1
|
Şengelen A, Önay-Uçar E. Rosmarinic acid attenuates glioblastoma cells and spheroids' growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156060. [PMID: 39341126 DOI: 10.1016/j.phymed.2024.156060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Glioblastoma (GB) is a highly malignant type of brain cancer with a poor prognosis. Therapeutic strategies for GB are still limited. Rosmarinic acid (RA), a polyphenolic compound, is a promising experimental anticancer agent, but its specific protein targets for GB remain unclear. PURPOSE This study aimed to elucidate the anticancer effects of RA in 2D- and 3D-GB cells and the underlying mechanisms. METHODS 3D-tumor spheroids (mimics in vivo tumors) were obtained by the hanging-drop/agarose method. RA's anti-glioma activity on U-87MG (p53-wt/PTEN-mt) and LN229 (p53-mt/PTEN-wt) cells was evaluated through cell viability, colony-formation, migration/invasion/angiogenesis assays, fluorescence imaging, and spheroid growth analysis. The underlying mechanism of the anticancer effects of RA was investigated by Western blot and immunofluorescence analysis. The MEK inhibitor U0126 was used to block ERK phosphorylation. RESULTS RA treatments exerted anti-proliferative and pro-apoptotic effects on human GB cells. RA dose-dependently reduced angiogenesis and intracellular ROS levels, suppressed glioma growth, and migration/invasion in 2D-culture and cancer stem cell (CSC)-like 3D-spheroid culture (SPC). Repeated therapy in SPC was more effective by leading to disrupted structure than a single treatment. Treatments in SPC also suppressed epithelial-mesenchymal transition (EMT) and CSC-like properties. Strikingly, RA downregulated the SIRT1/FOXO1/NF-κB axis independently of p53 or PTEN function in both gliomas. Immunofluorescence labeling revealed decreased SIRT1 and NF-κB-p65 and increased FOXO1 and GAPDH proteins in nuclear location (associated with apoptosis). Surprisingly, RA increased p-ERK1/2 levels, but priming with U0126 abolished RA-mediated p-ERK upregulation; thus, autophagy and apoptosis induction in GB cells were prevented, and the growth of GB spheroids accelerated. Specifically, RA also inhibited the PTEN/PI3K/AKT pathway in U-87MG cells. Due to genetic differences in cells, U-87MG cells were more sensitive to RA treatments than LN229 cells. Meanwhile, our positive control drug trial results with FDA-approved temozolomide (TMZ) used in GB treatment showed that our test compound rosmarinic acid exhibited higher therapeutic effects than TMZ at lower doses. CONCLUSION Suppression of EMT, downregulation of SIRT1/FOXO1/NF-κB axis, inhibition of PTEN/PI3K/AKT signaling pathway, and ERK-induced apoptosis and autophagy were determined to be involved in stopping glioma progression. Our findings for the first time, revealed that RA may have potential therapeutic use by having multiple targets in human brain cancer with further clinical studies.
Collapse
Affiliation(s)
- Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkiye.
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye
| |
Collapse
|
2
|
Czerwińska K, Radziejewska I. Rosmarinic Acid: A Potential Therapeutic Agent in Gastrointestinal Cancer Management-A Review. Int J Mol Sci 2024; 25:11704. [PMID: 39519255 PMCID: PMC11546295 DOI: 10.3390/ijms252111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Gastrointestinal cancers are still the leading cause of death worldwide. This is related, among other things, to the non-specific symptoms, especially in the initial stages, and also to the limited possibilities for treatment. Therefore, research is still being conducted to improve the detection of this type of cancer and increase the effectiveness of therapy. The potential application of natural compounds in cancer management deserves special attention. In the group of such products, there are polyphenolic compounds that reveal, e.g., anti-oxidative, anti-carcinogenic, anti-inflammatory, anti-diabetic, and neuroprotective properties. One of these polyphenols is rosmarinic acid, commonly found in plants such as the Boraginaceae and Nepetoideae subfamilies of the Lamiaceae (mint) family. A number of studies have considered the positive effects of rosmarinic acid in the treatment of many cancers, including gastrointestinal ones such as oral, stomach, pancreas, colon, and liver cancers. The main aim of this paper was to summarize the mechanisms of action of rosmarinic acid in gastrointestinal cancers.
Collapse
Affiliation(s)
| | - Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| |
Collapse
|
3
|
Khaksar S, Kiarostami K, Ramdan M. Effect of Rosmarinic Acid on Cell Proliferation, Oxidative Stress, and Apoptosis Pathways in an Animal Model of Induced Glioblastoma Multiforme. Arch Med Res 2024; 55:103005. [PMID: 38759277 DOI: 10.1016/j.arcmed.2024.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND In brain tumors, the complexity of the pathophysiological processes such as oxidative stress, cell proliferation, angiogenesis, and apoptosis have seriously challenged the definitive treatment. Rosmarinic acid (RA), as a polyphenolic compound, has been found to prevent tumor progression in some aggressive cancers. This study was designed to evaluate the anticancer effects of RA on brain tumors. METHOD Rats were divided into six groups. Implantation of C6 glioma cells was carried out in the caudate nucleus of the right hemisphere. RA at doses of 5, 10, and 20 mg/kg (i.p.) was administered to the treatment groups for seven days. Tumor volume (by MRI imaging), locomotor ability, survival time, histological alterations (by H & E staining), expression of p53 and p21 mRNAs (by RT-PCR), activities of antioxidant enzymes (superoxide dismutase [SOD] and catalase [CAT] by assay kits), expression of caspase-3 and VEGF (by immunohistochemical analysis), and TUNEL-positive cells (by tunnel staining) were analyzed. RESULTS The results indicated that the RA at a dose of 20 mg/kg reduced the tumor volume, prolonged survival time, increased p53 and p21 mRNAs, attenuated SOD and CAT activities in tumor tissue, elevated caspase-3, and increased the number of TUNEL-positive cells. Furthermore, histological analysis revealed less invasion of tumor cells into the normal parenchyma in rats treated with RA (20 mg/kg). CONCLUSION These findings provide evidence that the ability of RA to reduce tumor volume could be related to factors that modulate oxidative stress (SOD and CAT enzymes), cell proliferation (p53 and p21), and apoptosis (caspase-3).
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Khadijeh Kiarostami
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mahmoud Ramdan
- Department of Biology, Faculty of Science, Al-Furat University, Deir-ez-Zor, Syrian Arab Republic
| |
Collapse
|
4
|
Krushna BRR, Manjunatha K, Wu SY, Sivaganesh D, Sharma SC, Sridhar C, Joy FD, Ramesha H, Prakash Dalbanjan N, Devaraju KS, Nagabhushana H. Ultrasound-driven facile fabrication of Pd doped SnO 2 hierarchical superstructures: Structural, growth mechanism, dermatoglyphics, and anti-cancer activity. BIOMATERIALS ADVANCES 2024; 160:213855. [PMID: 38643692 DOI: 10.1016/j.bioadv.2024.213855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
This research introduces a novel method that leverages Spirulina extract (S.E) as a bio-surfactant in the ultrasound-assisted synthesis (UAS) of Pd3+ (0.25-10 mol%) doped tin oxide (SnO2) self-assembled superstructures. Nanotechnology has witnessed significant advancements in recent years, driven by the exploration of novel synthesis methods and the development of advanced nanomaterials tailored for specific applications. Metal oxide nanoparticles, particularly SnO2, have garnered considerable attention due to their versatile properties and potential applications in various fields, including gas sensing, catalysis, and biomedical engineering. The study explores how varying influential parameters like S.E concentration, sonication time, pH, and sonication power can influence the resulting superstructures' morphology, size, and shape. A theoretical model for forming different hierarchical superstructures (HS) is proposed. X-ray diffraction (XRD) analysis confirms the crystalline tetragonal rutile phase of the SnO2:Pd HS. Raman spectroscopy reveals a red shift in the A1g mode, indicating phonon confinement due to various defects in the SnO2 structure. Further characterization using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) provides insights into particle size, surface morphology, elemental composition, and binding energy. The study also demonstrates the application of optimized SnO2:3Pd HS in developing latent fingerprints (LFPs) on different surfaces using a simple powder dusting (PD) method, with the fingerprints (FPs) visualized under normal light. A mathematical model developed in Python-based software is used to analyze various features of the developed FPs, including pore properties such as number, position, inter-spacing, area, and shape. Additionally, an in vitro MTT assay shows concentration-dependent anticancer activity of SnO2:3Pd nanoparticles (NPs) on MCF7 cell lines, highlighting their potential as a promising cancer treatment option. Overall, the study suggests that the optimized HS can serve as multifunctional platforms for biomedical and dermatoglyphics applications, demonstrating the versatility and potential of the synthesized materials.
Collapse
Affiliation(s)
- B R Radha Krushna
- Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103, India
| | - K Manjunatha
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Sheng Yun Wu
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan.
| | - D Sivaganesh
- Institute of Physics and Technology, Ural Federal University, Mira str., Yekaterinburg, Russia
| | - S C Sharma
- Honorary Professor of Law and Forensic Materials, Jain University, Bangalore-562112, India
| | - C Sridhar
- Meenakshi Academy of Higher Education and Research, Chennai 600078, India
| | - Fr Deepu Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka 560077, India
| | - H Ramesha
- Department of Biochemistry, Karnatak University, Dharwad 580003, India
| | | | - K S Devaraju
- Department of Biochemistry, Karnatak University, Dharwad 580003, India
| | - H Nagabhushana
- Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103, India.
| |
Collapse
|
5
|
Dziadek M, Dziadek K, Checinska K, Zagrajczuk B, Cholewa-Kowalska K. Bioactive Glasses Modulate Anticancer Activity and Other Polyphenol-Related Properties of Polyphenol-Loaded PCL/Bioactive Glass Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24261-24273. [PMID: 38709741 PMCID: PMC11103658 DOI: 10.1021/acsami.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
In this work, bioactive glass (BG) particles obtained by three different methods (melt-quenching, sol-gel, and sol-gel-EISA) were used as modifiers of polyphenol-loaded PCL-based composites. The composites were loaded with polyphenolic compounds (PPh) extracted from sage (Salvia officinalis L.). It was hypothesized that BG particles, due to their different textural properties (porosity, surface area) and surface chemistry (content of silanol groups), would act as an agent to control the release of polyphenols from PCL/BG composite films and other significant properties associated with and affected by the presence of PPh. The polyphenols improved the hydrophilicity, apatite-forming ability, and mechanical properties of the composites and provided antioxidant and anticancer activity. As the BG particles had different polyphenol-binding capacities, they modulated the kinetics of polyphenol release from the composites and the aforementioned properties to a great extent. Importantly, the PPh-loaded materials exhibited multifaceted and selective anticancer activity, including ROS-mediated cell cycle arrest and apoptosis of osteosarcoma (OS) cells (Saos-2) via Cdk2-, GADD45G-, and caspase-3/7-dependent pathways. The materials showed a cytotoxic and antiproliferative effect on cancerous osteoblasts but not on normal human osteoblasts. These results suggest that the composites have great potential as biomaterials for treating bone defects, particularly following surgical removal of OS tumors.
Collapse
Affiliation(s)
- Michal Dziadek
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| | - Kinga Dziadek
- Faculty
of Food Technology, Department of Human Nutrition and Dietetics, University of Agriculture in Krakow, 122 Balicka St., 30-149 Krakow, Poland
| | - Kamila Checinska
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| | - Barbara Zagrajczuk
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| | - Katarzyna Cholewa-Kowalska
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| |
Collapse
|
6
|
Han LY, Yu H, Wang S, Bao YR, Li TJ, Zheng Y, Luo X, Jia MN, Zhang Q, Meng XS. Classical prescription Floris Sophorae Powder treat colorectal cancer by regulating KRAS/MEK-ERK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117805. [PMID: 38278374 DOI: 10.1016/j.jep.2024.117805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Colorectal cancer (CRC) belongs to the category of intestinal wind, anal ulcer, abdominal mass and other diseases in traditional Chinese medicine (TCM). Floris Sophorae Powder (F.S), is a classical prescription is recorded in Puji Benshi Fang for the treatment of intestinal carbuncle. It has been incorporated into the prescriptions for the treatment of intestinal diseases and achieved remarkable results in modern medicine. However, the mechanism of F.S in the treatment of colorectal cancer remains unclear and requires further study. AIM OF THE STUDY To investigate F.S in treating CRC and clarify the underlying mechanism. MATERIALS AND METHODS This study was based on Dextran Sulfate Sodium Salt (DSS) combined with Azoxymethane (AOM) induced CRC mouse model to clarify the pharmacological effects of F.S. The serum metabolomics was used to study the mechanism of action, and the chemical composition of F.S was found by UPLC-Q-TOF-MS. The rationality of serm metabolomics results was verified through the clinical target database of network pharmacology, and the upstream and downstream targets of related pathways were found. The mechanism pathway was verified by Western blot to clarify its mechanism of action. RESULTS In vivo pharmacological experiments showed that F.S inhibited tumor growth and improved hematochezia. The vital signs of mice in the high-dose F.S group approached to those in the control group. A total of 43 differential metabolites were found to be significantly changed by serum metabolomics. F.S could modulate and recover most of the differential metabolites, which proved to be closely related to the KRAS/MEK-ERK signaling pathway. A total of 46 compounds in F.S were identified, and the rationality of serm metabolic pathway was verified by network pharmacology. Western blot results also verified that the expression of KRAS, E2F1, p-MEK and p-ERK were significantly decreased after F.S treatment. CONCLUSION Classical prescription Floris Sophorae Powder treat colorectal cancer by regulating KRAS/MEK-ERK signaling pathway.
Collapse
Affiliation(s)
- Li-Ying Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Hao Yu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Yong-Rui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Tian-Jiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Ying Zheng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Xi Luo
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Meng-Nan Jia
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Qiang Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| | - Xian-Sheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China; Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| |
Collapse
|
7
|
Ning N, Nan Y, Chen G, Huang S, Lu D, Yang Y, Meng F, Yuan L. Anti-Tumor Effects and Toxicity Reduction Mechanisms of Prunella vulgaris: A Comprehensive Review. Molecules 2024; 29:1843. [PMID: 38675663 PMCID: PMC11052495 DOI: 10.3390/molecules29081843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
PURPOSE To investigate and systematically describe the mechanism of action of Prunella vulgaris (P. vulgaris) against digestive system tumors and related toxicity reduction. METHODS This study briefly describes the history of medicinal food and the pharmacological effects of P. vulgaris, focusing on the review of the anti-digestive tumor effects of the active ingredients of P. vulgaris and the mechanism of its toxicity reduction. RESULTS The active ingredients of P. vulgaris may exert anti-tumor effects by inducing the apoptosis of cancer cells, inhibiting angiogenesis, inhibiting the migration and invasion of tumor cells, and inhibiting autophagy. In addition, P. vulgaris active ingredients inhibit the release of inflammatory factors and macrophages and increase the level of indicators of oxidative stress through the modulation of target genes in the pathway to achieve the effect of toxicity reduction. CONCLUSION The active ingredients in the medicine food homology plant P. vulgaris not only treat digestive system tumors through different mechanisms but also reduce the toxic effects. P. vulgaris is worthy of being explored more deeply.
Collapse
Affiliation(s)
- Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| | - Yi Nan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China;
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| | - Doudou Lu
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Yating Yang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Fandi Meng
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| |
Collapse
|
8
|
Azhar MK, Anwar S, Hasan GM, Shamsi A, Islam A, Parvez S, Hassan MI. Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases. Nutrients 2023; 15:4297. [PMID: 37836581 PMCID: PMC10574478 DOI: 10.3390/nu15194297] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Phytochemicals are abundantly occurring natural compounds extracted from plant sources. Rosmarinic acid (RA) is an abundant phytochemical of Lamiaceae species with various therapeutic implications for human health. In recent years, natural compounds have gained significant attention as adjuvant and complementary therapies to existing medications for various diseases. RA has gained popularity due to its anti-inflammatory and antioxidant properties and its roles in various life-threatening conditions, such as cancer, neurodegeneration, diabetes, etc. The present review aims to offer a comprehensive insight into the multifaceted therapeutic properties of RA, including its potential as an anticancer agent, neuroprotective effects, and antidiabetic potential. Based on the available evidences, RA could be considered a potential dietary component for treating various diseases, including cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Md. Khabeer Azhar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Saleha Anwar
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 364, United Arab Emirates
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (A.I.); (M.I.H.)
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (A.I.); (M.I.H.)
| |
Collapse
|
9
|
Noor A, Jamil S, Sadeq TW, Mohammed Ameen MS, Kohli K. Development and Evaluation of Nanoformulations Containing Timur Oil and Rosemary Oil for Treatment of Topical Fungal Infections. Gels 2023; 9:516. [PMID: 37504395 PMCID: PMC10378787 DOI: 10.3390/gels9070516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
The pervasiveness of fungal infections is an issue for skin health globally, and there are a reported 40 million cases in developed and developing countries. Novel drug delivery systems provide better therapeutic efficacy over conventional drug therapy due to their lower side effects and toxicity. Furthermore, combinations of essential oils can represent alternative therapies for fungal infections that are resistant to synthetic drugs. This study is aimed at developing Timur oil into a nanoemulgel and evaluating its antifungal effects. The development of the formulation involved the preparation of a nanoemulsion by the titration method, followed by its evaluation for various physicochemical properties. The antifungal activity of the nanoemulgel against Candida albicans was evaluated. The zone of inhibition was determined using the disk diffusion method. The results show that the developed nanoemulgel has a particle size of 139 ± 6.11 nm, a PDI of 0.309, and a zeta potential of -19.12 ± 2.73 mV. An in vitro drug release study showed a sustained release of 70 ± 0.289% of the drug over a period of 24 h. The % drug permeation across the skin was found to be 79.11 ± 0.319% over 24 h. However, the amount of drug retained in the skin was 56.45 µg/g. The flux for the nanoemulgel was found to be 94.947 µg/cm2/h, indicating a better permeability profile. The nanoemulgel formulation showed a zone of inhibition of 15 ± 2.45 mm, whereas the 1% ketoconazole cream (marketed preparation) exhibited a zone of inhibition of 13 ± 2.13 mm. The results of this study suggest that developed nanoemulgel containing Timur oil and rosemary oil has the potential to be used for treating topical fungal infections caused by Candida albicans.
Collapse
Affiliation(s)
- Afeefa Noor
- Lloyd Institute of Management and Technology, Greater Noida 201306, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, India
| | - Shahid Jamil
- Department of Pharmacy, College of Pharmacy, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
| | - Tariq Waece Sadeq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
- Pharmacy Department, Erbil Medical Technical Institute, Erbil Polytechnic University, Ebril 44001, Iraq
| | | | - Kanchan Kohli
- Lloyd Institute of Management and Technology, Greater Noida 201306, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, India
| |
Collapse
|
10
|
Ijaz S, Iqbal J, Abbasi BA, Ullah Z, Yaseen T, Kanwal S, Mahmood T, Sydykbayeva S, Ydyrys A, Almarhoon ZM, Sharifi-Rad J, Hano C, Calina D, Cho WC. Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications. Biomed Pharmacother 2023; 162:114687. [PMID: 37062215 DOI: 10.1016/j.biopha.2023.114687] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.
Collapse
Affiliation(s)
- Shumaila Ijaz
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan.
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46300, Pakistan
| | - Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Kanwal
- Department of Biology and Environmental Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Sandugash Sydykbayeva
- Higher School of Natural Sciences, Zhetysu University named after I.Zhansugurov, 040009 Taldykorgan, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040, Kazakhstan
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, 45067 Orléans Cedex2, France.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Qin T, Rong X, Zhang X, Kong L, Kang Y, Liu X, Hu M, Liang H, Tie C. Lipid Mediators Metabolic Chaos of Asthmatic Mice Reversed by Rosmarinic Acid. Molecules 2023; 28:molecules28093827. [PMID: 37175237 PMCID: PMC10179739 DOI: 10.3390/molecules28093827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Asthma is a common chronic inflammatory disease of the airways with no known cure. Lipid mediators (LMs) are a kind of inflammatory signaling molecules which are believed to be involved in the development of asthma. Hyssopus cuspidatus Boriss. is a traditional Uyghur medicine, which is widely used in the treatment of asthma and other respiratory diseases. Extraction of Hyssopus cuspidatus Boriss. was reported to neutralize asthma symptoms. The purpose of the study was to investigate both the anti-inflammatory and immunoregulation properties of the Hyssopus cuspidatus Boriss. extract (SXCF) and its main active constituent, rosmarinic acid (RosA), in vivo. The effect of RosA, a major constituent of SXCF, was evaluated on an asthmatic model, with both anti-inflammatory and immunoregulation properties. MATERIALS AND METHODS Anti-inflammatory effect of SXCF and RosA was assessed using OVA-induced asthma model mice by UPLC-MS/MS method. RESULTS Overall, RosA played a critical role in anti-asthma treatment. In total, 90% of LMs species that were significantly regulated by SXCF were covered. On the most important LMs associated with asthma, RosA equivalent induced similar effects as SXCF did. It is believed that some constituents in SXCF could neutralize RosA excessive impacts on LMs.
Collapse
Affiliation(s)
- Tuo Qin
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Xiaojuan Rong
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lingfei Kong
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Yutong Kang
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Xuanlin Liu
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Mengying Hu
- Xinjiang Institute of Material Medica, South Xinhua Road 140, Urumqi 830004, China
| | - Handong Liang
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| | - Cai Tie
- State Key Laboratory Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
12
|
Li Pomi F, Papa V, Borgia F, Vaccaro M, Allegra A, Cicero N, Gangemi S. Rosmarinus officinalis and Skin: Antioxidant Activity and Possible Therapeutical Role in Cutaneous Diseases. Antioxidants (Basel) 2023; 12:antiox12030680. [PMID: 36978928 PMCID: PMC10045493 DOI: 10.3390/antiox12030680] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The rosemary plant, Rosmarinus officinalis L., one of the main members of the Lamiaceae family, is currently one of the most promising herbal medicines due to its pharmaceutical properties. This research aimed to evaluate the antioxidant role of Rosmarinus officinalis and its bioactive compounds on the skin, with a focus on the newly emerging molecular mechanisms involved, providing extensive scientific evidence of its anti-inflammatory, antimicrobial, wound-healing and anticancer activity in dermatological practice. The search was conducted on articles concerning in vitro and in vivo studies in both animals and humans. The results obtained confirm the antioxidant role of R. officinalis. This assumption derives the possibility of using R. officinalis or its bioactive elements for the treatment of inflammatory and infectious skin pathologies. However, although the use of rosemary in the treatment of skin diseases represents a fascinating line of research, future perspectives still require large and controlled clinical trials in order to definitively elucidate the real impact of this plant and its components in clinical practice.
Collapse
Affiliation(s)
- Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
13
|
Martins-Gomes C, Nunes FM, Silva AM. Modulation of Cell Death Pathways for Cellular Protection and Anti-Tumoral Activity: The Role of Thymus spp. Extracts and Their Bioactive Molecules. Int J Mol Sci 2023; 24:ijms24021691. [PMID: 36675206 PMCID: PMC9864824 DOI: 10.3390/ijms24021691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Natural products used for their health-promoting properties have accompanied the evolution of humanity. Nowadays, as an effort to scientifically validate the health-promoting effects described by traditional medicine, an ever-growing number of bioactivities are being described for natural products and the phytochemicals that constitute them. Among them, medicinal plants and more specifically the Thymus genus spp., arise as products already present in the diet and with high acceptance, that are a source of phytochemicals with high pharmacological value. Phenolic acids, flavonoid glycoside derivatives, and terpenoids from Thymus spp. have been described for their ability to modulate cell death and survival pathways, much-valued bioactivities in the pharmaceutical industry, that continually sought-after new formulations to prevent undesired cell death or to control cell proliferation. Among these, wound treatment, protection from endogenous/exogenous toxic molecules, or the induction of selective cell death, such as the search for new anti-tumoral agents, arise as main objectives. This review summarizes and discusses studies on Thymus spp., as well as on compounds present in their extracts, with regard to their health-promoting effects involving the modulation of cell death or survival signaling pathways. In addition, studies regarding the main bioactive molecules and their cellular molecular targets were also reviewed. Concerning cell survival and proliferation, Thymus spp. present themselves as an option for new formulations designed for wound healing and protection against chemicals-induced toxicity. However, Thymus spp. extracts and some of their compounds regulate cell death, presenting anti-tumoral activity. Therefore Thymus spp. is a rich source of compounds with nutraceutical and pharmaceutical value.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemistry, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
14
|
Zhao J, Xu L, Jin D, Xin Y, Tian L, Wang T, Zhao D, Wang Z, Wang J. Rosmarinic Acid and Related Dietary Supplements: Potential Applications in the Prevention and Treatment of Cancer. Biomolecules 2022; 12:biom12101410. [PMID: 36291619 PMCID: PMC9599057 DOI: 10.3390/biom12101410] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer constitutes a severe threat to human health and quality of life and is one of the most significant causes of morbidity and mortality worldwide. Natural dietary products have drawn substantial attention in cancer treatment and prevention due to their availability and absence of toxicity. Rosmarinic acid (RA) is known for its excellent antioxidant properties and is safe and effective in preventing and inhibiting tumors. This review summarizes recent publications on culture techniques, extraction processes, and anti-tumor applications of RA-enriched dietary supplements. We discuss techniques to improve RA bioavailability and provide a mechanistic discussion of RA regarding tumor prevention, treatment, and adjuvant therapy. RA exhibits anticancer activity by regulating oxidative stress, chronic inflammation, cell cycle, apoptosis, and metastasis. These data suggest that daily use of RA-enriched dietary supplements can contribute to tumor prevention and treatment. RA has the potential for application in anti-tumor drug development.
Collapse
Affiliation(s)
- Jiachao Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Liwei Xu
- Department of Respirology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Di Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Xin
- School of pharmaceutical sciences, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Lin Tian
- Department of Respirology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Tan Wang
- Department of Respirology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence: (Z.W.); (J.W.)
| | - Jing Wang
- Department of Respirology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence: (Z.W.); (J.W.)
| |
Collapse
|
15
|
In vitro cytotoxicity against breast cancer using biogenically synthesized gold and iron oxide nanoparticles derived from the hydroethanolic extract of Salvia officinalis L. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractNanotechnology has a real-world impact on every aspect of life. Many researchers have been drawn to the biosynthesis of gold and iron oxide nanoparticles (Au-NPs and SPIONS) because they have a wide range of life applications. In this work, a single-step environmentally friendly biosynthesis of Au-NPs and SPIONS is reported by reducing solutions of gold aureate and ferric chloride is reported for the first time using the hydroethanolic extract (HEE) of Salvia officinalis (S. officinalis), an edible plant found in Egypt. The phytochemicals present in HEE were responsible for the reduction as well as stabilization of these nanoparticles. Before using the HEE, it was phytochemically screened for its constituents. Qualitatively, the HEE was found to have comparable levels of phenolics, flavonoids, tannins, proteins, carbohydrates, terpenoids, steroids, and polysaccharides. Quantitatively, total phenolics (236.91 ± 2.15 mg GAE/g extract), flavonoids (91.38 ± 0.97 mg QE/g extract), tannins (101.60 ± 1.33 mg/g extract), proteins (284.62 ± 2.65 mg/g extract), carbohydrates (127.73 ± 1.68 mg/g extract), soluble sugars (52.3 ± 0.67 mg/g extract), and polysaccharides (75.43 ± 1.01 mg/g extract) were estimated. In addition, HPLC analysis revealed the identification of seven phenolic compounds [ferulic (67.26%), chlorogenic (3.12%), caffeic (3.11%), p-coumaric (1.13%), protocatechuic (0.65%), catechin (0.69%), rosmarinic (0.53%)] and three flavonoids [apigenin (5.29%), quercetin-7-O-glucoside (3.39%), and luteolin-7-O-rutinose (2.01%)]. The characterization of the biosynthesized NPs was confirmed by Fourier transform infrared (FT-IR) spectroscopy, UV–Vis absorption spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). In vitro cytotoxic studies showed that Au-NPs, SPIONS, and HEE have an inhibitory effect on the growth of human breast cancer (MCF-7) cells at an IC50 of 6.53, 6.97, and 26.12 µg mL−1, respectively, by comparison with the standard drug (Doxorubicin) effect (0.18 µg mL−1).
Collapse
|
16
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
17
|
Newly crosslinked chitosan- and chitosan-pectin-based hydrogels with high antioxidant and potential anticancer activity. Carbohydr Polym 2022; 290:119486. [DOI: 10.1016/j.carbpol.2022.119486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
|
18
|
Esmeeta A, Adhikary S, Dharshnaa V, Swarnamughi P, Ummul Maqsummiya Z, Banerjee A, Pathak S, Duttaroy AK. Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed Pharmacother 2022; 153:113384. [PMID: 35820317 DOI: 10.1016/j.biopha.2022.113384] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022] Open
Abstract
Colon cancer is the third most predominant cancer caused by genetic, environmental and nutritional factors. Plant-based compounds are very well known to regress colon cancer in many ways, like delaying tumor growth, managing chemotherapy and radiation therapy side-effects, and working at the molecular levels. Medicinal plants contain many bioactive phytochemicals such as flavonoids, polyphenol compounds, caffeic acid, catechins, saponins, polysaccharides, triterpenoids, alkaloids, glycosides, phenols, quercetin, luteolin, kaempferol and luteolin glycosides, carnosic acid, oleanolic acid, rosmarinic acid, emodin, and eugenol and anthricin. These bioactive compounds can reduce tumor cell proliferation via several mechanisms, such as blocking cell cycle checkpoints and promoting apoptosis through activating initiator and executioner caspase. Traditional medicines have been used globally to treat cancers because of their anti-cancer effects, antioxidant properties, anti-inflammatory properties, anti-mutagenic effects, and anti-angiogenic effects. In addition, these medicines effectively suppress early and intermediate stages of carcinogenesis when administered in their active and pure form. However, traditional medicine is not very popular due to some critical challenges. These include poor solubility and absorption of these compounds, intellectual property-related issues, involvement of drug synergism, absence of drug-likeness, and unsure protocols for their extraction from the plant source. Using bioactive compounds in colon cancer has equal advantages and limitations. This review highlights the benefits and challenges of using bioactive compounds derived from plants for colon cancer. We have also discussed using these compounds to target cancer stem cell self-renewal, its effects on cancer cell metabolism, safety parameters, easy modulation, and their bioavailability.
Collapse
Affiliation(s)
- Akanksha Esmeeta
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Subhamay Adhikary
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - V Dharshnaa
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - P Swarnamughi
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Z Ummul Maqsummiya
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India.
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
19
|
Naziruddin M, Kian L, Jawaid M, Aziman N, Yusof N, Abdul-Mutalib N, Sanny M, Fouad H, Tverezovskaya O. Development of encapsulated sage extract powder: Inter-comparison with commercially available powder for physical properties and metabolites composition. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Jaradat NA, Abdallah S, Al-Maharik N, Altamimi M, Hawash M, Qneibi M, Abu Khair A, Zetawi A, Jabarin L. Constituents, antibacterial adhesion, cytotoxic and in‐vitro metastasis blocking properties of Salvia fruticosa essential oils from three Palestinian localities. Chem Biodivers 2022; 19:e202100872. [DOI: 10.1002/cbdv.202100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Nidal Amin Jaradat
- An-najah National University Faculty of Medicine and Health Sciences Pharmacy Rafidya 00970 Nablus PALESTINIAN TERRITORY, OCCUPIED
| | - Samer Abdallah
- An-Najah National University Biomedical Rafidya Nablus PALESTINIAN TERRITORY, OCCUPIED
| | - Nawaf Al-Maharik
- An-Najah national university Chemistry Rafidya Nablus PALESTINIAN TERRITORY, OCCUPIED
| | - Mohammad Altamimi
- An-Najah National University Nutrition Rafidya Nablus PALESTINIAN TERRITORY, OCCUPIED
| | - Mohammed Hawash
- An-najah National University Faculty of Medicine and Health Sciences Pharmacy Rafidya Nablus PALESTINIAN TERRITORY, OCCUPIED
| | - Mohammad Qneibi
- An-najah National University Faculty of Medicine and Health Sciences Biomedical Rafidya Nablus PALESTINIAN TERRITORY, OCCUPIED
| | - Abeer Abu Khair
- An-Najah National University Pharmacy Rafidya Nablus PALESTINIAN TERRITORY, OCCUPIED
| | - Anaal Zetawi
- An-Najah National University Pharmacy Rafidya Nablus PALESTINIAN TERRITORY, OCCUPIED
| | - Leena Jabarin
- An-Najah National University Pharmacy Rafidya Nablus PALESTINIAN TERRITORY, OCCUPIED
| |
Collapse
|
21
|
Biological Activity of an Epilobium angustifolium L. (Fireweed) Infusion after In Vitro Digestion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031006. [PMID: 35164271 PMCID: PMC8839289 DOI: 10.3390/molecules27031006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
The biological activity of an in vitro digested infusion of Epilobium angustifolium (fireweed) was examined in a model system of intestinal epithelial and colon cancer tissues. The content of selected phenolic compounds in the digested aqueous extract of fireweed was determined using HPLC-ESI-QTOF-MS/MS. Biological activity was examined using the human colon adenocarcinoma cell lines HT-29 and CaCo-2 and the human colon epithelial cell line CCD 841 CoTr. Cytotoxicity was assessed by an MTT assay, a Neutral Red uptake assay, May-Grünwald-Giemsa staining, and a label-free Electric Cell-Substrate Impedance Sensing cytotoxicity assay. The effect of the infusion on the growth of selected intestinal bacteria was also examined. The extract inhibited the growth of intestinal cancer cells HT-29. This effect can be attributed to the activity of quercetin and kaempferol, which were the most abundant phenolic compounds found in the extract after in vitro digestion. The cytotoxicity of the fireweed infusion was dose-dependent. The highest decrease in proliferation (by almost 80%) compared to the control was observed in HT-29 line treated with the extract at a concentration of 250 μg/mL. The fireweed infusion did not affect the growth of beneficial intestinal bacteria, but it did significantly inhibit E. coli. The cytotoxic effect of the fireweed extract indicates that it does not lose its biological activity after in vitro digestion. It can be concluded that the fireweed infusion has the potential to be used as a supporting agent in colon cancer therapy.
Collapse
|
22
|
Krzemińska M, Owczarek A, Gonciarz W, Chmiela M, Olszewska MA, Grzegorczyk-Karolak I. The Antioxidant, Cytotoxic and Antimicrobial Potential of Phenolic Acids-Enriched Extract of Elicited Hairy Roots of Salvia bulleyana. Molecules 2022; 27:992. [PMID: 35164257 PMCID: PMC8839693 DOI: 10.3390/molecules27030992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022] Open
Abstract
Hairy root cultures are valuable sources of a range of phytochemicals. Among them, Salvia bulleyana root culture is a promising source of polyphenols, especially rosmarinic acid (RA), a phenolic acid depside with pleiotropic activity and a wide application in medicine and cosmetology. The aim of the study was to enhance the culture productivity by finding suitable elicitation protocol and to determine its biological potential in terms of antioxidant, anticancer and antimicrobial properties. The total content of phenols and the levels of particular constituents in root extracts were analyzed using HPLC-PDA. Among four elicitors tested (yeast extract; methyl jasmonate, MJA; trans-anethol; and cadmium chloride), MJA was found to be the most effective. The greatest boost in phenolic production (up to 124.4 mg/g dry weight) was observed after three-day treatment with MJA at 100 µM, with an almost 100% improvement compared to the controls (non-treated root culture). The hydromethanolic extract from the elicited culture exhibited strong antioxidant activity with IC50 values of 11.1 µg/mL, 6.5 µg/mL and 69.5 µg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)) and superoxide anion radical, respectively. Moreover, in concentrations of 0.5-5 mg/mL the extract inhibited the growth of LoVo, AGS and HeLa cell lines, but was safe for the L929 cells up to the concentration of 5 mg/mL. The extract also exhibited moderate antimicrobial activity. Thus, the results confirmed that elicitation can be a beneficial strategy for increase the phenolic acid biosynthesis in hairy roots of S. bulleyana, and that such a highly productive culture can show significant biological potential.
Collapse
Affiliation(s)
- Marta Krzemińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (A.O.); (M.A.O.)
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Monika A. Olszewska
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (A.O.); (M.A.O.)
| | - Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
23
|
Jangde S, Purohit MR, Saraf F, Merchant N, Bhaskar LVKS. Dietary Phytocompounds for Colon Cancer Therapy. ONCO THERAPEUTICS 2022; 9:69-82. [DOI: 10.1615/oncotherap.2022046215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
24
|
Lemon Balm and Corn Silk Extracts Mitigate High-Fat Diet-Induced Obesity in Mice. Antioxidants (Basel) 2021; 10:antiox10122015. [PMID: 34943118 PMCID: PMC8698494 DOI: 10.3390/antiox10122015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Lemon balm and corn silk are valuable medicinal herbs, which exhibit variety of beneficial effects for human health. The present study explored the anti-obesity effects of a mixture of lemon balm and corn silk extracts (M-LB/CS) by comparison with the effects of single herbal extracts in high-fat diet (HFD)-induced obesity in mice. HFD supplementation for 84 days increased the body weight, the fat mass density, the mean diameter of adipocytes, and the thickness of fat pads. However, oral administration of M-LB/CS significantly alleviated the HFD-mediated weight gain and adipocyte hypertrophy without affecting food consumption. Of the various combination ratios of M-LB/CS tested, the magnitude of the decreases in weight gain and adipocyte hypertrophy by administration of 1:1, 1:2, 2:1, and 4:1 (w/w) M-LB/CS was more potent than that by single herbal extracts alone. In addition, M-LB/CS reduced the HFD-mediated increases in serum cholesterol, triglyceride, and low-density lipoprotein, prevented the reduction in serum high-density lipoprotein, and facilitated fecal excretion of cholesterol and triglyceride. Moreover, M-LB/CS mitigated the abnormal changes in specific mRNAs associated with lipogenesis and lipolysis in the adipose tissue. Furthermore, M-LB/CS reduced lipid peroxidation by inhibiting the HFD-mediated reduction in glutathione, catalase, and superoxide dismutase. Therefore, M-LB/CS is a promising herbal mixture for preventing obesity.
Collapse
|
25
|
Chan EWC, Wong SK, Chan HT. An overview of the chemistry and anticancer properties of rosemary extract and its diterpenes. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Rosemary (Rosmarinus officinalis L.), a culinary herb of the family Lamiaceae, has promising anticancer activity. This overview has updated the current knowledge on the chemistry and anticancer properties of rosemary extract, carnosic acid, carnosol, and rosmanol, focusing on colon and prostate cancer cells since they are the most susceptible. The information was procured from Google, Google Scholar, PubMed, PubMed Central, Science Direct, J-Stage, and PubChem. Phenolic compounds isolated from the aerial parts of R. officinalis are flavonoids, phenolic acids, diterpenes, triterpenes, terpenoids, and phenylpropanoids. Some of the compounds are new to science, to the genus, and to the species. Almost 30 compounds possess anticancer properties. Rosemary extracts contain abietane diterpenes, with carnosic acid, carnosol, and rosmanol being the most common. Their molecular structures are similar to three fused aromatic rings. Carnosic acid has a –COOH group at C20, carnosol has a lactone ring occurs across the B ring, and rosmanol has a –OH group at C7. Against colon and prostate cancer cells, the rosemary extract and diterpenes inhibited cell viability and induced apoptosis and G2/M phase cell cycle arrest. The inhibition of cell migration and adhesion has also been reported. The rosemary extract and diterpenes also inhibited colon and prostate cancer xenograft in mice. Rosemary extract is more cytotoxic than the diterpenes due to its polyphenols such as flavonoids and triterpenes. In vitro and in vivo cytotoxic activities involve different molecular targets and signalling pathways. Some prospects and areas for future research are suggested.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Siu Kuin Wong
- School of Foundation Studies, Xiamen University Malaysia, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Hung Tuck Chan
- Secretariat of International Society for Mangrove Ecosystems (ISME), Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0129, Japan
| |
Collapse
|
26
|
Kyriakou S, Tragkola V, Plioukas M, Anestopoulos I, Chatzopoulou PS, Sarrou E, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Chemical and Biological Characterization of the Anticancer Potency of Salvia fruticosa in a Model of Human Malignant Melanoma. PLANTS (BASEL, SWITZERLAND) 2021; 10:2472. [PMID: 34834834 PMCID: PMC8624467 DOI: 10.3390/plants10112472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022]
Abstract
Malignant melanoma is one of the most aggressive types of skin cancer with an increasing incidence worldwide. Thus, the development of innovative therapeutic approaches is of great importance. Salvia fruticosa (SF) is known for its anticancer properties and in this context, we aimed to investigate its potential anti-melanoma activity in an in vitro model of human malignant melanoma. Cytotoxicity was assessed through a colorimetric-based sulforhodamine-B (SRB) assay in primary malignant melanoma (A375), non-malignant melanoma epidermoid carcinoma (A431) and non-tumorigenic melanocyte neighbouring keratinocyte (HaCaT) cells. Among eight (8) different fractions of S. fruticosa extracts (SF1-SF8) tested, SF3 was found to possess significant cytotoxic activity against A375 cells, while A431 and HaCaT cells remained relatively resistant or exerted no cytotoxicity, respectively. In addition, the total phenolic (Folin-Ciocalteu assay) and total flavonoid content of SF extracts was estimated, whereas the antioxidant capacity was measured via the inhibition of tert-butyl hydroperoxide-induced lipid peroxidation and protein oxidation levels. Finally, apoptotic cell death was assessed by utilizing a commercially available kit for the activation of caspases - 3, - 8 and - 9. In conclusion, the anti-melanoma properties of SF3 involve the induction of both extrinsic and intrinsic apoptotic pathway(s), as evidenced by the increased activity levels of caspases - 8, and - 9, respectively.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, Ayios Dometios, Nicosia 2371, Cyprus
| | - Venetia Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, Ayios Dometios, Nicosia 2371, Cyprus
| | - Michael Plioukas
- Department of Life & Health Sciences, School of Sciences & Engineering, University of Nicosia, Nicosia 2417, Cyprus;
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, Ayios Dometios, Nicosia 2371, Cyprus
| | - Paschalina S. Chatzopoulou
- Hellenic Agricultural Organization DEMETER, Institute of Breeding & Plant Genetic Resources, 57001 Thessaloniki, Greece; (P.S.C.); (E.S.)
| | - Eirini Sarrou
- Hellenic Agricultural Organization DEMETER, Institute of Breeding & Plant Genetic Resources, 57001 Thessaloniki, Greece; (P.S.C.); (E.S.)
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, Ayios Dometios, Nicosia 2371, Cyprus
| |
Collapse
|
27
|
Antitumor Activity of Rosmarinic Acid-Loaded Silk Fibroin Nanoparticles on HeLa and MCF-7 Cells. Polymers (Basel) 2021; 13:polym13183169. [PMID: 34578069 PMCID: PMC8467615 DOI: 10.3390/polym13183169] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Rosmarinic acid (RA), one of the most important polyphenol-based antioxidants, has drawn increasing attention because of its remarkable bioactive properties, including anti-inflammatory, anticancer and antibacterial activities. The aim of this study was to synthesize and characterize RA-loaded silk fibroin nanoparticles (RA-SFNs) in terms of their physical–chemical features and composition, and to investigate their antitumor activity against human cervical carcinoma and breast cancer cell lines (HeLa and MCF-7). Compared with the free form, RA bioavailability was enhanced when the drug was adsorbed onto the surface of the silk fibroin nanoparticles (SFNs). The resulting particle diameter was 255 nm, with a polydispersity index of 0.187, and the Z-potential was −17 mV. The drug loading content of the RA-SFNs was 9.4 wt.%. Evaluation of the in vitro drug release of RA from RA-SFNs pointed to a rapid release in physiological conditions (50% of the total drug content was released in 0.5 h). Unloaded SFNs exhibited good biocompatibility, with no significant cytotoxicity observed during the first 48 h against HeLa and MCF-7 cancer cells. In contrast, cell death increased in a concentration-dependent manner after treatment with RA-SFNs, reaching an IC50 value of 1.568 and 1.377 mg/mL on HeLa and MCF-7, respectively. For both cell lines, the IC50 of free RA was higher. The cellular uptake of the nanoparticles studied was increased when RA was loaded on them. The cell cycle and apoptosis studies revealed that RA-SFNs inhibit cell proliferation and induce apoptosis on HeLa and MCF-7 cell lines. It is concluded, therefore, that the RA delivery platform based on SFNs improves the antitumor potential of RA in the case of the above cancers.
Collapse
|
28
|
Vahdat-Lasemi F, Aghaee-Bakhtiari SH, Tasbandi A, Jaafari MR, Sahebkar A. Targeting interleukin-β by plant-derived natural products: Implications for the treatment of atherosclerotic cardiovascular disease. Phytother Res 2021; 35:5596-5622. [PMID: 34390063 DOI: 10.1002/ptr.7194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 01/31/2023]
Abstract
Inflammation is the main contributing factor to atheroma formation in atherosclerosis. Interleukin-1 beta (IL-1β) is an inflammatory mediator found in endothelial cells and resident leukocytes. Canakinumab is a selective monoclonal antibody against IL-1β which attenuates inflammation and concurrently precipitates fatal infections and sepsis. Natural products derived from medicinal plants, herbal remedy and functional foods are widely used nowadays. Experimental and clinical trial evidence supports that some natural products such as curcumin, resveratrol, and quercetin have potential effects on IL-1β suppression. In this review, we tried to document findings that used medicinal plants and plant-based natural products for treating atherosclerosis and its related diseases through the suppression of IL-1β.
Collapse
Affiliation(s)
- Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
29
|
Lyashenko S, Fabrikov D, González-Fernández MJ, Gómez-Mercado F, Ruiz RL, Fedorov A, de Bélair G, Urrestarazu M, Rodríguez-García I, Álvarez-Corral M, Guil-Guerrero JL. Phenolic composition and in vitro antiproliferative activity of Borago spp. seed extracts on HT-29 cancer cells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Maher T, Ahmad Raus R, Daddiouaissa D, Ahmad F, Adzhar NS, Latif ES, Abdulhafiz F, Mohammed A. Medicinal Plants with Anti-Leukemic Effects: A Review. Molecules 2021; 26:molecules26092741. [PMID: 34066963 PMCID: PMC8124366 DOI: 10.3390/molecules26092741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/03/2022] Open
Abstract
Leukemia is a leukocyte cancer that is characterized by anarchic growth of immature immune cells in the bone marrow, blood and spleen. There are many forms of leukemia, and the best course of therapy and the chance of a patient’s survival depend on the type of leukemic disease. Different forms of drugs have been used to treat leukemia. Due to the adverse effects associated with such therapies and drug resistance, the search for safer and more effective drugs remains one of the most challenging areas of research. Thus, new therapeutic approaches are important to improving outcomes. Almost half of the drugs utilized nowadays in treating cancer are from natural products and their derivatives. Medicinal plants have proven to be an effective natural source of anti-leukemic drugs. The cytotoxicity and the mechanisms underlying the toxicity of these plants to leukemic cells and their isolated compounds were investigated. Effort has been made throughout this comprehensive review to highlight the recent developments and milestones achieved in leukemia therapies using plant-derived compounds and the crude extracts from various medicinal plants. Furthermore, the mechanisms of action of these plants are discussed.
Collapse
Affiliation(s)
- Tahani Maher
- Biotechnology Engineering Department, Kulliyyah of Engineering, International Islamic University, Malaysia (IIUM), P.O. Box 10, Gombak, Kuala Lumpur 50728, Malaysia; (T.M.); (R.A.R.); (D.D.); (F.A.)
| | - Raha Ahmad Raus
- Biotechnology Engineering Department, Kulliyyah of Engineering, International Islamic University, Malaysia (IIUM), P.O. Box 10, Gombak, Kuala Lumpur 50728, Malaysia; (T.M.); (R.A.R.); (D.D.); (F.A.)
| | - Djabir Daddiouaissa
- Biotechnology Engineering Department, Kulliyyah of Engineering, International Islamic University, Malaysia (IIUM), P.O. Box 10, Gombak, Kuala Lumpur 50728, Malaysia; (T.M.); (R.A.R.); (D.D.); (F.A.)
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Kuala Lumpur 53100, Malaysia
| | - Farah Ahmad
- Biotechnology Engineering Department, Kulliyyah of Engineering, International Islamic University, Malaysia (IIUM), P.O. Box 10, Gombak, Kuala Lumpur 50728, Malaysia; (T.M.); (R.A.R.); (D.D.); (F.A.)
| | - Noor Suhana Adzhar
- Faculty of Industrial Sciences and Technology, Universiti Malaysia, Pekan Pahang, Kuantan 26600, Malaysia;
| | - Elda Surhaida Latif
- Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Ferid Abdulhafiz
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan 17600, Malaysia;
| | - Arifullah Mohammed
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan 17600, Malaysia;
- Correspondence:
| |
Collapse
|
31
|
An Y, Zhao J, Zhang Y, Wu W, Hu J, Hao H, Qiao Y, Tao Y, An L. Rosmarinic Acid Induces Proliferation Suppression of Hepatoma Cells Associated with NF-κB Signaling Pathway. Asian Pac J Cancer Prev 2021; 22:1623-1632. [PMID: 34048194 PMCID: PMC8408391 DOI: 10.31557/apjcp.2021.22.5.1623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Rosmarinic acid (RA) is a natural phenolic compound that acts as a Fyn inhibitor by 53 homology modeling of the human Fyn structure. Therefore, the apoptosis mechanism related to NF-κB signaling pathway induced by RA in HepG2 was investigated. METHODS The cell growth, apoptosis, and proliferation of HepG2 regulated by various concentrations of RA were studied. The proteins expression of MMP-2, MMP-9, PI3K, AKT, NF-κB, and apoptosis-related proteins Bax, Bcl-2, cleaved caspase-3 were detected. RESULTS RA significantly reduced proliferation rates, inhibited migration and invasion, and decreased the expressions of invasion-related factors, such as matrix metalloproteinase (MMP)-2 and MMP-9. TUNEL staining revealed that RA resulted in a dose-dependent increase of HepG2 cell apoptosis. In line with this finding, the expression of apoptosis suppressor protein Bcl-2 was downregulated and that of the pro-apoptotic proteins Bax and cleaved caspase-3 was increased. In addition, we found that the phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor kappa B (NF-κB) signaling pathway was involved in RA-mediated inhibition of HepG2 cell metastasis. CONCLUSION Our study identified that RA as a drug candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Yanjun An
- Department of Endoscopy Center, Institute of Shanxi Traditional Chinese Medicine, Hospital of Shanxi Traditional Chinese Medicine, Taiyuan, Shanxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu Y, Xu X, Tang H, Pan Y, Hu B, Huang G. Rosmarinic acid inhibits cell proliferation, migration, and invasion and induces apoptosis in human glioma cells. Int J Mol Med 2021; 47:67. [PMID: 33649774 PMCID: PMC7952246 DOI: 10.3892/ijmm.2021.4900] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
There is a growing evidence that Fyn kinase is upregulated in glioblastoma multiforme (GBM), where it plays a key role in tumor proliferation and invasion. In the present study, the antitumor effects of rosmarinic acid (RA), a Fyn inhibitor, were explored in human‑derived U251 and U343 glioma cell lines. These cells were treated with various concentrations of RA to determine its effects on proliferation, migration, invasion, apoptosis, and gene and protein expression levels. The CCK‑8 assay revealed that RA significantly suppressed cell viability of U251 and U343 cells. Furthermore, RA significantly reduced proliferation rates, inhibited migration and invasion, and decreased the expression levels of invasion‑related factors, such as matrix metalloproteinase (MMP)‑2 and MMP‑9. TUNEL staining revealed that RA resulted in a dose‑dependent increase of U251 and U343 cell apoptosis. In line with this finding, the expression of apoptosis suppressor protein Bcl‑2 was downregulated and that of the pro‑apoptotic proteins Bax and cleaved caspase‑3 was increased. In addition, it was revealed that the phosphatidylinositol 3‑kinase (PI3K)/Akt/nuclear factor‑κB (NF‑κB) signaling pathway was involved in RA‑induced cytotoxicity in U251 and U343 cells. Collectively, the present study suggested RA as a drug candidate for the treatment of GBM.
Collapse
Affiliation(s)
- Yunsheng Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Xiangping Xu
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Han Tang
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Yuchen Pan
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Bing Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
33
|
Anuar NNM, Zulkafali NIN, Ugusman A. Modulation of Matrix Metalloproteinases by Plant-derived Products. Curr Cancer Drug Targets 2021; 21:91-106. [PMID: 33222671 DOI: 10.2174/1568009620666201120144838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc-dependent metalloendopeptidases that are responsible for the degradation, repair, and remodeling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases, such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic, and food industries. This review summarises the current knowledge of plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signaling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviors, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.
Collapse
Affiliation(s)
- Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Nurul Iman Natasya Zulkafali
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Sarkar K, Das RK. Preliminary Identification of Hamamelitannin and Rosmarinic Acid as COVID-19 Inhibitors Based on Molecular Docking. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200802032126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background:
Recently, novel coronavirus disease, COVID-19 caused the outbreak situation
of global public health. In this pandemic situation, all the people's lives of 212 Countries and
Territories have been affected due to partial or complete lockdown and also as a result of mandatory
isolations or quarantines. This is due to the non-availability of any secure vaccine.
Objective:
The present study helps us to identify and screen the best phytochemicals as potent inhibitors
against COVID-19.
Methods:
In this paper, we choose two standard drugs namely hamamelitannin and rosmarinic acid
as a probable inhibitor of pandemic COVID-19 receptor as compared to antimalarial drugs hydroxychloroquine,
anti-viral drug remdesivir, and also baricitinib. This study was done by taking
into consideration of molecular docking study, performed with Auto Dock 4.0 (AD4.0). All chemical
structures were optimized with the Avogadro suite by applying the MMFF94 force field and also
hamamelitannin, rosmarinic acid was optimized using the Gaussian G16 suite of UB3LYP/6-
311++G(d,p) basis set. Protein-ligand interaction was visualized by PyMOL software.
Results:
This work has provided an insightful understanding of protein-ligand interaction of hamamelitannin
and rosmarinic acid showing comparable binding energies than that of clinically applying
probable COVID-19 inhibitors hydroxychloroquine (an anti-malarial drug) and remdesivir (an
anti-viral drug).
Conclusions:
We will expect that if its anti-SARS-CoV-2 activity is validated in human clinical trials,
these two drugs may be developed as an effective antiviral therapeutics towards infected patients
in this outbreak and pandemic situation of COVID-19.
Collapse
Affiliation(s)
- Kaushik Sarkar
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Rajesh Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
35
|
Khare R, Upmanyu N, Shukla T, Jain V, Jha M. Compendium of Salvia officinalis: An Overview. CURRENT TRADITIONAL MEDICINE 2020. [DOI: 10.2174/2215083805666190723095043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The medicinal plants have enormous commercial potential throughout the globe.
In the herbal boom worldwide, it is estimated that high quality phyto-medicinals will provide
safe and effective medication. In India, Ayurveda, Siddha, Unani etc. consist of large number
of herbal remedies, being used from ancient times. Many plant species containing active
constituents that have a direct pharmacological action on the body. This plant Sage (Salvia
officinalis Linn) is historically well known from the early 1960s till now by its therapeutic
and culinary applications due to its high economic value. The plant is reported to contain alkaloids,
triterpenoid, steroids, Phenolic compounds and essential oils. Sage plant is a rich
source of antioxidant properties, for this reason sage has found increasing application in food
industry. The core purpose of this review is to emphasize the origin, morphology, Phytochemistry
and pharmacological aspects of Sage (Salvia officinalis Linn).
Collapse
Affiliation(s)
- Ruchi Khare
- School of Pharmacy and Research, People's University, Bhopal (M.P.) 462037, India
| | - Neeraj Upmanyu
- School of Pharmacy and Research, People's University, Bhopal (M.P.) 462037, India
| | - Tripti Shukla
- School of Pharmacy and Research, People's University, Bhopal (M.P.) 462037, India
| | - Vishal Jain
- University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur (C.G.) 492010, India
| | - Megha Jha
- Pinnacle Biomedical Research Institute, Bhopal (M.P.) 462003, India
| |
Collapse
|
36
|
Luca T, Napoli E, Privitera G, Musso N, Ruberto G, Castorina S. Antiproliferative Effect and Cell Cycle Alterations Induced by Salvia officinalis Essential Oil and Its Three Main Components in Human Colon Cancer Cell Lines. Chem Biodivers 2020; 17:e2000309. [PMID: 32531144 DOI: 10.1002/cbdv.202000309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Colon cancer is one of the most common human malignancies, and chemotherapy cannot yet prevent recurrence in all patients. Essential oils are phytocomplexes with antiproliferative properties. In this study, we elucidated the antiproliferative properties and the effect on cell cycle progression of Sicilian Salvia officinalis essential oil and its three main compounds, α-thujone, 1,8-cineole (eucalyptol) and camphor, on three human colon cancer cell lines. The essential oil was obtained by hydrodistillation and analyzed by gas chromatography. Cell proliferation was evaluated by MTT assay, and the cell cycle distribution was determined by flow cytometry. Thirty-four compounds were identified in the tested essential oil. Growth inhibition was observed after 72 h, with an impact on cell cycle progression and no effect on the viability of normal colonic epithelial cells. The study shows that S. officinalis essential oil and its three main components have an in vitro antiproliferative effect on colon cancer cells.
Collapse
Affiliation(s)
- Tonia Luca
- Fondazione Mediterranea 'G.B. Morgagni', Via del Bosco 105, 95125, Catania, Italy
| | - Edoardo Napoli
- Institute of Biomolecular Chemistry, Italian National Research Council ICB-CNR, 95126, Catania, Italy
| | - Giovanna Privitera
- Fondazione Mediterranea 'G.B. Morgagni', Via del Bosco 105, 95125, Catania, Italy
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95123, Catania, Italy
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, Italian National Research Council ICB-CNR, 95126, Catania, Italy
| | - Sergio Castorina
- Fondazione Mediterranea 'G.B. Morgagni', Via del Bosco 105, 95125, Catania, Italy.,Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123, Catania, Italy
| |
Collapse
|
37
|
Anwar S, Shamsi A, Shahbaaz M, Queen A, Khan P, Hasan GM, Islam A, Alajmi MF, Hussain A, Ahmad F, Hassan MI. Rosmarinic Acid Exhibits Anticancer Effects via MARK4 Inhibition. Sci Rep 2020; 10:10300. [PMID: 32587267 PMCID: PMC7316822 DOI: 10.1038/s41598-020-65648-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
Microtubule affinity regulating kinase (MARK4) is a potential drug target for different types of cancer as it controls the early step of cell division. In this study, we have screened a series of natural compounds and finally identified rosmarinic acid (RA) as a potential inhibitor of MARK4. Molecular docking and 500 ns all-atom simulation studies suggested that RA binds to the active site pocket of MARK4, forming enough number of non-covalent interactions with critical residues and MARK4-RA complex is stable throughout the simulation trajectory. RA shows an excellent binding affinity to the MARK4 with a binding constant (K) of 107 M-1. Furthermore, RA significantly inhibits MARK4 activity (IC50 = 6.204 µM). The evaluation of enthalpy change (∆H) and entropy change (∆S) suggested that the MARK4-RA complex formation is driven by hydrogen bonding and thus complexation process is seemingly specific. The consequence of MARK4 inhibition by RA was further evaluated by cell-based tau-phosphorylation studies, which suggested that RA inhibited the phosphorylation of tau. The treatment of cancer cells with RA significantly controls cell growth and subsequently induces apoptosis. Our study provides a rationale for the therapeutic evaluation of RA and RA-based inhibitors in MARK4 associated cancers and other diseases.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
- Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin Prospekt, Chelyabinsk, 454080, Russia
| | - Aarfa Queen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
38
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
39
|
Suhaimi SH, Hasham R, Hafiz Idris MK, Ismail HF, Mohd Ariffin NH, Abdul Majid FA. Optimization of Ultrasound-Assisted Extraction Conditions Followed by Solid Phase Extraction Fractionation from Orthosiphon stamineus Benth (Lamiace) Leaves for Antiproliferative Effect on Prostate Cancer Cells. Molecules 2019; 24:E4183. [PMID: 31752230 PMCID: PMC6891422 DOI: 10.3390/molecules24224183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022] Open
Abstract
Primarily, optimization of ultrasonic-assisted extraction (UAE) conditions of Orthospihon stamineus was evaluated and verified using a central composite design (CCD) based on three factors including extraction time (minutes), ultrasound amplitude (A), and solvent concentration (%). The response surface methodology (RSM) was performed to develop an extraction method with maximum yield and high rosmarinic acid content. The optimal UAE conditions were as follows: extraction time 21 min, ultrasound amplitudes 62 A, and solvent composition 70% ethanol in water. The crude extract was further fractionated using solid-phase extraction (SPE), where six sequential fractions that varied in polarity (0-100% Acetonitrile in water) were obtained. Next, the six fractions were evaluated for their antioxidant and anti-cancer properties. This study found that Fraction 2 (F2) contained the highest rosmarinic acid content and showed the strongest antioxidant activity. Additionally, F2 showed an anti-proliferative effect against prostate cancer (DU145) with no harmful effect on normal cells.
Collapse
Affiliation(s)
- Siti Hasyimah Suhaimi
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; (S.H.S.); (M.K.H.I.); (N.H.M.A.)
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Rosnani Hasham
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; (S.H.S.); (M.K.H.I.); (N.H.M.A.)
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Mohamad Khairul Hafiz Idris
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; (S.H.S.); (M.K.H.I.); (N.H.M.A.)
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Hassan Fahmi Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia; (H.F.I.); (F.A.A.M.)
| | - Nor Hazwani Mohd Ariffin
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; (S.H.S.); (M.K.H.I.); (N.H.M.A.)
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Fadzilah Adibah Abdul Majid
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia; (H.F.I.); (F.A.A.M.)
| |
Collapse
|
40
|
Koutsoulas A, Čarnecká M, Slanina J, Tóth J, Slaninová I. Characterization of Phenolic Compounds and Antiproliferative Effects of Salvia pomifera and Salvia fruticosa Extracts. Molecules 2019; 24:molecules24162921. [PMID: 31408993 PMCID: PMC6720736 DOI: 10.3390/molecules24162921] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
The phenolic compounds of methanolic extracts of Salvia pomifera and Salvia fruticosa were identified by liquid chromatography tandem mass spectrometry. Carnosic acid and its metabolite carnosol were the most abundant terpene phenolic compounds of S. fruticosa, while they were completely absent in S. pomifera. The main terpene phenolic constituent of S. pomifera was 12-O-methylcarnosic acid and its mass/mass fragmentation pathway was explained. The detailed mechanism of carnosic acid oxidation to carnosol was suggested. The effects of Salvia extracts and/or carnosic acid, the main diterpene phenolic component of S. fruticosa, on the proliferation and cell cycle of two melanoma cell lines (A375, Mel JuSo) and human fibroblast cell line (HFF) were investigated by MTT assay, PI-exclusion assay and flow cytometry cell cycle analysis. Extract of S. fruticosa more efficiently than S. pomifera extract reduced the proliferation of the human melanoma cells. Carnosic acid showed the most significant effect. The first evidence that carnosic acid affects microtubule dynamics and arrests the cell cycle in the G2/M phase was provided. Collectively, our results demonstrate that these two Salvia species are plants of medicinal interest with perspective for further investigation. Carnosic acid could be the compound responsible for the biological activities of S. fruticosa extracts.
Collapse
Affiliation(s)
- Antonios Koutsoulas
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 83232 Bratislava 3, Slovak Republic
| | - Martina Čarnecká
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, Building A16, 62500 Brno, Czech Republic
| | - Jiří Slanina
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, Building A16, 62500 Brno, Czech Republic
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 83232 Bratislava 3, Slovak Republic.
| | - Iva Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 62500 Brno, Czech Republic.
| |
Collapse
|
41
|
Sevimli-Gur C, Yesil-Celiktas O. Cytotoxicity screening of supercritical fluid extracted seaweeds and phenylpropanoids. Mol Biol Rep 2019; 46:3691-3699. [PMID: 31004301 DOI: 10.1007/s11033-019-04812-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
Detached leaves of Posidonia oceanica and Zostera marina creating nuisance at the shores were extracted by means of supercritical CO2 enriched with a co-solvent, compared with that of soxhlet extraction. The extracts and their active compounds which are phenylpropanoids (chicoric, p-coumaric, rosmarinic, benzoic, ferulic and caffeic acids) were screened for cytotoxicity in cancer cell lines including human breast adenocarcinoma (MCF-7, MDA-MB-231, SK-BR-3), human colon adenocarcinoma (HT-29), human cervix adenocarcinoma (HeLa), human prostate adenocarcinoma (PC-3), Mus musculus neuroblastoma (Neuro 2A) cell lines and African green monkey kidney (VERO) as healthy cell line. Supercritical CO2 extracts proved to be more active than soxhlet counterparts. Particularly, Zostera marina extract obtained by supercritical CO2 at 250 bar, 80 °C, 20% co-solvent and a total flow rate of 15 g/min revealed the best IC50 values of 25, 20, 8 μg/ml in neuroblastoma, colon and cervix cancer cell lines. Among the major compounds tested, p-coumaric acid exhibited the highest cytotoxic against colon and cervix cell lines by with IC50 values of 25, 11 μg/ml. As for the effects on healthy cells, the extract was not cytotoxic indicating a selective cytotoxicity. Obtained supercritical CO2 extracts can be utilized as a supplement for preventive purposes.
Collapse
Affiliation(s)
- Canan Sevimli-Gur
- Department of Biology, Biotechnology Discipline, Science and Art Faculty, Kocaeli University, 41380, Izmit, Kocaeli, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
42
|
AlMotwaa SM, Alkhatib MH, Alkreathy HM. Incorporating ifosfamide into salvia oil-based nanoemulsion diminishes its nephrotoxicity in mice inoculated with tumor. ACTA ACUST UNITED AC 2019; 10:9-16. [PMID: 31988852 PMCID: PMC6977592 DOI: 10.15171/bi.2020.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/23/2019] [Accepted: 05/14/2019] [Indexed: 01/24/2023]
Abstract
![]()
Introduction: Nephrotoxicity is one of the major side effects of the chemotherapeutic drug, ifosfamide (IFO). In this study, IFO was solubilized in nanoemulsion (NE) containing salvia (SAL) essential oil to investigate its adverse side effects in mice.
Methods: One hundred female Swiss albino mice (n = 20/group) were split into five groups. Group I (Normal) received saline solution (0.9% (w/v) NaCl) while groups II-V were intraperitoneally (I.P.) injected with 2.5 × 106 Ehrlich ascetic carcinoma (EAC) cells/mouse. Group II (EAC) represented the untreated EAC-bearing mice. Group III (IFO) was treated with IFO at a dose of 60 mg/kg/d (I.P. 0.3 mL/mouse). Group IV (SAL) was treated with 0.3 mL blank NE-based SAL oil/mouse. Group V (SAL-IFO) was treated with IFO, loaded in 0.3 mL of blank SAL-NE, at a dose of 60 mg/kg/d (I.P. 0.3 mL/mouse). Groups III-V were treated for three consecutive days.
Results: There was a double increase in the survival percentage of the SAL-IFO group (60%) relative to the IFO group (30%). Renal damage with the presence of Fanconi syndrome was indicated in the IFO group through a significant elevation in the levels of serum creatinine, blood urea nitrogen, urine bicarbonate, and phosphate in addition to a reduced level of glucose compared to the normal group. On the other hand, the administration of SAL-IFO into the mice reversed this effect. Additionally, the oxidative stress in the kidney tissues of the SAL-IFO group was ameliorated when compared to the IFO group.
Conclusion: Incorporating IFO into SAL-NE has protected the kidneys from the damage induced by IFO.
Collapse
Affiliation(s)
- Sahar M AlMotwaa
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Chemistry Department, College of Science and Humanities, Shaqra University, Shagra, Saudi Arabia
| | - Mayson H Alkhatib
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Regenerative Medicine Unit, King Fahd Center for Medical Research, Jeddah, Saudi Arabia
| | - Huda M Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Cheng B, Rong A, Zhou Q, Li W. CLDN8 promotes colorectal cancer cell proliferation, migration, and invasion by activating MAPK/ERK signaling. Cancer Manag Res 2019; 11:3741-3751. [PMID: 31118793 PMCID: PMC6498432 DOI: 10.2147/cmar.s189558] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Claudin 8 (CLDN8), an integral membrane protein that constitutes tight junctions in cell membranes, was recently implicated in tumor progression. However, its roles in colorectal cancer (CRC) progression and metastasis remain unknown. Methods In this study, we examined the effect of CLDN8 on the progression of CRC, including cell proliferation, migration, and invasion, and determines its underlying molecular mechanism using in vitro CRC cell lines and in vivo mouse xenograft models. Results We found that CLDN8 expression in human CRC tissues was significantly higher than that in adjacent normal tissues. The knockdown of CLDN8 markedly suppressed the proliferation, migration, and invasion of SW480 and HT-29 CRC cells, whereas the overexpression of CLDN8 notably promoted tumor progression in SW480 and HT-29 CRC cells. Mechanistic studies revealed that CLDN8 upregulated p-ERK (p-PKB/AKT) and MMP9 in CRC cells. Notably, the MAPK/ERK inhibitor PD98095 dramatically attenuated the effects of CLDN8 on p-ERK and MMP9. Moreover, PD98095 remarkably blocked the tumor-promoting activity of CLDN8. The knockdown of CLDN8 also inhibited the in vivo tumor growth in a nude mouse xenograft model. Collectively, CLDN8 promoted CRC cell proliferation, migration, and invasion, at least in part, by activating the MAPK/ERK signaling pathway. Conclusion These findings suggest that CLDN8 exhibits an oncogenic effect in human CRC progression.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Aimei Rong
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Quanbo Zhou
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Wenlu Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China,
| |
Collapse
|
44
|
Anatolıan sage Salvıa frutıcosa ınhıbıts cytosolıc glutathıone-s-transferase actıvıty and colon cancer cell prolıferatıon. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00055-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Radziejewska I, Supruniuk K, Nazaruk J, Karna E, Popławska B, Bielawska A, Galicka A. Rosmarinic acid influences collagen, MMPs, TIMPs, glycosylation and MUC1 in CRL-1739 gastric cancer cell line. Biomed Pharmacother 2018; 107:397-407. [PMID: 30099344 DOI: 10.1016/j.biopha.2018.07.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Rosmarinic acid (RA) is a natural phenylpropanoid with numerous pharmacological activities. Because of limited studies of the effects of RA action in gastric cancer cells we examined how 100 and 200 μM acid influences MMPs, TIMPs, collagen, MUC1 and specific sugar antigens in gastric adenocarcinoma CRL-1739 cells. We revealed inhibitory effect of RA on MMP-9 activity what was correlated with increased collagen type I expression, main ECM substrate degraded by MMPs. Tissue inhibitor of MMPs, TIMP-1 but not TIMP-2 was significantly decreased on the protein level and increased on mRNA level by RA action what can suggest TIMP-1 independent inhibitory action of an acid on MMP-9 activity. Glycosylation of gastric cancer proteins was also effected by RA. ELISA tests revealed inhibitory effect of an acid on Tn antigen in cell lysates and culture supernatant and on T antigen in cell lysates. RA inhibited also sialylated Tn antigen in protein of culture supernatant and sialyl T in cell lysates. Extracellular domain of MUC1 mucin, main carrier of Tn and T antigens was significantly inhibited by higher dose of RA. The data suggest potential usefulness of RA as a complementary agent supporting chemotherapy in cancer treatment.
Collapse
Affiliation(s)
- I Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland.
| | - K Supruniuk
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland
| | - J Nazaruk
- Department of Pharmacognosy, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland
| | - E Karna
- Department of Medicinal Chemistry, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland
| | - B Popławska
- Department of Biotechnology, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland
| | - A Bielawska
- Department of Biotechnology, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland
| | - A Galicka
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland
| |
Collapse
|
46
|
Şengelen A, Önay-Uçar E. Rosmarinic acid and siRNA combined therapy represses Hsp27 (HSPB1) expression and induces apoptosis in human glioma cells. Cell Stress Chaperones 2018; 23:885-896. [PMID: 29627902 PMCID: PMC6111096 DOI: 10.1007/s12192-018-0896-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/10/2018] [Accepted: 03/24/2018] [Indexed: 12/11/2022] Open
Abstract
High expression of Hsp27 in glioma cells has been closely associated with tumor cell proliferation and apoptosis inhibition. The aim of the present study was to asses the effects of rosmarinic acid (RA) on Hsp27 expression and apoptosis in non-transfected and transfected human U-87 MG cells. The effect of rosmarinic acid was compared to quercetin, which is known to be a good Hsp27 inhibitor. In order to block the expression of Hsp27 gene (HSPB1), transfection with specific siRNAs was performed. Western blotting technique was used to assess the Hsp27 expression, and caspase-3 colorimetric activity assay was performed to determine apoptosis induction. According to the results, it was found that RA and quercetin effectively silenced Hsp27 and both agents induced apoptosis by activating the caspase-3 pathway. Eighty and 215 μM RA decreased the level of Hsp27 by 28.8 and 46.7% and induced apoptosis by 30 and 54%, respectively. For the first time, we reported that rosmarinic acid has the ability to trigger caspase-3 induced apoptosis in human glioma cells. As a result of siRNA transfection, the Hsp27 gene was silenced by ~ 50% but did not cause a statistically significant change in caspase-3 activation. It was also observed that apoptosis was induced at a higher level as a result of Hsp27 siRNA and subsequent quercetin or RA treatment. siRNA transfection and 215 μM RA treatment suppressed Hsp27 expression level by 90.5% and increased caspase-3 activity by 58%. Herein, we demonstrated that RA administered with siRNA seems to be a potent combination for glioblastoma therapy.
Collapse
Affiliation(s)
- Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| |
Collapse
|
47
|
Swamy MK, Sinniah UR, Ghasemzadeh A. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl Microbiol Biotechnol 2018; 102:7775-7793. [PMID: 30022261 DOI: 10.1007/s00253-018-9223-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022]
Abstract
Rosmarinic acid (RA) is a highly valued natural phenolic compound that is very commonly found in plants of the families Lamiaceae and Boraginaceae, including Coleus blumei, Heliotropium foertherianum, Rosmarinus officinalis, Perilla frutescens, and Salvia officinalis. RA is also found in other members of higher plant families and in some fern and horned liverwort species. The biosynthesis of RA is catalyzed by the enzymes phenylalanine ammonia lyase and cytochrome P450-dependent hydroxylase using the amino acids tyrosine and phenylalanine. Chemically, RA can be produced via methods involving the esterification of 3,4-dihydroxyphenyllactic acid and caffeic acid. Some of the derivatives of RA include melitric acid, salvianolic acid, lithospermic acid, and yunnaneic acid. In plants, RA is known to have growth-promoting and defensive roles. Studies have elucidated the varied pharmacological potential of RA and its derived molecules, including anticancer, antiangiogenic, anti-inflammatory, antioxidant, and antimicrobial activities. The demand for RA is therefore, very high in the pharmaceutical industry, but this demand cannot be met by plants alone because RA content in plant organs is very low. Further, many plants that synthesize RA are under threat and near extinction owing to biodiversity loss caused by unscientific harvesting, over-collection, environmental changes, and other inherent features. Moreover, the chemical synthesis of RA is complicated and expensive. Alternative approaches using biotechnological methodologies could overcome these problems. This review provides the state of the art information on the chemistry, sources, and biosynthetic pathways of RA, as well as its anticancer properties against different cancer types. Biotechnological methods are also discussed for producing RA using plant cell, tissue, and organ cultures and hairy-root cultures using flasks and bioreactors. The recent developments and applications of the functional genomics approach and heterologous production of RA in microbes are also highlighted. This chapter will be of benefit to readers aiming to design studies on RA and its applicability as an anticancer agent.
Collapse
Affiliation(s)
- Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Uma Rani Sinniah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ali Ghasemzadeh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
48
|
Ali M, Keppler JK, Coenye T, Schwarz K. Covalent Whey Protein-Rosmarinic Acid Interactions: A Comparison of Alkaline and Enzymatic Modifications on Physicochemical, Antioxidative, and Antibacterial Properties. J Food Sci 2018; 83:2092-2100. [PMID: 30007045 DOI: 10.1111/1750-3841.14222] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 12/01/2022]
Abstract
The covalent interactions between whey protein isolate (WPI) and rosmarinic acid (RosA) at two different conditions, alkaline (pH 9) and enzymatic (in the presence of tyrosinase, PPO), at room temperature with free atmospheric air were studied. The conjugates formed between WPI and RosA were characterized in terms of their physicochemical and functional properties. The changes in protein structure were analyzed by intrinsic fluorescence and binding of 8-anilino-1-naphthalenesulfonic acid. The findings show that the covalent interactions caused a decrease in free amino and thiol groups and tryptophan content at both conditions. The decrease at enzymatic conditions was lower than at alkaline conditions. In addition, modified WPI at alkaline conditions exhibited higher antioxidative capacity compared to the modification at enzymatic conditions. However, WPI modified at enzymatic condition showed mild antimicrobial activity against Staphylococcus aureus LMG 10147 and MU50 compared to WPI modified at alkaline conditions and unmodified WPI (control). The modified WPI can be used as multifunctional ingredient into various food products with an additional health promoting effect of the bound phenolic compounds.
Collapse
Affiliation(s)
- Mostafa Ali
- Dept. of Food Technology, Faculty of agriculture, Univ. of Kafrelsheikh, Kafrelsheikh, Egypt
- Div. of Food Technology, Inst. of Human Nutrition and Food Science, Kiel University, 24118, Kiel, Germany
| | - Julia K Keppler
- Div. of Food Technology, Inst. of Human Nutrition and Food Science, Kiel University, 24118, Kiel, Germany
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent Univ., Ghent, Belgium
| | - Karin Schwarz
- Div. of Food Technology, Inst. of Human Nutrition and Food Science, Kiel University, 24118, Kiel, Germany
| |
Collapse
|
49
|
Chen IGJ, Lee MS, Lin MK, Ko CY, Chang WT. Blue light decreases tanshinone IIA content in Salvia miltiorrhiza hairy roots via genes regulation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:164-171. [PMID: 29709801 DOI: 10.1016/j.jphotobiol.2018.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/25/2018] [Accepted: 04/09/2018] [Indexed: 01/24/2023]
Abstract
The effect of light-emitting diodes (LEDs) on the production of secondary metabolites in medicinal plants and hairy roots is receiving much attention. The roots and rhizomes of the traditional Chinese medicinal plant Salvia miltiorrhiza Bunge are widely used for treating cardiovascular and cerebrovascular diseases. The main components are liposoluble tanshinones and hydrophilic phenolic acids. Moreover, hairy root culture of S. miltiorrhiza has been used in research of valuable plant-derived secondary metabolites. In this study, we examined the effect of LEDs with different combinations of wavelengths on the content of the main components in hairy roots of S. miltiorrhiza. Tanshinone IIA (TSIIA) content in hairy roots was significantly decreased with all light treatments containing blue light by >60% and was 9 times lower with LED treatment duration changed from 1 week to 3 weeks. HMGR, DXS2, DXR, GGPPS, CPS and CYP76AH1 genes involved in the tanshinone biosynthesis pathway were downregulated by blue light. Furthermore, light quality treatments have different effect on the accumulation of phenolic acids in hairy roots of S. miltiorrhiza. The light treatments 6R3B, 6B3IR, 7RGB and 2R6BUV for 3 weeks could increase rosmarinic acid (RA) content slightly but not salvianolic acid B (SAB) content. Different secondary metabolite contents could be regulated by different wavelength combinations of LEDs. Blue light could reduce TSIIA content in hairy roots of S. miltiorrhiza via gene regulation.
Collapse
Affiliation(s)
- Ing-Gin J Chen
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Meng-Shiou Lee
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Chia-Yun Ko
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Te Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
50
|
Chen YY, Tsai CF, Tsai MC, Chen WK, Hsu YW, Lu FJ. Anti-fibrotic effect of rosmarinic acid on inhibition of pterygium epithelial cells. Int J Ophthalmol 2018; 11:189-195. [PMID: 29487805 DOI: 10.18240/ijo.2018.02.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/20/2017] [Indexed: 01/07/2023] Open
Abstract
AIM To investigate the anti-fibrosis effect of rosmarinic acid (RA) in pterygium epithelial cells (PECs) to determine if RA is a potent agent for treating pterygium. METHODS The PECs (1×104 cells/mL) were treated with 100 µmol/L of RA for 1, 3 and 6h. After RA treatment, the cell viability was determined by staining with acridine orange/DAPI and analysis via a NucleoCounter NC-3000. The protein expression levels of type I collagen, transforming growth factor beta-1 (TGF-β1), TGF-β type II receptor (TGF-βRII), p-Smad1/5, p-Smad2, p-Smad3, and Smad4 of the cell lysates were measured by Western blot analysis. RESULTS The cell viability of PECs was significantly decreased after RA treatment (P<0.01). As the result, RA reduced the protein expression of type I collagen and TGF-β1 of PECs. Additionally, RA also inhibited TGF-β1/Smad signaling by decreasing the protein expressions of TGF-βRII, p-Smad1/5, p-Smad2, p-Smad3, and Smad4. CONCLUSION This study demonstrate that RA could inhibit fibrosis of PECs by down-regulating type I collagen expression and TGF-β1/Smad signaling. Therefore, RA is a potent therapeutic agent for the treatment of pterygium.
Collapse
Affiliation(s)
- Ya-Yu Chen
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan, China.,Department of Optometry, Da-Yeh University, Changhua 51591, Taiwan, China
| | - Chia-Fang Tsai
- Department of Biotechnology, TransWorld University, Douliu City 64063, Taiwan, China
| | - Ming-Chu Tsai
- Department of Biotechnology, TransWorld University, Douliu City 64063, Taiwan, China
| | - Wen-Kang Chen
- Department of Applied Cosmetology, Tainan Junior College of Nursing, Tainan City 70043, Taiwan, China
| | - Yu-Wen Hsu
- Department of Optometry, Da-Yeh University, Changhua 51591, Taiwan, China
| | - Fung-Jou Lu
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan, China.,Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, China
| |
Collapse
|