemical yields have been achieved without using column chromatography. To address the issues of green and more sustainable chemistry, several metrics including Atom Economy (AE), Reaction Mass Efficiency (RME), Atom efficiency, E-factor, Process Mass Intensity (PMI), and Carbon Efficiency (CE) have been quantified for the present methodology that indicates the greenness of the present protocol.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Sector-30 Gandhinagar-382030 Gujarat India
| | - Jahnu Bora
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Sector-30 Gandhinagar-382030 Gujarat India
| | - Pambala Ramesh
- CSIR-Indian Institute of Chemical Technology Hyderabad-50007 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Sector-30 Gandhinagar-382030 Gujarat India
| |
Collapse
|
45
|
Łowicki D, Przybylski P. Tandem construction of biological relevant aliphatic 5-membered N-heterocycles. Eur J Med Chem 2022; 235:114303. [PMID: 35344904 DOI: 10.1016/j.ejmech.2022.114303] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022]
Abstract
Nature often uses cascade reactions in a highly stereocontrolled manner for assembly structurally diverse nitrogen-containing heterocyclic scaffolds, i.e. secondary metabolites, important for medicinal chemistry and pharmacy. Five-membered nitrogen-containing heterocycles as standalone rings, as well as spiro and polycyclic systems are pharmacophores of drugs approved in various therapies, i.a. antibacterial or antiviral, antifungal, anticancer, antidiabetic, as they target many key enzymes. Furthermore, a large number of pyrrolidine derivatives are currently considered as drug candidates. Cascade transformations, also known as domino or tandem reactions, offer straightforward methods to build N-heterocyclic libraries of the great structural variety desired for drawing SAR conclusions. The tandem transformations are often atom economic and time-saving because they are performed as the one-pot, so no need for purification after each 'virtual' step and the limited necessity of protective groups are characteristic for these processes. Thus, the same results as in classical multistep synthesis can be achieved at markedly lower costs and shorter time, which is in line with modern green chemistry rules. Great advantage of cascade reactions is often reflected in their high regio- and stereoselectivities, enabling the preparing of the heterocyclic compound better fitted to the expected target in cells. This review reveals the biological relevance of N-heterocyclic scaffolds based on saturated 5-membered rings since we showed a number of examples of approved drugs together with the recent biologically attractive leading structures of drug candidates. Next, novel cascade synthetic procedures, taking into account the structure of the reactants and reaction mechanisms, enabling to obtain biological-relevant heterocyclic frameworks with good yields and relatively high stereoselectivity, were reviewed and compared. The review covers the advances of designing biological active N-heterocycles mainly from 2018 to 2021, whereas the synthetic part is focused on the last 7 years.
Collapse
Affiliation(s)
- Daniel Łowicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| |
Collapse
|
46
|
Structural and physical characterizations of an organic Dispiro-Oxindolopyrrolidines single crystal for magnetic applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Chakraborty K, Dhara S. Spirornatas A-C from brown alga Turbinaria ornata: Anti-hypertensive spiroketals attenuate angiotensin-I converting enzyme. PHYTOCHEMISTRY 2022; 195:113024. [PMID: 34894435 DOI: 10.1016/j.phytochem.2021.113024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Bioactive compounds with angiotensin-I converting enzyme attenuation potential are deemed as therapeutic agents for hypertension owing to their capacity to suppress the conversion of angiotensin-I into the vasoconstrictor angiotensin-II. In an aim to develop natural angiotensin-I converting enzyme (ACE-I) inhibitors from marine algae, three 6, 6-spiroketals, spirornatas A-C were isolated from the organic extract of the spiny brown marine macroalga Turbinaria ornata (Turner) (family Sargassaceae). Spirornata A exhibited comparatively greater ACE-I attenuation potential (IC50 4.5 μM) than those displayed by other studied spiroketals (IC50 4.7-4.9 μM), and its activity was comparable to the ACE inhibitory agent captopril (IC50 4.3 μM). Greater antioxidant properties of spirornata A against oxidants (IC50 1.1-1.3 mM) also substantiated its potential attenuation property against ACE-I. Structure-activity correlation studies showed that electronic properties (topological polar surface area, 71) and balanced hydrophilic-lipophilic parameters (partition coefficient of logarithmic octanol-water ∼3.2) of spirornata A appeared to play pivotal roles in the inhibition of the targeted enzyme. Predicted drug-likeness and other physicochemical parameters appeared to attribute to the acceptable oral bioavailability of spiroketal derivatives. Additionally, the least binding energy of spirornata A with ACE-I (-10.5 kcal/mol) coupled with the maximum number of hydrogen-bonding interactions with allosteric sites of the zinc-dependent dicarboxypeptidyl peptidase could recognize its potential therapeutic application against hypertensive diseases.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| | - Shubhajit Dhara
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India; Department of Chemistry, Mangalore University, Mangalagangothri, 574199, Karnataka State, India
| |
Collapse
|
48
|
Zhang X, Liu M, Zhan D, Kaur M, Jasinski JP, Zhang W. Three-Component [3+2] Cycloaddition for Regio- and Diastereoselective Synthesis of Spirooxindole-Pyrrolidines. NEW J CHEM 2022; 46:3866-3870. [PMID: 36157552 PMCID: PMC9496578 DOI: 10.1039/d1nj05538k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1,3-Dipolar cycloaddition of nonstabilized azomethine ylides derived from α-C-H functionalization of tetrahydroisoquinoline for regio- and diastereoselective synthesis of spirooxindole-pyrrolidines is developed. A three-component reaction of readily available cyclic amine, aryl aldehydes, and olefinic oxindoles provides a pot, atom and step economy (PASE) approach for making spiro-heterocyclic compounds with biological interest.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Chemistry and Centre for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
- Department of Cancer Biology Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Miao Liu
- Department of Chemistry and Centre for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Desheng Zhan
- Department of Chemistry, Changchun Normal University, Changchun 130032, P. R. China
| | - Manpreet Kaur
- Department of Chemistry, Keene State College, Keene, NH 03435, USA
| | - Jerry P Jasinski
- Department of Chemistry, Keene State College, Keene, NH 03435, USA
| | - Wei Zhang
- Department of Chemistry and Centre for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
49
|
Deepthi A, Thomas NV, Meenakshy CB, Leena SS. Stereoselective Synthesis of Dispirooxindoles Incorporating Pyrrolo[2,1-a]isoquinoline via [3+2] Cycloaddition of Azomethine Ylides with a Thiazolo[3,2-a]indole Dipolarophile. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1777-2423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractHighly regio- and stereoselective synthesis of dispiropyrrolo[2,1-a]isoquinoline-oxindoles have been developed by the one-pot three component reaction of isatins, 1,2,3,4-tetrahydroisoquinoline (THIQ), and a thiazolo[3,2-a]indole derivative. The reaction proceeds regioselectively through an exo-Re face approach of the in situ generated tetrahydroisoquinolium ylides towards the dipolarophile yielding the corresponding [3+2] cycloadducts in excellent yields and stereoselectivity.
Collapse
|
50
|
Singh R, Saini MR. Regioselective Synthesis of Iminothiazolidinone Appended Novel Dispiro Indenoquinoxaline‐Pyrrolidines by 1,3‐Dipolar Cycloaddition Strategy. ChemistrySelect 2022. [DOI: 10.1002/slct.202104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruby Singh
- Department of Chemistry School of Basic Sciences Jaipur National University Jaipur Rajasthan India
| | - Munna Ram Saini
- Department of Chemistry School of Basic Sciences Jaipur National University Jaipur Rajasthan India
| |
Collapse
|