1
|
Metri NA, Mandl A, Paller CJ. Harnessing nature's therapeutic potential: A review of natural products in prostate cancer management. Urol Oncol 2025; 43:221-243. [PMID: 39794185 DOI: 10.1016/j.urolonc.2024.12.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 01/13/2025]
Abstract
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death among men in the United States. The global burden of this disease is rising, placing significant strain on healthcare systems worldwide. Although definitive therapies like surgery and radiation are often effective, prostate cancer can recur and progress to castration-resistant prostate cancer in some cases. Conventional treatments for prostate cancer often have substantial side effects that can greatly impact patients' quality of life. Therefore, many patients turn to complementary therapies to improve outcomes, manage side effects, and enhance overall well-being. Natural products show promise as complementary treatments for prostate cancer, offering anticancer properties with a low risk of adverse effects. While preclinical research has produced encouraging results, their role in prostate cancer treatment remains controversial, largely due to inconsistent and limited success in clinical trials. This review explores the mechanisms of action of key natural products in prostate cancer management and summarizes clinical trials evaluating their efficacy and safety. It underscores the need for high-quality, rigorously designed, and adequately powered studies to validate the therapeutic potential and safety of these supplements in cancer care. Additionally, we propose future directions to enhance their role in addressing the complex challenges associated with prostate cancer.
Collapse
Affiliation(s)
- Nicole A Metri
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Adel Mandl
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Channing J Paller
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
2
|
Porfyris O, Detopoulou P, Adamantidi T, Tsoupras A, Papageorgiou D, Ioannidis A, Rojas Gil AP. Phytochemicals as Chemo-Preventive and Therapeutic Agents Against Bladder Cancer: A Comprehensive Review. Diseases 2025; 13:103. [PMID: 40277814 PMCID: PMC12026019 DOI: 10.3390/diseases13040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Bladder cancer has a high incidence worldwide and is characterized by a high recurrence rate, metastatic potential, and a significant socioeconomic burden. Conventional treatment modalities usually exhibit serious adverse complications, which also negatively affect patients' quality of life. In the context of exploring new treatment approaches with fewer side effects, the utilization of natural compounds as alternative and/or complementary therapeutic options seems appealing. In the present study, the potential use and effects of various bioactive phytochemicals, including curcumin, resveratrol, epigallocatechin, genistein, and several others, in bladder cancer treatment are thoroughly reviewed. A special focus is given to their potential to beneficially modulate important molecular signaling pathways and mechanisms affecting cell survival, proliferation, migration, and apoptosis, which play a crucial role in the pathogenesis of bladder cancer, such as the PI3K/AKT/mTOR, Ras/Raf/MEK/MAPK, Wnt/β-Catenin, Notch, Hedgehog, Hippo, JAK2/STAT3, and PAF/PAF-receptor pathways. Nevertheless, most studies have been conducted in cell cultures and animal models. Due to differences in genetics and metabolism, more clinical trials are needed to ensure the bio-efficacy of these phytochemicals in humans.
Collapse
Affiliation(s)
- Orestis Porfyris
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| | - Paraskevi Detopoulou
- Department of Nutritional Science and Dietetics, Faculty of Health Sciences, University of Peloponnese, New Building, Antikalamos, 24100 Kalamata, Greece;
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece; (T.A.); (A.T.)
| | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece; (T.A.); (A.T.)
| | - Dimitris Papageorgiou
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese Panarcadian Hospital of Tripoli, Red Cross Terminal (Administrative Services) 2nd Floor, 22100 Tripoli, Greece;
| | - Anastasios Ioannidis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| | - Andrea Paola Rojas Gil
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| |
Collapse
|
3
|
Vazhappilly CG, Alsawaf S, Mathew S, Nasar NA, Hussain MI, Cherkaoui NM, Ayyub M, Alsaid SY, Thomas JG, Cyril AC, Ramadan WS, Chelakkot AL. Pharmacodynamics and safety in relation to dose and response of plant flavonoids in treatment of cancers. Inflammopharmacology 2025; 33:11-47. [PMID: 39580755 DOI: 10.1007/s10787-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
Despite the recent advancements in developing bioactive nutraceuticals as anticancer modalities, their pharmacodynamics, safety profiles, and tolerability remain elusive, limiting their success in clinical trials. The failure of anticancer drugs in clinical trials can be attributed to the changes in drug clearance, absorption, and cellular responses, which alter the dose-response efficacy, causing adverse health effects. Flavonoids demonstrate a biphasic dose-response phenomenon exerting a stimulatory or inhibitory effect and often follow a U-shaped curve in different preclinical cancer models. A double-edged sword, bioflavonoids' antioxidant or prooxidant properties contribute to their hormetic behavior and facilitate redox homeostasis by regulating the levels of reactive oxygen species (ROS) in cells. Emerging reports suggest a need to discuss the pharmacodynamic broad-spectrum of plant flavonoids to improve their therapeutic efficacy, primarily to determine the ideal dose for treating cancer. This review discusses the dose-response effects of a few common plant flavonoids against some types of cancers and assesses their safety and tolerability when administered to patients. Moreover, we have emphasized the role of dietary-rich plant flavonoids as nutraceuticals in cancer treatment and prevention.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE.
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Shimy Mathew
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, UAE
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Noor Mustapha Cherkaoui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Mohammed Ayyub
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Serin Yaser Alsaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Joshua George Thomas
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Asha Caroline Cyril
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
4
|
Gutsche LC, Dörfler J, Hübner J. Curcumin as a complementary treatment in oncological therapy: a systematic review. Eur J Clin Pharmacol 2025; 81:1-33. [PMID: 39425780 PMCID: PMC11695395 DOI: 10.1007/s00228-024-03764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Curcumin, the active ingredient in turmeric, is employed by numerous cancer patients to support conventional cancer therapy. This systematic review aims to summarize the existing clinical evidence and to provide an overview of the potential benefits and risks associated with curcumin supplementation. METHODS In January 2024, we conducted a systematic search of five electronic databases (Embase, Cochrane, PsycInfo, CINAHL, and Medline) using a complex search strategy. We included randomized controlled trials on the use, effectiveness, and potential harm of additional curcumin therapy in adult patients under cancer treatment. The risk of bias was assessed using Cochrane revised Risk of Bias Tool 2.0. RESULTS This systematic review included 34 randomized controlled trials involving 2580 patients out of 11143 search results. Included patients were primarily diagnosed with head and neck cancer, followed by breast, prostate, and colorectal cancer. Therapy concepts encompassed topical or systemic curcumin administration. The studies reported heterogeneous results concerning oral and skin symptoms, pain, weight alteration and changes in body composition, survival, and disease progression. Significant findings were reported for oral mucositis and weight loss. Considering risk of bias, all studies had moderate to high risk of bias. Regarding side effects, one study reported significantly more vomiting in the curcumin group. CONCLUSION Although the results suggest promise in reducing mucositis and weight loss, a clear statement regarding the effectiveness of curcumin therapy on cancer patients cannot be made due to heterogeneous results and methodological limitations of the involved studies. Further investigations of higher quality are necessary to derive a definite recommendation for action.
Collapse
Affiliation(s)
- Lisa C Gutsche
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany.
| | - Jennifer Dörfler
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany
| | - Jutta Hübner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany
| |
Collapse
|
5
|
Tripathi D, Gupta T, Pandey P. Exploring Piperine: Unleashing the multifaceted potential of a phytochemical in cancer therapy. Mol Biol Rep 2024; 51:1050. [PMID: 39395120 DOI: 10.1007/s11033-024-09978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Radiotherapy is a cornerstone in the treatment of solid tumors, with extensive Phase III trials confirming its effectiveness. As advancements in treatment technologies and our understanding of tumor resistance mechanisms continue, the role of radiation oncology is set to become even more pivotal. Addressing the global challenge of lethal cancers demands innovative strategies, particularly in minimizing the side effects associated with traditional chemotherapy and ionizing radiation (IR). Recently, there has been growing interest in natural compounds for radioprotection, aiming to prevent tumor development and metastasis. Piperine, a compound found in black and long pepper, has emerged as a promising chemopreventive agent that works effectively without harming normal cells. Mechanistically, piperine modulates key signaling pathways, inhibits cancer cell migration and invasion, and enhances sensitivity to IR. Combining piperine with radiotherapy offers a compelling approach, boosting treatment efficacy while protecting healthy tissues from radiation damage. Piperine's versatile role goes beyond radiosensitization to include radioprotection by inhibiting NF-κB activation, reducing autophagy, and promoting apoptosis in cancer cells. This dual action makes it a promising candidate for personalized cancer care. As research advances, the therapeutic potential of piperine may drive new frontiers in cancer treatment strategies.
Collapse
Affiliation(s)
- Devika Tripathi
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, 209305, India.
| | - Tanya Gupta
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, 209305, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
6
|
Liu C, Wei J, Wang X, Zhao Q, Lv J, Tan Z, Xin Y, Jiang X. Radiation-induced skin reactions: oxidative damage mechanism and antioxidant protection. Front Cell Dev Biol 2024; 12:1480571. [PMID: 39450273 PMCID: PMC11500330 DOI: 10.3389/fcell.2024.1480571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
According to official statistics, cancer remains the main reason of death and over 50% of patients with cancer receive radiotherapy. However, adverse consequences after radiation exposure like radiation-induced skin reactions (RISR) have negative or even fatal impact on patients' quality of life (QoL). In this review we summarize the mechanisms and managements of RISRs, a process that involve a variety of extracellular and intracellular signals, among which oxidative stress (OS) are now commonly believed to be the initial part of the occurrence of all types of RISRs. As for the management of RISRs, traditional treatments have been widely used but without satisfying outcomes while some promising therapeutic strategies related to OS still need further researches. In the context we discuss how OS leads to the happening of RISRs of different types, hoping it can shed some light on the exploration of new countermeasures.
Collapse
Affiliation(s)
- Chuchu Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Xuanzhong Wang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Qin Zhao
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jincai Lv
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Zining Tan
- Key Laboratory of Pathobiology, Ministry of Education and College of Basic Medical Science, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education and College of Basic Medical Science, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
7
|
Tsoupras A, Adamantidi T, Finos MA, Philippopoulos A, Detopoulou P, Tsopoki I, Kynatidou M, Demopoulos CA. Re-Assessing the Role of Platelet Activating Factor and Its Inflammatory Signaling and Inhibitors in Cancer and Anti-Cancer Strategies. FRONT BIOSCI-LANDMRK 2024; 29:345. [PMID: 39473406 DOI: 10.31083/j.fbl2910345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 01/03/2025]
Abstract
Since 2000s, we have outlined the multifaceted role of inflammation in several aspects of cancer, via specific inflammatory mediators, including the platelet activating factor (PAF) and PAF-receptor (PAFR) related signaling, which affect important inflammatory junctions and cellular interactions that are associated with tumor-related inflammatory manifestations. It is now well established that disease-related unresolved chronic inflammatory responses can promote carcinogenesis. At the same time, tumors themselves are able to promote their progression and metastasis, by triggering an inflammation-related vicious cycle, in which PAF and its signaling play crucial role(s), which usually conclude in tumor growth and angiogenesis. In parallel, new evidence suggests that PAF and its signaling also interact with several inflammation-related cancer treatments by inducing an antitumor immune response or, conversely, promoting tumor recurrence. Within this review article, the current knowledge and future perspectives of the implication of PAF and its signaling in all these important aspects of cancer are thoroughly re-assessed. The potential beneficial role of PAF-inhibitors and natural or synthetic modulators of PAF-metabolism against tumors, tumor progression and metastasis are evaluated. Emphasis is given to natural and synthetic molecules with dual anti-PAF and anti-cancer activities (Bio-DAPAC-tives), with proven evidence of their antitumor potency through clinical trials, as well as on metal-based anti-inflammatory mediators that constitute a new class of potent inhibitors. The way these compounds may promote anti-tumor effects and modulate the inflammatory cellular actions and immune responses is also discussed. Limitations and future perspectives on targeting of PAF, its metabolism and receptor, including PAF-related inflammatory signaling, as part(s) of anti-tumor strategies that involve inflammation and immune response(s) for an improved outcome, are also evaluated.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Marios Argyrios Finos
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Athanassios Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Paraskevi Detopoulou
- Department of Nutritional Sciences and Dietetics, University of the Peloponnese, 24100 Kalamata, Greece
| | - Ifigeneia Tsopoki
- Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece
| | - Maria Kynatidou
- Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece
| | - Constantinos A Demopoulos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
8
|
Huang H, Qin J, Wen Z, Liu Y, Chen C, Wang C, Li H, Yang X. Effects of natural extract interventions in prostate cancer: A systematic review and network meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155598. [PMID: 38608596 DOI: 10.1016/j.phymed.2024.155598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Over years, there has been a widespread quest for effective dietary patterns and natural extracts to mitigate prostate cancer risk. However, despite numerous experimental studies conducted on various natural extracts, the evidence substantiating their efficacy remains largely insufficient. This dearth of compelling evidence presents a significant challenge in advocating for their widespread use as preventive measures against prostate cancer. OBJECTIVE Our study endeavors to undertake a network meta-analysis to evaluate the influence of natural extracts on prostate cancer. METHODS Researchers systematically searched through Embase, PubMed, Cochrane Library, and Web of Science databases until December 2023. The main focus was on assessing primary outcomes comprising prostate-specific antigen (PSA), insulin-like growth factor-binding protein-3 (IGFBP-3), insulin-like growth factor-1 (IGF-1). We conducted data analysis utilizing StataMP 15.0 software. Therapeutic effects were ranked based on the probability values derived from Surface Under the Cumulative Ranking curve (SUCRA). Additionally, cluster analysis was employed to assess the impacts of natural extracts on three distinct outcomes. RESULTS Following screening procedures, the 28 eligible studies were incorporated, the selected studies encompassed 1,566 prostate cancer patients and evaluated 16 different natural extract treatments. Specifically, 24 trials included PSA indicators, 10 included IGF-1 indicators, and 8 included IGFBP-3 indicators. The findings revealed that, based on the SUCRA values, the combined therapy of silybin with selenium (74%) appears to be the most effective approach for reducing serum PSA levels. Simultaneously, silybin alone (84.6%) stands out as the most promising option for decreasing serum IGF-1 levels. Lastly, concerning IGFBP-3, silybin alone (67.7%) emerges as the optimal choice. Twelve studies provided comprehensive information on adverse drug reactions/events (ADR/ADE), whereas five articles did not report any significant ADR/ADE. CONCLUSION The NMA suggests that, compared to placebo, utilizing silybin either alone or in combination with selenium has been shown to enhance therapeutic effects, offering potential benefits to patients with prostate cancer. This study can offer valuable insights for prostate patients considering natural extract treatments. Further evidence is required to confirm the safety profile of these treatments.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiao Qin
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhi Wen
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Liu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Caixia Chen
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chongjian Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hongyuan Li
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuesong Yang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
9
|
Conti V, Polcaro G, De Bellis E, Donnarumma D, De Rosa F, Stefanelli B, Corbi G, Sabbatino F, Filippelli A. Natural Health Products for Anti-Cancer Treatment: Evidence and Controversy. J Pers Med 2024; 14:685. [PMID: 39063939 PMCID: PMC11278393 DOI: 10.3390/jpm14070685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Natural Health Products (NHPs) have long been considered a valuable therapeutic approach for the prevention and treatment of various diseases, including cancer. However, research on this topic has led to inconclusive and often controversial results. This review aims to provide a comprehensive update of the effects and mechanisms related to the use of NHPs, to describe the results of randomized clinical trials (RCTs) on their effects in cancer patients, and to critically discuss factors influencing clinical outcomes. RCTs available in the literature, even those studying the same NHP, are very heterogeneous in terms of indications, doses, route and timing of administration, and outcomes evaluated. Silymarin, ginsenoside, and vitamin E appear to be useful in attenuating adverse events related to radiotherapy or chemotherapy, and curcumin and lycopene might provide some benefit in patients with prostate cancer. Most RCTs have not clarified whether NHP supplementation provides any real benefit, while harmful effects have been shown in some cases. Overall, the available data suggest that although there is some evidence to support the benefits of NHPs in the management of cancer patients, further clinical trials with the same design are needed before their introduction into clinical practice can be considered.
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, 84131 Salerno, Italy
| | - Giovanna Polcaro
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Emanuela De Bellis
- PhD School “Clinical and Translational Oncology (CTO)”, Scuola Superiore Meridionale, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Danilo Donnarumma
- PhD School “Clinical and Translational Oncology (CTO)”, Scuola Superiore Meridionale, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Federica De Rosa
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Berenice Stefanelli
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Francesco Sabbatino
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Oncology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, 84131 Salerno, Italy
| |
Collapse
|
10
|
Stasiłowicz-Krzemień A, Gościniak A, Formanowicz D, Cielecka-Piontek J. Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy. Int J Mol Sci 2024; 25:6937. [PMID: 39000045 PMCID: PMC11241526 DOI: 10.3390/ijms25136937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a formidable obstacle. To mitigate these effects, researchers have explored using radioprotectors and mitigators, including natural compounds derived from secondary plant metabolites. This review outlines the diverse classes of natural compounds, elucidating their roles as protectants of healthy cells. Furthermore, the review highlights the potential of these compounds as radioprotective agents capable of enhancing the body's resilience to radiation therapy. By integrating natural radioprotectors into cancer treatment regimens, clinicians may improve therapeutic outcomes while minimizing the adverse effects on healthy tissues. Ongoing research in this area holds promise for developing complementary strategies to optimize radiotherapy efficacy and enhance patient quality of life.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| | - Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| |
Collapse
|
11
|
Lee YM, Kim Y. Is Curcumin Intake Really Effective for Chronic Inflammatory Metabolic Disease? A Review of Meta-Analyses of Randomized Controlled Trials. Nutrients 2024; 16:1728. [PMID: 38892660 PMCID: PMC11174746 DOI: 10.3390/nu16111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This review aimed to examine the effects of curcumin on chronic inflammatory metabolic disease by extensively evaluating meta-analyses of randomized controlled trials (RCTs). We performed a literature search of meta-analyses of RCTs published in English in PubMed®/MEDLINE up to 31 July 2023. We identified 54 meta-analyses of curcumin RCTs for inflammation, antioxidant, glucose control, lipids, anthropometric parameters, blood pressure, endothelial function, depression, and cognitive function. A reduction in C-reactive protein (CRP) levels was observed in seven of ten meta-analyses of RCTs. In five of eight meta-analyses, curcumin intake significantly lowered interleukin 6 (IL-6) levels. In six of nine meta-analyses, curcumin intake significantly lowered tumor necrosis factor α (TNF-α) levels. In five of six meta-analyses, curcumin intake significantly lowered malondialdehyde (MDA) levels. In 14 of 15 meta-analyses, curcumin intake significantly reduced fasting blood glucose (FBG) levels. In 12 of 12 meta-analyses, curcumin intake significantly reduced homeostasis model assessment of insulin resistance (HOMA-IR). In seven of eight meta-analyses, curcumin intake significantly reduced glycated hemoglobin (HbA1c) levels. In eight of ten meta-analyses, curcumin intake significantly reduced insulin levels. In 14 of 19 meta-analyses, curcumin intake significantly reduced total cholesterol (TC) levels. Curcumin intake plays a protective effect on chronic inflammatory metabolic disease, possibly via improved levels of glucose homeostasis, MDA, TC, and inflammation (CRP, IL-6, TNF-α, and adiponectin). The safety and efficacy of curcumin as a natural product support the potential for the prevention and treatment of chronic inflammatory metabolic diseases.
Collapse
Affiliation(s)
- Young-Min Lee
- Department of Practical Science Education, Gyeongin National University of Education, Gyesan-ro 62, Gyeyang-gu, Incheon 21044, Republic of Korea;
| | - Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
12
|
Wang S, Zhang F, Chen J. Application and potential value of curcumin in prostate cancer: a meta-analysis based on animal models. Front Pharmacol 2024; 15:1379389. [PMID: 38783940 PMCID: PMC11111872 DOI: 10.3389/fphar.2024.1379389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Curcumin is gaining recognition as an agent for cancer chemoprevention and is presently administered to humans. However, the limited number of clinical trials conducted for the treatment of prostate cancer is noteworthy. Animal models serve as valuable tools for enhancing our understanding of disease mechanisms and etiology in humans. The objective of this study was to examine the anti-prostate cancer effects of curcumin in vivo for comprehending its current research status and potential clinical applicability. Methods Our methodology involved a systematic exploration of animal studies pertaining to curcumin and prostate cancer, as documented in PubMed, Web of Science, Embase, Cochrane Library, CNKI, Wanfang database, Vip database, and SinoMed, up to 03 September 2023. Risk of bias was assessed using the SYRCLE Animal Study Risk of Bias tool. The results were combined using the RevMan 5.3. Results A comprehensive analysis was conducted on 17 studies encompassing 263 mouse transplantation tumor models. The findings of this meta-analysis demonstrated that curcumin exhibited a superior inhibitory effect on the volume of prostate cancer tumors in mice compared to the control group (standardized mean difference [SMD]: 1.16, 95% confidence interval [CI]: 0.52, 1.80, p < 0.001). Additionally, curcumin displayed a more effective inhibition of mice prostate cancer tumor weight (SMD: -3.27, 95% CI: -4.70, -1.83, p < 0.001). Furthermore, in terms of tumor inhibition rate, curcumin exhibited greater efficacy (SMD: 0.25, 95% CI: 0.23, 0.27, p < 0.001). Moreover, curcumin more effectively inhibited PCNA mRNA (SMD: -3.11, 95% CI: -4.60, -1.63, p < 0.001) and MMP2 mRNA (SMD: -3.19, 95% CI: 5.85, -0.53, p < 0.001). Conclusion Curcumin exhibited inhibitory properties towards prostate tumor growth and demonstrated a beneficial effect on prostate cancer treatment, thereby offering substantiation for further clinical investigations. It is important to acknowledge that the included animal studies exhibited considerable heterogeneity, primarily because of the limited number of studies included. Consequently, additional randomized controlled trials are required to comprehensively assess the efficacy of curcumin in humans. Systematic Review Registration (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023464661), identifier (CRD42023464661).
Collapse
Affiliation(s)
- Shiheng Wang
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, China
- Institute for History of Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengxia Zhang
- Institute for History of Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Chen
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, China
| |
Collapse
|
13
|
Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia 2024; 91:90-106. [PMID: 37776274 DOI: 10.1177/03915603231202304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The major barriers to phytonutrients in prostate cancer therapy are non-specific mechanisms and bioavailability issues. Studies have pointed to a synergistic combination of curcumin (CURC) and ursolic acid (UA). We investigate this combination using a systematic review process to assess the most likely mechanistic pathway and human testing in prostate cancer. We used the PRISMA statement to screen titles, abstracts, and the full texts of relevant articles and performed a descriptive analysis of the literature reviewed for study inclusion and consensus of the manuscript. The most common molecular and cellular pathway from articles reporting on the pathways and effects of CURC (n = 173) in prostate cancer was NF-κB (n = 25, 14.5%). The most common molecular and cellular pathway from articles reporting on the pathways and effects of UA (n = 24) in prostate cancer was caspase 3/caspase 9 (n = 10, 41.6%). The three most common molecular and cellular pathway from articles reporting on the pathways and effects of both CURC and UA (n = 193) in prostate cancer was NF-κB (n = 28, 14.2%), Akt (n = 22, 11.2%), and androgen (n = 19, 9.6%). Therefore, we have identified the potential synergistic target pathways of curcumin and ursolic acid to involve NF-κB, Akt, androgen receptors, and apoptosis pathways. Our review highlights the limited human studies and specific effects in prostate cancer.
Collapse
Affiliation(s)
- Benjamin D Besasie
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
- Department of Urology, South Texas Veterans Healthcare System, USA
| |
Collapse
|
14
|
Noor A, Shafi S, Sehar N, Qadir I, Bilquees, Rashid S, Arafah A, Rasool S, Dar NJ, Masoodi MH, Rehman MU. Curcuminoids as Cell Signaling Pathway Modulators: A Potential Strategy for Cancer Prevention. Curr Med Chem 2024; 31:3093-3117. [PMID: 37559247 DOI: 10.2174/0929867331666230809100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 08/11/2023]
Abstract
Despite substantial advancements in curative modern medicine in the last few decades, cancer risk and casualty rates have continued to mount globally. The exact reason for cancer's onset and progression is still unknown. However, skeletal and functional abnormalities in the genetic code are assumed to be the primary cause of cancer. Many lines of evidence reported that some medicinal plants can be utilized to curb cancer cell proliferation with a safe, fruitful, and cost-efficient perspective. Curcuminoid, isolated from Curcuma longa, have gotten a lot of focus due to their anticancer potential as they reduce tumor progression, invasion, and dissemination. Further, they modulated signal transduction routes like MAPK, PI3K/Akt/mTOR, JAK/STAT, and Wnt/β-catenin, etc., and triggered apoptosis as well as actuated autophagy in malignant cells without altering the normal cells, thus preventing cancer progression. Besides, Curcuminoid also regulate the function and expression of anti-tumor and carcinogenic miRNAs. Clinical studies also reported the therapeutic effect of Curcuminoid against various cancer through decreasing specific biomarkers like TNF-α, Bcl-2, COX-2, PGE2, VEGF, IκKβ, and various cytokines like IL-12p70, IL-10, IL-2, IFN-γ levels and increasing in p53 and Bax levels. Thus, in the present review, we abridged the modulation of several signal transduction routes by Curcuminoids in various malignancies, and its modulatory role in the initiation of tumor-suppressive miRNAs and suppression of the oncogenic miRNAs are explored. Additionally, various pharmacokinetic approaches have been projected to address the Curcuminoids bioavailability like the use of piperine as an adjuvant; nanotechnology- based Curcuminoids preparations utilizing Curcuminoids analogues are also discussed.
Collapse
Affiliation(s)
- Aneeza Noor
- Natural Products Research Laboratory, Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal Srinagar, J&K, India
| | - Saimeena Shafi
- Natural Products Research Laboratory, Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal Srinagar, J&K, India
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Insha Qadir
- Natural Products Research Laboratory, Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal Srinagar, J&K, India
| | - Bilquees
- Natural Products Research Laboratory, Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal Srinagar, J&K, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al Kharj, 11942, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saiema Rasool
- Department of School Education, Govt. of Jammu & Kashmir, Srinagar, J&K 190001, India
| | - Nawab John Dar
- Cellular Neurobiology Laboratory (CNB-P), Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, CA92037, USA
| | - Mubashir Hussain Masoodi
- Natural Products Research Laboratory, Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal Srinagar, J&K, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Joshi P, Bisht A, Paliwal A, Dwivedi J, Sharma S. Recent updates on clinical developments of curcumin and its derivatives. Phytother Res 2023; 37:5109-5158. [PMID: 37536946 DOI: 10.1002/ptr.7974] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/19/2023] [Accepted: 07/15/2023] [Indexed: 08/05/2023]
Abstract
Curcumin, a natural polyphenol, derived from Curcuma longa L. is extensively studied by various researchers across the globe and has established its immense potential in the management of several disorders at clinical level. The underlying mechanism of curcumin involves regulation of various molecular targets, namely, inflammatory cytokines, transcription factor, apoptotic genes, growth factors, oxidative stress biomarkers, and protein kinases. In clinical trials, curcumin as an adjuvant has significantly boost-up the efficacy of many proven drugs in the management of arthritis, neurodegenerative disorder, oral infection, and gastrointestinal disorders. Moreover, clinical studies have suggested curcumin as an appropriate candidate for the prevention and/or management of various cancers via regulation of signaling molecules including NF-kB, cytokines, C-reactive protein, prostaglandin E2, Nrf2, HO-1, ALT, AST, kinases, and blood profiles. This article highlights plethora of clinical trials that have been conducted on curcumin and its derivatives in the management of several ailments. Besides, it provides recent updates to the investigators for conducting future research to fulfill the current gaps to expedite the curcumin utility in clinical subjects bearing different pathological states.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Ajita Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
16
|
Mishra AP, Singh P, Yadav S, Nigam M, Seidel V, Rodrigues CF. Role of the Dietary Phytochemical Curcumin in Targeting Cancer Cell Signalling Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091782. [PMID: 37176840 PMCID: PMC10180989 DOI: 10.3390/plants12091782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
The diarylheptanoid curcumin [(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione] is one of the phenolic pigments responsible for the yellow colour of turmeric (Curcuma longa L.). This phytochemical has gained much attention in recent years due to its therapeutic potential in cancer. A range of drug delivery approaches have been developed to optimise the pharmacokinetic profile of curcumin and ensure that it reaches its target sites. Curcumin exhibits numerous biological effects, including anti-inflammatory, cardioprotective, antidiabetic, and anti-aging activities. It has also been extensively studied for its role as a cancer chemopreventive and anticancer agent. This review focusses on the role of curcumin in targeting the cell signalling pathways involved in cancer, particularly via modulation of growth factors, transcription factors, kinases and other enzymes, pro-inflammatory cytokines, and pro-apoptotic and anti-apoptotic proteins. It is hoped that this study will help future work on the potential of curcumin to fight cancer.
Collapse
Affiliation(s)
- Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, Bloemfontein 9300, South Africa
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Celia Fortuna Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
17
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
18
|
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Cytokine 2023; 164:156144. [PMID: 36804260 DOI: 10.1016/j.cyto.2023.156144] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Turmeric and its prominent bioactive compound, curcumin, have been the subject of many investigations with regard to their impact on inflammatory and oxidative balance in the body. In this systematic review and meta-analysis, we summarized the existing literature on randomized controlled trials (RCTs) which examined this hypothesis. Major databases (PubMed, Scopus, Web of Science, Cochrane Library and Google Scholar) were searched from inception up to October 2022. Relevant studies meeting our eligibility criteria were obtained. Main outcomes included inflammatory markers (i.e. C-reactive protein(CRP), tumour necrosis factorα(TNF-α), interleukin-6(IL-6), and interleukin 1 beta(IL-1β)) and markers of oxidative stress (i.e. total antioxidant capacity (TAC), malondialdehyde(MDA), and superoxide dismutase (SOD) activity). Weighted mean differences (WMDs) were reported. P-values < 0.05 were considered significant. Sixty-six RCTs were included in the final analysis. We observed that turmeric/curcumin supplementation significantly reduces levels of inflammatory markers, including CRP (WMD: -0.58 mg/l, 95 % CI: -0.74, -0.41), TNF-α (WMD: -3.48 pg/ml, 95 % CI: -4.38, -2.58), and IL-6 (WMD: -1.31 pg/ml, 95 % CI: -1.58, -0.67); except for IL-1β (WMD: -0.46 pg/ml, 95 % CI: -1.18, 0.27) for which no significant change was found. Also, turmeric/curcumin supplementation significantly improved anti-oxidant activity through enhancing TAC (WMD = 0.21 mmol/l; 95 % CI: 0.08, 0.33), reducing MDA levels (WMD = -0.33 µmol /l; 95 % CI: -0.53, -0.12), and SOD activity (WMD = 20.51 u/l; 95 % CI: 7.35, 33.67). It seems that turmeric/curcumin supplementation might be used as a viable intervention for improving inflammatory/oxidative status of individuals.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Student Research Committee, Department of community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Panknin TM, Howe CL, Hauer M, Bucchireddigari B, Rossi AM, Funk JL. Curcumin Supplementation and Human Disease: A Scoping Review of Clinical Trials. Int J Mol Sci 2023; 24:4476. [PMID: 36901908 PMCID: PMC10003109 DOI: 10.3390/ijms24054476] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Medicinal properties of turmeric (Curcuma longa L.), a plant used for centuries as an anti-inflammatory, are attributed to its polyphenolic curcuminoids, where curcumin predominates. Although "curcumin" supplements are a top-selling botanical with promising pre-clinical effects, questions remain regarding biological activity in humans. To address this, a scoping review was conducted to assess human clinical trials reporting oral curcumin effects on disease outcomes. Eight databases were searched using established guidelines, yielding 389 citations (from 9528 initial) that met inclusion criteria. Half focused on obesity-associated metabolic disorders (29%) or musculoskeletal disorders (17%), where inflammation is a key driver, and beneficial effects on clinical outcomes and/or biomarkers were reported for most citations (75%) in studies that were primarily double-blind, randomized, and placebo-controlled trials (77%, D-RCT). Citations for the next most studied disease categories (neurocognitive [11%] or gastrointestinal disorders [10%], or cancer [9%]), were far fewer in number and yielded mixed results depending on study quality and condition studied. Although additional research is needed, including systematic evaluation of diverse curcumin formulations and doses in larger D-RCT studies, the preponderance of current evidence for several highly studied diseases (e.g., metabolic syndrome, osteoarthritis), which are also clinically common, are suggestive of clinical benefits.
Collapse
Affiliation(s)
| | - Carol L. Howe
- The University of Arizona Health Science Library, Tucson, AZ 85724, USA
| | - Meg Hauer
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - Anthony M. Rossi
- Department of Physiology, Honors College, University of Arizona, Tucson, AZ 85724, USA
| | - Janet L. Funk
- Department of Medicine and School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
20
|
Abu-Hijleh HM, Al-Zoubi RM, Zarour A, Al- Ansari A, Bawadi H. The Therapeutic Role of Curcumin in Inflammation and Post-Surgical Outcomes. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2166525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Haya M. Abu-Hijleh
- Department of Human Nutrition, college of health Science, QU-health, Qatar University, Doha, Qatar
| | - Raed M. Al-Zoubi
- Department of biomedical Sciences, college of health Science, QU-Health, Qatar University, Doha, Qatar
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Zarour
- Acute care Surgery Division, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Abdulla Al- Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, college of health Science, QU-health, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
22
|
Komorowska D, Radzik T, Kalenik S, Rodacka A. Natural Radiosensitizers in Radiotherapy: Cancer Treatment by Combining Ionizing Radiation with Resveratrol. Int J Mol Sci 2022; 23:ijms231810627. [PMID: 36142554 PMCID: PMC9501384 DOI: 10.3390/ijms231810627] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional cancer treatment is mainly based on the surgical removal of the tumor followed by radiotherapy and/or chemotherapy. When surgical removal is not possible, radiotherapy and, less often, chemotherapy is the only way to treat patients. However, despite significant progress in understanding the molecular mechanisms of carcinogenesis and developments in modern radiotherapy techniques, radiotherapy (alone or in combination) does not always guarantee treatment success. One of the main causes is the radioresistance of cancer cells. Increasing the radiosensitivity of cancer cells improves the processes leading to their elimination during radiotherapy and prolonging the survival of cancer patients. In order to enhance the effect of radiotherapy in the treatment of radioresistant neoplasms, radiosensitizers are used. In clinical practice, synthetic radiosensitizers are commonly applied, but scientists have recently focused on using natural products (phytocompounds) as adjuvants in radiotherapy. In this review article, we only discuss naturally occurring radiosensitizers currently in clinical trials (paclitaxel, curcumin, genistein, and papaverine) and those whose radiation sensitizing effects, such as resveratrol, have been repeatedly confirmed by many independent studies.
Collapse
Affiliation(s)
- Dominika Komorowska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Tomasz Radzik
- MARINEX International, 4 Placowa St., 93-446 Lodz, Poland
| | - Sebastian Kalenik
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Aleksandra Rodacka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Correspondence: ; Fax: +48-426354473
| |
Collapse
|
23
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|
25
|
Zimmermann-Klemd AM, Reinhardt JK, Winker M, Gründemann C. Phytotherapy in Integrative Oncology-An Update of Promising Treatment Options. Molecules 2022; 27:3209. [PMID: 35630688 PMCID: PMC9143079 DOI: 10.3390/molecules27103209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Modern phytotherapy is part of today's conventional evidence-based medicine and the use of phytopharmaceuticals in integrative oncology is becoming increasingly popular. Approximately 40% of users of such phytopharmaceuticals are tumour patients. The present review provides an overview of the most important plants and nature-based compounds used in integrative oncology and illustrates their pharmacological potential in preclinical and clinical settings. A selection of promising anti-tumour plants and ingredients was made on the basis of scientific evidence and therapeutic practical relevance and included Boswellia, gingko, ginseng, ginger, and curcumin. In addition to these nominees, there is a large number of other interesting plants and plant ingredients that can be considered for the treatment of cancer diseases or for the treatment of tumour or tumour therapy-associated symptoms. Side effects and interactions are included in the discussion. However, with the regular and intended use of phytopharmaceuticals, the occurrence of adverse side effects is rather rare. Overall, the use of defined phytopharmaceuticals is recommended in the context of a rational integrative oncology approach.
Collapse
Affiliation(s)
- Amy M. Zimmermann-Klemd
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland; (A.M.Z.-K.); (M.W.)
| | - Jakob K. Reinhardt
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland;
| | - Moritz Winker
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland; (A.M.Z.-K.); (M.W.)
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland; (A.M.Z.-K.); (M.W.)
| |
Collapse
|
26
|
Sanlier N, Kocabas Ş, Erdogan K, Sanlier NT. Effects of curcumin, its analogues, and metabolites on various cancers: focusing on potential mechanisms. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Şule Kocabas
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Kadriye Erdogan
- Department of Obstetrics and Gynecology, Ankara Gulhane Health Application and Research Center, Health Sciences University, Ankara, Turkey
| | - Nazlı Tunca Sanlier
- Department of Obstetrics and Gynecology, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
27
|
Cote B, Elbarbry F, Bui F, Su JW, Seo K, Nguyen A, Lee M, Rao DA. Mechanistic Basis for the Role of Phytochemicals in Inflammation-Associated Chronic Diseases. Molecules 2022; 27:molecules27030781. [PMID: 35164043 PMCID: PMC8838908 DOI: 10.3390/molecules27030781] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases occur in a large portion of the population and are associated with a poor diet. Key natural products found in fruits and vegetables may assist in lowering inflammation associated with chronic diseases such as obesity, diabetes, cardiovascular diseases, and cancer. This review seeks to examine the roles of several natural products, resveratrol (RES), quercetin (QUE), curcumin (CUR), piperine (PIP), epigallocatechin gallate (EGCG), and gingerol (GIN), in their ability to attenuate inflammatory markers in specific diseases states. Additionally, we will discuss findings in past and ongoing clinical trials, detail possible phytochemical–drug interactions, and provide a brief resource for researchers and healthcare professionals on natural product and supplement regulation as well as names of databases with information on efficacy, indications, and natural product–drug interactions. As diet and over-the-counter supplement use are modifiable factors and patients are interested in using complementary and alternative therapies, understanding the mechanisms by which natural products have demonstrated efficacy and the types of drugs they interact with and knowing where to find information on herbs and supplements is important for practicing healthcare providers and researchers interested in this field.
Collapse
Affiliation(s)
- Brianna Cote
- College of Pharmacy, Oregon State University, Portland, OR 97201, USA;
| | - Fawzy Elbarbry
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Fiona Bui
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Joe W. Su
- School of Pharmacy, West Coast University, Los Angeles, CA 90004, USA;
| | - Karen Seo
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Arthur Nguyen
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Max Lee
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Deepa A. Rao
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
- Correspondence:
| |
Collapse
|
28
|
Bishayee A, Karaboga Arslan A, Uzunhisarcıklı E, Yerer M. The golden spice curcumin in cancer: A perspective on finalized clinical trials during the last 10 years. J Cancer Res Ther 2022; 18:19-26. [DOI: 10.4103/jcrt.jcrt_1017_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Kumar A, Hegde M, Parama D, Kunnumakkara AB. Curcumin: The Golden Nutraceutical on the Road to Cancer Prevention and Therapeutics. A Clinical Perspective. Crit Rev Oncog 2022; 27:33-63. [PMID: 37183937 DOI: 10.1615/critrevoncog.2023045587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cancer is considered as the major public health scourge of the 21st century. Although remarkable strides were made for developing targeted therapeutics, these therapies suffer from lack of efficacy, high cost, and debilitating side effects. Therefore, the search for safe, highly efficacious, and affordable therapies is paramount for establishing a treatment regimen for this deadly disease. Curcumin, a known natural, bioactive, polyphenol compound from the spice turmeric (Curcuma longa), has been well documented for its wide range of pharmacological and biological activities. A plethora of literature indicates its potency as an anti-inflammatory and anti-cancer agent. Curcumin exhibits anti-neoplastic attributes via regulating a wide array of biological cascades involved in mutagenesis, proliferation, apoptosis, oncogene expression, tumorigenesis, and metastasis. Curcumin has shown a wide range of pleiotropic anti-proliferative effect in multiple cancers and is a known inhibitor of varied oncogenic elements, including nuclear factor kappa B (NF-κB), c-myc, cyclin D1, Bcl-2, VEGF, COX-2, NOS, tumor necrosis factor alpha (TNF-α), interleukins, and MMP-9. Further, curcumin targets different growth factor receptors and cell adhesion molecules involved in tumor growth and progression, making it a most promising nutraceutical for cancer therapy. To date, curcumin-based therapeutics have completed more than 50 clinical trials for cancer. Although creative experimentation is still elucidating the immense potential of curcumin, systematic validation by proper randomized clinical trials warrant its transition from lab to bedside. Therefore, this review summarizes the outcome of diverse clinical trials of curcumin in various cancer types.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Dey Parama
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| |
Collapse
|
30
|
Liu M, Shi Y, Hu Q, Qin Y, Ji S, Liu W, Zhuo Q, Fan G, Ye Z, Song C, Yu X, Xu X, Xu W. SETD8 induces stemness and epithelial-mesenchymal transition of pancreatic cancer cells by regulating ROR1 expression. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1614-1624. [PMID: 34599596 DOI: 10.1093/abbs/gmab140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most deadly diseases, and its incidence is increasing year by year. The methyltransferase SETD8 has been demonstrated to play an important role in tumor cell proliferation and metastasis. However, little is known about whether SETD8 could affect the invasion and metastasis of PC and the mechanism underlying the regulation. Based on our previous report, here, we further found that SETD8 could promote the invasion and migration of PC cells by inducing the expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1). ROR1 was predominantly upregulated in PC tissues and was correlated with lymph node metastasis and worse prognosis. Mechanistically, SETD8 mediated ROR1 activity and regulated PC cells invasion and migration, although promoting the expression of stemness and epithelial-mesenchymal transition-related molecules. This promotion effect disappeared when the catalytically inactive mutant SETD8 was overexpressed, which could be counteracted by the SETD8-specific methyltransferase inhibitor UNC0379. Collectively, our results demonstrate that SETD8 may be a novel prognostic factor and a therapeutic target of PC.
Collapse
Affiliation(s)
- Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Yihua Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Changfeng Song
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| |
Collapse
|
31
|
Bibb E, Alajlan N, Alsuwailem S, Mitchell B, Brady A, Maqbool M, George R. Internalized Nanoceria Modify the Radiation-Sensitivity Profile of MDA MB231 Breast Carcinoma Cells. BIOLOGY 2021; 10:biology10111148. [PMID: 34827141 PMCID: PMC8614948 DOI: 10.3390/biology10111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Owing to its unique redox properties, cerium oxide (nanoceria) nanoparticles have been shown to confer either radiosensitization or radioprotection to human cells. We investigated nanoceria's ability to modify cellular health and reactive oxygen species (ROS) at various absorbed doses (Gray) of ionizing radiation in MDA-MB231 breast carcinoma cells. We used transmission electron microscopy to visualize the uptake and compartmental localization of nanoceria within cells at various treatment concentrations. The effects on apoptosis and other cellular health parameters were assessed using confocal fluorescence imaging and flow cytometry without and with various absorbed doses of ionizing radiation, along with intracellular ROS levels. Our results showed that nanoceria were taken up into cells mainly by macropinocytosis and segregated into concentration-dependent large aggregates in macropinosomes. Confocal imaging and flow cytometry data showed an overall decrease in apoptotic cell populations in proportion to increasing nanoparticle concentrations. This increase in cellular health was observed with a corresponding reduction in ROS at all tested absorbed doses. Moreover, this effect appeared pronounced at lower doses compared to unirradiated or untreated populations. In conclusion, internalized nanoceria confers radioprotection with a corresponding decrease in ROS in MDA-MB231 cells, and this property confers significant perils and opportunities when utilized in the context of radiotherapy.
Collapse
Affiliation(s)
- Emory Bibb
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.B.); (N.A.); (S.A.); (B.M.); (A.B.)
| | - Noura Alajlan
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.B.); (N.A.); (S.A.); (B.M.); (A.B.)
| | - Saad Alsuwailem
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.B.); (N.A.); (S.A.); (B.M.); (A.B.)
| | - Benjamin Mitchell
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.B.); (N.A.); (S.A.); (B.M.); (A.B.)
| | - Amy Brady
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.B.); (N.A.); (S.A.); (B.M.); (A.B.)
| | - Muhammad Maqbool
- Health Physics Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Remo George
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.B.); (N.A.); (S.A.); (B.M.); (A.B.)
| |
Collapse
|
32
|
Singla RK, Sharma P, Dubey AK, Gundamaraju R, Kumar D, Kumar S, Madaan R, Shri R, Tsagkaris C, Parisi S, Joon S, Singla S, Kamal MA, Shen B. Natural Product-Based Studies for the Management of Castration-Resistant Prostate Cancer: Computational to Clinical Studies. Front Pharmacol 2021; 12:732266. [PMID: 34737700 PMCID: PMC8560712 DOI: 10.3389/fphar.2021.732266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: With prostate cancer being the fifth-greatest cause of cancer mortality in 2020, there is a dire need to expand the available treatment options. Castration-resistant prostate cancer (CRPC) progresses despite androgen depletion therapy. The mechanisms of resistance are yet to be fully discovered. However, it is hypothesized that androgens depletion enables androgen-independent cells to proliferate and recolonize the tumor. Objectives: Natural bioactive compounds from edible plants and herbal remedies might potentially address this need. This review compiles the available cheminformatics-based studies and the translational studies regarding the use of natural products to manage CRPC. Methods: PubMed and Google Scholar searches for preclinical studies were performed, while ClinicalTrials.gov and PubMed were searched for clinical updates. Studies that were not in English and not available as full text were excluded. The period of literature covered was from 1985 to the present. Results and Conclusion: Our analysis suggested that natural compounds exert beneficial effects due to their broad-spectrum molecular disease-associated targets. In vitro and in vivo studies revealed several bioactive compounds, including rutaecarpine, berberine, curcumin, other flavonoids, pentacyclic triterpenoids, and steroid-based phytochemicals. Molecular modeling tools, including machine and deep learning, have made the analysis more comprehensive. Preclinical and clinical studies on resveratrol, soy isoflavone, lycopene, quercetin, and gossypol have further validated the translational potential of the natural products in the management of prostate cancer.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
- Khalsa College of Pharmacy, Amritsar, India
| | | | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Sri Sai College of Pharmacy, Amritsar, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Salvatore Parisi
- Lourdes Matha Institute of Hotel Management and Catering Technology, Thiruvananthapuram, India
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Kumar A, Harsha C, Parama D, Girisa S, Daimary UD, Mao X, Kunnumakkara AB. Current clinical developments in curcumin-based therapeutics for cancer and chronic diseases. Phytother Res 2021; 35:6768-6801. [PMID: 34498308 DOI: 10.1002/ptr.7264] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/16/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
The last decade has seen an unprecedented rise in the prevalence of chronic diseases worldwide. Different mono-targeted approaches have been devised to treat these multigenic diseases, still most of them suffer from limited success due to the off-target debilitating side effects and their inability to target multiple pathways. Hence a safe, efficacious, and multi-targeted approach is the need for the hour to circumvent these challenging chronic diseases. Curcumin, a natural compound extracted from the rhizomes of Curcuma longa, has been under intense scrutiny for its wide medicinal and biological properties. Curcumin is known to manifest antibacterial, antiinflammatory, antioxidant, antifungal, antineoplastic, antifungal, and proapoptotic effects. A plethora of literature has already established the immense promise of curcuminoids in the treatment and clinical management of various chronic diseases like cancer, cardiovascular, metabolic, neurological, inflammatory, and infectious diseases. To date, more than 230 clinical trials have opened investigations to understand the pharmacological aspects of curcumin in human systems. Still, further randomized clinical studies in different ethnic populations warrant its transition to a marketed drug. This review summarizes the results from different clinical trials of curcumin-based therapeutics in the prevention and treatment of various chronic diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| |
Collapse
|
34
|
Wang X, Ha D, Yoshitake R, Chan YS, Sadava D, Chen S. Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. Int J Mol Sci 2021; 22:8798. [PMID: 34445499 PMCID: PMC8395949 DOI: 10.3390/ijms22168798] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022] Open
Abstract
Xenoestrogens and phytoestrogens are referred to as "foreign estrogens" that are produced outside of the human body and have been shown to exert estrogen-like activity. Xenoestrogens are synthetic industrial chemicals, whereas phytoestrogens are chemicals present in the plant. Considering that these environmental estrogen mimics potentially promote hormone-related cancers, an understanding of how they interact with estrogenic pathways in human cells is crucial to resolve their possible impacts in cancer. Here, we conducted an extensive literature evaluation on the origins of these chemicals, emerging research techniques, updated molecular mechanisms, and ongoing clinical studies of estrogen mimics in human cancers. In this review, we describe new applications of patient-derived xenograft (PDX) models and single-cell RNA sequencing (scRNA-seq) techniques in shaping the current knowledge. At the molecular and cellular levels, we provide comprehensive and up-to-date insights into the mechanism of xenoestrogens and phytoestrogens in modulating the hallmarks of cancer. At the systemic level, we bring the emerging concept of window of susceptibility (WOS) into focus. WOS is the critical timing during the female lifespan that includes the prenatal, pubertal, pregnancy, and menopausal transition periods, during which the mammary glands are more sensitive to environmental exposures. Lastly, we reviewed 18 clinical trials on the application of phytoestrogens in the prevention or treatment of different cancers, conducted from 2002 to the present, and provide evidence-based perspectives on the clinical applications of phytoestrogens in cancers. Further research with carefully thought-through concepts and advanced methods on environmental estrogens will help to improve understanding for the identification of environmental influences, as well as provide novel mechanisms to guide the development of prevention and therapeutic approaches for human cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (X.W.); (D.H.); (R.Y.); (Y.S.C.); (D.S.)
| |
Collapse
|
35
|
Curcumin for the Treatment of Prostate Diseases: A Systematic Review of Controlled Clinical Trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:345-362. [PMID: 34331700 DOI: 10.1007/978-3-030-56153-6_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer is one of the significant causes of morbidity and mortality worldwide. Benign prostatic hyperplasia is another condition of the prostate which, like prostate cancer, is more common among ageing men and is linked to inflammation. In this study, a systematic review was undertaken to estimate the effect of turmeric or curcumin supplementation on prostate diseases. A comprehensive search was conducted in PubMed, Scopus, ISI Web of Science and Google Scholar up to 15 April 2020 to identify clinical trials assessing the effects of curcumin/turmeric alone or in combination with other herbs on prostate diseases. This led to the identification of 11 records comprising 745 patients who met the eligibility criteria. Eight studies were conducted on patients with prostate cancer, and three were on other diseases of the prostate. Although outcomes across the studies were heterogeneous, in some studies curcumin/turmeric supplementation had some favourable effects. This included beneficial effects on the levels of prostate-specific antigen (PSA) (2/6 studies), quality of life (1/2 studies), as well as on oxidative stress markers, feelings of incomplete bladder emptying, urination frequency, intermittency, urgency, weak stream, straining and nocturia. Curcumin/turmeric supplementation had no significant adverse effects among patients. This study demonstrated that turmeric or curcumin supplementation might have beneficial effects on some parameters related to prostate diseases, but it should be noted that some studies showed no effect. Therefore, further studies using curcumin-related compounds, particularly in highly bioavailable forms, are needed to assess the impact of curcumin on prostate conditions.
Collapse
|
36
|
Kong WY, Ngai SC, Goh BH, Lee LH, Htar TT, Chuah LH. Is Curcumin the Answer to Future Chemotherapy Cocktail? Molecules 2021; 26:4329. [PMID: 34299604 PMCID: PMC8303331 DOI: 10.3390/molecules26144329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The rise in cancer cases in recent years is an alarming situation worldwide. Despite the tremendous research and invention of new cancer therapies, the clinical outcomes are not always reassuring. Cancer cells could develop several evasive mechanisms for their survivability and render therapeutic failure. The continuous use of conventional cancer therapies leads to chemoresistance, and a higher dose of treatment results in even greater toxicities among cancer patients. Therefore, the search for an alternative treatment modality is crucial to break this viscous cycle. This paper explores the suitability of curcumin combination treatment with other cancer therapies to curb cancer growth. We provide a critical insight to the mechanisms of action of curcumin, its role in combination therapy in various cancers, along with the molecular targets involved. Curcumin combination treatments were found to enhance anticancer effects, mediated by the multitargeting of several signalling pathways by curcumin and the co-administered cancer therapies. The preclinical and clinical evidence in curcumin combination therapy is critically analysed, and the future research direction of curcumin combination therapy is discussed.
Collapse
Affiliation(s)
- Wei-Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia; (W.-Y.K.); (S.C.N.)
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Selangor, Malaysia; (W.-Y.K.); (S.C.N.)
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (B.-H.G.); (T.-T.H.)
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Thet-Thet Htar
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (B.-H.G.); (T.-T.H.)
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (B.-H.G.); (T.-T.H.)
| |
Collapse
|
37
|
Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: Therapeutic prospect with herbal medicine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100034. [PMID: 34909665 PMCID: PMC8663990 DOI: 10.1016/j.crphar.2021.100034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, India
| | | | - Vinod K. Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Andhra Pradesh, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
38
|
Singh CK, Chhabra G, Patel A, Chang H, Ahmad N. Dietary Phytochemicals in Zinc Homeostasis: A Strategy for Prostate Cancer Management. Nutrients 2021; 13:nu13061867. [PMID: 34070833 PMCID: PMC8226978 DOI: 10.3390/nu13061867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/30/2023] Open
Abstract
Studies have suggested an important role of the trace element zinc (Zn) in prostate biology and functions. Zn has been shown to exist in very high concentrations in the healthy prostate and is important for several prostatic functions. In prostate cancer (PCa), Zn levels are significantly decreased and inversely correlated with disease progression. Ideally, restoration of adequate Zn levels in premalignant/malignant prostate cells could abort prostate malignancy. However, studies have shown that Zn supplementation is not an efficient way to significantly increase Zn concentrations in PCa. Based on a limited number of investigations, the reason for the lower levels of Zn in PCa is believed to be the dysregulation of Zn transporters (especially ZIP and ZnT family of proteins), metallothioneins (for storing and releasing Zn), and their regulators (e.g., Zn finger transcription factor RREB1). Interestingly, the level of Zn in cells has been shown to be modulated by naturally occurring dietary phytochemicals. In this review, we discussed the effect of selected phytochemicals (quercetin, resveratrol, epigallocatechin-3-gallate and curcumin) on Zn functioning and proposes that Zn in combination with specific dietary phytochemicals may lead to enhanced Zn bioaccumulation in the prostate, and therefore, may inhibit PCa.
Collapse
Affiliation(s)
- Chandra K. Singh
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (C.K.S.); (G.C.); (A.P.); (H.C.)
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (C.K.S.); (G.C.); (A.P.); (H.C.)
| | - Arth Patel
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (C.K.S.); (G.C.); (A.P.); (H.C.)
| | - Hao Chang
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (C.K.S.); (G.C.); (A.P.); (H.C.)
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI 53705, USA; (C.K.S.); (G.C.); (A.P.); (H.C.)
- William S. Middleton VA Medical Center, Madison, WI 53705, USA
- Correspondence: ; Tel.: +1-(608)-263-5359
| |
Collapse
|
39
|
The use of complementary and integrative therapies as adjunct interventions during radiotherapy: a systematic review. Support Care Cancer 2021; 29:6201-6209. [PMID: 33822240 DOI: 10.1007/s00520-021-06173-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/21/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Literature supporting the efficacy of complementary and integrative medicine (CIM) alongside radiotherapy is fragmented with varying outcomes and levels of evidence. This review summarizes the available evidence on CIM used with radiotherapy in order to inform clinicians. METHODS A systematic literature review identified studies on the use of CIM during radiotherapy. Inclusion required the following criteria: the study was interventional, CIM therapy was for human patients with cancer, and CIM therapy was administered concurrently with radiotherapy. Data points of interest were collected from included studies. A subset was identified as high-quality using the Jadad scale. Fisher's exact test was used to assess the association between study results, outcome measured, and type of CIM. RESULTS Overall, 163 articles met inclusion. Of these, 68 (41.7%) were considered high-quality trials. Articles published per year increased over time (p < 0.01). Frequently identified therapies were biologically based therapies (47.9%), mind-body therapies (23.3%), and alternative medical systems (13.5%). Within the subset of high-quality trials, 60.0% of studies reported a favorable change with CIM while 40.0% reported no change. No studies reported an unfavorable change. Commonly assessed outcome types were patient-reported (41.1%) and provider-reported (21.5%). Rate of favorable change did not differ based on type of CIM (p = 0.90) or outcome measured (p = 0.24). CONCLUSIONS Concurrent CIM may reduce radiotherapy-induced toxicities and improve quality of life, suggesting that physicians should discuss CIM with patients receiving radiotherapy. This review provides a broad overview of investigations on CIM use during radiotherapy and can inform how radiation oncologists advise their patients about CIM.
Collapse
|
40
|
Carbon dots and curcumin-loaded CD44-Targeted liposomes for imaging and tracking cancer chemotherapy: A multi-purpose tool for theranostics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Kabir MT, Rahman MH, Akter R, Behl T, Kaushik D, Mittal V, Pandey P, Akhtar MF, Saleem A, Albadrani GM, Kamel M, Khalifa SA, El-Seedi HR, Abdel-Daim MM. Potential Role of Curcumin and Its Nanoformulations to Treat Various Types of Cancers. Biomolecules 2021; 11:392. [PMID: 33800000 PMCID: PMC8001478 DOI: 10.3390/biom11030392] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a major burden of disease globally. Each year, tens of millions of people are diagnosed with cancer worldwide, and more than half of the patients eventually die from it. Significant advances have been noticed in cancer treatment, but the mortality and incidence rates of cancers are still high. Thus, there is a growing research interest in developing more effective and less toxic cancer treatment approaches. Curcumin (CUR), the major active component of turmeric (Curcuma longa L.), has gained great research interest as an antioxidant, anticancer, and anti-inflammatory agent. This natural compound shows its anticancer effect through several pathways including interfering with multiple cellular mechanisms and inhibiting/inducing the generation of multiple cytokines, enzymes, or growth factors including IκB kinase β (IκKβ), tumor necrosis factor-alpha (TNF-α), signal transducer, and activator of transcription 3 (STAT3), cyclooxygenase II (COX-2), protein kinase D1 (PKD1), nuclear factor-kappa B (NF-κB), epidermal growth factor, and mitogen-activated protein kinase (MAPK). Interestingly, the anticancer activity of CUR has been limited primarily due to its poor water solubility, which can lead to low chemical stability, low oral bioavailability, and low cellular uptake. Delivering drugs at a controlled rate, slow delivery, and targeted delivery are other very attractive methods and have been pursued vigorously. Multiple CUR nanoformulations have also been developed so far to ameliorate solubility and bioavailability of CUR and to provide protection to CUR against hydrolysis inactivation. In this review, we have summarized the anticancer activity of CUR against several cancers, for example, gastrointestinal, head and neck, brain, pancreatic, colorectal, breast, and prostate cancers. In addition, we have also focused on the findings obtained from multiple experimental and clinical studies regarding the anticancer effect of CUR in animal models, human subjects, and cancer cell lines.
Collapse
Affiliation(s)
- Md. Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh;
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak 124001, India;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Riphah International University, Lahore 54000, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Shaden A.M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, 751 23 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
42
|
Chen Y, Tai K, Ma P, Su J, Dong W, Gao Y, Mao L, Liu J, Yuan F. Novel γ-cyclodextrin-metal-organic frameworks for encapsulation of curcumin with improved loading capacity, physicochemical stability and controlled release properties. Food Chem 2021; 347:128978. [PMID: 33444890 DOI: 10.1016/j.foodchem.2020.128978] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022]
Abstract
A safe and biodegradable γ-cyclodextrin-metal-organic-frameworks (γ-CD-MOFs) was successfully synthesized by using an improved hydrothermal method. In this study, curcumin (Cur) was chosen for testing the encapsulation stability and release performance of γ-CD-MOFs. Results of the crystal structure measurement indicated that the encapsulated curcumin within γ-CD-MOFs via van der Waals forces, hydrophobic interactions and hydrogen bonding was failed to disturb the inherent microtopography and crystallinity of γ-CD-MOFs. Compared to individual γ-CD, the γ-CD-MOFs exhibited improved loading capacity, physicochemical stability as well as controlled-release property in simulated digestion, and hence can be regarded as effective carriers for curcumin. Curcumin-loaded γ-CD-MOFs with a Cur : γ-CD-MOFs mass ratio of 2:3 (Cur-CD-MOFs/3), which showed the highest encapsulation efficiency (67.31 ± 2.25%), improved physicochemical stability and controlled-release performance, was selected for further research and industrialization. Our results demonstrate that γ-CD-MOFs can be regarded as a promising novel carrier for the delivery of curcumin or other hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Yulu Chen
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Kedong Tai
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Peihua Ma
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiaqi Su
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wenxia Dong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yanxiang Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Like Mao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jinfang Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Fang Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
43
|
Anunciação TAD, Garcez LS, Pereira EM, Queiroz VADO, Costa PRDF, Oliveira LPMD. Curcumin supplementation in the treatment of patients with cancer: a systematic review. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-979020200004181008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Mondal P, Natesh J, Penta D, Meeran SM. Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: A clinical update. Semin Cancer Biol 2020; 83:503-522. [PMID: 33309850 DOI: 10.1016/j.semcancer.2020.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications are heritable yet reversible, essential for normal physiological functions and biological development. Aberrant epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA (ncRNA)-mediated gene regulation play a crucial role in cancer progression. In cellular reprogramming, irregular epigenomic modulations alter cell signaling pathways and the expression of tumor suppressor genes and oncogenes, resulting in cancer growth and metastasis. Therefore, alteration of epigenetic-status in cancer cells can be used as a potential target for cancer therapy. Several synthetic epigenetic inhibitors (epi-drugs) and natural epigenetic modulatory bioactives (epi-diets) have been shown to have the potential to alter the aberrant epigenetic status and inhibit cancer progression. Further, the use of combinatorial approaches with epigenetic drugs and diets has brought promising outcomes in cancer prevention and therapy. In this article, we have summarized the epigenetic modulatory activities of epi-drugs, epi-diets, and their combination against various cancers. We have also compiled the preclinical and clinical status of these epigenetic modulators in different cancers.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
45
|
Trošelj KG, Samaržija I, Tomljanović M, Kujundžić RN, Đaković N, Mojzeš A. Implementing Curcumin in Translational Oncology Research. Molecules 2020; 25:E5240. [PMID: 33182817 PMCID: PMC7698148 DOI: 10.3390/molecules25225240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Most data published on curcumin and curcumin-based formulations are very promising. In cancer research, the majority of data has been obtained in vitro. Less frequently, researchers used experimental animals. The results of several clinical studies are conclusive, and these studies have established a good foundation for further research focusing on implementing curcumin in clinical oncology. However, the issues regarding timely data reporting and lack of disclosure of the exact curcumin formulations used in these studies should not be neglected. This article is a snapshot of the current status of publicly available data on curcumin clinical trials and a detailed presentation of results obtained so far with some curcumin formulations. Phenomena related to the observed effects of curcumin shown in clinical trials are presented, and its modifying effect on gut microbiota and metabolic reprogramming is discussed. Based on available data, there is a strong indication that curcumin and its metabolites present molecules that do not necessarily need to be abundant in order to act locally and benefit systemically. Future clinical studies should be designed in a way that will take that fact into consideration.
Collapse
Affiliation(s)
- Koraljka Gall Trošelj
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Ivana Samaržija
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Marko Tomljanović
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Renata Novak Kujundžić
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| | - Nikola Đaković
- Institute for Clinical Medical Research and Education, University Hospital Centre Sisters of Charity, 10000 Zagreb, Croatia;
- Department of Clinical Oncology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anamarija Mojzeš
- Laboratory for Epigenomics, Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia; (I.S.); (M.T.); (R.N.K.); (A.M.)
| |
Collapse
|
46
|
Experimental and clinical studies on radiation and curcumin in human glioma. J Cancer Res Clin Oncol 2020; 147:403-409. [PMID: 33118056 PMCID: PMC7817587 DOI: 10.1007/s00432-020-03432-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/19/2020] [Indexed: 12/03/2022]
Abstract
Purpose There is progressing evidence for the anti-cancer potential of the natural compound and dietary spice curcumin. Curcumin has been ascribed to be cytotoxic for various tumour cell types, to inhibit cell proliferation and to interfere with the cellular oxidant status. The compound has been notified as a therapeutic agent with radiosensitizing potential in brain tumour therapy. We considered the rationale to combine curcumin with radiation in the treatment of human glioblastoma multiforme (GBM). Method Determination of clonogenic cell survival following exposure of U251 human glioma cells to single dose (1–6 Gy) and fractionated irradiation (5 daily fractions of 2 Gy) without and with curcumin. Additional literature search focused on the interaction between curcumin and radiotherapy in experimental and clinical studies on human glioma. Results No interaction was found on the survival of U251 human glioma cells after irradiation in combination with curcumin at clinically achievable concentrations. Experimental in vitro and in vivo data together with clinical bioavailability data from the literature do not give evidence for a radiosensitizing effect of curcumin. Reported GBM intratumoural curcumin concentrations are too low to either exert an own cytotoxic effect or to synergistically interact with radiation. Novel approaches are being explored to increase the bioavailability of curcumin and to facilitate transport over the blood–brain barrier, aimed to reach therapeutic curcumin levels at the tumour site. Conclusion There is neither a biological nor clinical rationale for using curcumin as radiosensitizer in the therapy of GBM patients.
Collapse
|
47
|
Grammatikopoulou MG, Gkiouras K, Papageorgiou SΤ, Myrogiannis I, Mykoniatis I, Papamitsou T, Bogdanos DP, Goulis DG. Dietary Factors and Supplements Influencing Prostate Specific-Antigen (PSA) Concentrations in Men with Prostate Cancer and Increased Cancer Risk: An Evidence Analysis Review Based on Randomized Controlled Trials. Nutrients 2020; 12:nu12102985. [PMID: 33003518 PMCID: PMC7600271 DOI: 10.3390/nu12102985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
The quest for dietary patterns and supplements efficient in down-regulating prostate-specific antigen (PSA) concentrations among men with prostate cancer (PCa) or increased PCa risk has been long. Several antioxidants, including lycopene, selenium, curcumin, coenzyme Q10, phytoestrogens (including isoflavones and flavonoids), green tea catechins, cernitin, vitamins (C, E, D) and multivitamins, medicinal mushrooms (Ganoderma lucidum), fruit extracts (saw palmetto, cranberries, pomegranate), walnuts and fatty acids, as well as combined supplementations of all, have been examined in randomized controlled trials (RCTs) in humans, on the primary, secondary, and tertiary PCa prevention level. Despite the plethora of trials and the variety of examined interventions, the evidence supporting the efficacy of most dietary factors appears inadequate to recommend their use.
Collapse
Affiliation(s)
- Maria G. Grammatikopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41334 Larissa, Greece; (M.G.G.); (D.P.B.)
| | - Konstantinos Gkiouras
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41334 Larissa, Greece; (M.G.G.); (D.P.B.)
- Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, GR-54124 Thessaloniki, Greece; (S.Τ.P.); (I.M.)
- Correspondence: (K.G.); (D.G.G.)
| | - Stefanos Τ. Papageorgiou
- Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, GR-54124 Thessaloniki, Greece; (S.Τ.P.); (I.M.)
| | - Ioannis Myrogiannis
- Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, GR-54124 Thessaloniki, Greece; (S.Τ.P.); (I.M.)
| | - Ioannis Mykoniatis
- Institute for the Study of Urological Diseases (ISUD), 33 Nikis Avenue, GR-54622 Thessaloniki, Greece;
- 1st Department of Urology and Center for Sexual and Reproductive Health, G. Gennimatas—Aghios Demetrius General Hospital, 41 Ethnikis Amynis Street, Aristotle University of Thessaloniki, GR-54635 Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology and Embryology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41334 Larissa, Greece; (M.G.G.); (D.P.B.)
- Division of Transplantation, Immunology and Mucosal Biology, MRC Centre for Transplantation, King’s College London Medical School, London SE5 9RS, UK
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-56429 Thessaloniki, Greece
- Correspondence: (K.G.); (D.G.G.)
| |
Collapse
|
48
|
Lombardi N, Crescioli G, Maggini V, Ippoliti I, Menniti-Ippolito F, Gallo E, Brilli V, Lanzi C, Mannaioni G, Firenzuoli F, Vannacci A. Acute liver injury following turmeric use in Tuscany: An analysis of the Italian Phytovigilance database and systematic review of case reports. Br J Clin Pharmacol 2020; 87:741-753. [PMID: 32656820 DOI: 10.1111/bcp.14460] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS Several cases of acute non-infectious cholestatic hepatitis recently appeared in Italy following consumption of Curcuma longa-containing dietary supplements. The aim of this research was to describe the Tuscan (Italy) cases of acute hepatitis and to compare them with similar cases of hepatotoxicity published in the literature by performing a systematic review. METHODS Records of Tuscan cases of acute hepatitis were obtained from the Italian Phytovigilance system. Each spontaneous report was analysed in order to collect all relevant clinical information of patients and information concerning the Curcuma longa-containing dietary supplement. Moreover, both the RUCAM and WHO-UMC systems were used to evaluate the causal relationship between the use of dietary supplement and acute hepatitis. A systematic literature review was performed in MEDLINE and Embase and all case-reports and case-series published in English were included. RESULTS Seven cases of acute hepatitis occurring in Tuscany up to September 2019 are described. In all cases, hepatotoxicity was associated with Curcuma longa formulations with high bioavailability and high dosage of curcumin/curcuminoids. The causal relationship was also supported by the positive dechallenge observed in most cases. In the 23 cases identified through the systematic review, the majority of patients were concomitantly exposed to at least one other medication and 16 of them experienced a positive dechallenge. CONCLUSIONS Within the frame of poorly controlled and regulated products, such as dietary supplements, the evaluation of Italian cases of Curcuma longa-induced acute hepatitis and the systematic review of literature confirmed the association between Curcuma longa and liver injury.
Collapse
Affiliation(s)
- Niccolò Lombardi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giada Crescioli
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Valentina Maggini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,CERFIT, Research and Innovation Center in Phytotherapy and Integrated Medicine, Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Ilaria Ippoliti
- National Centre for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | | | - Eugenia Gallo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,CERFIT, Research and Innovation Center in Phytotherapy and Integrated Medicine, Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Valentina Brilli
- Toxicology Unit and Poison Centre, Careggi University Hospital, Florence, Italy
| | - Cecilia Lanzi
- Toxicology Unit and Poison Centre, Careggi University Hospital, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.,Toxicology Unit and Poison Centre, Careggi University Hospital, Florence, Italy
| | - Fabio Firenzuoli
- CERFIT, Research and Innovation Center in Phytotherapy and Integrated Medicine, Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Alfredo Vannacci
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
49
|
Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation. Int J Oncol 2020; 57:445-455. [PMID: 32626932 PMCID: PMC7307592 DOI: 10.3892/ijo.2020.5065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Curcumin displays anticancer properties; however, some issues with the drug delivery mode limit its therapeutic use. Although reformulation and derivatization of curcumin have improved its bioavailability, curcumin derivatives may not retain the same anticancer properties as the parent compound. The present study investigated the anticancer properties of two curcumin complexes, the iron‑curcumin [Fe(Cur)3] and boron‑curcumin [B(Cur)2] complexes, in the MDA‑MB‑231 breast cancer cell line. The cellular localization of curcumin, B(Cur)2 and Fe(Cur)3 was determined by fluorescence microscopy. Cell proliferation, migration and invasion were also analysed. Furthermore, apoptosis‑associated proteins were detected by using a proteome profiler array, and ion channel gene expression was analysed by reverse transcription‑quantitative PCR. The results demonstrated that the three compounds were localized in the perinuclear and cytoplasmic regions of the cell, and displayed cytotoxicity with IC50 values of 25, 35 and 8 µM for curcumin, B(Cur)2 and Fe(Cur)3, respectively. In addition, the three compounds inhibited cell invasion, whereas only curcumin and B(Cur)2 inhibited cell migration. Furthermore, cell exposure to curcumin resulted in an increase in the relative expression of the two key proapoptotic proteins, cytochrome c and cleaved caspase‑3, as well as the antiapoptotic protein haem oxygenase‑1. In addition, curcumin increased the expression levels of the voltage‑gated potassium channels Kv2.1 and Kv3.2. Similarly, the expression levels of the chloride channel bestrophin‑1 and the calcium channel coding gene calcium voltage‑gated channel auxiliary subunit γ4 were increased following exposure to curcumin. Taken together, these results indicated that Fe(Cur)3 and B(Cur)2 may display similar anticancer properties as curcumin, suggesting that chemical complexation may be considered as a strategy for improving the potency of curcumin in the treatment of breast cancer.
Collapse
|
50
|
Shep D, Khanwelkar C, Gade P, Karad S. Efficacy and safety of combination of curcuminoid complex and diclofenac versus diclofenac in knee osteoarthritis: A randomized trial. Medicine (Baltimore) 2020; 99:e19723. [PMID: 32311961 PMCID: PMC7220260 DOI: 10.1097/md.0000000000019723] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND To compare the efficacy and safety of combination of curcuminoid complex and diclofenac vs diclofenac alone in the treatment of knee osteoarthritis (OA). METHODS In this randomized trial, 140 patients of knee OA received either curcuminoid complex 500 mg (BCM-95) with diclofenac 50 mg 2 times daily or diclofenac 50 mg alone 2 times daily for 28 days. Patients were assessed at baseline, day 14 and day 28. Primary efficacy measures were Knee injury and OA outcome score (KOOS) subscale at day 14 and day 28. Anti-ulcer effect and patient-physician's global assessment of therapy at day 28 were included as secondary endpoints. Safety after treatment was evaluated by recording adverse events and laboratory investigations. RESULTS Both treatment groups showed improvement in primary endpoints at each evaluation visit. Patients receiving curcuminoid complex plus diclofenac showed significantly superior improvement in KOOS subscales, viz. pain and quality of life at each study visit (P < .001) when compared to diclofenac. Less number of patients required rescue analgesics in curcuminoid complex plus diclofenac group (3%) compared to diclofenac group (17%). The number of patients who required histamine 2 (H2) blockers was significantly less in curcuminoid complex plus diclofenac group compared to diclofenac group (6% vs 28%, respectively; P < .001). Adverse effects were significantly less in curcuminoid complex plus diclofenac group (13% vs 38% in diclofenac group; P < .001). Patient's and physician's global assessment of therapy favored curcuminoid complex plus diclofenac than diclofenac. CONCLUSION Combination of curcuminoid complex and diclofenac showed a greater improvement in pain and functional capacity with better tolerability and could be a better alternative treatment option in symptomatic management of knee OA. TRIAL REGISTRATION ISRCTN, ISRCTN10074826.
Collapse
Affiliation(s)
- Dhaneshwar Shep
- Department of Pharmacology, Krishna Institute of Medical Sciences, Satara
| | - Chitra Khanwelkar
- Department of Pharmacology, Krishna Institute of Medical Sciences, Satara
| | - Prakashchandra Gade
- Department of Pharmacology, Dr. Vithalrao Vikhe Patil Foundation's Medical College & Hospital, Ahmednagar
| | - Satyanand Karad
- Department of Orthopedics, City Care Accident Hospital, Parli Vaijnath, Beed, Maharashtra, India
| |
Collapse
|