1
|
Chang Y, Zhang W, Liu X, Luo L, Chen J, Zhao Y, Chen X, Ji M, Sheng L. Interspecies comparison on the O-methylation metabolism of LJR003, a novel immunomodulator targeting acetyl-CoA acetyltransferase 1. J Pharm Biomed Anal 2025; 262:116894. [PMID: 40222303 DOI: 10.1016/j.jpba.2025.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Catechol structures are essential for drug activity and can undergo meta- or para-methylation, which affects their pharmacological properties. The regioselectivity and species differences in O-methylation metabolism significantly influence drug efficacy and toxicity, requiring further study. LJR003, an immunomodulator with a catechol structure, targets acetyl-CoA acetyltransferase 1 (ACAT1), a potential target for cancer immunotherapy. This study investigated the activity, methylation regioselectivity, and species differences of LJR003 and its methylated metabolites. Pharmacokinetic studies were conducted in rats, mice, and dogs, and methylation regioselectivity was analyzed in liver, kidney, and erythrocytes from these species and humans after LJR003 incubation. Results showed that meta-methylated LJR003 had weaker ACAT1 inhibitory activity and higher systemic exposure than LJR003 in rats, mice, and dogs. Erythrocytes exhibited the lowest methylation activity in vitro, while liver catalytic efficiency in rats, mice, and dogs was at least twice that of the kidney. In humans, liver and kidney showed similar catalytic activity. LJR003 favored meta-methylation in mice, dogs, and humans in vitro, with consistent in vivo results in mice and dogs. Rats displayed a unique metabolic pattern, suggesting species-specific differences. In conclusion, LJR003 is predicted to undergo meta-methylation in humans, contributing to its pharmacological effects alongside the parent compound. These findings improve understanding of methylation metabolism and provide insights for developing catechol-based drugs, emphasizing the importance of species-specific metabolic pathways in drug development.
Collapse
Affiliation(s)
- Yongchun Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Weilin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xiaoyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Lijun Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Jieyi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Yanshi Zhao
- Longivitron (Suzhou) Biotechnology Co., Ltd, China.
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Li Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Clifford MN, Kerimi A, Williamson G. Bioavailability and metabolism of chlorogenic acids (acyl‐quinic acids) in humans. Compr Rev Food Sci Food Saf 2020; 19:1299-1352. [DOI: 10.1111/1541-4337.12518] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Michael N. Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical SciencesUniversity of Surrey Guildford UK
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash HealthFaculty of Medicine Nursing and Health SciencesMonash University Notting Hill Victoria Australia
| | - Asimina Kerimi
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash HealthFaculty of Medicine Nursing and Health SciencesMonash University Notting Hill Victoria Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash HealthFaculty of Medicine Nursing and Health SciencesMonash University Notting Hill Victoria Australia
| |
Collapse
|
3
|
Reed JR, Backes WL. The functional effects of physical interactions involving cytochromes P450: putative mechanisms of action and the extent of these effects in biological membranes. Drug Metab Rev 2017; 48:453-69. [PMID: 27500687 DOI: 10.1080/03602532.2016.1221961] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytochromes P450 represent a family of enzymes, which are responsible for the oxidative metabolism of a wide variety of xenobiotics. Although the mammalian P450s require interactions with their redox partners in order to function, more recently, P450 system proteins have been shown to exist as multi-protein complexes that include the formation of P450•P450 complexes. Evidence has shown that the metabolism of some substrates by a given P450 can be influenced by the specific interaction of the enzyme with other forms of P450. Detailed kinetic analysis of these reactions in vitro has shown that the P450-P450 interactions can alter metabolism by changing the ability of a P450 to bind to its cognate redox partner, NADPH-cytochrome P450 reductase; by altering substrate binding to the affected P450; and/or by changing the rate of a catalytic step of the reaction cycle. This review summarizes the known examples of P450-P450 interactions that have been shown in vitro to influence metabolism and categorizes them according to the mechanism(s) causing the effects. P450-P450 interactions have the potential to cause major changes in the metabolism and elimination of drugs in vivo. This review summarizes the evidence that the P450-P450 interactions influence metabolism in biological membranes and discusses the studies, which will provide further insight into the extent of these effects in the future.
Collapse
Affiliation(s)
- James R Reed
- a Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Wayne L Backes
- a Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
4
|
Abstract
Stereochemical factors are known to play a significant role in the metabolism of drugs and other xenobiotics. Following Prelog's lead, types of metabolic stereoselectivity can be categorized as (i) substrate stereoselectivity (the differential metabolism of two or more stereoisomeric substrates) and (ii) product stereoselectivity (the differential formation of two or more stereoisomeric metabolites from a single substrate). Combinations of the two categories exist as (iii) substrate-product stereoselectivities, meaning that product stereoselectivity itself is substrate stereoselective. Here, published examples of metabolic stereoselectivities are examined in the light of these concepts. In parallel, a graphical scheme is presented with a view to facilitate learning and help researchers to solve classification problems.
Collapse
Affiliation(s)
- Bernard Testa
- Department of Pharmacy, Lausanne University Hospital , Lausanne , Switzerland
| |
Collapse
|
5
|
Kandel SE, Lampe JN. Role of protein-protein interactions in cytochrome P450-mediated drug metabolism and toxicity. Chem Res Toxicol 2014; 27:1474-86. [PMID: 25133307 PMCID: PMC4164225 DOI: 10.1021/tx500203s] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Through their unique oxidative chemistry,
cytochrome P450 monooxygenases
(CYPs) catalyze the elimination of most drugs and toxins from the
human body. Protein–protein interactions play a critical role
in this process. Historically, the study of CYP–protein interactions
has focused on their electron transfer partners and allosteric mediators,
cytochrome P450 reductase and cytochrome b5. However, CYPs can bind
other proteins that also affect CYP function. Some examples include
the progesterone receptor membrane component 1, damage resistance
protein 1, human and bovine serum albumin, and intestinal fatty acid
binding protein, in addition to other CYP isoforms. Furthermore, disruption
of these interactions can lead to altered paths of metabolism and
the production of toxic metabolites. In this review, we summarize
the available evidence for CYP protein–protein interactions
from the literature and offer a discussion of the potential impact
of future studies aimed at characterizing noncanonical protein–protein
interactions with CYP enzymes.
Collapse
Affiliation(s)
- Sylvie E Kandel
- XenoTech, LLC , 16825 West 116th Street, Lenexa, Kansas 66219, United States
| | | |
Collapse
|
6
|
Gelboin HV, Krausz K. Monoclonal Antibodies and Multifunctional Cytochrome P450: Drug Metabolism as Paradigm. J Clin Pharmacol 2013; 46:353-72. [PMID: 16490812 DOI: 10.1177/0091270005285200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Monoclonal antibodies are reagents par excellence for analyzing the role of individual cytochrome P450 isoforms in multifunctional biological activities catalyzed by cytochrome P450 enzymes. The precision and utility of the monoclonal antibodies have heretofore been applied primarily to studies of human drug metabolism. The unique and precise specificity and high inhibitory activity toward individual cytochrome P450s make the monoclonal antibodies extraordinary tools for identifying and quantifying the role of each P450 isoform in the metabolism of a drug or nondrug xenobiotic. The monoclonal antibodies identify drugs metabolized by individual, several, or polymorphic P450s. A comprehensive collection of monoclonal antibodies has been isolated to human P450s: 1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C family, 2C19, 2D6, 2E1, 3A4/5, and 2J2. The monoclonal antibodies can also be used for identifying drugs and/or metabolites useful as markers for in vivo phenotyping. Clinical identification of a patient's phenotype, coupled with precise knowledge of a drug's metabolism, should lead to a reduction of adverse drug reactions and improved drug therapeutics, thereby promoting advances in drug discovery.
Collapse
Affiliation(s)
- Harry V Gelboin
- Laboratory of Metabolism, National Institutes of Health, Building 37, Room 3106, Bethesda, MD 20892-0001, USA
| | | |
Collapse
|
7
|
Kenaan C, Shea EV, Lin HL, Zhang H, Pratt-Hyatt MJ, Hollenberg PF. Interactions between CYP2E1 and CYP2B4: effects on affinity for NADPH-cytochrome P450 reductase and substrate metabolism. Drug Metab Dispos 2013; 41:101-10. [PMID: 23043184 PMCID: PMC3533429 DOI: 10.1124/dmd.112.046094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/05/2012] [Indexed: 11/22/2022] Open
Abstract
Studies in microsomal and reconstituted systems have shown that the presence of one cytochrome P450 isoform can significantly influence the catalytic activity of another isoform. In this study, we assessed whether CYP2E1 could influence the catalytic activity of CYP2B4 under steady-state turnover conditions. The results show that CYP2E1 inhibits CYP2B4-mediated metabolism of benzphetamine (BNZ) with a K(i) of 0.04 µM. However, CYP2B4 is not an inhibitor of CYP2E1-mediated p-nitrophenol hydroxylation. When these inhibition studies were performed with the artificial oxidant tert-butyl hydroperoxide, CYP2E1 did not significantly inhibit CYP2B4 activity. Determinations of the apparent K(M) and k(cat) of CYP2B4 for CPR in the presence of increasing concentrations of CYP2E1 revealed a mixed inhibition of CYP2B4 by CYP2E1. At low concentrations of CYP2E1, the apparent K(M) of CYP2B4 for CPR increased up to 23-fold with virtually no change in the k(cat) for the reaction, however, at higher concentrations of CYP2E1, the apparent K(M) of CYP2B4 for CPR decreased to levels similar to those observed in the absence of CYP2E1 and the k(cat) also decreased by 11-fold. Additionally, CYP2E1 increased the apparent K(M) of CYP2B4 for BNZ by 8-fold and the apparent K(M) did not decrease to its original value when saturating concentrations of CPR were used. While the individual apparent K(M) values of CYP2B4 and CYP2E1 for CPR are similar, the apparent K(M) of CYP2E1 for CPR in the presence of CYP2B4 decreased significantly, thus suggesting that CYP2B4 enhances the affinity of CYP2E1 for CPR and this may allow CYP2E1 to out-compete CYP2B4 for CPR.
Collapse
Affiliation(s)
- Cesar Kenaan
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
8
|
Bhattacharya P, Keating AF. Impact of environmental exposures on ovarian function and role of xenobiotic metabolism during ovotoxicity. Toxicol Appl Pharmacol 2012; 261:227-35. [PMID: 22531813 DOI: 10.1016/j.taap.2012.04.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 11/19/2022]
Abstract
The mammalian ovary is a heterogeneous organ and contains oocyte-containing follicles at varying stages of development. The most immature follicular stage, the primordial follicle, comprises the ovarian reserve and is a finite number, defined at the time of birth. Depletion of all follicles within the ovary leads to reproductive senescence, known as menopause. A number of chemical classes can destroy follicles, thus hastening entry into the menopausal state. The ovarian response to chemical exposure can determine the extent of ovotoxicity that occurs. Enzymes capable of bioactivating as well as detoxifying xenobiotics are expressed in the ovary and their impact on ovotoxicity has been partially characterized for trichloroethylene, 7,12-dimethylbenz[a]anthracene, and 4-vinylcyclohexene. This review will discuss those studies, as well as illustrate where knowledge gaps remain for chemicals that have also been established as ovotoxicants.
Collapse
|
9
|
Abstract
The use of organochlorine insecticides such as DDT, lindane and cyclodieneshas declined markedly worldwide over the last decades. Most are now banned or not used. At an acute toxicity level they have been relatively safe in use for humans. However, the greatest concerns are their persistence in people, wildlife and the environment due to their slow metabolism. Although their carcinogenicity for humans has not been supported by strong epidemiological evidence, their potential to be modulators of endocrine and immune function at levels remaining in the environment or associated with residual spraying of DDT continue to be of concern. At present, DDT is still allowed by the United Nations for combating malaria, with continual monitoring and assessment where possible. The toxicological consequences of exposure of animals and people to DDT is discussed as well as some analogues and other insecticides such as lindane, dieldrin and chlordecone that, although little used, continue to persist in surroundings and people. Because of circumstances of world health brought about by climate change or human activities that have yet to develop, there may come a time when the importance of some may re-emerge.
Collapse
Affiliation(s)
- Andrew G Smith
- MRC Toxicology Unit, University of Leicester Lancaster Road, Leicester UK.
| |
Collapse
|
10
|
Ohyama K, Maki S, Sato K, Kato Y. Comparativein vitrometabolism of the suspected pro-oestrogenic compound, methoxychlor in precision-cut liver slices from male and female rats. Xenobiotica 2008; 35:331-42. [PMID: 16019955 DOI: 10.1080/00498250500087309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The in vitro metabolism of [14C]methoxychlor (MXC), a suspected pro-oestrogenic compound, by male and female Fischer rats (F344) was compared in precision-cut liver slices. The results demonstrated time-dependent metabolism of MXC with integrated phase I and II reactions, and the sex differences were detected in the metabolic profiles. In liver slices from male rats, MXC was metabolized to bis-demethylated MXC (bis-OH-MXC) by sequential O-demethylation followed by subsequent O-glucuronidation. The doubly conjugated metabolite, bis-OH-MXC 4-O-sulphate 4'-O-glucuronide was additionally produced. In the case of the female rat, the glucuronides of both mono- and bis-OH-MXC were formed as the main metabolites, and the mono-OH-MXC glucuronide appeared to be specific to the female rat. The ratios of bis-/mono-demethylated metabolite, which include the amounts of corresponding conjugates, were approximately 95/5 for the male rats and 40/60 for the female. These results imply that demethylation to the intermediate metabolite, (S)-mono-OH-MXC, is a key step for the sex-dependent metabolism of MXC in the rats. The phase I metabolites produced were extensively conjugated with D-glucuronic acid in both male and female rats.
Collapse
Affiliation(s)
- K Ohyama
- The Institute of Environmental Toxicology, Mitsukaido, Japan.
| | | | | | | |
Collapse
|
11
|
Stuchal LD, Kleinow KM, Stegeman JJ, James MO. Demethylation of the pesticide methoxychlor in liver and intestine from untreated, methoxychlor-treated, and 3-methylcholanthrene-treated channel catfish (Ictalurus punctatus): evidence for roles of CYP1 and CYP3A family isozymes. Drug Metab Dispos 2006; 34:932-8. [PMID: 16510540 DOI: 10.1124/dmd.105.009068] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to the organochlorine pesticide methoxychlor (MXC) is associated with endocrine disruption in several species through biotransformation to mono-desmethyl-MXC (OH-MXC) and bis-desmethyl-MXC (HPTE), which interact with estrogen receptors. The biotransformation of [14C]methoxychlor was examined in channel catfish (Ictalurus punctatus), a freshwater species found in the southern United States. Hepatic microsomes formed OH-MXC and HPTE, assessed by comigration with authentic standards. The Km for OH-MXC formation by control liver microsomes was 3.8 +/- 1.3 microM (mean +/- S.D., n = 4), and Vmax was 131 +/- 53 pmol/min/mg protein. These values were similar to those of catfish pretreated with 2 mg/kg methoxychlor i.p. for 6 days (Km 3.3 +/- 0.8 microM and Vmax 99 +/- 17 pmol/min/mg) but less (p < 0.05) than the kinetic parameters for catfish treated with 3-methylcholanthrene (3-MC), which had Km of 6.0 +/- 1.1 microM and Vmax of 246 +/- 6 pmol/min/mg protein. Liver microsomes from 3-MC-treated fish produced significantly more of the secondary metabolite and more potent estrogen, HPTE. Intestinal microsomes formed OH-MXC at lower rates than liver. Methoxychlor pretreatment significantly reduced intestinal metabolite formation from 32 +/- 4 to 15 +/- 6 pmol/min/mg (mean +/- S.D., n = 4), whereas 3-MC treatment significantly increased OH-MXC production to 72 +/- 22 pmol/min/mg. Ketoconazole, clotrimazole, and alpha-naphthoflavone all decreased the production of OH-MXC in liver microsomes, whereas alpha-naphthoflavone stimulated HPTE formation, suggesting that CYP1 and CYP3 family isozymes demethylated methoxychlor. The results suggest that the formation of estrogenic metabolites from methoxychlor would be more rapid in catfish coexposed to CYP1 inducers.
Collapse
Affiliation(s)
- Leah D Stuchal
- Department of Medicinal Chemistry, Health Science Center, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
12
|
Dehal SS. David Kupfer, Ph.D. A mentor and a scientist. Drug Metab Rev 2006; 38:13-22. [PMID: 16684645 DOI: 10.1080/03602530600569786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
I worked with the late Dr. David Kupfer for nearly nine years at the Worcester Foundation/University of Massachusetts Medical School, Worcester, MA. I was involved in the metabolism of methoxychlor and tamoxifen, the areas of research close to David's heart. We demonstrated the metabolic pathways of these compounds in rats and humans, and the covalent binding to microsomal proteins that could result in long-term toxic manifestations. I learned a lot from David, who was a mentor and friend/colleague. His death has left a void in my heart and he will be sorely missed.
Collapse
|
13
|
Stresser DM. David Kupfer: a career retrospective. Drug Metab Rev 2006; 38:3-12. [PMID: 16684644 DOI: 10.1080/03602530600569745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
David Kupfer's research career spanned 50 years and he authored or co-authored over 160 papers and book chapters. Although best known for his work centering on cytochrome P450 metabolism of prostaglandins, steroids, and proestrogenic compounds, David's research also contributed key advances in the areas of P450 induction and catalytic mechanism, breast cancer therapy, and analytical methodology. His research is reviewed here.
Collapse
|
14
|
Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 "pie". Drug Metab Dispos 2006; 34:880-6. [PMID: 16467132 PMCID: PMC2222892 DOI: 10.1124/dmd.105.008672] [Citation(s) in RCA: 609] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytochromes P450 (P450s) 3A, 2C, and 1A2 constitute the major "pieces" of the human liver P450 "pie" and account, on average, for 40, 25, and 18%, respectively, of total immunoquantified P450s (J Pharmacol Exp Ther 270:414-423, 1994). The P450 profile in the human small intestine has not been fully characterized. Therefore, microsomes prepared from mucosal scrapings from the duodenal/jejunal portion of 31 human donor small intestines were analyzed by Western blot using selective P450 antibodies. P450s 3A4, 2C9, 2C19, and 2J2 were detected in all individuals and ranged from 8.8 to 150, 2.9 to 27, <0.6 to 3.9, and <0.2 to 3.1 pmol/mg, respectively. CYP2D6 was detected in 29 individuals and ranged from <0.2 to 1.4 pmol/mg. CYP3A5 was detected readily in 11 individuals, with a range (average) of 4.9 to 25 (16) pmol/mg that represented from 3 to 50% of total CYP3A (CYP3A4 + CYP3A5) content. CYP1A1 was detected readily in three individuals, with a range (average) of 3.6 to 7.7 (5.6) pmol/mg. P450s 1A2, 2A6, 2B6, 2C8, and 2E1 were not or only faintly detected. As anticipated, average CYP3A content (50 pmol/mg) was the highest. Excluding CYP1A1, the remaining enzymes had the following rank order: 2C9 > 2C19 > 2J2 > 2D6 (8.4, 1.1, 0.9, and 0.5 pmol/mg, respectively). Analysis of a pooled preparation of the 31 donor specimens substantiated these results. In summary, as in the liver, large interindividual variation exists in the expression levels of individual P450s. On average, CYP3A and CYP2C9 represents the major pieces of the intestinal P450 pie, accounting for 80 and 15%, respectively, of total immunoquantified P450s.
Collapse
Affiliation(s)
- Mary F Paine
- General Clinical Research Center, Room 3005 Bldg APCF, CB# 7600, UNC Hospitals, Chapel Hill, NC 27599-7600, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Ohyama K, Maki S, Sato K, Kato Y. Comparative in vitro metabolism of methoxychlor in male and female rats: metabolism of demethylated methoxychlor metabolites by precision-cut rat liver slices. Xenobiotica 2005; 35:683-95. [PMID: 16316928 DOI: 10.1080/00498250500230693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The in vitro metabolism of demethylated methoxychlor (MXC) metabolites, mono-OH-MXC (including (R)- and (S)-isomers) and bis-OH-MXC (mono- and bis-demethylated MXC, respectively), was conducted using precision-cut liver slices to understand the sex-dependent metabolism of MXC in rats. In the study with bis-OH-MXC, the substrate underwent extensive conjugation producing its glucuronide and glucuronide/sulphate diconjugate, and no significant sex differences were found. On the contrary, the metabolism of mono-OH-MXC appeared to exhibit the sex differences in the metabolic profiles. The bis-OH-MXC glucuronide and glucuronide/sulphate diconjugate were major metabolites in male rat, whereas the mono- and bis-OH-MXC glucuronides predominated in the female. The per cent distribution of the demethylated products (sum of bis-OH-MXC derivatives) was approximately 90% for the male (for both isomers) and 81 (R-) to 56% (S-) for the female. The metabolic profiles in (S)-mono-OH-MXC, which is the predominant enantiomer preferentially produced in MXC metabolism in rats, showed a similar pattern to that of MXC compared with the (R)-isomer. The results indicate that the sex differences in oxidative demethylation of the intermediate, (S)-mono-OH-MXC, could be one of the probable reasons for the sex-dependent metabolism of MXC in rats, and the stereo-structural preference of the contributing demethylase enzymes appear to be involved.
Collapse
Affiliation(s)
- K Ohyama
- Institute of Environmental Toxicology, Ibaraki, Japan.
| | | | | | | |
Collapse
|
16
|
Agrawal AK, Hop CECA, Pang J, Silva Elipe MV, Desai RC, Leung KH, Franklin RB. In vitro metabolism of a new oxazolidinedione hypoglycemic agent utilizing liver microsomes and recombinant human cytochrome P450 enzymes. J Pharm Biomed Anal 2005; 37:351-8. [PMID: 15708677 DOI: 10.1016/j.jpba.2004.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 10/19/2004] [Accepted: 10/28/2004] [Indexed: 11/28/2022]
Abstract
The compound, 5-{4-[3-(4-cyclohexyl-2-propylphenoxy)propoxy]phenyl}-1,3-oxazolidine-2,4-dione (compound A) is a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist. PPARgamma agonists have proven useful in the treatment of type 2 diabetes, which is characterized by hyperglycemia, insulin resistance and/or abnormal insulin secretion. The metabolism of this oxazolidinedione (OZD) was investigated in male rat, dog, monkey and human liver microsomes, and recombinant human cytochrome P450 enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4) in the presence of NADPH. Routes of metabolism included monohydroxylation of the cyclohexane ring at multiple positions, monohydroxylation of the n-propyl side chain or the tether linkage, and OZD ring opening, giving rise to the keto amide and alcohol amide entities. Liver microsomes showed subtle qualitative and quantitative metabolic differences among rat, dog, monkey and human preparations. Further, CYP2C8 and CYP2C19 did not display different regioselectivity for hydroxylation on the cyclohexane ring with both of them giving rise to C-3 and C-4 hydroxy metabolites, but they did display different stereoselectivity with CYP2C8 preferring cyclohexane hydroxylation in equatorial positions and CYP2C19 in axial positions.
Collapse
Affiliation(s)
- Arun K Agrawal
- Department of Drug Metabolism, Merck Research Laboratories, Rahway, NJ, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hazai E, Kupfer D. Interactions between CYP2C9 and CYP2C19 in reconstituted binary systems influence their catalytic activity: possible rationale for the inability of CYP2C19 to catalyze methoxychlor demethylation in human liver microsomes. Drug Metab Dispos 2005; 33:157-64. [PMID: 15486075 DOI: 10.1124/dmd.104.001578] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies in our laboratory showed that among cDNA-expressed human cytochrome P450 (P450) supersomes, CYP2C19 was the most active in methoxychlor-O-demethylation. However, based on the lack of inhibition of methoxychlor-O-demethylation by monoclonal anti-CYP2C19 antibodies in human liver microsomes (HLM), CYP2C19 did not seem to catalyze that reaction in HLM. By contrast, CYP2C9, much less active than CYP2C19 in supersomes, was the most active in HLM. The current study examines whether the lack of methoxychlor-O-demethylation by CYP2C19 in HLM was due to CYP2C19 exhibiting inferior competition for the NADPH-cytochrome P450 reductase (CPR) versus CYP2C9 and explores the interactions between CYP2C9 and CYP2C19 in a singular and binary complex of a reconstituted system. When reconstituted with CPR, cytochrome b(5), and lipid, purified CYP2C19 and CYP2C9 catalyzed methoxychlor-O-demethylation. However, whereas equimolar CPR to CYP2C9 supported maximal rates of methoxychlor demethylation and diclofenac hydroxylation, the rate of methoxychlor demethylation by CYP2C19 was not fully saturated, even with a 9-fold molar excess of CPR over CYP2C19. This behavior of CYP2C19 was also observed with S-mephenytoin as the substrate. When a binary reconstitution system was prepared by mixing CYP2C9 and CYP2C19 enzymes, methoxychlor-O-demethylation and S-mephenytoin hydroxylation by CYP2C19 were dramatically inhibited. Inhibition depended on the amount of CPR and substrate used. By contrast, in the incubation containing CYP2C9, diclofenac hydroxylation was activated by the presence of CYP2C19. These results show that interactions among P450 enzymes can modulate their catalytic rates, which depend on the substrate undergoing metabolism.
Collapse
Affiliation(s)
- Eszter Hazai
- University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|