1
|
Mardani-Talaee M, Razmjou J, Ajdari A, Serrão JE, Vivekanandhan P. Green synthesis of zinc oxide nanoparticles from Sargassum ilicifolium to enhance tomato resistance against Tuta absoluta. Sci Rep 2025; 15:13596. [PMID: 40253463 PMCID: PMC12009322 DOI: 10.1038/s41598-025-97535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
This study evaluated the effects of ZnO and green-synthesized ZnO nanoparticles (ZnO-NPs) from Sargassum ilicifolium extract on the biochemical interactions between tomato leaves and the destructive pest Tuta absoluta. The average size and stability of ZnO-NPs were characterized using DLS, X-RD, and FE-SEM. Peaks in the FT-IR spectrum of the extract of the algae and ZnO-NPs, indicated the presence of carboxyl groups, amines, alkynes and alcohols. Treated tomato leaves exhibited increased total chlorophyll and anthocyanin contents, particularly at 100 and 50 ppm, compared to the control. A significant increase in total flavonoid content was observed at 100 ppm, while total phenolic content was also enhanced at 50 ppm. In T. absoluta larvae, exposure to 50 and 100 ppm ZnO-NPs led to a reduction in α-amylase, total protease, total protein, and TAG levels, alongside increased catalase activity. Additionally, G6PD and ALT activities decreased at 50 ppm compared to the control. Lactate, MDA, and the RSSR/RSH increased at 100 ppm. Furthermore, ZnO-NPs at 50 and 100 ppm elevated larval aldolase activity, while AST and γ-GT activities declined. These findings indicate that ZnO-NPs enhance tomato defense mechanisms and mitigate larval damage, supporting their potential use in integrated pest management strategies against T. absoluta.
Collapse
Affiliation(s)
- Mozhgan Mardani-Talaee
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Jabraeil Razmjou
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Ashkan Ajdari
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Offshore Research Center, Chabahar, Iran
| | | | - Perumal Vivekanandhan
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
2
|
Li Y, Wang Q, Pan J, Zhao X, Zhan J, Xu X, Zhang M, Wang C, Cui H. Fabrication and Characterization of a Novel Solid Nano-Dispersion of Emamectin Benzoate with High Dispersibility and Wettability. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:495. [PMID: 40214539 PMCID: PMC11990828 DOI: 10.3390/nano15070495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
Pesticides, as an indispensable component in agricultural production, play a crucial role in ensuring global food security. However, the low efficiency of pesticide utilization remains a significant challenge. The key method of improving the effective utilization rate of pesticides is mainly to enhance the affinity between pesticides and leaf surfaces while improving their deposition and adhesion properties. In this study, we utilized PEG 4000 as a carrier and emulsifier 600 and emulsifiers 700 as surfactants to prepare solid nano-dispersion of emamectin benzoate (SND-EB) by the melting method. SND-EB particles were spherical with an average diameter of 17 nm, a loading capacity of up to 50%, and excellent dispersibility. Contact angle and bouncing behavior tests on cabbage and pepper leaves demonstrated that SND-EB had superior wetting properties and spreading capabilities. Surface tension and leaf retention measurements further confirmed that SND-EB possessed excellent adhesion and leaf affinity. The SND-EB showed a 1.8-fold increase in biological activity against Spodoptera exigua compared to commercial emamectin benzoate water-dispersible granule (WDG-EB). In addition, the fabricated nanoparticles exerted no toxic effect on HepG2 cells. These results demonstrated that a 50% content of SND-EB exhibited excellent water dispersity, wettability, and insecticidal activity, providing a novel and efficient strategy for pest control.
Collapse
Affiliation(s)
- Ying Li
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030800, China; (Y.L.); (Q.W.)
| | - Qing Wang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030800, China; (Y.L.); (Q.W.)
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.P.); (X.Z.); (J.Z.); (X.X.); (M.Z.)
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.P.); (X.Z.); (J.Z.); (X.X.); (M.Z.)
| | - Jinghui Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.P.); (X.Z.); (J.Z.); (X.X.); (M.Z.)
| | - Xinglong Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.P.); (X.Z.); (J.Z.); (X.X.); (M.Z.)
| | - Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.P.); (X.Z.); (J.Z.); (X.X.); (M.Z.)
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.P.); (X.Z.); (J.Z.); (X.X.); (M.Z.)
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.P.); (X.Z.); (J.Z.); (X.X.); (M.Z.)
| |
Collapse
|
3
|
Wang C, Jiang Y, He K, Wāng Y. Eco-friendly synthesis of silver nanoparticles against mosquitoes: Pesticidal impact and indispensable biosafety assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176006. [PMID: 39241875 DOI: 10.1016/j.scitotenv.2024.176006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The emergence of nanotechnology has opened new avenues for enhancing pest control strategies through the development of nanopesticides. Green-fabricated nanoparticles, while promising due to their eco-friendly synthesis methods, may still pose risks to biodiversity and ecosystem stability. The potential toxic effects of nanomaterials on ecosystems and human health raise important questions about their real-world application. Understanding the dose-response relationships of nanopesticides, both in terms of pest control efficacy and non-target organism safety, is crucial for ensuring their sustainable use in agricultural settings. This review delves into the complexities of silver nanopesticides, exploring their interactions with arthropod species, modes of action, and underlying mechanisms of toxicity. It discusses critical issues concerning the emergence of silver nanopesticides, spanning their mosquitocidal efficacy to environmental impact and safety considerations. While nano‑silver has shown promise in targeting insect pests, there is a lack of systematic research comparing its effects on different arthropod subclasses. Moreover, factors influencing nanotoxicity, such as nanoparticle size, charge, and surface chemistry, require further investigation to optimize the design of eco-safe nanoparticles for pest control. By elucidating the mechanisms by which nanoparticles interact with pests and non-target organisms, we can enhance the specificity and effectiveness of nanopesticides while minimizing unintended ecological consequences.
Collapse
Affiliation(s)
- Chunzhi Wang
- Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China
| | - Yang Jiang
- Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China
| | - Keyu He
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yán Wāng
- Department of Urology, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University; School of Public Health, Anhui Medical University, Hefei, Anhui 230601, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
4
|
Mohan K, Kandasamy S, Rajarajeswaran J, Sundaram T, Bjeljac M, Surendran RP, Ganesan AR. Chitosan-based insecticide formulations for insect pest control management: A review of current trends and challenges. Int J Biol Macromol 2024; 280:135937. [PMID: 39313045 DOI: 10.1016/j.ijbiomac.2024.135937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Future agricultural practices necessitate green alternatives to replace hazardous insecticides while distinguishing between pests and beneficial insects. Chitosan, as a biological macromolecule derived from chitin, is biodegradable and exhibits low toxicity to non-target organisms, making it a sustainable alternative to synthetic pesticides. This review identifies chitosan-derivatives for insecticidal activity and highlights its efficacy including genotoxicity, defense mechanism, and disruption of insect's exoskeleton at different concentrations against several insect pests. Similarly, synergistic effects of chitosan in combination with natural extracts, essential oils, and plant-derived compounds, enhances insecticidal action against various pests was evaluated. The chitosan-based insecticide formulations (CHIF) in the form of emulsions, microcapsules, and nanoparticles showed efficient insecticide action on the targeted pests with less environmental impact. The current challenges associated with the field-trial application were also recognized, by optimizing potent CHIF-formulation parameters, scaling-up process, and regulatory hurdles addressed alongside potential solutions. These findings will provide insight into achieving the EU mission of reducing chemical pesticides by 50 %.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India.
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641 004, India
| | - Jayakumar Rajarajeswaran
- Department of Nanobiomaterials, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Marko Bjeljac
- Institute for Plant Health, Laimburg Research Centre, 39040 Auer (Ora), Italy; Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| | | | - Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway.
| |
Collapse
|
5
|
Geethamala GV, Swathilakshmi AV, Keerthana S, Vidhyanivetha D, Preethi G, Chitra P, Poonkothai M. Exploring the Potential of Nickel Oxide Nanoparticles Synthesized from Dictyota bartayresiana and its Biological Applications. Biol Trace Elem Res 2024; 202:4260-4278. [PMID: 38095844 DOI: 10.1007/s12011-023-03978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/26/2023] [Indexed: 07/18/2024]
Abstract
The present study validates the impact of nickel oxide nanoparticles (NiONPs) biosynthesized from the brown seaweed Dictyota bartayresiana (DB) and its biological applications. The phytochemicals analyzed in the seaweed extract served as a reducing, capping or stabilizing agent in the formation of nanoparticles. UV visible spectrum of nickel oxide nanoparticles synthesized from DB (DB-NiONPs) represented a prominent peak at 392 nm which validates its formation. Fourier Transmission Infrared Spectroscopy (FT-IR) showcased the presence of functional groups in the biomolecules which aids in the stabilization of DB-NiONPs. The X-ray diffractometry (XRD) revealed the crystalline nature of DB-NiONPs and the particle size was calculated as 18.26 nm. The Scanning electron microscope (SEM) illustrates the irregularly shaped DB-NiONPs and the desired elements were depicted in energy dispersive X-ray (EDX) spectrum which confirms the purity of DB-NiONPs. The DB-NiONPs efficiently decolorised the Black B133 (BB133) dye to 86% in 25 min. The data of adsorption studies well fitted into Langmuir isotherm and pseudo-second order kinetic model. The thermodynamic study substantiated the spontaneous, feasible and endothermic process of adsorption. DB-NiONPs revealed enhanced antimicrobial, larvicidal and nematicidal activities against the selected microbes, larva of Culex pipens and juveniles of Meloidogyne incognita respectively. The phytotoxicity studies revealed the DB-NiONPs had a positive impact on the germination and growth of green gram seedlings.
Collapse
Affiliation(s)
- G V Geethamala
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - A V Swathilakshmi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - S Keerthana
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - D Vidhyanivetha
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - G Preethi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - P Chitra
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - M Poonkothai
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India.
| |
Collapse
|
6
|
Wang H, Jafir M, Irfan M, Ahmad T, Zia-Ur-Rehman M, Usman M, Rizwan M, Hamoud YA, Shaghaleh H. Emerging trends to replace pesticides with nanomaterials: Recent experiences and future perspectives for ecofriendly environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121178. [PMID: 38796869 DOI: 10.1016/j.jenvman.2024.121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
Despite the widespread usage to safeguard crops and manage pests, pesticides have detrimental effects on the environment and human health. The necessity to find sustainable agricultural techniques and meet the growing demand for food production has spurred the quest for pesticide substitutes other than traditional ones. The unique qualities of nanotechnology, including its high surface area-to-volume ratio, controlled release, and better stability, have made it a promising choice for pest management. Over the past ten years, there has been a noticeable growth in the usage of nanomaterials for pest management; however, concerns about their possible effects on the environment and human health have also surfaced. The purpose of this review paper is to give a broad overview of the worldwide trends and environmental effects of using nanomaterials in place of pesticides. The various types of nanomaterials, their characteristics, and their possible application in crop protection are covered. The limits of the current regulatory frameworks for nanomaterials in agriculture are further highlighted in this review. Additionally, it describes how standard testing procedures must be followed to assess the effects of nanomaterials on the environment and human health before their commercialization. In order to establish sustainable and secure nanotechnology-based pest control techniques, the review concludes by highlighting the significance of taking into account the possible hazards and benefits of nanomaterials for pest management and the necessity of an integrated approach. It also emphasizes the importance of more investigation into the behavior and environmental fate of nanomaterials to guarantee their safe and efficient application in agriculture.
Collapse
Affiliation(s)
- Hong Wang
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Muhammad Jafir
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University Hefei, 230601, Anhui, China.
| | - Muhammad Irfan
- School of Resources and Environmental Engineering, Anhui University Hefei, 230601, Anhui, China
| | - Tanveer Ahmad
- Department of Horticulture, MNS-University of Agriculture Multan, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
7
|
Nasser R, Ibrahim E, Fouad H, Ahmad F, Li W, Zhou Q, Yu T, Chidwala N, Mo J. Termiticidal Effects and Morpho-Histological Alterations in the Subterranean Termite ( Odontotermes formosanus) Induced by Biosynthesized Zinc Oxide, Titanium Dioxide, and Chitosan Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:927. [PMID: 38869552 PMCID: PMC11173738 DOI: 10.3390/nano14110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Recently, nanoparticles have been widely used in agricultural pest control as a secure substitute for pesticides. However, the effect of nanoparticles on controlling the subterranean termite Odontotermes formosanus (O. formosanus) has not been studied yet. Consequently, this study aimed to evaluate the effectiveness of some nanomaterials in controlling O. formosanus. The results showed that zinc oxide nanoparticles (ZnONPs), titanium dioxide nanoparticles (TiO2NPs), and chitosan nanoparticles (CsNPs) biosynthesized using the culture filtrate of Scedosporium apiospermum (S. apiospermum) had an effective role in controlling O. formosanus. Moreover, the mortality rate of O. formosanus after 48 h of treatment with ZnONPs, TiO2NPs, and CsNPs at a 1000 µg/mL concentration was 100%, 100%, and 97.67%, respectively. Furthermore, using ZnONPs, TiO2NPs, and CsNPs on O. formosanus resulted in morpho-histological variations in the normal structure, leading to its death. X-ray diffraction, UV-vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic light scattering, energy dispersive spectroscopy, and the Zeta potential were used to characterize the biosynthesis of ZnONPs, TiO2NPs, and CsNPs with strong activity against O. formosanus termites. Overall, the results of this investigation suggest that biosynthesized ZnONPs, TiO2NPs, and CsNPs have enormous potential for use as innovative, ecologically safe pesticides for O. formosanus control.
Collapse
Affiliation(s)
- Raghda Nasser
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
- Zoology and Entomology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza 12916, Egypt
| | - Hatem Fouad
- Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre, Cairo 12622, Egypt;
| | - Farhan Ahmad
- Entomology Section, Central Cotton Research Institute, Multan P.O. Box 66000, Pakistan;
| | - Wuhan Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Qihuan Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Ting Yu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Nooney Chidwala
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Jianchu Mo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| |
Collapse
|
8
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
9
|
Sanei-Dehkordi A, Heiran R, Montaseri Z, Elahi N, Abbasi Z, Osanloo M. Promising Larvicidal Effects of Nanoliposomes Containing Carvone and Mentha spicata and Tanacetum balsamita Essential Oils Against Anopheles stephensi. Acta Parasitol 2024; 69:216-226. [PMID: 37979013 DOI: 10.1007/s11686-023-00735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE The use of synthetic pesticides to control the spread of mosquito-borne diseases has caused environmental pollution and insecticide resistance in mosquitoes. Developments of new green insecticides have thus received more attention to overcome these problems. METHODS Nanoliposomes containing carvone and essential oils were first prepared. The nanoliposome physicochemical characteristics (particle size, morphology, and successful loading) were then evaluated by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), and the Attenuated Total Reflection-Fourier Transform InfraRed (ATR-FTIR) analyses. Larvicidal effects of carvone, Mentha spicata, and Tanacetum balsamita essential oils were investigated against the main malaria vector, Anopheles stephensi, in non-formulated and nanoformulated states. RESULTS The larvicidal effects of nanoformulated states were significantly more potent (7.2 folds, 3.5 folds, and 8 folds) than non-formulated states. Nanoliposomes containing M. spicata and T. balsamita essential oils with particle sizes of 175 ± 8 and 184 ± 5 nm showed the best efficacies (LC50 values = 9.74 and 9.36 μg/mL). CONCLUSION The prepared samples could be used as new green potent larvicides against An stephensi mosquito in further field trials. It is also recommended to investigate their efficacies against other mosquitoes.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Biology and Control of Disease Vectors, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Roghayeh Heiran
- Estahban Higher Education Center- Shiraz University, Estahban, Iran
| | - Zahra Montaseri
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Elahi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Abbasi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
10
|
Hosseinizadeh Z, Osanloo M, Alipour H, Heiran R, Shahriari-Namadi M, Moemenbellah-Fard MD. Nanoliposomal Trachyspermum ammi (L) sprague essential oil for effective control of malaria mosquito larvae, Anopheles stephensi Liston. Exp Parasitol 2023; 255:108644. [PMID: 37939823 DOI: 10.1016/j.exppara.2023.108644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Controlling mosquito vectors at immature stages using larvicides is a practical strategy to stave off mosquito-borne diseases such as malaria. Developing nanoliposomes bearing essential oil is a promising approach to improving the efficacy and stability of EOs-derived larvicides. The main aim of this investigation was to assess the efficacy of nanoliposome containing Trachyspermum ammi L. EO (TAEO-NL) as a new potential formulation to control Anopheles stephensi Liston (Diptera, Culicidae) mosquito larvae. The chemical constituents of T. ammi L. essential oil (TAEO) were first investigated using gas chromatography-mass spectrometry (GC-MS) analysis; its dominant component (48.22%) was thymol. TAEO-NL with a particle size of 54.6 ± 5 nm and zeta potential of -18 ± 0.5 mV were then prepared using the ethanol injection method. Besides, the successful loading of TAEO was confirmed using Attenuated Total Reflection-Fourier Transform Infra-Red (ATR-FTIR) spectroscopy analysis. A significant difference (P < 0.05) was observed in the efficacy of TAEO-NL and TAEO with lethal concentration 50% (LC50) values of 14.09 and 59.47 μg/mL against An. stephensi larvae. However, free nanoliposomes show negligible larvicidal effects (<5%). This nano-formulation could thus be suggested as a green product against insects to impede transmission of deadly infectious diseases with possible field applicability scope.
Collapse
Affiliation(s)
- Z Hosseinizadeh
- Student Research Committee, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - M Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences (FUMS), Fasa, Iran.
| | - H Alipour
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran.
| | - R Heiran
- Estahban Higher Education Center- Shiraz University, Estahban, Iran.
| | - M Shahriari-Namadi
- Student Research Committee, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - M D Moemenbellah-Fard
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran.
| |
Collapse
|
11
|
Eldesouky SE, Aseel DG, Elnouby MS, Galal FH, AL-Farga A, Hafez EE, Hussein HS. Synthesis of Tungsten Oxide, Iron Oxide, and Copper-Doped Iron Oxide Nanocomposites and Evaluation of Their Mixing Effects with Cyromazine against Spodoptera littoralis (Boisduval). ACS OMEGA 2023; 8:44867-44879. [PMID: 38046339 PMCID: PMC10688210 DOI: 10.1021/acsomega.3c06134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/05/2023]
Abstract
Nanotechnology research is emerging as a cutting-edge technology, and nanocomposites have played a significant role in pest control. Therefore, the present study focuses on the synthesis of tungsten oxide (WO3), iron oxide (magnetic nanoparticle, MNP), and copper-doped iron oxide (MNP-Cu) nanocomposites and explores the different effects of their binary combinations with the insecticide cyromazine against Spodoptera littoralis. The synthesized nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and Raman spectroscopy. None of the tested nanomaterials showed any toxicity against the different stages of S. littoralis. Larval and pupal durations increased with increasing cyromazine and nanomaterial concentrations. The longest larval and pupal durations were recorded under treatment with the mixture of cyromazine (100 mg/L) + MNP-Cu (500 mg/L); the survival periods were 23.5 and 15.6 days, compared with 10.8 and 7.7 days in the control, respectively. The percentages of pupation and adult emergence were negatively affected by all treatments. Among the 500 mg/L nanomaterial combinations, only cyromazine (25 mg/L) and WO3 (500 mg/L) resulted in adult emergence (at a rate of 27.3%). Some abnormalities in the S. littoralis stages were observed following treatment with the tested materials. The glutathione S-transferase and alpha-esterase enzyme activities in S. littoralis were significantly increased after treatment with cyromazine, followed by cyromazine/MNP-Cu combinations. The quantitative polymerase chain reaction (Q-PCR) data showed that all treated insects had a higher immune response than the control. Finally, mixes of nanocomposites and cyromazine may be suggested as viable alternatives for S. littoralis management.
Collapse
Affiliation(s)
- Sahar E. Eldesouky
- Cotton
Pesticides Evaluation Department, Plant
Protection Research Institute, Agricultural Research Center, El-Sabhia, Alexandria 21616, Egypt
| | - Dalia G. Aseel
- Plant
Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation
Research Institute (ALCRI), City of Scientific
Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Mohamed S. Elnouby
- Composite
and Nanostructured Materials Research Department, Advanced Technology
and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Fatma H. Galal
- Biology
Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry
Department, Faculty of Science, Jeddah University, Jeddah 21577, Saudi Arabia
| | - Elsayed E. Hafez
- Plant
Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation
Research Institute (ALCRI), City of Scientific
Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Hanaa S. Hussein
- Applied Entomology
and Zoology Department, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt
| |
Collapse
|
12
|
El-Barkey NM, Nassar MY, El-Khawaga AH, Kamel AS, Baz MM. Efficacy of alumina nanoparticles as a controllable tool for mortality and biochemical parameters of Culex pipiens. Sci Rep 2023; 13:19592. [PMID: 37949900 PMCID: PMC10638367 DOI: 10.1038/s41598-023-46689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Mosquitoes still pose a clear risk to human and animal health. Recently, nanomaterials have been considered one of the cost-effective solutions to this problem. Therefore, alumina nanoparticles (Al) were synthesized using an auto-combustion method, followed by calcination at 600 and 800 °C. Glucose (G) and sucrose (Su) were used as fuels and the combustion was performed at pH 2, 7, and 10. The as-synthesized Al2O3 nanoparticles were characterized by XRD, FTIR, SEM, and TEM. Alumina nanoparticles prepared using G and Su fuels at pH 7 and 800 °C (Al-G7-800 and Al-Su7-800) have crystallite sizes of 3.9 and 4.05 nm, respectively. While the samples (Al-G7-600 and Al-Su7-600) synthesized at pH 7 and 600 °C were amorphous. The prepared alumina nanoparticles were applied to the larval and pupal stages of Culex pipiens. The results showed that alumina nanoparticles cause higher mortality in the 1st larval instar than in all other larval instars and pupal stages of Culex pipiens after treatment at a high concentration of 200 ppm. Additionally, the larval duration after treatment with LC50 concentrations of alumina (Al-G7-800 and Al-Su7-800) was 31.7 and 23.6 days, respectively, compared to the control (13.3 days). The recorded data found that the content of glutathione-S-transferase, alkaline/acid phosphatase, β/α-esterase, and total protein were altered upon treatment with the LC50 concentration of alumina (Al-G7-800) nanoparticles. Based on these findings, alumina nanoparticles are a promising candidate as a potential weapon to control pests and mosquitoes.
Collapse
Affiliation(s)
- Nehad M El-Barkey
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Mostafa Y Nassar
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Aya H El-Khawaga
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Aida S Kamel
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
13
|
Summer M, Tahir HM, Ali S. Sonication and heat-mediated synthesis, characterization and larvicidal activity of sericin-based silver nanoparticles against dengue vector (Aedes aegypti). Microsc Res Tech 2023; 86:1363-1377. [PMID: 37119431 DOI: 10.1002/jemt.24333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Fabrication, characterization and evaluation of the larvicidal potential of novel silk protein (sericin)-based silver nanoparticles (Se-AgNPs) were the prime motives of the designed study. Furthermore, investigation of the sericin as natural reducing or stabilizing agent was another objective behind this study. Se-AgNPs were synthesized using sonication and heat. Fabricated Se-AgNPs were characterized using particle size analyzer, UV spectrophotometry, FTIR and SEM which confirmed the fabrication of the Se-AgNPs. Size of sonication-mediated Se-AgNPs was smaller (7.49 nm) than heat-assisted Se-AgNPs (53.6 nm). Being smallest in size, sonication-assisted Se-AgNPs revealed the significantly highest (F4,10 = 39.20, p = .00) larvicidal activity against fourth instar lab and field larvae (F4,10 = 1864, p = .00) of dengue vector (Aedes aegypti) followed by heat-assisted Se-AgNPs and positive control (temephos). Non-significant larvicidal activity was showed by silver (without sericin) which made the temperature stability of silver, debatable. Furthermore, findings of biochemical assays (glutathione-S transferase, esterase, and acetylcholinesterase) showed the levels of resistance in field strain larvae. Aforementioned findings of the study suggests the sonication as the best method for synthesis of Se-AgNPs while the larvicidal activity is inversely proportional to the size of Se-AgNPs, i.e., smallest the size, highest the larvicidal activity. Conclusively, status of the sericin as a natural reducing/stabilizing agent has been endorsed by the findings of this study. RESEARCH HIGHLIGHTS: Incorporation of biocompatible and inexpensive sericin as a capping/reducing agent for synthesis of Se-AgNPs. A novel sonication method was used for the fabrication of Se-AgNPs which were thoroughly characterized by particle size analyzer, UV-visible spectrophotometry, SEM and FTIR. Analysis of enzymatic (GSTs, ESTs) levels in field and lab strains of Aedes aegypti larvae for evaluation of insecticides resistance.
Collapse
Affiliation(s)
- Muhammad Summer
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Hafiz Muhammad Tahir
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Shaukat Ali
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
14
|
Rodrigues Dos Santos D, Lopes Chaves L, Couto Pires V, Soares Rodrigues J, Alves Siqueira de Assunção M, Bezerra Faierstein G, Gomes Barbosa Neto A, de Souza Rebouças J, Christine de Magalhães Cabral Albuquerque E, Alexandre Beisl Vieira de Melo S, Costa Gaspar M, Maria Rodrigues Barbosa R, Elga Medeiros Braga M, Cipriano de Sousa H, Rocha Formiga F. New weapons against the disease vector Aedes aegypti: From natural products to nanoparticles. Int J Pharm 2023; 643:123221. [PMID: 37437857 DOI: 10.1016/j.ijpharm.2023.123221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Despite the global burden of viral diseases transmitted by Aedes aegypti, there is a lack of effective means of prevention and treatment. Strategies for vector control include chemical and biological approaches such as organophosphates and Bacillus thuringiensis var. israelensis (Bti), among others. However, important concerns are associated, such as resistance in mosquito larvae and deleterious effects on non-target organisms. In this scenario, novel approaches against A. aegypti have been investigated, including natural products (e.g. vegetable oil and extracts) and nanostructured systems. This review focuses on potential strategies for fighting A. aegypti, highlighting plant-based materials and nanomaterials able to induce toxic effects on egg, larva, pupa and adult mosquitoes. Issues including aspects of conventional vector control strategies are presented, and finally new insights on development of eco-friendly nanoformulations against A. aegypti are discussed.
Collapse
Affiliation(s)
| | - Luíse Lopes Chaves
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil
| | - Vinícius Couto Pires
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil
| | - Júlia Soares Rodrigues
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil; Institute of Biological Sciences, University of Pernambuco (UPE), 50100-130 Recife, PE, Brazil
| | | | | | | | | | - Elaine Christine de Magalhães Cabral Albuquerque
- Industrial Engineering Program, Polytechnic School, Federal University of Bahia (UFBA), 40210-630 Salvador, BA, Brazil; Research Center in Energy and Environment (CIENAM), Federal University of Bahia (UFBA), 40170-115 Salvador, BA, Brazil
| | - Silvio Alexandre Beisl Vieira de Melo
- Industrial Engineering Program, Polytechnic School, Federal University of Bahia (UFBA), 40210-630 Salvador, BA, Brazil; Research Center in Energy and Environment (CIENAM), Federal University of Bahia (UFBA), 40170-115 Salvador, BA, Brazil
| | - Marisa Costa Gaspar
- CIEPQPF, Department of Chemical Engineering, FCTUC, University of Coimbra, 3030-790 Coimbra, Portugal
| | | | - Mara Elga Medeiros Braga
- CIEPQPF, Department of Chemical Engineering, FCTUC, University of Coimbra, 3030-790 Coimbra, Portugal
| | | | - Fabio Rocha Formiga
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil; Faculty of Medical Sciences, University of Pernambuco (UPE), 52171-011 Recife, PE, Brazil.
| |
Collapse
|
15
|
Abou El-Enain IM, Elqady EM, El-Said E, Salem HHA, Badr NF, Abd-Allah GE, Rezk MM. Biosynthesized silver nanoparticles (Ag NPs) from isolated actinomycetes strains and their impact on the black cutworm, Agrotis ipsilon. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105492. [PMID: 37532318 DOI: 10.1016/j.pestbp.2023.105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 08/04/2023]
Abstract
Nanomaterials have been produced with the use of bio-nanotechnology, which is a low-cost approach. Currently, research is being conducted to determine whether actinomycetes isolated from Egyptian soil can biosynthesize Ag nanoparticles (Ag NPs) and characterized by using the following techniques: Transmission electron microscopy (TEM), Dynamic light scattering (DLS), Fourier transforms infrared (FT-IR), Energy-dispersive X-ray spectroscopy (EDX), UV-Vis spectroscopy and X-ray diffraction (XRD). The most promising actinomycetes isolate were identified, morphologically, biochemically, and molecularly. Streptomyces avermitilis Azhar A.4 was found to be able to reduce silver metal nanoparticles from silver nitrate in nine isolates collected from Egyptian soil. Toxicity of biosynthesized against 2nd and 4th larval instar of Agrotis ipsilon (Hufn.) (Lepidoptera: Noctuidae) was estimated. In addition, activity of certain vital antioxidant and detoxifying enzymes as well as midgut histology of treated larvae were also investigated. The results showed appositive correlations between larval mortality percentage (y) and bio-AgNPs concentrations (x) with excellent (R2). The 4th larval instar was more susceptible than 2nd larval instar with LC50 (with 95% confirmed limits) =8.61 (2.76-13.89) and 26.44(13.25-35.58) ppml-1, respectively of 5 days from treatment. The initial stages of biosynthesized AgNps exposure showed significant increases in carboxylesterase (CarE) and peroxidases (PODs) activity followed by significant suppression after 5 days pos-exposure. While protease activity was significantly decreased by increasing time post-exposure. Midgut histology showed abnormality and progressive damage by increasing time post exposure leading to complete destruction of midgut cells after 5 days from exposure. These results make biosynthesized AgNPs an appropriate alternative to chemical insecticide in A. ipsilon management.
Collapse
Affiliation(s)
- Inas M Abou El-Enain
- Botany and Microbiology Dept., Faculty of Science, Al-Azhar University-Cairo, Cairo, Egypt
| | - Enayat M Elqady
- Zoology and Entomology Dept., Faculty of Science, Al-Azhar University-Cairo, Cairo, Egypt
| | - Eman El-Said
- Zoology and Entomology Dept., Faculty of Science, Al-Azhar University-Cairo, Cairo, Egypt
| | - Hend H A Salem
- Zoology and Entomology Dept., Faculty of Science, Al-Azhar University-Cairo, Cairo, Egypt
| | - Naglaa Fathi Badr
- Zoology and Entomology Dept., Faculty of Science, Al-Azhar University-Cairo, Cairo, Egypt
| | - Ghada E Abd-Allah
- Plant Protection Research Institute, Agriculture Research Center, Cairo, Egypt
| | - Mohamed M Rezk
- Isotops Dept., Research Sector, Nuclear Materials Authority, Cairo, Egypt.
| |
Collapse
|
16
|
Sanei-Dehkordi A, Ghasemian A, Zarenezhad E, Qasemi H, Nasiri M, Osanloo M. Nanoliposomes containing three essential oils from the Artemisia genus as effective larvicides against Aedes aegypti and Anopheles stephensi. Sci Rep 2023; 13:11002. [PMID: 37420038 PMCID: PMC10328918 DOI: 10.1038/s41598-023-38284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023] Open
Abstract
Aedes aegypti and Anopheles stephensi have challenged human health by transmitting several infectious disease agents, such as malaria, dengue fever, and yellow fever. Larvicides, especially in endemic regions, is an effective approach to the control of mosquito-borne diseases. In this study, the composition of three essential oil from the Artemisia L. family was analyzed by Gas Chromatography-Mass Spectrometry. Afterward, nanoliposomes containing essential oils of A. annua, A. dracunculus, and A. sieberi with particle sizes of 137 ± 5, 151 ± 6, and 92 ± 5 nm were prepared. Besides, their zeta potential values were obtained at 32 ± 0.5, 32 ± 0.6, and 43 ± 1.7 mV. ATR-FTIR analysis (Attenuated Total Reflection-Fourier Transform InfraRed) confirmed the successful loading of the essential oils. Moreover, The LC50 values of nanoliposomes against Ae. aegypti larvae were 34, 151, and 197 µg/mL. These values for An.stephensi were obtained as 23 and 90, and 140 µg/mL, respectively. The results revealed that nanoliposomes containing A. dracunculus exerted the highest potential larvicidal effect against Ae. aegypti and An. stephensi, which can be considered against other mosquitoes.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hajar Qasemi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Nasiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
17
|
Bihal R, Al-Khayri JM, Banu AN, Kudesia N, Ahmed FK, Sarkar R, Arora A, Abd-Elsalam KA. Entomopathogenic Fungi: An Eco-Friendly Synthesis of Sustainable Nanoparticles and Their Nanopesticide Properties. Microorganisms 2023; 11:1617. [PMID: 37375119 DOI: 10.3390/microorganisms11061617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The agricultural industry could undergo significant changes due to the revolutionary potential of nanotechnology. Nanotechnology has a broad range of possible applications and advantages, including insect pest management using treatments based on nanoparticle insecticides. Conventional techniques, such as integrated pest management, are inadequate, and using chemical pesticides has negative consequences. As a result, nanotechnology would provide ecologically beneficial and effective alternatives for insect pest control. Considering the remarkable traits they exhibit, silver nanoparticles (AgNPs) are recognized as potential prospects in agriculture. Due to their efficiency and great biocompatibility, the utilization of biologically synthesized nanosilver in insect pest control has significantly increased nowadays. Silver nanoparticles have been produced using a wide range of microbes and plants, which is considered an environmentally friendly method. However, among all, entomopathogenic fungi (EPF) have the most potential to be used in the biosynthesis of silver nanoparticles with a variety of properties. Therefore, in this review, different ways to get rid of agricultural pests have been discussed, with a focus on the importance and growing popularity of biosynthesized nanosilver, especially silver nanoparticles made from fungi that kill insects. Finally, the review highlights the need for further studies so that the efficiency of bio-nanosilver could be tested for field application and the exact mode of action of silver nanoparticles against pests can be elucidated, which will eventually be a boon to the agricultural industry for putting a check on pest populations.
Collapse
Affiliation(s)
- Ritu Bihal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - A Najitha Banu
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Natasha Kudesia
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Farah K Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Rudradeb Sarkar
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Akshit Arora
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Kamel A Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
18
|
Onen H, Luzala MM, Kigozi S, Sikumbili RM, Muanga CJK, Zola EN, Wendji SN, Buya AB, Balciunaitiene A, Viškelis J, Kaddumukasa MA, Memvanga PB. Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. INSECTS 2023; 14:221. [PMID: 36975906 PMCID: PMC10059804 DOI: 10.3390/insects14030221] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Mosquitoes act as vectors of pathogens that cause most life-threatening diseases, such as malaria, Dengue, Chikungunya, Yellow fever, Zika, West Nile, Lymphatic filariasis, etc. To reduce the transmission of these mosquito-borne diseases in humans, several chemical, biological, mechanical, and pharmaceutical methods of control are used. However, these different strategies are facing important and timely challenges that include the rapid spread of highly invasive mosquitoes worldwide, the development of resistance in several mosquito species, and the recent outbreaks of novel arthropod-borne viruses (e.g., Dengue, Rift Valley fever, tick-borne encephalitis, West Nile, yellow fever, etc.). Therefore, the development of novel and effective methods of control is urgently needed to manage mosquito vectors. Adapting the principles of nanobiotechnology to mosquito vector control is one of the current approaches. As a single-step, eco-friendly, and biodegradable method that does not require the use of toxic chemicals, the green synthesis of nanoparticles using active toxic agents from plant extracts available since ancient times exhibits antagonistic responses and broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on the different mosquito control strategies in general, and on repellent and mosquitocidal plant-mediated synthesis of nanoparticles in particular, has been reviewed. By doing so, this review may open new doors for research on mosquito-borne diseases.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Entomology, Uganda Virus Research Institute, Plot 51/59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Stephen Kigozi
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Rebecca M. Sikumbili
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Department of Chemistry, Faculty of Science, University of Kinshasa, Kinshasa B.P. 190, Democratic Republic of the Congo
| | - Claude-Josué K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Sébastien N. Wendji
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aristote B. Buya
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Jonas Viškelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Martha A. Kaddumukasa
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
19
|
Chemical Composition of the Stem Barks of Bauhinia glauca subsp. hupehana. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Santos TS, de Souza Varize C, Sanchez-Lopez E, Jain SA, Souto EB, Severino P, Mendonça MDC. Entomopathogenic Fungi-Mediated AgNPs: Synthesis and Insecticidal Effect against Plutella xylostella (Lepidoptera: Plutellidae). MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217596. [PMID: 36363188 PMCID: PMC9657982 DOI: 10.3390/ma15217596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 05/30/2023]
Abstract
The insect Plutella xylostella is known worldwide to cause severe damage to brassica plantations because of its resistance against several groups of chemicals and pesticides. Efforts have been conducted to overcome the barrier of P. xylostella genetic resistance. Because of their easy production and effective insecticidal activity against different insect orders, silver nanoparticles are proposed as an alternative for agricultural pest control. The use of entomopathogenic fungi for nanoparticle production may offer additional advantages since fungal biomolecules may synergistically improve the nanoparticle's effectiveness. The present study aimed to synthesize silver nanoparticles using aqueous extracts of Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea isolates and to evaluate their insecticidal activity against P. xylostella, as innovative nano-ecofriendly pest control. The produced silver nanoparticles were evaluated by measuring the UV-vis spectrum and the mean particle size by dynamic light scattering (DLS). I. fumosorosea aqueous extract with 3-mM silver nitrate solution showed the most promising results (86-nm mean diameter and 0.37 of polydispersity). Scanning electron microscopy showed spherical nanoparticles and Fourier-Transform Infrared Spectroscopy revealed the presence of amine and amide groups, possibly responsible for nanoparticles' reduction and stabilization. The CL50 value of 0.691 mg mL-1 was determined at 72-h for the second-instar larvae of the P. xylostella, promoting a 78% of cumulative mortality rate after the entire larval stage. From our results, the synthesis of silver nanoparticles mediated by entomopathogenic fungi was successful in obtaining an efficient product for insect pest control. The I. fumosorosea was the most suitable isolate for the synthesis of silver nanoparticles contributing to the development of a green nanoproduct and the potential control of P. xylostella.
Collapse
Affiliation(s)
- Tárcio S. Santos
- Post-graduate Program in Industrial Biotechnology (PBI), University Tiradentes (Unit), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
| | - Camila de Souza Varize
- Sergipe Agricultural Development Company (Emdagro), Av. Carlos Rodrigues da Cruz s/n, Aracaju 49081-015, Brazil
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Sona A. Jain
- Post-graduate Program in Industrial Biotechnology (PBI), University Tiradentes (Unit), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
| | - Eliana B. Souto
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Patrícia Severino
- Post-graduate Program in Industrial Biotechnology (PBI), University Tiradentes (Unit), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
| | - Marcelo da Costa Mendonça
- Post-graduate Program in Industrial Biotechnology (PBI), University Tiradentes (Unit), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
- Sergipe Agricultural Development Company (Emdagro), Av. Carlos Rodrigues da Cruz s/n, Aracaju 49081-015, Brazil
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
| |
Collapse
|
21
|
Yeguerman CA, Urrutia RI, Jesser EN, Massiris M, Delrieux CA, Murray AP, González JOW. Essential oils loaded on polymeric nanoparticles: bioefficacy against economic and medical insect pests and risk evaluation on terrestrial and aquatic non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71412-71426. [PMID: 35597828 DOI: 10.1007/s11356-022-20848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
This paper introduces the lethal, sublethal, and ecotoxic effects of peppermint and palmarosa essential oils (EOs) and their polymeric nanoparticles (PNs). The physicochemical analyses indicated that peppermint PNs were polydisperse (PDI > 0.4) with sizes of 381 nm and loading efficiency (LE) of 70.3%, whereas palmarosa PNs were monodisperse (PDI < 0.25) with sizes of 191 nm and LE of 89.7%. EOs and their PNs were evaluated on the adults of rice weevil (Sitophilus oryzae L.) and cigarette beetle (Lasioderma serricorne F.) and the larvae of Culex pipiens pipiens Say. On S. oryzae and L. serricorne, PNs increased EOs' lethal activity, extended repellent effects for 84 h, and also modified behavioral variables during 24 h. Moreover, EOs and PNs generated toxic effects against C. pipiens pipiens. On the other hand, peppermint and palmarosa EOs and their PNs were not toxic to terrestrial non-target organisms, larvae of mealworm (Tenebrio molitor L.), and nymphs of orange-spotted cockroach (Blaptica dubia S.). In addition, PNs were slightly toxic to aquatic non-target organisms, such as brine shrimp (Artemia salina L.). Therefore, these results show that PNs are a novel and eco-friendly formulation to control insect pests.
Collapse
Affiliation(s)
- Cristhian A Yeguerman
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
| | - Rodrigo I Urrutia
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
| | - Emiliano N Jesser
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
- Departamento de Biología, Bioquímica Y Farmacia, Universidad Nacional del Sur (UNS), B8000CPB, Buenos Aires, Argentina
| | - Manlio Massiris
- Laboratorio de Ciencias de Las Imágenes, Departamento de Ingeniería Eléctrica Y Computadoras, CONICET-Universidad Nacional del Sur. Av, San Andrés 800 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - Claudio A Delrieux
- Laboratorio de Ciencias de Las Imágenes, Departamento de Ingeniería Eléctrica Y Computadoras, CONICET-Universidad Nacional del Sur. Av, San Andrés 800 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - Ana P Murray
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
| | - Jorge O Werdin González
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina.
- Departamento de Biología, Bioquímica Y Farmacia, Universidad Nacional del Sur (UNS), B8000CPB, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Boukouvala MC, Kavallieratos NG, Skourti A, Pons X, Alonso CL, Eizaguirre M, Fernandez EB, Solera ED, Fita S, Bohinc T, Trdan S, Agrafioti P, Athanassiou CG. Lymantria dispar (L.) (Lepidoptera: Erebidae): Current Status of Biology, Ecology, and Management in Europe with Notes from North America. INSECTS 2022; 13:insects13090854. [PMID: 36135555 PMCID: PMC9506003 DOI: 10.3390/insects13090854] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 05/13/2023]
Abstract
The European Spongy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), is an abundant species found in oak woods in Central and Southern Europe, the Near East, and North Africa and is an important economic pest. It is a voracious eater and can completely defoliate entire trees; repeated severe defoliation can add to other stresses, such as weather extremes or human activities. Lymantria dispar is most destructive in its larval stage (caterpillars), stripping away foliage from a broad variety of trees (>500 species). Caterpillar infestation is an underestimated problem; medical literature reports that established populations of caterpillars may cause health problems to people and animals. Inflammatory reactions may occur in most individuals after exposure to setae, independent of previous exposure. Currently, chemical and mechanical methods, natural predators, and silvicultural practices are included for the control of this species. Various insecticides have been used for its control, often through aerial sprayings, which negatively affect biodiversity, frequently fail, and are inappropriate for urban/recreational areas. However, bioinsecticides based on various microorganisms (e.g., entomopathogenic viruses, bacteria, and fungi) as well as technologies such as mating disruption using sex pheromone traps have replaced insecticides for the management of L. dispar.
Collapse
Affiliation(s)
- Maria C. Boukouvala
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
- Correspondence: (M.C.B.); (N.G.K.); Tel.: +30-2105294569 (M.C.B.)
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
- Correspondence: (M.C.B.); (N.G.K.); Tel.: +30-2105294569 (M.C.B.)
| | - Anna Skourti
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Xavier Pons
- Department of Crop and Forest Sciences, Agrotecnio Centre, Universitat de Lleida, Av Rovira Roure 191, 25198 Lleida, Spain
| | - Carmen López Alonso
- Department of Crop and Forest Sciences, Agrotecnio Centre, Universitat de Lleida, Av Rovira Roure 191, 25198 Lleida, Spain
| | - Matilde Eizaguirre
- Department of Crop and Forest Sciences, Agrotecnio Centre, Universitat de Lleida, Av Rovira Roure 191, 25198 Lleida, Spain
| | | | - Elena Domínguez Solera
- AIMPLAS, Plastics Technology Centre, València Parc Tecnològic, Gustave Eiffel 4, 46980 Paterna, Spain
| | - Sergio Fita
- AIMPLAS, Plastics Technology Centre, València Parc Tecnològic, Gustave Eiffel 4, 46980 Paterna, Spain
| | - Tanja Bohinc
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Stanislav Trdan
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Paraskevi Agrafioti
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446 Nea Ionia, Greece
| | - Christos G. Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446 Nea Ionia, Greece
| |
Collapse
|
23
|
Green Nano-Biotechnology: A New Sustainable Paradigm to Control Dengue Infection. Bioinorg Chem Appl 2022; 2022:3994340. [PMID: 35979184 PMCID: PMC9377959 DOI: 10.1155/2022/3994340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022] Open
Abstract
Dengue is a growing mosquito-borne viral disease prevalent in 128 countries, while 3.9 billion people are at high risk of acquiring the infection. With no specific treatment available, the only way to mitigate the risk of dengue infection is through controlling of vector, i.e., Aedes aegypti. Nanotechnology-based prevention strategies like biopesticides with nanoformulation are now getting popular for preventing dengue fever. Metal nanoparticles (NPs) synthesized by an eco-friendly process, through extracts of medicinal plants have indicated potential anti-dengue applications. Green synthesis of metal NPs is simple, cost-effective, and devoid of hazardous wastes. The recent progress in the phyto-synthesized multifunctional metal NPs for anti-dengue applications has encouraged us to review the available literature and mechanistic aspects of the dengue control using green-synthesized NPs. Furthermore, the molecular bases of the viral inhibition through NPs and the nontarget impacts or hazards with reference to the environmental integrity are discussed in depth. Till date, major focus has been on green synthesis of silver and gold NPs, which need further extension to other innovative composite nanomaterials. Further detailed mechanistic studies are required to critically evaluate the mechanistic insights during the synthesis of the biogenic NPs. Likewise, detailed analysis of the toxicological aspects of NPs and their long-term impact in the environment should be critically assessed.
Collapse
|
24
|
Santos AA, Farder-Gomes CF, Ribeiro AV, Costa TL, França JCO, Bacci L, Demuner AJ, Serrão JE, Picanço MC. Lethal and sublethal effects of an emulsion based on Pogostemon cablin (Lamiaceae) essential oil on the coffee berry borer, Hypothenemus hampei. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45763-45773. [PMID: 35152351 DOI: 10.1007/s11356-022-19183-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The global search for eco-friendly and human-safe pesticides has intensified, and research on essential oils (EOs) has expanded due to their remarkable insecticidal activities and apparent human-safe. Despite this, most of the literature focuses on short-term and simplified efforts to understand lethal effects, with only a few comprehensive studies addressing sublethal exposures. To fill this shortcoming, we explore the lethal and sublethal effects of Pogostemon cablin (Lamiaceae) EO and an EO-based emulsion (18%) using the coffee berry borer Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae) as a model. First, we determine the toxicity of EO and EO-based emulsion using dose-mortality curves and lethal times. Second, we subjected adult females of H. hampei to sublethal doses to assess whether they affected their behavior, reproductive output, and histological features. Our findings reveal that patchoulol (43.05%), α-Guaiene (16.06%), and α-Bulnesene (13.69%) were the main components of the EO. Furthermore, the EO and its emulsion had similar toxicity, with dose-mortality curves and lethal times overlapping 95% confidence intervals. We also observed that sublethal exposure of females of H. hampei reduces reproduction and feeding, increases walking activity, and causes histopathological changes in the midgut. This study advances the knowledge of the lethal and sublethal effects of an eco-friendly substance on insects.Responsible Editor: Giovanni Benelli.
Collapse
Affiliation(s)
- Abraão Almeida Santos
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| | | | | | - Thiago Leandro Costa
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | - Leandro Bacci
- Department of Agronomy, Universidade Federal de Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Antônio Jacinto Demuner
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcelo Coutinho Picanço
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
25
|
Sanei-Dehkordi A, Moemenbellah-Fard MD, Saffari M, Zarenezhad E, Osanloo M. Nanoliposomes containing limonene and limonene-rich essential oils as novel larvicides against malaria and filariasis mosquito vectors. BMC Complement Med Ther 2022; 22:140. [PMID: 35590314 PMCID: PMC9118734 DOI: 10.1186/s12906-022-03624-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
Background Mosquito-borne diseases such as malaria and encephalitis are still the cause of several hundred thousand deaths annually. The excessive use of chemical insecticides for transmission control has led to environmental pollution and widespread resistance in mosquitoes. Botanical insecticides' efficacies improvement has thus received considerable attention recently. Methods The larvicidal effects of three essential oils from the Citrus family and limonene (their major ingredient) were first investigated against malaria and filariasis mosquito vectors. An attempt was then made to improve their efficacies by preparing nanoliposomes containing each of them. Results The larvicidal effect of nanoformulated forms was more effective than non-formulated states. Nanoliposomes containing Citrus aurantium essential oil with a particle size of 52 ± 4 nm showed the best larvicidal activity (LC50 and LC90 values) against Anopheles stephensi (6.63 and 12.29 µg/mL) and Culex quinquefasciatus (4.9 and 16.4 µg/mL). Conclusion Due to the green constituents and high efficacy of nanoliposomes containing C. aurantium essential oil, it could be considered for further investigation against other mosquitoes’ populations and field trials.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Djaefar Moemenbellah-Fard
- Research Center for Health Sciences, Department of Biology and Control of Disease Vectors, School of Health, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Saffari
- Department of Pharmaceutics, Scholl of Pharmacy, Islamic Azad University, Tehran, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
26
|
Bhadani RV, Gajera HP, Hirpara DG, Savaliya DD, Anuj SA. Biosynthesis and characterization of extracellular metabolites-based nanoparticles to control the whitefly. Arch Microbiol 2022; 204:311. [PMID: 35538378 DOI: 10.1007/s00203-022-02917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/19/2022] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
The Beauveria spp. were isolated from soil and insect cadavers and confirmed as Beauveria bassiana by molecular identification using a specific primer. The bioefficacy of 14 B. bassiana against whiteflies indicated the highest percent mortality in JAU2, followed by JAU1. The LC50 and LC90 values were found to be 0.043 × 105 and 0.05 × 1014 conidia.ml-1, respectively, in JAU2. Extracellular metabolites of B.bassiana are derived and used for the green synthesis of silver nanoparticles (AgNPs). The synthesized green AgNPs were characterized for size (24.8 nm), shape (scanning electron microscopy), stability (200 mV zeta), and purity (energy-dispersive X-ray spectroscopy, 3 keV). A total of 63 extracellular metabolites were identified using LC-MS/QTOF in potent JAU2 with recognition of alcohols, phenols, carboxylic acids, amines, alkynes, and amides as functional groups. The functional groups of green AgNPs were also confirmed in Fourier transforms infrared spectroscopy (FTIR) with the specific spectra in the electromagnetic spectrum. The relationship between identified metabolites of antagonist and the FTIR spectrum of the functional group indicated the involvement of extracellular novel compounds, viz., homoisocitrate, aconitine, phodexin A, capillone, solanocapsine, and anethole in the synthesis of green AgNPs. The efficacy of green AgNPs on whiteflies suggested that corrected percent mortality was observed at 60 µg Ag.ml-1 at 120 h, which corresponds to the LC50 value (66.42 µg Ag.ml-1). Results were interpreted to show that green AgNPs synthesized from extracellular metabolites of B.bassiana JAU2 gave better insecticidal activity at LC50 as compared to live antagonist JAU2.
Collapse
Affiliation(s)
- Rushita V Bhadani
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - H P Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India.
| | - Darshna G Hirpara
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - D D Savaliya
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| | - Samir A Anuj
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362 001, Gujarat, India
| |
Collapse
|
27
|
Nanoliposomes Containing Carvacrol and Carvacrol-Rich Essential Oils as Effective Mosquitoes Larvicides. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Iqbal H, Fatima A, Khan HAA. ZnO nanoparticles produced in the culture supernatant of Bacillus thuringiensis ser. israelensis affect the demographic parameters of Musca domestica using the age-stage, two-sex life table. PEST MANAGEMENT SCIENCE 2022; 78:1640-1648. [PMID: 34989098 DOI: 10.1002/ps.6783] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Indiscriminate use of broad-spectrum insecticides can have deleterious effects on insects and the environment. The use of nanoparticles synthesized from microbes has recently gained importance as a safe alternative to conventional insecticides. Recently, zinc oxide (ZnO) nanoparticles synthesized using Bacillus thuringiensis have shown insecticidal potential; however, in addition to its acute toxicity, it is necessary to determine possible sublethal effects at the organismal level to understand the toxicity of a new insecticide. Bt-derived enzymes such as nitrate reductase and other biomolecules play a vital role in the reduction of metal ions to metal nanoparticles. Here, we assessed the acute toxicity and sublethal effects of ZnO nanoparticles produced in the culture supernatant of B. thuringiensis ser. israelensis (Bti) as a reducing agent on the biological traits of Musca domestica. RESULTS Concentration-response larval bioassays using different concentrations of ZnO-Bti-supernatant nanoparticles revealed LC10 , LC20 , LC50 and LC90 values of 4.17, 6.11, 12.73 and 38.90 μg g-1 of larval diet, respectively. Exposure of M. domestica larvae to two concentrations (LC10 and LC20 ) resulted in a lengthened developmental time (egg to adult) and preoviposition period, and reduced fecundity, survival, longevity and oviposition period. Furthermore, population parameters including net reproductive rate, mean generation time, age-specific survival rate, fecundity, life expectancy and reproductive values, analyzed following age-stage and two-sex life table theory, were significantly decreased after exposure to these concentrations of ZnO-Bti-supernatant nanoparticles compared with the control. CONCLUSION ZnO-Bti-supernatant nanoparticles were shown to be toxic to M. domestica. Exposure of M. domestica to low concentrations of ZnO-Bti-supernatant nanoparticles resulted in negative transgenerational effects on progeny production in this fly. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hafsa Iqbal
- Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan
| | - Ammara Fatima
- Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan
| | | |
Collapse
|
29
|
Kumar D, Kumar P, Vikram K, Singh H. Fabrication and characterization of noble crystalline silver nanoparticles from Pimenta dioica leave extract and analysis of chemical constituents for larvicidal applications. Saudi J Biol Sci 2022; 29:1134-1146. [PMID: 35241964 PMCID: PMC8865016 DOI: 10.1016/j.sjbs.2021.09.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
The current works report the bio-efficacy of Pimenta dioica leaf derived silver nanoparticles (Pd@AgNPs) and leaf extract obtained trough different solvents against the larvae of malaria, filarial and dengue vectors. Synthesis of silver nanoparticles (AgNPs) was done by adding 10 ml of P. dioica leaf extract into 90 ml of 1 mM silver nitrate solution, a slow colour change was observed depicting the formation of AgNPs. Further, Pd@AgNPs was confirmed through Ultraviolet–visible spectroscopy which exhibited characteristic absorption peak at 422 nm wavelength. X-ray diffraction and selected area electron diffraction analysis confirmed monodispersed and crystalline nature of Pd@AgNPs with 32 nm an average size. Scanning electron microscopy and transmission electron microscopy showed the most of Pd@AgNPs were spherical and triangular in shape and energy-dispersive X-ray spectroscopy revealed silver elemental nature of nanoparticles. Zeta potential of Pd@AgNPs is highly negative which confirmed its stable nature. Pd@AgNPs showed prominent absorption peaks at 1015, 1047, 1243, 1634, 2347, 2373, 2697 and 3840 cm−1 which are corresponding to following compounds polysaccharides, carboxylic acids, water, alcohols, esters, ethers, amines, amides and phenol, respectively as reported by Fourier-transform infrared spectroscopy analysis. Gas chromatography–mass spectrometry and Liquid chromatography–mass spectrometry analysis revealed 39 and 70 compounds, respectively, which might be contributed for bio-reduction, capping, stabilization and larvicidal behavior of AgNPs. A comparable lethality (LC50 and LC90) was observed in case of Pd@AgNPs over leaf extract alone. The potential larvicidal activity of Pd@AgNPs was observed against the larvae of Aedes aegypti,(LC50, 2.605; LC90, 5.084 ppm) Anopheles stephensi (LC50, 3.269; LC90, 7.790 ppm) and Culex quinquefasciatus (LC50, 5.373; LC90, 14.738 ppm without affecting non-targeted organism, Mesocyclops thermocyclopoides after 72 hr of exposure. This study entails green chemistry behind synthesis of AgNPs which offers effective technique for mosquito control and other therapeutic applications.
Collapse
Affiliation(s)
- Dinesh Kumar
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi 110077, India
| | - Pawan Kumar
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi 110077, India
| | - Kumar Vikram
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi 110077, India
| | - Himmat Singh
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi 110077, India
| |
Collapse
|
30
|
Demarque DP, Espindola LS. Challenges, Advances and Opportunities in Exploring Natural Products to Control Arboviral Disease Vectors. Front Chem 2021; 9:779049. [PMID: 34869227 PMCID: PMC8634490 DOI: 10.3389/fchem.2021.779049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 02/02/2023] Open
Abstract
Natural products constitute an important source of molecules for product development. However, despite numerous reports of compounds and active extracts from biodiversity, poor and developing countries continue to suffer with endemic diseases caused by arboviral vectors, including dengue, Zika, chikungunya and urban yellow fever. Vector control remains the most efficient disease prevention strategy. Wide and prolonged use of insecticides has resulted in vector resistance, making the search for new chemical prototypes imperative. Considering the potential of natural products chemistry for developing natural products-based products, including insecticides, this contribution discusses the general aspects and specific characteristics involved in the development of drug leads for vector control. Throughout this work, we highlight the obstacles that need to be overcome in order for natural products compounds to be considered promising prototypes. Moreover, we analyze the bottlenecks that should be addressed, together with potential strategies, to rationalize and improve the efficiency of the drug discovery process.
Collapse
Affiliation(s)
- Daniel P Demarque
- Laboratory of Pharmacognosy, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil.,Laboratory of Pharmacognosy, Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Laila S Espindola
- Laboratory of Pharmacognosy, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
31
|
Kostić I, Lazarević J, Šešlija Jovanović D, Kostić M, Marković T, Milanović S. Potential of Essential Oils from Anise, Dill and Fennel Seeds for the Gypsy Moth Control. PLANTS (BASEL, SWITZERLAND) 2021; 10:2194. [PMID: 34686003 PMCID: PMC8538750 DOI: 10.3390/plants10102194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022]
Abstract
The gypsy moth (Lymantria dispar L. (Lepidoptera: Erebidae)) is a serious pest of hardwood forests. In the search for an environmentally safe means of its control, we assessed the impact of different concentrations of essential oils (EOs) from the seeds of three Apiaceae plants (anise Pimpinella anisum, dill Anethum graveolens, and fennel Foeniculum vulgare) on behavior, mortality, molting and nutritional physiology of gypsy moth larvae (GML). EOs efficacy was compared with commercial insecticide NeemAzal®-T/S (neem). The main compounds in the Eos were trans-anethole in anise; carvone, limonene, and α-phellandrene in dill; and trans-anethole and fenchone in fennel seed. At 1% EOs concentration, anise and fennel were better antifeedants and all three EOs were more toxic than neem. Neem was superior in delaying 2nd to 3rd larval molting. In the 4th instar, 0.5%, anise and fennel EOs decreased relative consumption rate more than neem, whereas all three EOs were more effective in reducing growth rate, approximate digestibility and efficiency of conversion of food into body mass leading to higher metabolic costs to GML. Decrease in consumption and metabolic parameters compared to control GML confirmed that adverse effects of the EOs stem from both pre- and post-ingestive mechanisms. The results indicate the potential of three EOs to be used for gypsy moth control.
Collapse
Affiliation(s)
- Igor Kostić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia;
| | - Jelica Lazarević
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Darka Šešlija Jovanović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Miroslav Kostić
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (M.K.); (T.M.)
| | - Tatjana Marković
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (M.K.); (T.M.)
| | - Slobodan Milanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; or
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, 613 00 Brno, Czech Republic
| |
Collapse
|
32
|
Radiation-Assisted Green Synthesis and Characterization of Selenium Nanoparticles, and Larvicidal Effects on Culex pipiens complex. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Chitosan nanoparticles containing Elettaria cardamomum and Cinnamomum zeylanicum essential oils; repellent and larvicidal effects against a malaria mosquito vector, and cytotoxic effects on a human skin normal cell line. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01829-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Manimegalai T, Raguvaran K, Kalpana M, Maheswaran R. Facile Synthesis of Silver Nanoparticles Using Vernonia anthelmintica (L.) Willd. and Their Toxicity Against Spodoptera litura (Fab.), Helicoverpa armigera (Hüb.), Aedes aegypti Linn. and Culex quinquefasciatus Say. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02151-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Maroofpour N, Mousavi M, Hejazi MJ, Iranipour S, Hamishehkar H, Desneux N, Biondi A, Haddi K. Comparative selectivity of nano and commercial formulations of pirimicarb on a target pest, Brevicoryne brassicae, and its predator Chrysoperla carnea. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:361-372. [PMID: 33566273 DOI: 10.1007/s10646-021-02349-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnology is a new field in the pesticide industry. Nanopesticides represent an emerging technological tool that offers a range of benefits including increased efficacy, durability, and reduction in the amounts of used active ingredients. However, due to the lack of studies on the toxicity and the sublethal effects on pests and natural enemies, the extent of action and fate of these nanopesticdes is still not fully understood limitting thus their wide use. In this study, we encapsulated the pirimicarb insecticide using nanostructured lipid carriers (NLC) and investigated the toxicity and sublethal effects (LC25) of the resulting nanocapsules against the cabbage aphid, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae) and its natural enemy the green lacewings Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Nanoencapsulation of pirimicarb enhanced 12.6-fold its toxicity to cabbage aphids compared to its commercial formulation. Furthermore, analysis of the age-stage, two-sex life table showed that negative effects on the B. brassicae aphid population growth were observed on F0 and F1 generations when aphids of parental (F0) generation were exposed to subelethal dose (LC25) of both formulations of pirimicarb. However, negative effects from sublethal exposure to the commercial and nanoformulated pirimicarb resulted in significant reduction on the net reproductive rate, intrinsic rate of natural increase, and finite rate of increase of the green lacewings C. carnea. Our findings indicate that the approaches and assumptions used to assess the risks of conventional insecticides may not apply for nanopesticides. Further research is still needed to better understand the environmental impact of these compounds.
Collapse
Affiliation(s)
- Nariman Maroofpour
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Mahdieh Mousavi
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mir Jalil Hejazi
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Shahzad Iranipour
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000, Nice, France
| | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Khalid Haddi
- Department of Entomology, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| |
Collapse
|
36
|
Grillo R, Fraceto LF, Amorim MJB, Scott-Fordsmand JJ, Schoonjans R, Chaudhry Q. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124148. [PMID: 33059255 DOI: 10.1016/j.jhazmat.2020.124148] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 05/25/2023]
Abstract
Recent years have seen the development of various colloidal formulations of pesticides and other agrochemicals aimed at use in sustainable agriculture. These formulations include inorganic, organic or hybrid particulates, or nanocarriers composed of biodegradable polymers, that can provide a better control of the release of active ingredients. The very small particle sizes and high surface areas of nanopesticides may however also lead to some unintended (eco)toxicological effects due to the way in which they interact with the target and non-target species and the environment. The current level of knowledge on ecotoxicological effects of nanopesticides is scarce, especially in regard to the fate and behaviour of such formulations in the environment. Nanopesticides will however have to cross a stringent regulatory scrutiny before marketing in most countries for health and environmental risks under a range of regulatory frameworks that require pre-market notification, risk assessment and approval, followed by labelling, post-market monitoring and surveillance. This review provides an overview of the key regulatory and ecotoxicological aspects relating to nanopesticides that will need to be considered for environmentally-sustainable use in agriculture.
Collapse
Affiliation(s)
- Renato Grillo
- Department of Physics and Chemistry, São Paulo State University (UNESP), Avenida Brasil, 56, Centro, 15385-000 Ilha Solteira, SP, Brazil.
| | - Leonardo F Fraceto
- Department of Environmental Engineering, São Paulo State University (UNESP), Avenida Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Reinhilde Schoonjans
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1/A, 43123 Parma, Italy
| | - Qasim Chaudhry
- University of Chester, Parkgate Road, Chester CH1 4BJ, United Kingdom
| |
Collapse
|
37
|
Storage of Cereals in Warehouses with or without Pesticides. INSECTS 2020; 11:insects11120846. [PMID: 33260599 PMCID: PMC7760151 DOI: 10.3390/insects11120846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 11/05/2022]
Abstract
Simple Summary For decades, the use of various synthetic pesticides has been the key factor in the proper and long-term storage of cereals. Unfortunately, we are faced with non-acceptable data regarding the effects of synthetic pesticides. Due to this, further steps have been made in order to take measures to reduce the use and risk of chemical pesticides by 50% by 2030 and to reduce the use of more dangerous pesticides by 50% by 2030. The concept of integrated pest management has been promoted as a dynamic and flexible approach leading to the reduction of chemical pesticide usage and their negative effects on the environment. The aim of this review is to indicate how cereals stored in silos or warehouses are handled and what measures are taken to preserve them, to describe the situation regarding pesticides, and to point out the problems occurring during application and the possibility of applying substitutions. It has to be taken into account that many of these measures cannot completely control insect or mite populations and are very demanding because of the need for more knowledge and experience, better equipment, greater financial investment, and a higher awareness of the impacts of pesticides not only for agricultural producers and storage keepers, but also for consumers. Abstract At a time when there is much talk of reducing pesticide use and the implementation of integrated pest management, mainly in fields and glass-houses, it is appropriate to consider how cereals in storage are handled and what measures are taken to protect them against insects and other pests. For decades, the use of various synthetic pesticides has been the basis for the proper and long-term storage of cereals, primarily free of insects and mites, but also fungi and their mycotoxins and rodents. However, due to the registered negative effects of synthetic pesticides, such as dichloro-diphenyl-trihloroethane (DDT) or methyl bromide, on human health and the environment, and the appearance of resistance to, e.g., malathion, researchers have been looking for new acceptable control measures. Due to the proven and published non-acceptable data regarding synthetic pesticide effects, a combination of physical, mechanical, and biological measures with the minimal use of synthetic pesticides, under the name of integrated pest management, have been promoted. These combinations include high and low temperatures; the removal of dockages; and the application of pheromones, diatomaceous earth, and natural compounds from various plants, as well as inert gases, predators, and parasites. A ban of any synthetic pesticide usage is currently being considered, which emphasizes the fact that protection should only be performed by measures that do not leave harmful residues. However, the facts show that the application of physical, mechanical, and/or biological measures, besides the fact that they are not necessarily efficient, is very demanding because more knowledge and experience is required, as well as better equipment, greater financial investment, and awareness raising not only for agricultural producers and storage keepers, but also for consumers. In order to use these measures, which are less hazardous to humans and the environment, it is necessary to adapt regulations not only to speed up the registration protocols of low-risk pesticides, but also to prescribe criteria for placing agricultural products on the market, as well as quality standards, i.e., the permitted number of present insects, in addition to their parts in certain types of food. Additionally, we should be aware of control measures for protecting novel food and other non-traditional foods. It is important to continue to combine different protection measures, namely integrated pest management, until all of the other new procedures that must be carried out during the period of storing cereals and other products are clear, in order to ensure the best quality of final products for consumers.
Collapse
|
38
|
Rizvi SAH, Ling S, Zeng X. Seriphidium brevifolium essential oil: a novel alternative to synthetic insecticides against the dengue vector Aedes albopictus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31863-31871. [PMID: 32504436 DOI: 10.1007/s11356-020-09108-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The Aedes albopictus mosquito is a vector of several deadly diseases of humans and domesticated animals. Usually, synthetic insecticides are used for mosquito control. The excessive use of synthetic insecticides is hazardous for humans and the environment. Therefore, there is a need to develop environment-friendly and novel mosquito larvicides. In the current study, we evaluated larvicidal and bite protection properties of Seriphidium brevifolium essential oil (SBEO) and its active constituents against this mosquito. SBEO and its active constituents, α, β-thujone, and limonene, were toxic to A. albopictus, with LC50 values of 21.43, 45.99, 47.38, and 49.46 μg/mL. The cream formulation of EO at 5 % (w/v) provided complete protection against mosquito bites until 70 min after application. Among the EO constituents tested, α and β-thujone showed considerable protections against mosquito bites but lower as compared with the whole oil. Furthermore, 1:1 combinations of active constituent α-thujone and β-thujone and 1:1:1 combinations of α-thujone, β-thujone, and limonene displayed a synergistic effect against the larvae. Particularly, the EO and its active constituents were safer to Poecilia reticulata a mosquito predator, with LC50 ranging from 3934.33 to 14,432.11 μg/mL. Our current study indicated that SBEO and some of its constituents can be used for the control of A. albopictus mosquito, as a novel alternative to hazardous synthetic insecticides and to overcome the problem of increasing insecticides resistance.
Collapse
Affiliation(s)
- Syed Arif Hussain Rizvi
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Siquan Ling
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinnian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
39
|
Duarte JL, Maciel de Faria Motta Oliveira AE, Pinto MC, Chorilli M. Botanical insecticide-based nanosystems for the control of Aedes (Stegomyia) aegypti larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28737-28748. [PMID: 32458306 DOI: 10.1007/s11356-020-09278-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Aedes (Stegomyia) aegypti is a cosmopolitan species that transmits arbovirus of medical importance as dengue, Zika, and chikungunya. The main strategy employed for the control of this mosquito is the use of larvicidal agents. However, the overuse of synthetic chemical larvicides has led to an increase in resistant insects, making management difficult. Therefore, the use of botanical insecticide-based nanosystems as an alternative to the use of synthetic agents for the control of Ae. aegypti has gained more considerable attention in the last years, mainly due to the advantages of nanostructured delivery systems, such as (a) controlled release; (b) greater surface area; (c) improvement of biological activity; (d) protection of natural bioactive agents from the environment and thus achieving stability; and (e) lipophilic drugs are easier dispersed even in aqueous vehicles. This review summarizes the current knowledge about botanical insecticide-based nanosystems as larvicidal against Ae. aegypti larvae. The majority of papers used metallic nanoparticles (NPs) as larvicidal agents, mainly silver nanoparticles (AgNPs), showing potential for their use as an alternative, followed by nanoemulsions containing vegetable oils, most essential oils, nanosystems that allow the dispersion of this high hydrophobic product in water, the environment of larval development. The final section describes scientific findings about the mode of action of these NPs, showing the gap about this subject in literature.
Collapse
Affiliation(s)
- Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rodovia Araraquara Jaú, Km 01, s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - Anna Eliza Maciel de Faria Motta Oliveira
- Department of Health and biological sciences, Federal University of Amapá-UNIFAP, Rodovia Juscelino Kubitschek, Km 02, Jardim Marco Zero, Macapá, AP, 68903-361, Brazil
| | - Mara Cristina Pinto
- School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rodovia Araraquara Jaú, Km 01, s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rodovia Araraquara Jaú, Km 01, s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
40
|
Kumar D, Kumar P, Singh H, Agrawal V. Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25987-26024. [PMID: 32385820 DOI: 10.1007/s11356-020-08444-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/13/2020] [Indexed: 05/25/2023]
Abstract
Mosquitoes spread several life-threatening diseases such as malaria, filaria, dengue, Japanese encephalitis, West Nile fever, chikungunya, and yellow fever and are associated with millions of deaths every year across the world. However, insecticides of synthetic origin are conventionally used for controlling various vector-borne diseases but they have various associated drawbacks like impact on non-targeted species, negative effects on the environment, and development of resistance in vector species by alteration of the target site. Plant extracts, phytochemicals, and their nanoformulations can serve as ovipositional attractants, insect growth regulators, larvicides, and repellents with least effects on the environment. Such plant-derived products exhibit broad-spectrum resistance against various mosquito species and are relatively cheaper, environmentally safer, biodegradable, easily accessible, and are non-toxic to non-targeted organisms. Therefore, in this review article, the current knowledge of phytochemical sources exhibiting larvicidal activity and their variations in response to solvents used for their extraction is underlined. Also, different methods such as physical, chemical, and biological for silver nanoparticle (AgNPs) synthesis, their mechanism of synthesis using plant extract, their potent larvicidal activity, and the possible mechanism by which these particles kill mosquito larvae are discussed. In addition, constraints related to commercialization of nanoherbal products at government and academic or research level and barriers from laboratory experiments to field trial have also been discussed. This comprehensive information can be gainfully employed for the development of herbal larvicidal formulations and nanopesticides against insecticide-resistant vector species in the near future. Graphical abstract.
Collapse
Affiliation(s)
- Dinesh Kumar
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Pawan Kumar
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
| | - Himmat Singh
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
| | - Veena Agrawal
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|